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Abstract

Two related systems of coupled modulation equations are studied and compared in
this paper. The modulation equations are derived for a certain class of basic systems
which are subject to two distinct, interacting, destabilizing mechanisms. We assume
that, near criticality, the ratio of the widths of the unstable wavenumber-intervals of the
two (weakly) unstable modes is small { as for instance can be the case in double-layer
convection. Based on these assumptions we �rst derive a singularly perturbed modulation
equation and then a modulation equation with a non-local term. The reduction of the
singularly perturbed system to the non-local system can be interpreted as a limit in which
the width of the smallest unstable interval vanishes. We study and compare the behaviour
of the stationary solutions of both systems. It is found that spatially periodic stationary
solutions of the non-local system exist under the same conditions as spatially periodic
stationary solutions of the singularly perturbed system. Moreover, these solutions can
be interpreted as representing the same quasi-periodic patterns in the underlying basic
system. Thus, the `Landau-reduction' to the non-local system has no signi�cant inuence
on the stationary quasi-periodic patterns. However, a large variety of intricate heteroclinic
and homoclinic connections is found for the singularly perturbed system. These orbits
all correspond to so-called `localised structures' in the underlying system: they connect
simple periodic patterns at x!�1. None of these patterns can be described by the non-
local system. So, one may conclude that the reduction to the non-local system destroys a
rich and important set of patterns.

1 Introduction

In the weakly nonlinear stability theory of the evolution of patterns one classically considers
systems like

 t = LR +N( );  (x; y; t) : Rn � 
� R+ ! R
N ; (1:1)

where LR (respectively N) is a linear (nonlinear) operator, R is a control, or bifurcation,
parameter and 
 is a bounded domain � R

m. We refer to the review paper by Eckhaus [9]
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for a survey and some of the numerous physical examples. This system is assumed to have a
basic solution  0(y). The linearised stability of this solution is determined by setting

 =  0 + f(y)eikx+�t

and solving, for any pair (k;R), an eigenvalue problem for f(y) with eigenvalues � = �(k;R).
The neutral curve is de�ned as the set fRe�0(k;R) = 0g, where �0(k;R) is the critical
eigenvalue (that is, the eigenvalue with the largest real part) for a given pair (k;R). The basic
solution  0 is linearly stable for R = R0 if Re�0(k;R0) < 0 for all k. A bifurcation occurs if
one increases R such that fR = const:g intersects the neutral curve at a minimum (kc; Rc)
of this curve: a small interval of `linearly unstable waves' appears for R > Rc (see Figure 1).
To understand the behaviour of the solutions to (1.1) for R close to Rc, or R � Rc = r"2,
0 < " � 1, one �rst shows that the nonlinear evolution of solutions close (= O(")) to
 0 is governed by the (complex) amplitude A(�; �) of the linearly `most unstable mode'
fc(y)e

i(kcx+�ct), where fc(y) is the critical eigenfunction at the eigenvalue �(kc; Rc) = i�c; �
and � are slow spatial and temporal variables. Then, one derives an equation for A(�; �), the
so-called Ginzburg-Landau equation:

A� = r�RA� 1

2
�kkA�� + cAjAj2; (1:2)

where �R = @�
@R

(kc; Rc), �kk =
@2�

@k2
(kc; Rc) and c 2 C is the so-called Landau constant. Note

that Re�R > 0 and Re�kk < 0 since the neutral curve can be approximated near the minimum
(kc; Rc) by the parabola

R = Rc � 1

2

Re�kk
Re�R

(k � kc)2: (1:3)

Details of this procedure are, for instance, given in [9]. Recently, a number of papers on the
mathematical validity of the Ginzburg-Landau approximation have appeared, we refer to [2]
for a survey and relevant references. The Landau-equation associated to this nonlinear sta-
bility problem can be obtained from (1.2) by setting A(�; �) = A(�). This `Landau-reduction'
can be interpreted by saying that one neglects the width of the band of unstable waves cen-
tered around k = kc for R = Rc+r"

2. Historically, the Landau equation was derived a decade
earlier than the Ginzburg-Landau equation (see [30]).

In this paper we consider a class of physical problems which have two distinct, interact-
ing, instability mechanisms at near-critical conditions. This means, in the above setting, that
the neutral curve fRe�0(k;R) = 0g has two local minima, (k1; R1) and (k2; R2), such that
jR1 � R2j is small (see Figure 1). So, if one chooses R close to criticality in this case, one
expects two independent, interacting, `linearly most unstable waves', f1(y)e

i(k1x+�1t) near
(k1; R1) with complex amplitude A(�; �) and f2(y)ei(k2x+�2t) near (k2; R2) with amplitude
B(�; �). The nonlinear behaviour of patterns near criticality is then described by a coupled
system of Ginzburg-Landau equations.

When a neutral curve has more than one local minimum one does not expect that those
minima occur for (approximately) the same value of the bifurcation parameter R. However,
the relative position of the minima can very often be changed as a second parameter S is
varied. Thus, by changing this second parameter S the neutral curve transforms from a curve
with an absolute minimum in (k1; R1) to a curve with an absolute minimum (k2; R2) (or vice
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versa). If (k1; R1) is the absolute minimum then we are in the above described classical case
and the evolution of patterns near criticality is governed by (1.2); if (k2; R2) is the absolute
minimum then the situation is again classical and is governed by a Ginzburg-Landau equation
for B(�; �). The two unstable modes interact in the transition region. This situation occurs
in many applications and the above described coupled system of equations has been derived
by many authors. We mention here some physical examples: double-layer convection [25],
[24], [18]; crystal-growing experiments (where the convective and morphological modes can
interact) [13], [26], [21]; gasless combustion [19]; sand ripple formation [31]. The coupled
system of modulation equations has, for instance, been derived in [19], [17], [22].

In section 2 we will give a short sketch of the derivation of the coupled system in the case of
(non-resonantly) interacting instability mechanisms. The model problem considered in this
paper is assumed to have a reection symmetry in the one-dimensional unbounded variable
x. Therefore, all coe�cients in the coupled system of modulation equations will be real:(

A� = rA+ A�� +A(t1jAj2 + c1jBj2)
B� = sB +DB�� + B(t2jBj2 + c2jAj2) (1:4)

where r and s measure the distance between R and R1;2 (see section 2 for more details).
By rescaling, we have simpli�ed the coe�cients of the linear terms. Due to the reection
symmetry { which for instance occurs naturally in convection experiments { the �-variable
is not moving (it is independent of t). This is a consequence of the fact that all eigenvalues
�(k;R) are real. If this is not the case, then the A and B amplitudes will be traveling with
the group speed of the linearly unstable waves. This speed is in general not the same for the
A- and B-modes, so the interaction of the A and B patterns cannot be described by (1.4).
In this case one has to apply some kind of averaging formalism in order to derive a so-called
mean �eld Ginzburg-Landau equation, see for instance [17], [19] and [23] for a validity result.

Here, we focus on the signi�cance of the di�usion parameter D (> 0) in (1.4): D mea-
sures the relative widths of the bands of unstable modes just above the minima (k1; R1) and

(k2; R2). More precise: as in (1.2), the di�usion coe�cients are determined by @2�

@k2
(k1;2; R1;2),

which measure the curvature of the neutral curve at the minimum (see (1.3)). We have

rescaled the di�usion coe�cient in the A-equation to 1: D measures the ratio of @2�

@k2
(k1; R1)

and @2�
@k2

(k2; R2). Thus, D � 1 means that the neutral curve near (k2; R2) is much `sharper',
or narrower, than near (k1; R1) (see Figure 1 and section 2 for more details). This occurs for
instance naturally in experiments on double-layer convection (where the depth of the layers
di�ers signi�cantly) and in experiments on crystal-growth (see [13], [25] and [22], [18] for a
discussion). If this is the case one can introduce a second small parameter 0 < � � 1 by
setting D = 1

�2
and write down a singularly perturbed system:

(
A� = rA+A�� +A(t1jAj2 + c1jBj2)
B� = sB + 1

�2
B�� + B(t2jBj2 + c2jAj2) (1:5)

There is another, equivalent, way of interpreting this singular term: both instability mech-
anisms are associated to a natural spatial scale at which the patterns evolve. In this paper
we consider the case in which the magnitudes of these scales di�er signi�cantly. Due to
the rescaling we can say that the natural scale associated to A is �, while it is �� for B:
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B(�; �) only varies very slowly on the �-scale. Returning to the above interpretation this
means that the width of the (k2; R2)-parabola (see (1.3)) is O(�) compared to the width of
the (k1; R1)-parabola (Figure 1). In this situation it is natural to apply the above described
`Landau-reduction' for B: B(�; �) = B(�). In section 2 we show that (1.5) then reduces to
the following non-local system:(

A� = rA+ A�� +A(t1jAj2 + c1jBj2)
B� = sB +B(t2jBj2 + c2 limM!1

1
2M

RM
�M jAj2d�) (1:6)

We shall also show that this reduction is only valid when A(�; �) (and B(�)) satisfy an extra
solvability condition

c2B

Z 1
�1

 
jAj2 � lim

M!1

1

2M

Z M

�M

jAj2d�̂
!
eiK�d� = O("2) for K = O(�): (1:7)

This condition cannot be satis�ed by all solutions of (1.6) (see section 3.1, remark 3.1). The
idea of a Landau-reduction has also been applied by Metzener and Proctor ([22]) in their anal-
ysis of the evolution of patterns at `disparate scales'. Note that our approach is not exactly
the same as in [22]: there k2, instead of D, has been taken as a small parameter. In section
2 we relate our approach to the one in [22]. Some fundamental properties of a modulation
equation with a non-local term, such as the existence, uniqueness, regularity of solutions, the
dimension of attractors etc., have been studied in [7].

The main goal of this paper is to understand the impact of this Landau-reduction for B
on the patterns described by (1.5). We focus on the analysis of the stationary solutions of
(1.5) and (1.6). First we search for spatially periodic solutions. For both systems, the anal-
ysis is based on the fact that the (stationary) equation for A is integrable when B is �xed
at a constant value (see [4] for references to the stationary problem of the (uncoupled) `real'
Ginzburg-Landau equation). Thus, the stationary problem associated to (1.5) is a (singularly)
perturbed integrable system; periodic orbits in the fast �eld can be found by constructing
a Poincar�e map. We �nd that both systems have a similar set of periodic solutions which
exists under the same conditions on the parameters and, most importantly, which describe {
up to O(�) corrections { the same family of quasi-periodic patterns in the basic system. The
most important di�erence between the quasi-periodic patterns described by (1.5) and (1.6)
is that jBj is periodic with an O(�) amplitude around a certain value b in (1.5), while the
corresponding solution described by (1.6) has jBj � b. Thus, the above Landau-reduction for
the B-mode has no signi�cant inuence here.

By introducing polar coordinates for A and B it is possible to write the stationary singularly
perturbed problem as a 4-dimensional ODE with two fast directions, x and y corresponding
to A, and two slow directions, z and w corresponding to B:8>>><

>>>:
_x = y
_y = �x + x(x2 � c1z2)
_z = �w
_w = �(�sz + z(z2 � c2x2))

(1:8)

where we have scaled (r; t1; t2) in (1.5) to (1;�1;�1) (thus we chose t1;2 < 0, as occurs most
frequently in applications); the `dot' refers to di�erentiation with respect to `time' t, where
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t is now a rescaled version of �. The reduction from the expected 8-dimensional system to a
4-dimensional system is due to the phase invariance in the equations for A and B and to the
fact that there are two integrals, 
1 and 
2, in the full system. These integrals are uncoupled,
in the sense that they are identical to the integrals of the uncoupled equations for A and B
(see section 3 and [4]). We simplify the analysis by choosing 
1 = 
2 = 0. Both, `most
stable' (see [20]) Stokes-wave solutions, (A = const., B � 0) and (B = const., A � 0), satisfy

1 = 
2 = 0 and are thus described by (1.8). This 4-dimensional system can be analysed
(for instance) by the geometric theory for singularly perturbed systems, originally developed
by Fenichel [11], see also the contribution of Jones to [1]. Due to the results of Fenichel we
establish the existence of two so-called slow, invariant, manifolds �l and �r . We �nd a very
rich structure of heteroclinic and homoclinic orbits which `jump up and down' between �l
and �r. More precise: there are 4 critical points on the slow manifolds: Pl; Ql 2 �l and
Pr ; Qr 2 �r. For any N > 0 there are N (N) di�erent `N -jump' heteroclinic or homoclinic
orbits which connect two of the above four points and which consist of N +1 slow parts near
�l or �r and N jumps through the fast �eld. The number N (N) can be explicitly calculated:
N (N) = 4� the (N + 2)-th Fibonacci number (see Theorems 1 and 2 in section 4.2). These
results are obtained by carefully tracking the 3-dimensional stable and unstable manifolds
of �l, �r and the 2-dimensional stable and unstable manifolds of Pl;r; Ql;r through the fast
�eld and near the slow manifolds. The Hamiltonian structure of (1.8), see section 4, is a key
ingredient of the proof of our results. Based on the methods developed in [6] we are also able
to show the existence of homoclinic orbits which do not jump immediately from �l to �r (or
vice versa), but remain in the fast �eld for a `longer time' (see Theorem 3).

These orbits all correspond to so-called `localised structures' in the underlying system: they
connect simple, spatially periodic patterns at x! �1. This type of patterns can be stable in
the uncoupled Ginzburg-Landau equation (see for instance [28] for a survey). However, none
of these patterns can be described by the non-local reduction (1.6). There are two reasons
for this. The �rst reason is that the most important ingredient of the construction of the
heteroclinic and homoclinic orbits is the existence of the slow manifolds �l and �r. These
manifolds can (of course) not exist in the Landau reduction since B, and thus z and w in
(1.8), cannot evolve slowly. However, there exist a small number of heteroclinic orbits in
the stationary problem associated to (1.6) which do have a counterpart in (1.8): the orbits
only remain near �l;r for an O(�)-distance. These `localised patterns' cannot be described
by the Landau-reduction due to a second, independent reason: they do not satisfy the extra
solvability condition (1.7), see Remark 3.1.

Thus we conclude that the reduction to a Landau approach for B destroys a rich and impor-
tant set of patterns.

We end this introduction by a short sketch of the structure of this paper. In section 2 we
derive equations (1.4), (1.5) and (1.6), with extra condition (1.7). We also pay some attention
to the problem studied by Metzener and Proctor [22] and relate it to our approach. Section
3 is devoted to the derivation of stationary problems associated to (1.5) and (1.6) and the
analysis of the non-local problem. The singularly perturbed problem is studied in section 4:
�rst we show the existence of (fast) periodic solutions using a Poincar�e map, then we employ
the ideas of geometric singular perturbation theory. We end the paper by a short discussion.
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2 The derivation of the equations

We consider the following model problem

@ 

@t
= LR;S;T ( ) +N( ) where  (x; t) : R� R+ ! R; (2:1)

which is a simpli�cation of (1.1) since we restrict ourselves to a one-dimensional problem
without a bounded y-variable. Furthermore we assume, as in the introduction, that there is
a reection symmetry x ! �x in (2.1) and that the basic solution  0 � 0. Here, the linear
operator depends on three bifurcation-parameters R; S and T . The `eigenvalue' �(k;R) as
de�ned in the introduction is in this case equal to the symbol of the linear operator LR;S;T :

LR;S;T (e
ikx) = �(k;R;S; T )eikx: (2:2)

We consider this very simple model in order to simplify the derivation of the modulation
equation as much as possible. Introducing transversal y-dimensions will merely increase the
technical di�culties. The validity of the Ginzburg-Landau equation (1.2) for systems like
(2.1) has been proved in [12].

As in the introduction, we de�ne the neutral curve fRe�(k;R) = 0g. Here, we will study the
case that this curve has two minima: (k1; R1) and (k2; R2), with k2 < k1. The neutral curve
near (k1; R1) can be scaled such that

R = 1+ (k � 1)2 + h:o:t: (2:3)

locally, thus (k1; R1) = (1; 1) (compare with the general expression (1.3)). The two conditional
parameters S and T can now be interpreted. By changing T , the relative position of R2 with
respect to R1 = 1 can be adapted. The relative width of the critical curve, or the band of
unstable waves, at k1 = 1 and at k2 is changed by S. The neutral curve near (k2; R2) can be
written as

R = k2 +D(k � k2)
2 + h:o:t:; (2:4)

thus D = D(S) measures the relative widths of the (1; 1)- and (k2; R2)-parabolas. For sim-
plicity one might say that T controls the position of R2 and S controls D.

The object of nonlinear (stability) theory is to describe the nonlinear evolution of the pertur-
bation for R close to the critical value Rc. If O(R� R1) 6= O(R � R2) one derives a single
uncoupled Ginzburg-Landau equation (1.2) in the weakly non-linear stability analysis, either
near (1; 1) if 1 < R2 or near (k2; R2) if 1 > R2. Coupling occurs if we assume that

R� 1 = r"2; R� R2 = s"2; 0 < "� 1: (2:5)

This can be seen as follows: one models the perturbation of the basic solution as slow mod-
ulations of the critical waves, eix and eik2x, and their complex conjugates:

 (x; t) = "A(�; �)eix + "B(�; �)eik2x + c:c:+O("2);

where A and B are unknown `amplitudes' of the slow space and time variables � = "x and
� = "2t. The non-linear terms in (2.1) will generate harmonics of these simple linear waves.
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Thus, the "2; "3-terms are constructed from a product of the two most unstable waves, eix

and eik2x

"2�02+ � � �
 (x; t) = eix["A+ "2�12+ "3�13 + � � �

eik2x["B + "2 12+ "3 13 + � � �
e2ix["2�22+ � � � +c:c:

e2ik2x["2 22+ � � �
eix(1+k2)["2�12+ � � �
eix(1�k2)["2	12+ � � �

(2:6)

Here the A;B; �ij ;  ij;�ij and 	ij are functions of � and � for every i; j 2 N. All scalings
are classical, see for instance [9]. The validity of this expansion is proven in [10] for the case
that there is one minimum.

This expansion is valid as long as there are no resonances between k1 = 1 and k2. It is
clear that for k2 6= 1

2 all above interaction terms are di�erent. For k2 =
1
2 some of these terms

coincide. As a consequence one has to choose other temporal and spatial scales and there will
appear quadratic terms in the governing evolution equations (see for instance [24] and [31]
for physical examples). This is called resonance; we will not discuss this in more detail in this
paper. Resonance also occurs for k2 =

1
3 on the O("3)-level. Since the dominant terms of the

modulation equations are determined at the O("3)-level there are no other resonant values of
k2.

The idea behind the derivation of the modulation equation is simple: one substitutes the ex-
pansion for  into (2.1), one expands and then gathers terms of the form "aeix(b1+b2k2); a; b1; b2 2
N. The equations at the a = 2-level can be solved: the functions in expansion (2.6) can all
be expressed in terms of A and B. The solvability conditions for �13 and  13 at the levels
a = 3; b1 = 1; b2 = 0 and a = 3; b1 = 0; b2 = 1 yield, after some trivial rescalings, the
coupled system (1.4) for A and B given in the introduction .

In this paper we study the situation in which the local parabola near (k2; R2), (2.4), is
very narrow with respect to (2.3) (see the introduction and Figure 1), thus we assume that

D =
1

�2
with 0 < � � 1: (2:7)

This automatically yields the singularly perturbed system (1.5) given in the introduction. The

appearance of the singular term 1
�2

@2B
@�2

can also be understood directly from the derivational

point of view: the width of the (k2; R2)-parabola at R = R2+ O("2) is O("�), so the natural
spatial scale associated to the B-mode is �2 = "�x = ��. Thus, B evolves on a slow spatial
scale, compared to A. Therefore, it is natural to assume a `Landau-ansatz' for B: B = B(�),
that is, B is independent of �, as has for instance been done in [22]. This Ansatz means that
we approximate the (k2; R2)-parabola by a line. Repeating the above derivation process we
see that this Landau-reduction has no inuence on the equation for A. However, the equation
for  13 (see expansion (2.6)) now reads

LR;S;T ( 13e
ik2x) = [�1

@B

@�
� (�2B + �3BjBj2 + �4BjAj2)]eik2x (2:8)
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where the �1; : : : ; �4 are the non-scaled counterparts of the constants in (1.4). This equation
can be written as

LR;S;T ( 13e
ik2x)e�ik2x = f(�; �) + g(�); (2:9)

where f(�; �) = ��4BjAj2 is the only term which depends on �. We de�ne the averages

 13(�) = lim
M!1

1

2M

Z M

�M
 13(�; �)d�

f (�) = lim
M!1

1

2M

Z M

�M
f(�; �)d�

and separate f and  13 into a part which only depends on � and a part which still depends
on both � and � :

 13(�; �) =  13(�) + 	(�; �)

f(�; �) = f(�) + F (�; �):

Note that although we of course assume that  13 and f are bounded on R, these averages do
not automatically exist for all  13 and f . However, we shall see that  13 and f exist for the
functions studied here (see Remark 3.1 in section 3.1). We substitute these expressions into
(2.9) and obtain

LR;S;T ( 13e
ik2x)e�ik2x + LR;S;T (	e

ik2x)e�ik2x = (f + g) + F (�; �): (2:10)

Because  13 only depends on � the �rst term of this expression can be calculated as

LR;S;T ( 13e
ik2x)e�ik2x = �(k2; R2) 13 = 0:

Thus we get
LR;S;T (	e

ik2x)e�ik2x = (f + g) + F: (2:11)

Taking the above de�ned average on both sides leads to the following solvability equation

�1
@B

@�
= �2B + �3BjBj2 + �4B lim

M!1

1

2M

Z M

�M
jAj2d�:

This equation follows from (2.11), however, it is not a su�cient condition to solve (2.11): the
equation for 	 is still left. Writing 	 and F as (formal) Fourier integrals, we haveZ 1

�1

�
�(k2 + "K;R)	̂(K)� F̂ (K)

�
eiK�dK = 0 (2:12)

in the sense of distributions. Now we note that �(k2 + "K;R) = O("2) if jKj = O(�) (since
the local neutral (k2; R2)-parabola is only of O(�) width). Thus we see that (2.12) cannot be
solved for a bounded O(1) solution 	 if F̂ (K) 6= O("2) for jKj = O(�). This yields a second
solvability condition on F = f � f = �4BjAj2 � f :

f2B

Z 1
�1

 
jAj2 � lim

M!1

1

2M

Z M

�M

jAj2d�̂
!
eiK�d� = 0 + h:o:t: (2:13)

for jKj � O(�). Observe that (2.11) can now be solved. After rescaling, the above analysis
leads to the non-local system (1.6) given in the introduction, where again t1; t2; r; s; c1; c2
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have exactly the same values as in (1.5); extra condition (2.13) coincides with (1.7). In [3]
a proof has been given of the asymptotic validity of a Ginzburg-Landau equation with an
extra non-local term combined with some additional conditions for a certain version of the
Poiseuille ow problem. Note that intuitively the relation between the singularly perturbed
system and the non-local system is quite simple: � has become so small that one is forced to
assume that B can not be a function of � (at highest order). This has no inuence on the
equation for A� in (1.5). However, the B�� has to disappear in the B� -equation, and one has
to eliminate the �-dependence of the jAj2-term.

Remark 2.1 The above derivation of the non-local system (1.6) is not completely rigor-
ous. In order to improve this one should work with the Fourier transform  ̂ of  , the solution
of (2.1), and interpret it as a distribution, see for instance [12] and [3].

Remark 2.2 In their analysis of pattern evolution with disparate scales Metzener and Proc-
tor [22] do not use the relative width of the local parabolas as small parameter, but the second
critical wavenumber k2: k2 = � � 1 = k1. If this is the case, it is easy to show that the width
of the (k2; R2)-parabola must also be small, so the above derivation covers this case. Note that
we assume -as in [22]- that the (k2; R2)-parabola yields a classical Ginzburg-Landau equation
if we omit the A-mode (see the introduction); in other words: we assume that �(0; R1) > 0
and O(1) (see [18] for a short discussion). In this remark we sketch the extra complications
encountered by taking � small. If one derives the coupled system in this case, one �nds if
� � ": (

@A
@�

= rA+ @2A
@�2

+ A(t1jAj2 + ~c1
�2
jBj2)

@B
@�

= sB + d
�2

@2B
@�2

+B(t2jBj2 + ~c2
�2
jAj2): (2:14)

Thus, the coupling terms AjBj2 and BjAj2 must also be large, O( 1
�2
). This is due to the fact

that the terms ei(1��)x in the expansion of  (see (2.6)) are now close to the critical wave

eix. Thus, solving the equations for �12;	12, (2.6), yields terms like AB;AB

�(1��;1) = O( 1
�2
). This

case is much harder to study than the above case. Therefore, we focus in this paper on the
assumption k2 = O(1); D = 1

�2
; �� 1.

Moreover, one encounters many other complications in deriving and studying the appro-
priate equations as the relative magnitudes of " and � change. For instance, for " = O(�) the
system becomes (at leading order)

(
@A
@�

= rA+ @2A
@�2

+ cA(BeiL� +Be�iL�)
@B
@�

= sB + a1 limM!1
1
2M

RM
�M jAj2e�iL�d�; (2:15)

where k2 = � = "L. In the derivation of these last equations the magnitude of the pertur-
bation had to be taken of order "2 instead of ". Solutions of the above system can be found
explicitly and it can be checked that these solutions are unstable. From this it follows that
although one �rst has to take the perturbation of magnitude O("2), they will grow to a mag-
nitude of O("). This leads to a rather complicated system. The above example (2.15) is just
added to indicate the complications caused by decreasing � further. Deriving and analysing
the full set of equations for every possible combination of the magnitude of " relative to that
of � is a task we will not pursue in this paper. We refer to [29] in which such a complete
non-linear stability analysis has been performed for a, in a sense, simpler case: a weakly,
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periodically driven, system. There, �ve essentially di�erent types of modulation equations
have been derived.

In [22] a di�erent system has been proposed to describe the weakly non-linear evolution
of patterns at `disparate scales'. This system is in some sense a combination of (1.6) and
(2.15): (

@A
@�

= �A� jAj2A+ @2A
@X2 +A(BeiX +B�e�iX)

@B
@�

= �B � cjBj2B � s limM!1
1

2M

RM
�M jAj2e�iXdX: (2:16)

In order to give a foundation to this system one has to assume relations between the param-
eters of (1.6) and (2.15) and " (see [18]): that is the only way to have quadratic and cubic
terms of the same magnitude. Since these parameters are in principle completely independent
of " this assumption will be violated in general. Therefore, one will not �nd this system if
one pursues the above sketched task of deriving all relevant `generic' equations.

3 Stationary solutions

From now on we focus on the analysis of non-local system (1.6) and singularly perturbed
system (1.5). We will study and compare the solutions of these systems. System (1.6) can
be considered as a limit of (1.5), thus we expect that some classes of solutions represent
similar patterns in the underlying basic system. The most simple solutions are the stationary
solutions, which we will study here. The stationary solutions are certainly of a physical
relevance, for instance in the convection context where stable stationary patterns exist (see
section 5). The stationary problem associated to the singularly perturbed system reads(

@2A
@�2

= �rA�A(t1jAj2 + c1jBj2)
@2B
@�2

= �2(�sB � B(t2jBj2 + c2jAj2))
(3:1)

To reduce the amount of unknown variables we introduce polar coordinates. Let

A = �1e
i�1 ; B = �2e

i�2 ; (3:2)

where �1; �2; �1 and �2 depend on �. We insert these expressions into the above system,
separate the real and complex parts and �nd8>><

>>:
r�1 +

@2�1
@�2

� �1(@�1@� )2 + �1(t1�21 + c1�
2
2) = 0

s�2 +
1
�2

@2�2
@�2

� 1
�2
�2(

@�2
@�
)2 + �2(t2�22 + c2�

2
1) = 0

2@�i
@�

@�i
@�

+ �i
@2�i
@�2

= 0;

(3:3)

for i = 1; 2. Because
1

�i

@

@�
(�2i

@�i
@�

) = 2
@�i
@�

@�i
@�

+ �i
@2�i
@�2

we obtain that
@

@�
(�2i

@�i
@�

) = 0

and therefore introduce the integrals 
i:

�2i
@�i
@�

= 
i:
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Since @B
@�

= O(�) we know that @�2
@�

has to be of O(�), which implies that 
2 is O(�). We

introduce ~
2, where 
2 = � ~
2 and ~
2 = O(1). Substituting this into (3.3) leads to8><
>:

@2�1
@�2

= �r�1 � �1(t1�
2
1 + c1�

2
2) +


2

1

�3
1

@2�2
@�2

= �2(�s�2 � �2(t2�22 + c2�
2
1) +

~
2

2

�3
2

):
(3:4)

Equivalently, we determine the ODE associated to the stationary solutions of (1.6):(
@2A
@�2

= �rA �A(t1jAj2 + c1jBj2)
0 = B(s + t2jBj2 + c2 limM!1

1
2M

RM
�M jAj2d�): (3:5)

Thus, there are possible values for B

1: B = 0

2: jBj2 = �s
t2

+
�c2
t2

C(A) where C(A) = lim
M!1

1

2M

Z M

�M
jAj2d�:

The �rst case leads to the stationary uncoupled Ginzburg-Landau equation for A. The second
case leads to the following equation for A

@2A

@�2
= (�r + c1

t2
(s + c2C(A))A� t1AjAj2:

As above, we introduce polar coordinates for A, A = �1e
i�1 :

@2�1
@�2

= (�r + c1
t2
(s+ c2C(�1)))�1� t1�

3
1 +


2
1

�31
; (3:6)

where, as above, 
1 = �21
@�1
@�

is an integral. To simplify the calculations, we set in both systems
(3.4) and (3.6) r = 1; t1 = �1; t2 = �1. Note that this can be obtained by straightforward
rescalings with additional assumptions on the signs of r; t1; t2. These assumptions are so
that the equations are directly related to the single Ginzburg-Landau equation mostly studied
in the literature. Furthermore we assume that 
1 = ~
2 = 0. Taking 
1 = ~
2 = 0 simpli�es
the analysis, however for 
1 6= 0 and ~
2 6= 0 the analysis is in essence the same. Because

i = �2i

@�i
@�

for i = 1; 2, 
1 = ~
2 = 0 implies that @�1
@�

= @�2
@�

= 0. This yields that �1 and �2 do
not depend on � thus �1 and �2 are constants. Thus due to the phase shift invariance in (1.5)
and (1.6), one can say that we restrict ourselves to studying real solutions of these systems.
Moreover, we note that the Stokes waves, (A=constant, B = 0) and (A = 0, B=constant),
are on the 
1 = ~
2 = 0 level sets. We refer to [4] for a detailed discussion of the relation
between 
 = 0 and 
 6= 0 in the single real Ginzburg-Landau case.

3.1 Stationary solutions of the non-local equations

We introduce x = �1 in (3.6) with 
1 = 0; r = 1; t1 = �1 and t2 = �1:

�x = �(1 + c1(s+ c2C(x)))x+ x3 with C(x) = lim
M!1

1

2M

Z M

�M
x2dt; (3:7)

where the dot means di�erentiating with respect to `time' t = �. We are only interested in
bounded solutions of these equations since A, where jAj = �1 = x, must remain bounded.
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Moreover C(x) is only de�ned for bounded x. First we set C(x) = C, where C is a �xed
constant. System (3.7) then becomes

�x = �ax + x3 where a = 1 + c1(s+ c2C): (3:8)

We will describe the phase portrait of this equation in some detail, because later on we will
come across this equation again. For a < 0, (3.8) has only one critical point: (0; 0), which is
a saddle point. This yields that there are no bounded solutions, except for the trivial critical
point. For a > 0, the system has three critical points: (0; 0) and (�pa; 0). In this case
(0; 0) is a centre point and (�pa; 0) are saddle points. There exists a heteroclinic connection
between the two saddle points. Inside this heteroclinic solution there are bounded periodic
solutions and outside all orbits are unbounded. This means that bounded solutions of (3.8)
will always lie inside the heteroclinic cycle formed by the two connections. These solutions
are periodic (see Figure 2). System (3.8) is integrable with integral or energy k:

k =
1

2
y2 +

1

2
ax2 � 1

4
x4; where y = _x: (3:9)

It is possible to determine C(x) explicitly for a periodic solution of (3.8), with period T0.
Note that

C(x) = lim
M!1

2M

2MT0

Z T0

0
x2dt =

1

T0

Z T0

0
x2dt (3:10)

for a periodic solution x. Hence

C(x) =

R T0
0 x2dtR T0
0 dt

=

R x1
�x1

x2p
G(x;k)

dxR x1
�x1

1p
G(x;k)

dx
(3:11)

by changing variables, where G(x; k) = 2k � ax2 + 1
2x

4. Here �pa < �x1 < 0 < x1 <
p
a

are the intersection points of the solution x, on the energy level set k, with y = 0. Introduce
X = x2 and X1 = x21 then

C(x) =
T1(k)

T0(k)
; where Ti(k) =

I
X idXq

2kX � aX2 + 1
2X

3
: (3:12)

This is a contour integral in the complex plane around the interval [0; X1] on the real axis.
We de�ne

�(k) =
T1(k)

T0(k)
: (3:13)

Because x is a periodic solution which lies inside the heteroclinic cycle, the k-value of x lies
between 0 and 1

4a
2. Below we will show that � is a monotonic function of k, so we can conclude

that 0 < � < a (since �(0) = 0 and limk" 1
4
a2 �(k) = a). Although this result is a special case

of a more general result proved in [4], we will sketch the derivation of the monotonicity result:
�(k) is an important quantity which will also appear in subsequent sections. Note that

@�

@k
=

@

@k

T1
T0

=
T0

@T1
@k
� T1

@T0
@k

T 2
0

:
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We de�ne G1(k;X) =
q
2kX � aX2 + 1

2X
3 and de�ne

Ji(k) =
I

X idX

(G1(k;X))3
;

which yields that
@�

@k
=
�T0J2 + T1J1

T 2
0

: (3:14)

Rewriting Ti(k) into these Ji(k)'s leads to the following relation for every i � 0

Ti = 2kJi+1 � aJi+2 +
1

2
Ji+3: (3:15)

Since I
d

dX

X idX

(G1(k;X))
= 0

for every i � 1, we also �nd:

k(2i� 1)Ji + (1� i)aJi+1 + (
1

2
i� 3

4
)Ji+2 = 0: (3:16)

Setting in (3.15) i = 0; 1 and in (3.16) i = 1; 2 leads to a system of four equations from which
J1 and J2 can be solved. Substitution of these expressions into (3.14) gives

@�

@k
=

1

4k(a2 � 4k)
(a�2 � 8k�+ 4ka):

We de�ne f(k) = 4k(a2 � 4k) and P (�) = a�2 � 8k� + 4ka; and see that f(k) > 0 for
0 < k < 1

4a
2, which is exactly the interval we are studying. There are no solutions of

P (�) = 0 and so, because a > 0, P (�) > 0 for every �. Combining this �nally results in
@�
@k

> 0. This yields that 0 < �(k) < a, where �(k) = 0 corresponds to the centre point
(0; 0) and �(k) = a to the heteroclinic orbit. Since C(x) = �(k) one observes that bounded
solutions can only exist if 0 < C(x) < a. We can now explicitly solve (3.7): for a given value
of a = 1 + c1(s + c2C) in (3.8) we see that the bounded orbits have values of C ranging from
0 to a, thus if

C(x) 2 (0; 1 + c1(s + c2C(x))); (3:17)

we see that one bounded orbit of system (3.8) is selected as solution of system (3.7). Again
C(x) = 0 corresponds to the selection of the centre point (0; 0) and C(x) = 1+c1(s+c2C(x))
to the selection of a heteroclinic orbit. Recall that jBj2 = s+ c2C(x), which relates the value
of jBj to every C(x). Thus, the non local system (1.6) only has bounded stationary solutions
(A(�); B) with `average' C(A) if 0 < C(A) < 1 + c1(s+ c2C(A)) and jBj2 = s+ c2C(A) > 0.

Remark 3.1 The two boundaries of the interval given by (3.17) determine, in a sense, the
bifurcations at which the periodic solutions of (3.7) (dis)appear. As already noted above
the periodic solution shrinks into a critical point at C(x) = 0. The other boundary, at
C(x) = 1+c1s

1�c1c2
determines a global bifurcation at which the periodic orbit merges with a hete-

roclinic cycle of (3.7). From the derivation of the system we also obtained an extra condition
(1.7) which the solutions have to satisfy. As can be easily seen, the critical points of the
system do satisfy the condition. This is also true for the periodic solutions as long as their
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period is not too large. This can be seen as follows. Note that (1.7) determines the Fourier
transform of the (periodic) function jAj2 � C(A). This is of course a discrete spectrum with
`peaks' at K = 2�n

T0
; n = �1;�2; : : : where T0 is the period of jAj2. Observe that there is no

peak at K = 0 due to the subtraction `�C(A)'. Since T0 becomes unbounded as k " 1
4a

2 (see
[4]), we see that the n = �1 peaks approach the K = O(�) region if k approaches 1

4a
2. In

other words: the periodic orbits satisfy the extra condition (1.7) as long as T0 6= O(1
�
). The

period orbits with a very long period do not satisfy (1.7). The same is true for the heteroclinic
orbits: they do not satisfy (1.7) (this can be checked by using the explicit expression (4.15)
given in section 4.2). Thus, we conclude that the only stationary solutions described by the
`Landau-reduction' are the solutions with jAj=constant or jAj is periodic with O(1) period.
All other solutions of solvability condition (1.6) do not satisfy solvability condition (1.7).
Furthermore, we note that the `average' described in section 2 is de�ned for all solutions of
the stationary problem associated to (1.6).

4 The singularly perturbed system

In this section we will study the bounded solutions of singularly perturbed system (3.4) with

1 = ~
2 = 0 (and r = 1; t1 = t2 = �1). We introduce x = �1 and y =

@�1
@�

= _x where the dot
means di�erentiation with respect to `time' t = �; equivalently we write z = �2 and �w = _z:8>>><

>>>:
_x = y
_y = �x+ x(x2 � c1z

2)
_z = �w
_w = �(�sz + z(z2 � c2x2)):

(4:1)

So, x and y can be considered as the fast(=O(1)) moving coordinates and z and w as the
slow(=O(�)) coordinates. The system contains a lot of useful symmetries: (4.1) is equivariant
under

fx! �x; y ! �yg; fx! �x; t! �t; w ! �wg; fx! �x; t! �t; z ! �zg
fz ! �z; w! �wg; fy ! �y; t! �t; w ! �wg; fy ! �y; t! �t; z ! �zg: (4:2)

System (4.1) can be considered, in some sense, as a Hamiltonian system. We introduce the
arbitrary rescalings x = �~x; y = �~y; z = �~z and w = � ~w, for �; � > 0. This gives

8>>><
>>>:

_~x = ~y
_~y = �~x+ ~x(�2~x2 � c1�2~z2)
_~z = � ~w
_~w = �(�s~z + ~z(�2~z2 � c2�

2~x2)):

(4:3)

The Hamiltonian H which could belong to this system must be of the form

H =
1

2
(~x2 + ~y2 + �s~z2 + � ~w2)� 1

4
�2~x4 � 1

4
�2~z4 +m~x2~z2;

where m still has to be determined. This implies that we must impose that c1�
2 = �c2�

2.
Which yields that

�2

�2
=
�c2
c1
; when sign(c1) = sign(c2):
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Thus, it is possible to rescale (4.1) so that it becomes a Hamiltonian system. This rescaling

has to satisfy �2

�2
= O(�); which means that O(1) solutions in the Hamiltonian system corre-

sponds to solutions of (4.1) of which either the pair (x; y) or the pair (z; w) (or both) is not
O(1). However, amplitude A in (1.5) corresponds to (x; y) and B to (z; w) and both A and
B must be O(1), due to the structure of the derivation process. Therefore we will not write
(4.1) as a Hamiltonian system, but we will use that the energy is conserved. Note that the
expression for the energy contains only even powers of x; y; z and w. The above is also true
in the case that sign(c1) = �sign(c2).

Before we study the perturbed system we are interested in the dynamics of the unperturbed
system. Setting � = 0 leads to (

_x = y
_y = �x + x(x2 � c1z20):

(4:4)

Here z = z0 and w = w0 where z0 and w0 are constants of motion, because setting � = 0
implies that _z = 0 and _w = 0. The above system can also be written as

�x = �(1 + c1z
2
0)x+ x3: (4:5)

This is the same as equation (3.8) with a = 1 + c1z
2
0, which we already studied in (3.1).

Therefore the same results as for (3.8) can be obtained.

Next we consider the critical points of the perturbed system. Here the critical points are
given with their characterisation, where the �rst part is the characterisation in the fast direc-
tions and the second in the slow directions (that is, the �rst pair of eigenvalues is O(1), the
second pair O(�)).

(0; 0; 0; 0) for s > 0 centre/centre
for s < 0 centre/saddle

(0; 0;�ps; 0) for sc1 + 1 < 0 saddle/saddle
for sc1 + 1 > 0 centre/saddle

(�1; 0; 0; 0) for c2 + s < 0 saddle/saddle
for c2 + s > 0 saddle/centre

(�
q

c1s+1
1�c1c2

; 0;�
q

s+c2
1�c1c2

; 0) for 2(c2+s)(1+c1c2)
1�c1c2

< 0 saddle/centre

for 2(c2+s)(1+c1c2)
1�c1c2

> 0 saddle/saddle:

These critical points only exist when the expressions under the square root are positive. So
the second two critical points only exist for s > 0 and the last four critical points only exist
for c1s+1

1�c1c2
> 0 and s+c2

1�c1c2
> 0. These critical points give rise to solutions of the original

system. The �rst critical point gives the trivial solution, the second gives the Stokes wave
A = 0 and B �psei�2 where �2 is a constant; the third gives another Stokes wave A = �ei�1
and B = 0 with �1 a constant. The last four critical points correspond to the mixed patterns

A � �
q

c1s+1
1�c1c2

ei�1 and B � �
q

s+c2
1�c1c2

ei�2 with �1 and �2 constants. The heteroclinic and

homoclinic orbits of section 4.2 will have their `begin and endpoint' at one of these four points.

4.1 Periodic solutions

The singularly perturbed system possesses two time scales, (x; y) are the fast variables and
(z; w) are the slow variables. In the non-local system there is no slow behaviour. When
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studying behaviour which is dominated by the fast �eld in the singularly perturbed system,
we have to take _z and _w almost 0, which implies that B is independent of �. Recall that this
is exactly the condition which is imposed on B when deriving the non-local system. Therefore
we expect to observe approximately the same behaviour for solutions which remain in the
fast �eld of the singularly perturbed system as for the solutions of the non-local system. In
this (sub)section we will study the solutions of (4.1) which are dominated by the fast �eld.
We will focus on the periodic solutions. We expect to �nd approximately the same existence
conditions (and solutions) as for the non-local system. In the next section we will study
solutions to (4.1) which consist of fast and slow parts. These solutions can not exist in the
non-local system.

We will construct solutions to (4.1) by using the fact that the unperturbed limit � = 0 is
fully integrable: 8>>><

>>>:
_x = y

_y = �x + x(x2 � c1z2)
_z = 0
_w = 0

(4:6)

with the three integrals

k =
1

2
(y2 + x2 � 1

2
x4 + c1x

2z2); k1 = z; k2 = w: (4:7)

The behaviour of fast periodic solutions of (4.1) is dominated by the unperturbed system,
since the solutions to (4.1) remain O(�) close to solutions of (4.6) for O(1) time. Thus, a
fast periodic solution to (4.1) will be O(�) close to a periodic solution of (4.6): we can study
the existence of periodic solutions of the singularly perturbed system by constructing and
approximating a Poincar�e map which measures the changes in the k; z and w-values for a
solution of the perturbed system. This Poincar�e mapping is de�ned as follows

P (k; k1; k2) = (k + �K(k; k1; k2); k1 +�K1(k; k1; k2); k2 +�K2(k; k1; k2))

= (k + �K(k; z; w); z+�K1(k; z; w); w+ �K2(k; z; w)) (4.8)

The quantities �K(k0; z0; w0);�K1(k0; z0; w0) and �K2(k0; z0; w0) measure the accumulated
change in the slow variables k; z and w from a solution of the perturbed system. Due to rea-
sons which will become clear later on we de�ne the Poincar�e map in a somewhat nonstandard
way. The Poincar�e map is de�ned by a solution which consists of two parts which are joined
together. The �rst part starts on the cross section fx = 0; y > 0g, travels forwards in time
and ends by intersecting the cross section fx = 0; y < 0g. The time it takes this solution
to intersect with the cross section fx = 0; y < 0g is denoted by T�. The other part travels
backwards in time and ends by intersecting fx = 0; y < 0g.(see Figure 3) The time it takes
this solution to intersect with fx = 0; y < 0g is denoted by T��. Here (k0; z0; w0) is the initial
value of these solutions, hence k0 is so that x0 = 0 and y0 > 0. The accumulated change of
the integral k over this orbit is given by

�K(k0; z0; w0) =

Z T�

�T
��

_k(x�; y�; z�; w�)dt;

where (x�(t); y�(t); z�(t); w�(t)) is the above constructed solution of the perturbed system.
The quantities �K1 and �K2 can be expressed in the same way. Substituting the expression
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for k, (4.7), gives

�K(k0; z0; w0) = �

Z T�

�T
��

c1x
2
�w�z�dt:

The solution (x�(t); y�(t); z�(t); w�(t)) can be approximated with O(�)-error by the solution
(x0(t); y0(t); z0; w0) of the unperturbed system with energy k = k0 which starts on the cross
section fx = 0; y < 0g with the same initial data as (x�(t); y�(t); z�(t); w�(t)); T�� can be
approximated by �1

2T0, the period of the solution (x0(t); y0(t); z0; w0). Therefore

�K(k0; z0; w0) = �

Z 1

2
T0

� 1

2
T0

c1x
2
0w0z0dt +O(�2):

We de�ne G(k; z; x) = 2k � x2 + 1
2x

4 � c1x
2z2; note that this is nearly the same function as

de�ned in section 3.1. Transforming the coordinates leads to

�K(k0; z0; w0) = 2�c1w0z0

Z x1

�x1

x2dxp
G(k0; z0; x)

+O(�2):

Here �
q
1 + c1z20 < �x1 < 0 < x1 <

q
1 + c1z20 are the intersection points with y = 0 of the

solution with k = k0. We set X = x2 and X1 = x21, then

�K(k0; z0; w0) = �c1w0z0T1(k0; z0) +O(�2); (4:9)

where

Ti(k; z) =

I
X idXq

2kX �X2 + 1
2X

3 � c1X2z2
:

This contour integral around the interval [0; X1] is again very similar to the one de�ned in
section 3.1. In the same way we obtain

�K1(k0; z0; w0) = �w0T0(k0; z0) +O(�2);
�K2(k0; z0; w0) = ��z0((s� z20)T0(k0; z0) + c2T1(k0; z0)) +O(�2):

(4:10)

A solution is periodic if �K = �K1 = �K2 = 0. Since T0(k; z) and T1(k; z) are strictly
positive this yields

c1w0z0 + O(�) = 0

w0 + O(�) = 0 (4.11)

z0((s� z20)T0(k0; z0) + c2T1(k0; z0)) +O(�) = 0:

This seems to lead to two possibilities

1: z0 = O(�) and w0 = O(�)

2: w0 = O(�) and (s� z20)T0(k0; z0) + c2T1(k0; z0) = O(�):

However, (4.12) is a singular system in the limit � ! 0. Thus we can not solve this system
for � = 0 by applying the implicit function theorem and concluding that there is a solution to
the perturbed system O(�) near the � = 0 solution. On the contrary: one must expect that
the solution of the full problem will be much more complicated. Nevertheless, we can show
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that the above two `singular' solutions are correct.

Approximating the solution of the perturbed system by a solution of the unperturbed system
throws away to much of the dynamics of the system, thus we have to look at the expressions
without approximating the solution. The exact expressions for �K;�K1 and �K2 are

�K(k0; z0; w0) = �
R T�

�T
��
c1x

2
�w�z�dt

�K1(k0; z0; w0) = �
R T�

�T
��
w�dt

�K2(k0; z0; w0) = �
R T�

�T
��
(�sz� + z3� � c2x2�z�)dt:

We note that w�(t) � 0 and z�(t) � 0 if z0 = w0 = 0. Thus �K(k0; 0; 0) = �K1(k0; 0; 0) =
�K2(k0; 0; 0) = 0. Therefore periodic solutions exist. This can also be seen by noting that if
z = w = 0, the dynamics of (4.1) are described by

�x = �x+ x3:

This leads to periodic solutions in the (z; w) = (0; 0)-plane. These solutions are also solutions
of the unperturbed system.

We now consider the second possible solution to (4.12). On the cross section we have
x0 = x(0) = 0. Let's again consider w0 = w(0) = 0, thus _z(0) = 0. It can be shown
for a solution (x�; y�; z�; w�) of (4.1) with these initial conditions that x�(t) (respectively
z�(t)) is an odd (resp. even) function of t. This can be done by inductively checking that
x(0) = 0 and _z(0) = 0 in (4.1) yields that x(2n)(0) = 0; z(2n+1)(0) = 0 for every n. From the
fact that x is odd it follows that T�� = T�. Because z is even, w = _z is odd. Thus

�K(k0; z0; w0) = �

Z 1

2
T�

� 1

2
T�

c1x
2
�w�z�dt � 0

since x2�w�z� is an odd function of t. Analogously, since w� is odd

�K1(k0; z0; w0) � 0:

We still have to use the solution of the unperturbed system to approximate �K2, see (4.10).
Thus, a periodic solution with initial data x0 = z0 = 0 must satisfy

z0 = 0 or (z20 � s)T0(k0; z0)� c2T1(k0; z0) = 0:

This is equivalent to �(k0; z0) =
z2
0
�s

c2
where � is in essence the function de�ned in (3.13). In

section (3.1) we showed that � 2 [0; a], where a in (3.8) corresponds to 1 + c1z
2 in (4.5), and

that � is a monotonically increasing function of k from 0 to a = 1 + c1z
2. Since s; c1 and c2

are known from the equations, an interval for z0 can be determined so that �(k0; z0) =
z2
0
�s

c2
holds:

0 � z20 � s

c2
� 1 + c1z

2
0 : (4:12)

As in the case for existence of solutions of the non-local system, there are, for di�erent values
of the coe�cients, di�erent intervals for z0 where periodic solutions exist.
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Since we expected similar conditions for the existence of periodic solutions for the singu-
larly perturbed system as for solutions of the non-local system we are now going to compare
the conditions for this existence. Recall that in the non-local system bounded solutions exist
for B = 0 and for jBj2 = s + c2C(x) where C(x) 2 (0; 1+ c1(s+ c2C(x))). In the singularly

perturbed system there exist periodic solutions for z = 0 and for z with 0 � z2�s
c2

� 1+ c1z
2.

In section 3 we set B = �2e
i�2 , later(section 4) we introduced z by �2 = z. This implies that

B = 0 is the same as z = 0. Thus the �rst possibilities for existence of the periodic solutions
coincide, which is of course not surprising since the non-local system (1.6) and the singularly
perturbed system(1.5) are exactly the same for the subcase B = 0. The other two cases are
somewhat more di�cult to compare but �nally these appear to be essentially the same. Since
jBj = z in the singularly perturbed case and jBj2 = s + c2C(x) in the non-local case, both
existence conditions (3.17) and (4.12) can be compared by substituting z2 = s+ c2C(x) into
(4.12) to obtain

0 � c2C(x) + s� s

c2
� 1 + c1(s + c2C(x)):

This is exactly the condition (3.17) for existence of bounded periodic solutions for the non-
local system. This yields that bounded solutions of the non-local system and fast periodic
solutions of the singularly perturbed system exist exactly under the same conditions.

Moreover, there is a direct relation between these two families of periodic solutions. The
construction of the periodic solutions in the non-local case of section 3.1 shows that these
solutions are exactly the same as the uniquely de�ned periodic solutions of the unperturbed
system of the singularly perturbed case which survive the perturbation. In other words: for
any periodic solution of the non-local system there is a fast periodic solution of the singularly
perturbed system which is O(�) close. The di�erence can be seen most clearly by comparing
B in both cases: B=constant in the non-local case while jBj varies periodically with an O(�)
amplitude around that same constant in the singularly perturbed case.

In the next (sub)section we will focus on heteroclinic and homoclinic orbits. From the
analysis in the fast �eld we might expect that there exists a heteroclinic cycle for the ex-

treme value
z2
0
�s

c2
= 1+ c1z

2
0 , similar to the heteroclinic orbits found for the non-local system

in section 3.1. However, we have to be careful here: using the Poincar�e-map (4.8) we can
only hope to connect the 1-dimensional strong unstable/stable manifolds of the critical points

(�
q

c1s+1
1�c1c2

; 0;�
q

s+c2
1�c1c2

; 0). By a simple geometric counting argument we see that one should

not expect that such connections exist for any parameter combination (c1; c2). In the next
section we shall see that these connections only exist for c2 = 0. For c2 6= 0 there also are
heteroclinic orbits, this is necessary since the periodic orbit has to disappear into some kind
of heteroclinic/homoclinic structure, but these orbits will consist of fast and slow parts.

4.2 Heteroclinic and homoclinic orbits

In section 3.1 we studied the dynamics of the stationary solutions of the non-local system.
In section 4.1 we showed that these solutions can in essence also be found in the singularly
perturbed system by studying solutions which do not have slow parts. In this section we
focus on solutions of (4.1) which do consist of distinct slow and fast parts. A solution evolves
slowly if it is close to a so-called slow manifold of the system. A slow manifold is an invariant
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manifold on which the ow is O(�)-slow. The existence of these manifolds follows from the
theory originally developed by Fenichel (see [11] and references there, or [1]). There it is shown
that a manifold of critical points of the unperturbed limit � ! 0 with a normally hyperbolic
structure persists under the perturbation as a slow manifold. These slow manifolds play an
important role in the organisation of the total ow induced by the singularly perturbed sys-
tem. In this section we will construct various families of heteroclinic and homoclinic orbits
which are (exponentially) close to these slow manifolds except for a number of fast `jumps'
through the fast �eld. These heteroclinic and homoclinic solutions are especially important
as solutions of the full PDE (4.1) since they correspond to so called `localised structures' such
as fronts or pulses. These localised structures are again very important for understanding the
dynamics of the solutions of the PDE. We refer to [28] and the references given there for an
extensive discussion of the existence and stability of these solutions in the single Ginzburg-
Landau equation.

Before we apply the theory of Fenichel we note that we can �nd another explicit slow manifold
just by setting A = 0 in (1.5) or equivalently x = y = 0 in (4.1). This is also an invariant
manifold on which the ow is slow, however, its existence can not be deduced from the gen-
eral theory. By (4.4) we �nd that the eigenvalues of the critical point (0; 0) are given by
�� = �ip1 + c1z2. Thus, the manifold x = y = 0 can never be globally normally hyperbolic
( it can be normally hyperbolic for certain values of z if c1 < 0). However, the slow manifold
exists since we have an explicit expression: fx = y = 0g. The ow on this manifold is given
by

�z = �2(�sz + z3):

So we note that there are two slow heteroclinic orbits between the �xed points (0; 0;�ps; 0)
if s > 0. There is another trivial but non-slow invariant manifold which will play a role in the
forthcoming analysis: B = 0, or z = w = 0 in (4.1). We already encountered this manifold in
the previous section.

Setting � = 0 in the singularly perturbed system leads to two globally normally hyperbolic
manifolds of critical points de�ned by x2 = 1 + c1z

2 and y = 0, see (4.4). Note that the
eigenvalues of the critical points (�p1 + c1z2; 0) in (4.4) are given by �� = �p2(1 + c1z2),
thus, the invariant manifolds are globally normally hyperbolic, but only for c1 > 0 they are
unbounded. Thus, by the work of Fenichel[11] we know that for � 6= 0, su�ciently small,
there are nearby(=O(�)) invariant slow manifolds on which the ow is O(�). We denote these
slow manifolds by �l, for x < 0, and by �r, for x > 0. The highest order approximation of
the ow on the slow manifolds is given by(

_z = �w
_w = �(�(s+ c2)z + (1� c1c2)z3); (4:13)

since x2 = 1 + c1z
2 + O(�) (see also [1]). There are a few possibilities for the structure

of the phase space on �l and �r . The system has the following critical points: (0; 0) and

(�
q

s+c2
1�c1c2

; 0) for s+c2
1�c1c2

> 0. The critical point (0; 0) is for s+ c2 > 0 a centre point and for

s + c2 < 0 a saddle point while for s + c2 > 0 the (�
q

s+c2
1�c1c2

; 0) are saddle points and for

s+ c2 < 0 the points are centre points. So one is tempted to conclude that the possible phase
space are as in Figure 4. However (4.13) only gives an approximation of the ow up to O(�).
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On the other hand, we know that the system has a Hamiltonian structure, thus there are only
a limited number of possibilities for the exact, integrable, behaviour of the ow on the slow
manifold. By the symmetry z ! �z; w ! �w we conclude that the topological structure of
the ow on the slow manifold must be exactly as in Figure 4. We focus in this section on the
case s + c2 > 0, this choice is not at all essential, we will summarize the analogous results
for s + c2 < 0 at the end of this section in Remark 4.1. We denote the saddle point on �l
(respectively �r) with z > 0 by Pl (respectively Pr) and with z < 0 by Ql (respectively Qr):

Pl;r; Ql;r = (�
s
c1s+ 1

1� c1c2
; 0;�

s
s+ c2
1� c1c2

; 0): (4:14)

As a direct consequence of the structure of the ows on �l;r(Figure 4), we conclude that there
exist two distinct slow heteroclinic connections between Pl and Ql and between Pr and Qr

(for s+ c2 > 0).

The slow manifolds �l and �r possess stable and unstable manifolds, W s(�l) andW
u(�l) resp.

W s(�r) and W
u(�r) (see again [11] and[1]). These manifolds consist of points (x0; y0; z0; w0)

such that the orbits 0(t) through these points satisfy

lim
t!�1

dist(�l;r � 0(t)) = 0

where the + (resp. -) corresponds to the stable (resp. unstable) manifold. Note that
Wu;s(�l;r) merge with the manifold of stable and unstable manifolds of the (degenerate)
critical points (�p1 + c1z2; 0; z; 0), z 2 R, of the unperturbed limit (4.4). In this paper we
restrict our attention to those parts of Wu;s(�l;r) which merge with the heteroclinic cycles
which exist in the unperturbed limit (see Figure 5). In other words: we do not pay attention
to those parts of Wu;s(�l;r) which are unbounded in the limit � # 0. Thus Wu(�l) = W s(�r)
and Wu(�r) = W s(�l) in the limit � # 0. These identities fail to hold as soon as � 6= 0.
However, since all W u;s(�l;r) are three-dimensional (and the space is four dimensional) we
expect to �nd two-dimensional intersections Wu(�l) \W s(�r) and W

u(�r) \W s(�l).

By using the Melnikov method for slowly varying systems the separation and thus the in-
tersection of these stable and unstable manifolds can be calculated. See for example [27],
[32]. The method is derived for the case that the unperturbed limit has homoclinic orbits,
but the extension to the heteroclinic case is straightforward. Assuming that � 6= 0, su�-
ciently small, the distance between Wu(�l) and W s(�r) is calculated at the cross section
fx = 0; y > 0g. We de�ne yu� and ys� as the intersection points of orbits on Wu(�l) resp.
W s(�r) with fz = z0; w = w0g on fx = 0g. The solutions u� (t) = (xu� (t); y

u
� (t); z

u
� (t); w

u
� (t))

in Wu(�l) and s�(t) = (xs�(t); y
s
�(t); z

s
�(t); w

s
�(t)) in W s(�r) of (4.1) are determined by the

initial condition u;s� (0) = (0; yu;s� ; z0; w0); 0(t) = (x0(t); y0(t); z0; w0) is the heteroclinic so-
lution of the unperturbed system with 0(0) = (0; 12

p
2a; z0; w0) where a = 1+ c1z

2
0 . There is

an explicit expression for this solution:

(x0(t); y0(t)) = (
2p
2
b tanh(bt);

p
2b2(1� tanh2(bt))); (4:15)
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where b = 1
2

q
2(1 + c1z

2
0). As usual in Melnikov theory, we de�ne the following time-

dependent distance function

�(t; z0; w0) =

 
@
@�
(xu� (t)� xs�(t))

@
@�
(yu� (t)� ys�(t))

!
^
 

y0(t)
�x0(t) + x30(t)� c1x0(t)z20

!
;

where the wedge product represents the scalar cross product in the plane. The distance
between Wu(�l) and W

s(�r) in the fz = z0; w = w0g-plane is given by �(0; z0; w0). Similar
to the derivation of the Melnikov function for periodically driven systems, one shows, see [27],
that for (4.1)

�(0; z0; w0)
def
= �(z0; w0) =

Z 1
�1

 
0

�2c1x0(t)z0 @z@� (t)

!
^
 

y0(t)
�x0(t) + x30(t)� c1x0(t)z

2
0

!
dt;

where @z
@�
(t) is a solution of d

dt
@z
@�

= w0 with
@z
@�
(0) = 0, thus @z

@�
= w0t. The separation is then

given by

�(z0; w0) = �2c1w0z0

Z 1

�1

tx0(t)y0(t)dt; (4:16)

where (x0(t); y0(t)) is the heteroclinic solution of the unperturbed system. Substituting this
expression into (4.16) results in

�(z0; w0) = �4c1w0z0b
3
Z 1
�1

t tanh(bt)(1� tanh2(bt))dt: (4:17)

Since Z 1

�1

t tanh(bt)(1� tanh2(bt))dt =
1

b2
;

we obtain (in leading order)

�(w0; z0) = �2c1w0z0

q
2(1 + c1z2): (4:18)

This yields that Wu(�l) \ W s(�r) \ fx = 0; y > 0g is either O(�) close to the fw0 = 0g-
plane or to the fz0 = 0g-plane. See Figure 6 for a three dimensional sketch of this four
dimensional intersection. Using the symmetries (4.2) one derives a similar expression for
W s(�l) \Wu(�r) \ x = 0; y < 0.

So far, we have found a number of trivial heteroclinic connections, such as those found in
the invariant planes fx = y = 0g and fz = w = 0g. Note that the former pair between the
points (�1; 0; 0; 0)2 �l and (1; 0; 0; 0)2 �r corresponds to the zeros of (4.18) at z0 = w0 = 0
for Wu(�l) \W s(�r) \ fx = 0g and W s(�l) \Wu(�r) \ fx = 0g. Two additional pairs of
heteroclinic orbits are found in �l and �r . These orbits connect Pl to Ql, respectively Pr to

Qr; we denote these orbits as 
(0)
PlQl

(t); 
(0)
QlPl

(t) 2 �l, where limt!1 
(0)
PlQl

(t) (resp. 
(0)
QlPl

(t))

= Ql (resp. Pl), and analogously 
(0)
PrQr

(t); 
(0)
QrPr

(t) 2 �r . The ow on these orbits is, of
course, everywhere O(�).

Next, we will construct heteroclinic orbits between the points Pl;r; Ql;r which consist of dis-
tinct slow and fast parts. We will do that by analysing the intersections of the stable and
unstable manifolds of these points with the fx = 0g-plane. These manifolds are subsets of
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W s;u(�l;�r). The `to�ee'-like structure in �l formed by the unstable manifolds of Pl and Ql

will be mapped by the ow on W u(Pl)[Wu(Ql) to a topologically similar structure which is
contained in W u(�l)\fx = 0g (moreover, the z- and w-coordinates are only O(�) modi�ed by
the fast �eld). Thus, by (4.18), there will be four intersection points with W s(�r) \ fx = 0g
(two near z0 = 0 and two near w0 = 0). Note that all four intersections are transversal.
These intersection points correspond to orbits which are biasymptotic to �l and �r. By con-
struction, they satisfy limt!�1 = Pl or Ql. These orbits are all on the same energy level set
as Pl and Ql. Thus, by the Hamiltonian structure of the ow, they can only be asymptotic
to orbits on �r with that same energy: the stable and unstable manifolds of Pr and Qr.
This indicates that the four orbits are heteroclinic connections between Pl; Ql and Pr; Qr. A
similar argument yields four connections which travel from �r to �l. However, we have to use
the symmetries (4.2) of the system to get a more precise result:

Theorem 1 For any s; c1 and c2 which satisfy

1 + c1s > 0; 1� c1c2 > 0 and s + c2 > 0 (4:19)

eight heteroclinic orbits of the following type exist (in (4.1)):


(1)
LR(t) with limt!�1 

(1)
LR(t) = L; limt!1 

(1)
LR(t) = R

and L = Pl; Ql;R = Pr ; Qr:


(1)
RL(t) with limt!�1 

(1)
RL(t) = R; limt!1 

(1)
RL(t) = L

and L = Pl; Ql;R = Pr ; Qr:

All eight orbits consist of three parts: two slow parts near either �l or �r and one `jump'
through the fast �eld.

Note that condition (4.19) just ascertains the existence of the critical points Pl;r, Ql;r in the
case s+ c2 > 0. Schematic sketches of all eight orbits are given in Figures 7, 8, 9.

Proof: Let p(t) = (xp(t); yp(t); zp(t); wp(t)) be a solution of (4.1) on Wu(Pl) which is expo-
nentially close to �l between the points Pl and p = (px; py; pz; pw) 2 Wu(Pl) \W s(Ql) \ �l
(thus, p leaves �l O(�) near p). Note that Wu(Pl) \ W s(Ql) \ �l is the above de�ned

`trivial' heteroclinic orbit 
(0)
PlQl

. We denote by p(0) the (�rst) intersection of p with the
fx = 0g-plane: p(0) = (0; yp(0); zp(0); wp(0)). Using the symmetries (4.2) we de�ne the orbits
zp(t) = (�xp(�t); yp(�t);�zp(�t); wp(�t)) and wp (t) = (�xp(�t); yp(�t); zp(�t);�wp(�t)).
Note that limt!1 zp(t) = Qr, limt!1 wp (t) = Pr and that zp(0) = (0; yp(0);�zp(0); wp(0)),
wp (0) = (0; yp(0); zp(0);�wp(0)). Thus, the symmetries of (4.1) yield a heteroclinic solution
between Pl and Qr (respectively Pr) if we can choose p such that zp(0) = 0 (resp. wp(0) = 0),
since then zp (resp. wp ) coincides with p at t = 0.

The fast �eld between p and (0; yp(0); zp(0); wp(0)) only has an O(�) inuence on the slow
(z; w)-coordinates of p: zp(0) is O(�) close to the z-coordinate pz of p 2 �l. Since pz can be
varied between the z-coordinates of Pl and Ql (4.14) we see that there must be a p

�
z such that

p� = zp� is a heteroclinic solution between Pl and Qr of the type described by the Theorem.
By the symmetries fx! �x; y ! �yg, fz ! �z; w! �wg and ft! �t; y ! �y; w! �wg
three distinct, symmetric counterparts of p� can be constructed. Thus, we have proved the
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existence of the solutions 
(1)
PlQr

, 
(1)
PrQl

, 
(1)
QlPr

and 
(1)
QrPl

described in the Theorem (see Figure
7).

One has to be more careful in constructing the other four orbits. First we have to con-
struct a connection between Pl and Pr by determining a p such that p(t) and 

w
p (t) can be

identi�ed. Thus, we have to �nd a p 2 Wu(Pl)\W s(Ql)\ �l such that wp(0) = 0. However,
the w-coordinate of p, wp, does not change sign. Since the w-coordinates of Pl and Ql are 0
and wp(0) is O(�) close to wp, we can only expect to �nd a heteroclinic connection between
Pl and Pr if we choose p O(�) close to Pl or Ql. It is possible to compute wp(0) up to O(�2)
accuracy for these values of p by the Poincar�e map P (4.8). We set k = 0 and (z; w) = the
coordinates of Pl or Ql (4.14) in (4.1), where we have to change the interval of integration
(�T�; T�) into (�1; 0). This way P measures the accumulated change in k; z; w on the one-
dimensional (purely) strong unstable manifolds of Pl and Ql between �l and fx = 0g. Note
that all three integrals converge and that �K and �K1 are 0 + O(�2); the computation of
�K2 yields:

wp(0) = �
p
2�c2

s
1 + c1s

1� c1c2

s
s + c2
1 + sc1

; (4:20)

where the + (resp. �) sign corresponds to p = Pl (resp.Ql). Note that c2 is the only parame-
ter which has inuence on the sign of wp(0). However, by (4.20), we observe that for all c2 6= 0
wp(0) has to change sign (at least) once if p is varied from Pl to Ql. Moreover, if c2 = 0 we see
that ( _z; _w) decouple from the ( _x; _y) in (4.1): there are exact (integrable) connections between
the one-dimensional strong stable/unstable manifolds of Pl and Pr if z � the z- coordinate
of Pl in (4.14). Thus there exists a p 2 Wu(Pl) \W s(Ql) \ �l such that wp(0) = 0, and for
this p: p = wp . We conclude that there exists a heteroclinic orbit between Pl and Pr for all

c2 such that (4.19) holds. As in the previous case, we can construct from this orbit, 
(1)
PlPr

(t)

three symmetrical counterparts, 
(1)
PrPl

(t), 
(1)
QlQr

(t) and 
(1)
QrQl

(t) by applying the symmetries
fx! �x; y ! �yg, fz ! �z; w! �wg and ft! �t; y ! �y; z ! �zg. This concludes the
proof of the Theorem (see Figures 8, 9). 2

At this point we can compare the behaviour of the `localised structures' in the non-local
and in the singularly perturbed system. We ignore, just for the moment, the fact that we
derived the extra condition (1.7). Remember that the heteroclinic orbits found in section

(3.1) do not satisfy the extra condition (1.7). First, we note that the solutions 
(1)
PlQr

, 
(1)
PrQl

,


(1)
QlPr

and 
(1)
QrPl

, which intersect fx = 0g at z = 0, cannot have a counterpart in the non-local
system, simply because the w-coordinates of these solutions are O(1) during the fast `jump'
while all solutions of the non-local system must correspond to w = _z = 0. The other four
solutions have a w-coordinate of O(�) during the jump. Moreover, the jumps take place O(�)
near Pl and Pr (or Ql and Qr) and it is easy to check that the jumps are O(�) close to the two
pairs of non-local, integrable, heteroclinic orbits found in section (3.1). Thus, it is natural to

conclude that 
(1)
PlPr

(t), 
(1)
PrPl

(t), 
(1)
QlQr

(t) and 
(1)
QrQl

(t) are the counterparts of the non-local
heteroclinic orbits.

However, this conclusion can only be justi�ed if the coupling coe�cient, c2, in the B-equation,
is positive. This follows from (4.20): the jump of the connection p(t) takes place O(�) near
Pl if c2 > 0. Thus all four heteroclinic orbits are as in Figure 8 : they are O(�) close
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to the purely fast connections of the unperturbed or the non-local problem. The parts of

the orbits near �l and �r are only of an O(�) length. If c2 < 0 the connection 
(1)
PlPr

(t)
makes its jump O(�) near the unperturbed, fast connections between Ql and Qr. The so-
lution follows Wu(Pl) \ W s(Ql) \ �l from Pl almost (O(�)) up to Ql. The same happens
in/near �r (see Figure 9). Analogously, the unperturbed fast connections between Pl and
Pr correspond to heteroclinic orbits from Ql to Qr of the perturbed system. Moreover, the
w-coordinate of these solutions become O(1) during their (long) stays near �l and �r. Note
that this signi�cant distinction between the cases c2 > 0, c2 < 0 also has its impact on the
periodic orbits found in section 3.1: these solutions will have to merge with the heteroclinic

cycles f(1)PlPr
(t); 

(1)
PrPl

(t)g and f(1)QlQr
(t); 

(1)
QrQl

(t)g as z0 approaches �p(c2 + s)=(1� c1c2),
the z-coordinates of Pl;r; Ql;r (see (4.14)). For c2 < 0 the periodic orbits with z0 > 0 (resp.
z0 < 0) will `grow' large, slow, parts (exponentially) close to �l and �r which follow the cy-

cle f(1)QlQr
(t); 

(1)
QrQl

(t)g (resp. f(1)PlPr
(t); 

(1)
PrPl

(t)g) as z0 approaches
p
(c2 + s)=(1� c1c2) (see

Figure 9). In a sense one can interpret this as a four-dimensional `canard-like' behaviour (see
[8]), since this O(1) change in the periodic orbits takes place for an exponentially small change
in z0. Thus, a signi�cant part of the structure of the solutions disappears in the transition
from the non-local system to the singularly perturbed system if c2 < 0.

Below we will study the possible existence of `multi-jump' heteroclinic orbits, that is, hetero-
clinic solutions connecting two of the critical points Pl;r; Ql;r by various jumps through the
fast �eld alternated with slow parts near �l;�r. These solutions can have no counterpart in
the non-local limit. We will �nd that they can only exist for c2 < 0. First we focus on orbits
which only make jumps from �l to �r , or vice versa, without following the periodic ow of the
fast �eld for more than half a circuit. Later, we will construct orbits from �l (or �r) to itself
which make one complete circuit through the fast �eld. Before we formulate the Theorem we
give a construction of one of the most simple multi-=2-jump heteroclinic orbits in the case
c2 < 0 and show that this construction cannot work if c2 > 0.

We consider the part of the two-dimensional unstable manifold Wu(Pl) on which the or-
bits approach Pl (as t ! �1) `from the right' tangential to the trivial heteroclinic orbit


(0)
PlQl

. Thus, as in the de�nition of Wu(�l), we only consider those parts of W s;u(Pl;rQl;r)
which merge with the family of heteroclinic connections in the limit � # 0. For simplicity we
also denote this subset of Wu(�l) by W

u(Pl). In the sequel we will use similar restrictions
on the `full' manifolds Wu;s(Pl;r; Ql;r), also without adapting the notation. By the above

Theorem we know that W u(Pl) intersects W
s(Pr): this is the orbit 

(1)
PlPr

(t) which has, if
c2 < 0 (resp. c2 > 0), (z; w)-coordinates O(�) close to those of Ql (resp. Pl) during its jump
through the fast �eld.

First we consider the case c2 < 0. Let L1 � Wu(Pl) \ fx = 0g be a (one-dimensional)

neighbourhood of 
(1)
PlPr

\ fx = 0g; L1 intersects W
s(Pr) transversally (by (4.18)). De�ne for

q 2 L1 the orbit through q by q(t) 2 Wu(Pl). Thus when q0 = L1\W s(Pr), q0 = 
(1)
PlPr

. The
orbit q will follow q0 along �r for an O(1) distance, if q is exponentially close to q0. Such an
orbit q will leave the neighbourhood of �r exponentially close toWu(Qr) since q0 2 W s(Pr)
and Wu(Qr) \ �r = W s(Pr) \ �r (see Figure 9). We take L1 of exponentially short length;

L1 is divided into two distinct parts by W s(�r) \ fx = 0g with q0 = 
(1)
PlPr

\ fx = 0g as
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separatrix. Therefore, the two-dimensional manifold F(L1) of orbits q through L1 is sepa-
rated into two parts, an `inner' and an `outer' part, by the three-dimensional stable manifold
W s(�r) of �r before it approaches �r . Orbits q(t) on the outer part of F(L1) will again leave
the neighbourhood of �r in the direction opposite to �l (their x-coordinates increase): they
cannot return to either �l or �r and become unbounded. Orbits on the inner part of F(L1)
will follow Wu(�r) { where we use the restricted de�nition (see above){ and return to the
fx = 0g-hyperplane. The ow near �r twists F(L1) such that the inner part leaves the neigh-
bourhood of �r as a `sheet' exponentially close to Wu(Qr). We refer to [14] and especially
[15] (since this paper applies to system (1.5) for a general treatment of the deformation of
manifolds near slow manifolds (see also [1]). Thus, the intersection F(L1)\fx = 0g, after the
(�rst) passage through a neighbourhood of �r, consists of a curve exponentially close to the
curve Wu(Qr)\fx = 0g � W u(�r)\fx = 0g. By Theorem 1 we know thatWu(Qr)\fx = 0g
intersects the two-dimensional manifold W s(�l)\fx = 0g twice transversally (the orbit (1)QrPl

near fz = 0g (Figure 7 and the orbit 
(1)
QrQl

near fw = 0g (Figure 9)). Now we note that the

orbit q0 = 
(1)
PlPr

already `touches down' on �r (or better: approaches �r exponentially close)

O(�) close to Qr. Thus, q0 is exponentially close to 
(1)
QrPl

and 
(1)
QrQl

for certain parts of O(1)
length of these orbits (near �r). As a consequence, we know that the curve F(L1)\ fx = 0g
must be extended along the entire length of Wu(Qr) \ fx = 0g (except for an O(�) part),

and that it thus has to intersect W s(�l) \ fx = 0g twice, exponentially close to 
(1)
QrPl

and


(1)
QrQl

. This yields that there are two orbits on F(L1) which are asymptotic to �l. We again
apply the argument that system (4.1) has a Hamiltonian structure, so that the `energy' H is
conserved on orbits: F(L1) can only intersect W s(�l) along W

s(Pl) or W
s(Ql).

So we conclude that there exist two 2-jump orbits, which consist of a �ve parts: a slow
part near �l, a fast jump, a slow part near �r, a second jump and a third slow part near �l:

the heteroclinic orbit 
(2;1)
PlQl

and the homoclinic orbit 
(2;1)
PlPl

. By the symmetries (4.2) we can
create a family of 8 distinct 2-jump homoclinic orbits and 4 2-jump heteroclinic orbits. Note

that there thus exist, for instance, two di�erent homoclinic 2-jump orbits to Pl: 
(2;1)
PlPl

and


(2;2)
PlPl

, related to each other by the symmetry fy ! �y; t! �t; w! �wg (see below).

Before we extend the above argument to 3,4,...-jump heteroclinic and homoclinic orbits we
consider the case c2 > 0. The above construction is impossible in this case. The construction

is based on the orbit 
(1)
PlPr

. This orbit exists also for c2 > 0, but now, as we already noted
above, this orbit only has parts of O(�) length near the slow manifolds (Figure 8). Thus, the
intersection of F(L1) with fx = 0g (after passing �r) is also only of O(�) length and cannot
intersect W s(�l)\fx = 0g: F(L1)\W s(�l) = ;. Of course one could try to construct 2-jump
orbits based on one of the 1-jump orbits which jump near fz = 0g after following a trivial

heteroclinic orbit on �l for half its length (Figure 7). Let's for instance consider 
(1)
PlQr

(this is
no restriction, due to the symmetries (4.2)). It is only possible to construct a 2-jump orbit if


(1)
PlQr

has parts exponentially close to one of the two 1-jump connections which depart from

Pr (since Wu(Pr) \ �r = W s(Qr) \ �r). It is clear that 
(1)
PrQl

is the only possible candidate

(see Figure 7). More precisely: a 2-jump combining 
(1)
PlQr

and 
(1)
PrQl

is possible if the `touch

down' point of (1)PlQr
on �r has a z-coordinate which is larger than the z-coordinate of the
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`take o�' point of 
(1)
PrQl

. Note that these two orbits are related to each other by the symmetry
fx ! �x; y ! �yg. Since the w-coordinate of both orbits is (strictly) negative during the
jump through the fast �eld we �nd by (4.1) that the z-coordinate of both orbits decreases
monotonically. Thus, the touch down point is `below' the take o� point: there cannot be a
2-jump orbit if c2 > 0. However, in Theorem 3 we shall show, using a di�erent argument,
that there exists a solution connecting Pl and Ql with two slow parts near �l and no slow
parts near �r : it makes a complete circuit through the fast �eld and does not touch down on
�r .

A priori one would assume that the 1-jump orbits which jump near the fz = 0g-plane can be
used to construct other, new, 2-jump orbits in the case c2 < 0. By the above arguments it

is possible to construct a 2-jump orbit which is exponentially close to 
(1)
PlQr

until it takes o�

from �r to follow the 1-jump orbit 
(1)
PrPl

. However, the thus constructed 2-jump homoclinic

solution to Pl is the symmetric counterpart 
(2;2)
PlPl

of the above constructed orbit 
(2;1)
PlPl

under
the symmetry fy ! �y; t! �t; w ! �wg.

We can now formulate the Theorem on N -jump orbits:

Theorem 2 Assume that c2 < 0 and s and c1 are such that (4.19) holds. Then, for any

N � 2, there are N (N) distinct N -jump heteroclinic or homoclinic orbits 
(N;k)
S;T (t) between

the critical points S; T 2 fPl; Pr; Ql; Qrg; k denotes the fact that there can be more than one
orbit between S and T . The number N (N) satis�es the recurrence relation

N (N) = N (N � 1) +N (N � 2) with N (1) = 8;N (2) = 12: (4:21)

These orbits consist of N + 1 slow passages near �l;r alternated by N jumps through the
fast �eld and are all exponentially close to the `skeleton' spanned by the 1-jump solutions
constructed in Theorem 1.

Proof: The 3-jump orbits are based on the 2-jump orbits, just as the 2-jump orbits are based

on the 1-jump orbits. We consider, for instance, the heteroclinic orbit 
(2;1)
PlQl

(t). Let L2 be an

exponentially small, one-dimensional, neighbourhood of 
(2;1)
PlQl

(t)\fx = 0g in F(L1)\fx = 0g,
after the �rst passage of F(L1) of �r (where F(L1) is de�ned above); L2 will play a role sim-
ilar to L1 in the above construction of the 2-jump orbits. We de�ne F(L2) � F(L1) as the

manifold of orbits through L2; F(L2) is separated into two parts by W s(�l) with 
(2;1)
PlQl

(t) as
separatrix. Thus, F(L2) is splitted and twisted by the slow ow near �l: it becomes a sheet
exponentially close to Wu(Pl) when it again leaves the neighbourhood of �l. The intersec-
tion F(L2) \ fx = 0g after the passage of �l consists of a curve exponentially close to the
�rst intersection of Wu(Pl) with fx = 0g and of the same length as Wu(Pl)\ fx = 0g (up to
O(�)-terms). Therefore, F(L2)\fx = 0g intersects W s(�r)\fx = 0g two times transversally:

an intersection exponentially close to 
(1)
PlQr

(t) \ fx = 0g and another exponentially close to


(1)
PlPr

(t)\fx = 0g. By the Hamiltonian character of the ow we know that these intersections

must correspond to the 3-jump orbits 
(3;1)
PlQr

(t) and 
(3;1)
PlPr

(t).

It is clear that this construction can be repeated for all N : based on 
(3;1)
PlPr

(t) we de�ne

L3 � F(L2) \ fx = 0g, exponentially close to the third intersection of 
(3;1)
PlPr

(t) with fx = 0g.
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The manifold F(L3) gets twisted and separated near �r so that it intersects W s(�l)\fx = 0g,
after its passage of �r, two times: the 4-jump orbits 

(4;1)
PlPl

(t) and 
(4;1)
PlQl

(t), i = 1; 2.

Note that the number N (N) of N -jump orbits increases quite rapidly with N . Let's con-
struct N (2) from N (1) = 8 (Theorem 1). If (1) jumps through the fast �eld near fw = 0g
then we have shown above that one can construct two 2-jump orbits based on this one: one
which makes its second jump near fz = 0g and one which makes its second jump again near
fw = 0g. If (1) jumps near fz = 0g, then there only exists one 2-jump orbit based on this
(1), which makes its second jump near fw = 0g. Thus, the four 1-jump orbits near fw = 0g
lead to 8 2-jump orbits, 4 of them make their last jump near fw = 0g, the other 4 make their
last jump near fz = 0g. The 4 1-jump orbits near fz = 0g lead to 4 2-jump orbits with a
second jump near fw = 0g. Thus, as we already found by the symmetries (4.2), N (2) = 12,
since all these orbits are distinct, by construction.

This method of counting can be used for every transition from N to N + 1. De�ne W(N),
respectively Z(N), the number of N -jump orbits of W , resp. Z , type (by de�nition) which
make their �nal jump through the fast �eld near fw = 0g, resp. fz = 0g. By the above
construction, every W-orbit yields one W-type orbit and one Z-type orbit; a Z-orbit yields
a W-orbit; thus, (

W(N + 1) = W(N) + Z(N)
Z(N + 1) = W(N):

Since N (N) =W(N) + Z(N) we recover (4.21). Note that N (N) = 4pN+2, where pN is the
N -th Fibonacci number. Thus N (N) � 1

2(1 +
p
5)N (N � 1) for large N . 2

The set of intersections of all N -jump orbits with fx = 0g is a Cantor-like set of expo-
nentionally small dimension. There are of course more points in this set than the N -jump
heteroclinic/homoclinic orbits. One can, for instance, construct many types of di�erent peri-
odic orbits between �l and �r, which consist of alternating slow and fast parts. Thus, these
periodic orbits di�er signi�cantly from those found in section 4.1. None of them can have a
counterpart which can be described by the non-local system. Note that these periodic orbits
correspond to limit points of the above described Cantor-like set in the fx = 0g-hyperplane.
One of the simplest periodic orbit of this type consists of four parts: a slow part exponentially

close to �l and to 
(1)
PlPr

\ (1)QrQl
, a fast part near the fast jump of 

(1)
PlPr

, a slow part near �r

and 
(1)
PlPr

\ (1)QrQl
and the second fast jump near 

(1)
QrQl

(see Figure 9).

So far we studied orbits which only make jumps directly from �l to �r, or vice versa. Now
we want to construct orbits which make one complete circuit through the fast �eld. Here we
focus, for simplicity, on constructing a heteroclinic orbit from Pl to Ql which has two slow
parts both near �l alternated by one `double' jump which makes a complete circuit through
the fast �eld. This orbit only can be constructed for c1 < 0, where the sign of c2 is arbitrary.
For c1 > 0 the above orbit generally does not exist. Using the symmetries (4.2) in system
(4.1), one can obtain from this orbit other heteroclinic orbits which have two slow parts near
�l or �r connected by a fast `double' jump. The idea of the proof of the following Theorem
is based on the methods developed in [6].
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Theorem 3 Assume that c1 < 0 and s and c2 are such that (4.19) holds. Then, there exist

four heteroclinic orbits 
(d)
PlQl

(t); 
(d)
QlPl

(t); 
(d)
PrQr

(t) and 
(d)
QrPr

(t). These orbits consist of two
slow parts which are both near �l (or �r), alternated by a complete circuit (or a `double' jump)
through the fast �eld.

Proof: We only construct 
(d)
PlQl

(t), the other three orbits can be found by applying the
symmetries (4.2). Let L4 � Wu(Pl) \ fx = 0g be a (one-dimensional) neighbourhood of


(1)
PlQr

\ fx = 0g, L4 intersects W s(Qr) transversally. De�ne for p 2 L4 the orbit through

p by p(t) 2 Wu(Pl). Thus for p0 = L4 \ W s(Qr), p0(t) = 
(1)
PlQr

(t). If we take p1 2 L4

exponentially close to p0, the orbit will follow p0 along �r for an O(1) distance. Such an
orbit p1 will leave the neighbourhood of �r exponentially close to Wu(Qr) and will still be
exponentially close toWu(Qr) at its next intersection with the hyperplane fx = 0g; we denote
this intersection point by q1. At this intersection, it will be `outside' W

s(�l). Here, an orbit
is said to be outside W s(�l) when, after the passage near �l, it leaves the neighbourhood of
�l in the direction opposite to �r (its x-coordinate decreases): it cannot return to �l or �r
and becomes unbounded. On the other hand an orbit is inside W s(�l) when it does return
to the fx = 0g-hyperplane. In other words: an `inside' orbit leaves the neighbourhood of
�l near the structure of heteroclinic connections between �l and �r which exist in the limit
� # 0. The fact that an orbit is `outside' or `inside' is determined by (4.18) and thus by the
sign of c1. Now we take p2 2 L4 at an O(1) distance from p0, where the z-coordinate of p2, pz2
is larger than the z-coordinate of p0. Here we also make sure that pz2 is not at O(�) distance
from the z-coordinate of Pl. This assures that the next intersection of p2 with fx = 0g is
inside W s(�l), this intersection point is denoted by q2. Note that p2(t) only approaches �r
O(
p
�)-close. We denote the two-dimensional manifold of orbits p through L4 by F(L4).

From the above it follows that the next intersection of F(L4) with the hyperplane fx = 0g
contains a curve connecting q1 and q2. Since q1 is outside W s(�l) and q2 is inside W s(�l),
there exists a p� 2 L4 so that the orbit through p

� intersects W s(�l). Due to the Hamiltonian
structure of the ow we know that p� must be on W s(Ql). Thus we constructed a heteroclinic

cycle p� = 
(d)
PlQl

with two slow parts near �l and one fast complete circuit. From the fact

that the point 
(1)
PlPr

\ fx = 0g is not in the interval [p1; p2] � L4 we see that, for c2 < 0, the

above orbit is not the one we constructed in Theorem 2, 
(2)
PlQl

: 
(d)
PlQl

does not come closer to

�r than O(
p
�). 2

We can show by analogous analysis that such an orbit as constructed above is generally
not found for c1 < 0. Again let p0 = PlQr

\ fx = 0g. Then the orbit through a point
on Wu(Pl) \ fx = 0g which is exponentially close to p0 is at its next intersection with the
fx = 0g-hyperplane exponentially close to Wu(Qr) and is inside W s(�l). However, the orbit
through a point which is at O(1) distance from p0 (and with a z-coordinate which now has to
be chosen smaller than pz0) is at its next intersection with fx = 0g also inside W s(�l). Thus,
the line between these points does, in general, not intersect W s(�l) (compare to the `inside'
and `outside' cases de�ned in [6]). This implies that such an orbit as constructed in the above
Theorem does generally not exist for c1 > 0.

Remark 4.1 In all the above theorems we assumed that s+ c2 > 0. However, for s+ c2 < 0
similar statements hold. Recall that in this case the integrable ow on �l;r has a `�gure
8' structure: there are two homoclinic orbits to the points (�1; 0; 0; 0) on �l;r (Figure 4) .
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The points Pl;r; Ql;r have become center points (on �l;r). Analogous to Theorem 1 one can
prove that there exist eight heteroclinic orbits between the critical points (�1; 0; 0; 0) 2 �l;r
which consist of two slow parts near �l and �r, alternated by one fast jump. There also exist
N-jump homoclinic orbits, independent of the signs of the coe�cients. However, the number
of N-jumps is not the same as before. There are 2 2-jump orbits and, for every N � 3, there
exists only one N-jump orbit. Thus choosing s + c2 < 0 reduces the number of heteroclinic
and homoclinic orbits drastically, although the general behaviour remains the same.

5 Discussion

In this paper we derived and studied two di�erent types of modulation equations which de-
scribe the same physical phenomena. Pattern formation in a reection symmetric system
which is subject to two interacting destabilizing mechanisms is described by two non-linearly
coupled Ginzburg-Landau equations (1.4). If the natural spatial scales associated to those
mechanisms di�er signi�cantly (see Figure 1) one can either describe the behaviour near
criticality by a singularly perturbed modulation equation (1.5), or one can apply a so-called
Landau-reduction and derive a non-local modulation equation (1.6), see also Metzener and
Proctor [22] for the application of this idea. As a necessary consequence of the derivation
process we showed that there is an extra, again non-local, solvability condition in the non-
local case (1.7).

Our main goal has been to compare the set of solutions described by the singularly per-
turbed equation to that of the non-local system. We restricted ourselves to the stationary
solutions. Note that it is natural to expect stationary patterns in systems with a reection
symmetry, such as convection experiments. We therefore, for instance, refer to the theoret-
ical and analytical study of double-layer convection by Rasenat et al. [25]: under certain
conditions these experiments can be described by the equations studied in this paper (see
for instance the neutral curve in Figure 6 in [25]); the experiments performed for this pa-
per exhibit stationary patterns (although the patterns can certainly be non-stationary). Of
course it could be expected that the singularly perturbed equation has a richer set of solu-
tions than the non-local reduction. However, in section 3 we have shown that the non-local
system, combined with extra condition (1.7), cannot describe any other patterns than purely
(spatially) periodic, or quasi-periodic with only two independent frequencies. These patterns
are also described by the singularly perturbed system, but, this system also governs a very
complicated set of `localised' patterns, corresponding to heteroclinic and homoclinic solutions.
These types of patterns are important in the dynamics of the uncoupled Ginzburg-Landau
equation (see for instance [28]). The large families of `multi-jump' and `complete circuit'
orbits found in section 4 only make up a small part of the entire set of possible solutions
which have an alternating slow-fast structure. The heteroclinic and homoclinic orbits found
in section 4 correspond to only a very small subset of the Cantor-like sets formed by the inter-
sections Wu;s(Pl;r; Ql;r)\ fx = 0g, which we only briey discussed in that section. Moreover,
we did not pay any attention to connections between the slow manifolds �l and �r which are
not on the `energy'-level of the critical points Pl;r; Ql;r. By the methods developed in this
paper it is also possible to show the existence of orbits which connect, through the fast �eld,
corresponding periodic orbits on �l and �r. Furthermore, the essence of the analysis also
works for other values of the 
i-integrals (see section 3) than 
1 = 
2 = 0.
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This is another aspect of the paper: we have shown that the singularly perturbed Hamil-
tonian system (1.8) has a very intricately structured phase-space. Moreover, we have been
able to unravel much of the structure of this phase-space using in essence topological, or
geometrical, methods. These methods are based on the ideas for instance described in [11],
[1] and [6].

Thus, the geometrical methods have enabled us to show that the reduction of the singu-
larly perturbed system to the non-local system destroys a very large set of `localised' patterns.

Finally we make just one short remark about the stability of patterns as described by the mod-
ulation equations (1.5) and (1.6). We did not pay any attention to that aspect in this paper.
There is much literature on this. We refer to Matkowsky and Volpert [20] where the stability
of purely periodic patterns to systems like (1.4), and thus (1.5), has been studied. The same
ideas can be used to study corresponding solutions to (1.6). We have not done this in this pa-
per because the analysis is rather straightforward, while the results depend in a complicated
manner on the values of the coe�cients in the equations. The stability of the quasi-periodic
and `localised' patterns is a much more complicated issue. Only recently the instability of
stationary quasi-periodic patterns to the uncoupled real Ginzburg-Landau equation has been
proved in [5]. Note that the quasi-periodic solutions found in this paper correspond directly
to the quasi-periodic solutions studied in [5]. There are many stability/instability results on
`localised' patterns in an uncoupled Ginzburg-Landau equation. These results only exist for
patterns which are much less complicated than most of the ones constructed in this paper.
Here, we only refer to [28] and the recent paper [16], in which the approach is also geometrical,
and the references given there.
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Figure captions

Figure 1: A critical curve with two local minima, one at (k1; R1) and the other at (k2; R2).
Here, R is �xed at a value above R1 and R2: there are two intervals of `unstable waves'. The
small parameter � corresponds to the ratio of the widths of these intervals.

Figure 2: The phase portrait for the equation �x = �ax+ x3 where a > 0.

Figure 3: The construction of the Poincar�e map. The thin lines represent solutions to
the unperturbed problem (4.6) in the plane fz = z0; w = w0g. The thick line is the projection
of a solution of (4.1) on the plane fz = z0; w = w0g.

Figure 4: The ow on the slow manifolds for s + c2 > 0 (a) and for s+ c2 < 0 (b).

Figure 5: A three dimensional sketch of the four dimensional phase space of the unper-
turbed system. The two-dimensional slow manifolds �l and �r are represented by curves.
The positions of the critical points of the perturbed system are also indicated.

Figure 6: The intersection of the two-dimensional manifolds Wu(�l) \ fx = 0; y > 0g
and W s(�r) \ fx = 0; y > 0g for c1 < 0 and c2 < 0. Parts of the one-dimensional curves
Wu(Pl; Ql) \ fx = 0; y > 0g � Wu(�l) \ fx = 0; y > 0g and W s(Pr; Qr) \ fx = 0; y > 0g �
W s(�r) \ fx = 0; y > 0g are also shown.

Figure 7: A schematic sketch of the four 1-jump orbits 
(1)
PlQr

, 
(1)
PrQl

, 
(1)
QlPr

and 
(1)
QrPl

.
The slow parts are exponentially close to the heteroclinic cycles on �l;r (the thin lines). The
fast parts `jump' through the full four-dimensional phase-space, O(�) close to the fz = 0g-
hyperplane.

Figure 8: A schematic sketch of the four 1-jump orbits 
(1)
PlPr

(t); 
(1)
PrPl

(t); 
(1)
QlQr

(t) and


(1)
QrQl

(t) for c2 > 0 which `jump' O(�) close to the fw = 0g-hyperplane.

Figure 9: A schematic sketch of the four orbits 
(1)
PlPr

(t); 
(1)
PrPl

(t); 
(1)
QlQr

(t) and 
(1)
QrQl

(t) for
c2 < 0 which `jump' O(�) close to the fw = 0g-hyperplane.
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