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Abstract

We consider the (minimal) distance function of a point in the plane to a set P of N points
in the plane. The locus of non-di�erentiability of this distance function consists (besides of
the points of P) exactly of the Voronoi diagram of P. We show that the number of minima
(m), maxima (M) and `saddle points' (s) of the distance function satisfy:

m� s +M = 1

This is similar to the Morse type of statements for di�erentiable functions.

The saddle points occur exactly where a Delaunay edge cuts the corresponding Voronoi
edge in its interior. The set of those edges form a subgraph of the Delaunay graph, which
connects all minima and saddle points. This graph devides the plane into regions. In each of
the compact regions, there is exactly one maximum, the non compact regions don't contain
a local maximum.

At the end we classify all those graphs if P contains of 3 or 4 points.

Introduction

Given a set of N di�erent points P = fP1; � � � ; PNg in the plane A 2 we consider the Voronoi
diagram of the Euclidean distance function d:

VD(P) = fX 2 A 2 j 9i 6= j such that 8k d(X;Pi) = d(X;Pj) � d(X;Pk)g:

The (closed) Voronoi cells are de�ned by:

VC(Pi) = fX 2 A 2 j 8k d(X;Pi) � d(X;Pk):

For the theory of Voronoi diagrams we refer to Aurenhammer [Au], Edelsbrunner [Ed] and the
book of Okabe-Books-Sigihara [OBS]. Voronoi diagrams have many applications in mathematics
and computer science, but also in geography, biology, cristallography, marketing, cartography,
etc.

Consider the N distance functions

dk(X) = d(X;Pk)
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A natural function to study is d(X) = minfd1(X); � � � ; dN(X)g. In order to have di�erentiability
in the poins of P and to have a nicer formula for the gradient, we study

D(X) = minfd21(X); � � � ; d2N(X)g;

which behaves the same, e.g. D and d have the same set of level curves, minima, maxima and
`saddle points'. Remark that D(X) = d2i (X) on VC(Pi). The function D is di�erentiable on
the interior of all the Voronoi cells. The restriction of D to a closed Voronoi cell VC(Pi) is
di�erentiable and on this set

grad D(X) = grad d2i (X) = 2XPi

It follows that the set of points where D is not di�erentiable is exactly VD(P).

The level curves of the distance function d can be considered as wave fronts, which start from
the points of P . These wave fronts fd = �g bound sets fd � �g, where the wave front already
passed, just as an region passed by a forest �re.

The change of topology of these regions fd � �g is studied in this paper. We �rst consider an
instructive example with 3 points, where two di�erent positions of the points of P give rise to
di�erent topological behaviour. An indicator for toplogical changes is the Euler characteristic
�.

At the beginning the wave fronts surround three di�erent regions. So the Euler characteristic
� = 3. We'll report about the changes in �. Next two regions meet in a common point and we
get two contractible regions, so � = 2. After that the third region meets the other (combined)
region, this gives � = 1.

Figure 1: evolution of a wave front from three points, case A

In case A (�gure 1), where one of the angles is obtuse, this region becomes bigger and bigger
and � does not change anymore.

In case B (�gure 2) all the angles are sharp and now the wave fronts meet another time and
enclose a region in the middle. The set fd � �g is `circular' and no longer contractible. Now
� = 0.
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Figure 2: evolution of a wave front from three points, case B

If one goes on then the enclosed region in the middle disappears and this changes � to 1. There
is only one region left, which is contractible and there are no changes if � increases more.

We intend to study this type of process in the paper. The special points, where the wave fronts
meet and the points, where they become non-di�erentiable, are directly related to the Voronoi
diagram. As we see in the above example we need more re�ned information than the Voronoi
diagram in order to understand the topological behaviour of the wave fronts.

Behaviour of D on the plane A
2.

The behaviour of D on the interiors of the Voronoi cells is clear. In the points of P the function
D has its minimal value and there are no other critical point in the interior of the Voronoi cells.

Next we study the neighborhoods of the points A on the Voronoi diagram.

Let eij = VC(Pi) \VC(Pj) be a Voronoi edge between the Voronoi cells of Pi and Pj . Let mij

be the perpendicular bisector of PiPj and Qij = mij \ PiPj . The edge eij � mij . The position
of Qij with respect to eij is important. There are three cases (cf �gure 3):

1. Qij lies outside eij ,

2. Qij lies in the interior of eij ,

3. Qij is a boundary point of eij .

In cases (1) and (3) D is monotone on the edge; in case (2) D is not monotone, but increasing
from Qij in both directions.
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Figure 3: positions of PiPj with respect to eij

Consider a point A on the interior of a Voronoi-edge eij = VC(Pi) \VC(Pj).

If A is di�erent from the center of the line PiPj then there is no change in the topology of the
lower level sets fd � �g, since the set of level curves of D is topological equivalent to a set of
parallel lines, More precisely: there exist a homeomorphism � of a open neighborhood of A onto
an open set in R2 such that the composed function D� is a linear function. In this case we call
A a topological regular point of D (�gure 4).

Pi

Pj

Qij A

homeomorhic to

Figure 4: topological regular situation

If A coincides with Qij , the center of the line PiPj , then it is possible to make a non-di�erentiable
(but homeomorphic) change of coordinates �, such that the composed function D� is given by
the formula: cA + x2 � y2, which de�nes a di�erentiable saddle point.

homeomorhic to

Pi

Pj

A

Figure 5: a topological saddle point

In this case we call A a topological saddle point of D (�gure 5).
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The remaining points to consider are the vertices of the Voronoi diagrams. We consider the
following cases, related to the behaviour of the restriction of D to the edges of the Voronoi
diagram which contain A (�gure 6)

Figure 6: situation near Voronoi vertices

i) A is a maximum of this restriction. We can now use a non-di�erentiable (but homeomorphic)
change of coordinates �, such that the composed functionD� is given by the formula: cA�x2�y2,
which de�nes a local maximum of D (�gure 7).

A

Pi Pj

Pk

Qij

Qik
Qjk

homeomorphic to

Figure 7: a topological maximum

ii) A is a maximum on all but one of the adjacent edges. Also in this case there is a non-
di�erentiable (but homeomorphic) change of coordinates such that D is equivalent to a linear
function. We call A again a topological regular point of D (�gure 8).

(iii) Other cases don't exist:

Consider a multiple point A of multiplicity m � 3. There exists a circle C with center A through
m points of P , which contains (by the empty circle criterium) no other points of P on C in its
interior. Assume that those points on the circle are numbered P1; � � � ; Pm in clockwise order.
We denote P0 = Pm. We consider the arcs \Pi�1Pi and denote the middle of this arc by Ri�1.
The disc bounded by C is divided into m sectors APi�1Pi (cf. �gure 9).

If \PiPi+1 < � then it follows that the intersection points Qi of the middle perpendicular mi

of PiPi+1 lies in the sector APiPi+1. Therefore we know that on the interval RiA the function
D is increasing, so maximal at A. So if all arcs are smaller than � then we have this increasing
behaviour on all the Voronoi edges, which are adjacent to A, so D is maximal at A (case (i)).
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Figure 8: A vertex, which is topological regular
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Figure 9: case i

If one arc (say \PmP1 ) is greater or equal than � (�gure 10), then all the others are smaller
than �. The point Q0 is not contained in the sector AP0P1 so does not lie on R0A. Therefore
we know that on the interval R0A the function D is decreasing, so minimal at A. On all the
other intervals RiA the function D is increasing, so maximal at A. So we are in case (ii).

NB. Remark that the points Qi are not necessarily on the Voronoi edges. We know only that
this edges occur in a neighborhood of A, since other points P? from P can inuence the end
points of the Voronoi edge, cf. �gure 11. By the empty circle criterium P? must be outside
C, so one end point must be A and the other lies somewhere on the halfray from A trough Ri

(including in�nity).
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Figure 10: case ii

Figure 11: the inuence of an other point

Main Theorem

Theorem Let m, s and M be respectively the number of (topological) minima, saddle points and
maxima of the distance function D. We have:

m� s+M = 1

For the proof we use the framework of Morse theory, which is well known in di�erential topology.
See Milnor [Mi], Hirsch [Hi], etc and its generalizations to strati�ed spaces by Goresky and
MacPherson [GM].

De�nition The minima, the saddle points and the maxima of D are called critical points of
index 0, 1, 2 respectively. The corresponding values are called critical values. The other points
are called (topologically) regular.

We have the following types:
a) di�erentiable regular points in the interior of the Voronoi cells,
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b) topological regular points, which lie on the interior of certain edges,
c) topological regular points, which are multiple points.

We formulate now the main

Assertion A 2 has the homotopy type of a �nite CW-complex, with one �-cell for each critical
point of index �. So if �� denotes the number of cells of index � then:

�0 = m = N ; �1 = s ; �2 =M

Here a 0-cell is a point, a 1-cell an interval and a 2-cell a disc. The Euler-characteristic is a
homotopy invariant and it can be computed from the cell complex as alternating sum of the
number of cells of increasing dimension. So:

1 = �(A 2) = �0 � �1 + �2

There are 3 steps in the proof of the assertion:

1. Regular interval theorem:

Let [a; b] be an interval, which contains no critical value of D, then

� D�1[a; b] is homeomorphic to the product D�1(a)� [a; b]

� the set Db := D�1[0; b] is homotopy equivalent to Da.

2. Passage through a critical level:

Let c be a critical value of D, and [a; b] an interval around c, containing no other critical values.
There holds:
The set Db is homotopy equivalent to D�1(a)[� F . where F is a set of cells, containing a �-cell
for each critical point of index � in D�1[a; b], each cell attached to Da seperately by the map �.

3. Third step

We use the �rst two steps in order to determine the homotopy type of Db until b greater than
the maximal critical value of D. Finally we show that A 2 and Db are homotopy equivalent.

About the proofs:

The main ingredient is the construction of a vector�eld w on almost all of A 2 . The induced ow
 t is supposed to send level sets into level sets, such that:

D( t(X))�D(X) = t:

For a di�erentiable function f : A 2 ! Rwe can construct such a ow as soon as f is a submersion
(i.e. gradf 6= 0 ) by lifting the vector�eld d

dt
on R. There is a lot of freedom: we can lift d

dt
to
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all directions, except the tangent directions to the level curves. A natural choice is the gradient
direction and then

w =
gradf

jjgradf jj2

lifts d
dt
.

Of course near a critical point of f we cannot do this, but there we'll consider locally cell-
attaching.

In our case D is not di�erentiable on VD(P), so we have to pay extra attention to a small
neighborhoods of the Voronoi diagram.

Proof of the regular interval theorem:

We de�ne the vector�eld w on open sets of D�1[a; b] and glue them later with the help of a
partition of unity.

a) On interior points, di�erent from Pi of VC(Pi) we de�ne

w =
gradf

jjgradf jj2

b) Near Voronoi edges eij and away from the saddle points and multiple points we de�ne w
parallel to this edge as lift of d

dt
(�gure 12),

Pi

Pj

eij

Figure 12: near regular points on the edges

The level curves fail to be transversal to the eij-direction only on the line through PiPj and we
can assume that this line is outside our neighborhood, since we avoid saddles.

c) Near multiple points A, which are topologically regular, we proceed as follows. First remember
that there must be one arc between two consecutive directions APi and APj , which is greater
or equal to �. Assume �rst that this arc is greater than �. It follows that PiPj does not contain
A and passes `above' A in �gure 13.

Choose a small neighborhood of A, which avoids PiPj . Let eij be the outgoing edge. We de�ne
w parallel to this edge as lift of d

dt
. Remark that this causes a discontinuity of the vector�eld on
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Pi Pj

Pk

A

eij

Figure 13: case c

the Voronoi edges, since the normalization on each of the Voronoi cells is di�erent. Nevertheless
the induced ow is continuous.

The level curves in VC(Pi) and VC(Pj) are never tangent to the eij -direction (this happens
only in points of the line PiPj). In the other adjacent cells VC(Pk) this non-transversality can
only happen on the perpendicular from Pk to the eij -direction, and this can be assumed to be
outside our neighborhood.

In the `missing' case, where the arc is equal to �, we have to be more carefull (�gure 14).

Pi
Pj

eij

Figure 14: case c with one angle �

We have to interpolate between the radial vector�eld in the `upper' half of the disc and the
`vertical' direction (parallel to eij) in such a way that we avoid tangencies on (and `above')
PiPj . The `vertical' direction can only be attained on a `lower' part of the neighborhood.

At the end we glue all the vector�elds with a partition of unity. The resulting vector�eld w

de�nes a ow such that points in D�1[a; b] ow during the time t = D(X)� a to D�1(a). The
rest of the proof continues as in the di�erentiable case: this ow and the ow lines induce the
product structure and the homotopy equivalence.

Proof of the passage through the critical level

We have to consider three kinds of topological critical points: minima, saddles and maxima.
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a) The minima are attained exactly in the points of P , the minimal value is 0.
Da = ; if a < 0 , D�1(0) = fP1; � � � ; PNg, and D

b is for b small enough a set of disjoint discs. So
we start with a set of points D0 = fP1; � � � ; Png (0-cells) and D

b has the same homotopy type if
b is small enough.

b) Let A be a saddle point and D(A) = c. We consider a small neighborhood U of A. Let
c
�
< c < c+ arbitrary near to c.

Pi

Pj

A

Z1

Z2

Figure 15: attaching a 1-cell

Let the level curve with value c
�
cuts PiPj in the points Z1 and Z2. We have locally:

Dc
� [ [Z1Z2] '

h Dc+

or
(U \Dc

�) [ [Z1Z2] '
h U \Dc+

This means that a 1-cell (interval) Z1Z2 is attached to Dc
� . The homotopy equivalence ('h) is

induced by the vector�eld parallel to the edge eij , normalized properly (�gure 15.

c) Let A be a maximum with level c. We consider again a small neighborhood U and levels
c
�
< c < c+ arbitrary near to c.

Figure 16: attaching a 2-cell

The level curve with value c
�
consits of circular arcs, de�ning a simple closed curve around A,

which bounds a topological disc F2 (�gure 16). So locally:

Dc+ = Dc 'h Dc
� [ F2
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or
U \Dc+ = U \Dc 'h (U \Dc

�) [ F2

where F2 is a 2-cell.

Next we `globalize' within D�1[a; b]. Let c be a critical value, which corrresponds to critical
points of index 1 or 2 and consider levels c� < c < c+ as before. Use outside the choosen
neighborhoods of the critical points the vector�eld w as de�ned in the proof of the regular
interval theorem and glue it with a gradient type of vector�eld near the saddlepoint, where a
1-cell Z1Z2 is attached.

After integrating this vector�eld we get

Dc+ 'h Dc
� [ F

where F denotes the correspondding cells of index 1 or 2. Next use the general interval theorem
(as in Milnor's situation):

Db 'h Dc+ 'h Dc
� [ F 'h Da [ F

The third step

We start with c = 0: D0 is a set of N 0-cells. Next we move c from 0 to in�nity and add the cells
mentioned above as soon as we pass through a critical level. We do this until we have reached
a value b, which is greater than the maximal critical value.

Although the interval [b;1) is not bounded, we can still use a regular interval theorem, since
the map:

D�1[b;1)! [b;1)

is proper. This means that the inverse image of a compact set is again compact. This is clear
in our case since D�1[0; z] is always bounded.

Now we have �nished the proof of the main theorem.
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Graphs

The Delaunay graph related to the set of points P

The vertices of the Delaunay graph Dl(P) are the points of P . The graph contains an edge
connecting two points of P if and only if their Voronoi cells share a common edge. In terms
of the point set P the graph Dl(P) can be de�ned by the `empty circle criterium'. Consider
triangles or polygons with vertices from P on the circumcircle and no points of P in its interior.
The edges of these triangles or polygons are just the edges of the Delaunay graph of P . Note
that we have made no genericity assumptions. The Voronoi diagram and the Delaunay graph
are duals in a graph theoretical sense (at least for the bounded pieces of the Voronoi diagram).

The sm-graph related to the set of points P

We de�ne the following graph sm(P):

� the vertices are the points of P . They correspond to the minima of D.

� the edges are those line segments PiPj which intersects the Voronoi edge eij in its interior.
These edges correspond 1-1 with the saddles of D, via the intersection points Qij =
PiPj \ eij .

We call this graph the saddle-minima graph of P , for short sm(P) (cf �gure 17).

Figure 17: saddle minumum graph

This graph coincides with the Gabriel graph Gb(P), cf [GS], [Ur]. This Gabriel graph has again
the points of P as vertices, but the edges correspond to those PiPj such that the closed disc
with PiPj as diameter contains no other points of P . In the recent reference work [OBS] the
Gabriel graph is de�ned with the interior of the disc. With that de�niton of Gb(P) there exist
examples where sm(P) and Gb(P) are di�erent. This happens e.g. when the triangle PiPkPj
has a right angle in Pk (cf �gure 18). Aurenhammer [Au] is not clear about this point.

Properties of sm(P):

1. sm(P) is a subgraph of the Delaunay graph.
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A

Pi

Pj

Pk

Figure 18: A right angle

2. sm(P) is connected
This follows from the fact that a wave front, starting in Pi must meet the union of the
wave fronts from the other points of P in an arc, which belangs to a circle around one of
the points, say Pj (cf. �gure 19).

Figure 19: all wave fronts connect

3. sm(P) is a subgraph of Gb(P),

The saddle-minimum graph is important since it contains all `minimal' distances between `ob-
stacles' P1; � � � ; PN . This seems to be useful for movements of robots, ships, etc.

Next apply Eulers formula:
V �E + R = 1
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to sm(P), where:

� the number of veritices V = m, the number of minima of D,

� the number of edges E = s, the number of saddles of D,

� R is the number of bounded regions, de�ned by the graph

Proposition The number of bounded regions, de�ned by sm(P) is equal to M , the number of
maxima of D. In fact in each region there is excatly one maximum in the interior.

Proof We have
R = 1� V +E = 1�m� s =M

due to the main theorem of this paper. Moreover consider a region, de�ned by sm(P), then
each edge contains a saddle point. From the edges to the inside of the region the function D is
increasing. In each region there must be at least on maximum, so exactly one. 2

The Voronoi diagram with extra structure

The Voronoi diagramVD(P) can be considered as a planar graph with some extra in�nite edges.
(One can also compactify by adding one point at in�nity and gets in that way a graph on the
sphere). While considering the behaviour of the distance function we can give this graph some
extra structure. First one can add the saddle points to the graph and next one can put arrows
in the direction of increasing D. This directed graph , the enriched Voronoi diagram, contains
all information for the topological study of this paper (�gure 20).

Figure 20: enriched Voronoi diagram
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Con�gurations with 3 or 4 points

In this section we list generic con�gurations with 3 or 4 points. We classify them with respect
to the inclusion sm(P) � Dl(P).

(3; 3; 1) (3; 2; 0)

(4; 5; 2) (4; 4; 1)

(4; 3; 0) (4; 3; 0)

(4; 4; 1) (4; 3; 0)

Figure 21: generic con�gurations with 3 or 4 points

The edges of Dl(P), which are not contained in sm(P) are dashed in �gure 21. The notation
(m; s;M) refers to the number of minima, saddles and maxima.
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Remarks and Questions

Most of the theory of this paper can be generalized to other distance functions and to higher
dimensions. We discuss here only some examples.

Johnson-Mehl models

In this model one considers weighted distance functions

d�(X;Pk) = wkd(X;Pk) with wi > 0

and d the usual Euclidean distance.

For two point sites P1; P2 the conict set is

� a circle if wi 6= wj

� a line if wi = wj

In our Morse theoretic approach, we start with two wave fronts originating from P1 and P2
with di�erent `speeds' w1 and w2 (�gure 22).. The corresponding function d (the minimum of
the distance functions) has a minimum at the points P1 and P2, a saddle point in a point Q on
P1P2. This point is the intersection of the conict set with P1P2. All other points are topological
regular, even the other intersection point of the conict set with the line through P1P2.

Figure 22: Johnson-Mehl with two points

We calculate again the alternating sum of the indices of the critical points:
�0 � �1 + �2 = 2� 1 + 0 = 1

We show in the next pictures, �gures 23 and 24 two situations with three points:

In these cases �0 � �1 + �2 = 3� 3 + 1 = 1 and �0 � �1 + �2 = 3� 2 + 0 = 1
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(m; s;M) = (3; 3; 1)

P1 P2

P3

Figure 23: Johnson-Mehl with three points

P1
P2

P3

s

s

(m; s;M) = (3; 2;0)

Figure 24: Johnson-Mehl three points

Remark, that the centers of the three conict circles are on a line.

N.B. We don't claim that these are all possibilities with 3 points.

Convex sites

Let now P be a collection of compact convex subsets in the plane. These situation occurs in
several papers in computational geometry. It seems to be an accepted result, that in these case
the conict set of two general convex sites is a di�erentiable curve and that the distance functions
to each of the sites are di�erentiable. AI could not �nd a mathematical rigorous reference in
the literature. An elementary geometrical proof was communicated to me by Goddijn [Go].

Next we show in three examples, each consisting of three convex sites the behaviour of the
minimal distance function d (�gure 25) The third example frtom [VFOR] does not occur in the
cases of point sites.
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Figure 25: Voronoi diagrams for three convex sets

Piece-wise linear distance functions

In [LS] one considers a convex set B together with a point O, arbitrarily choosen and �xed in
the interior of B. We will refer to the position of B in the plane in which O lies at the origin as
the standard possition of B and denote by B0 the set of points of B when given that standard
position. One de�nes the B-distance between two points P and Q in the plane as

dB(P;Q) = inff� : Q 2 P + �B0g:

This distance function is always �nite and continous, obeys the triangle inequality but need not
necessarily be symmetric.

For more details see [Lay]

In case B is a polygonal object then the conict sets consits of polygonal arcs. This also true if
one considers convex polygonal sites in stead of points.

We give some examples (�gures 26 and 27) where one considers again the behaviour of the
B-type wave fronts, originating from some point sites.

Also here we see `Morse-type' singular points.
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Figure 26: PL with 2 points

Figure 27: PL with 3 points

Generalization to higher dimensions

The de�nitions of Voronoi diagram, Voronoi cell and the distance square function D generalize
to higher dimensions without problem.

Let now P = fP1; � � � ; PNg be a set of points in an n-dimensional a�ne space A n .

The Voronoi diagram is a strati�ed set (which consists of a union of smooth strata). In a generic
situation strata of codimension k correspond to the intersection of k closed Voronoi cells. In a
non-generic situation more than k cells can intersect in a stratum of codimension k (e.g. if 4
points are on a circle in the plane).

We indicate some examples, which show the Morse theoretic approach in this case. We restrict
to 3 dimensions. We denote by �� the increase in Euler characteristic. Typical Morse changes
in lower level sets fd � �g are:
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� For a minimum: adding of a 0-cell, �� = 1, just as for f = x2 + y2 + z2,

� For a saddle point there are two possibilities:
adding a 1-cell, �� = �1, just as for f = x2 + y2 � z2,
adding a 2-cell, �� = +1, just as for f = x2 � y2 � z2,

� For a maximum: adding a 3-cell, �� = �1, just as for f = �x2 � y2 � z2

We call them respectively critical points of index 0, 1, 2 and 3. The corresponding number of
critical points is denoted by �0; �1; �2; �3.

All these changes occur (in a topological way) in the next examples.

Example Three points in A 3 .
The three point form a triangle in the plane. If the triangle is sharp then the lower level sets
fd � �g start with 3 balls, � = 3; next these balls consecutive connect in the centers of the edges
PiPj to a `necklace', � = 3� 3 = 0: Then the `hole' in the middle of the necklace is �lled by a
2-cell, � = 0+ 1 = 1 and after that there are no more jumps in the topology and the lower level
sets �ll the whole A 3 . About the critical points:
index 0 at the three vertices,
index 1 at the three centers of the edges,
index 2 at the center of the circumcircle,
no points of index 3.
�0 � �1 + �2 � �3 = 3� 3 + 1� 0 = 1:

If the triangle is obtuse then the lower level sets fd � �g start again with 3 balls, � = 3;
next these balls consecutive connect in the midpoints of the two of the edges PiPj to a `chain',
� = 3 � 2 = 1: After that there are no more jumps in the topology and the lower level set �ll
the whole A 3 . About the critical points:
index 0 at the three vertices,
index 1 at the the midpoints of two edges,
no points of index 2 ,
no points of index 3.
�0 � �1 + �2 � �3 = 3� 2 + 0� 0 = 1.

Example Four points in A 3 .
We suppose that the points form a regular tetrahedron, or a tetrahedron very close to that.
First the lower level sets fd � �g start with 4 balls, � = 4; next these balls connect in the 6
centers of the edges PiPj , � = 4� 6 = �2: In each of the faces there is a `hole' to the interior;
each ball is directly connected with all the other balls. After that the `hole' in the center of each
face is �lled by a 2-cell, � = �2 + 4 = 2. This happens in the 4 centers of the circumcircles
of the face-triangles. There is still a `hole' in the middle, bounded by a component of a level
set, which is a topological 2-sphere'. Next one add a 3-cell in this hole (at the center of the
circumsphere of the tetrahedron. � = 2 � 1 = 1. After this there are no more changes in the
topology and the lower level sets �lls the whole A 3 . About the critical points:
index 0 at the 4 vertices,
index 1 at the 6 midpoints of the edges,
index 2 at the 4 centers of the circumcircle
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index 3 at the center of the circumsphere.
�0 � �1 + �2 � �3 = 4� 6 + 4� 1 = 1:

Next let the thetrahedron exist of a equilateral triangle and a fourth point very near to the
center of the circumcirle, but not in the plane of the triangle. The lower level sets fd � �g start
again with 4 balls, � = 4; next the 3 balls consecutive connect with the central ball to a `tree',
� = 4� 3 = 1: After that there are no more changes in the topology and the lower level set �lls
the whole A 3 . About the critical points:
index 0 at the 4 vertices,
index 1 at the 3 midpoints of 3 edges,
no points of index 2,
no points of index 3.
�0 � �1 + �2 � �3 = 4� 3 + 0� 0 = 1.

These are two extreme cases, it is not di�cult to notice that there are several other cases with
4 points.

Also in the n-dimensional case there is de�ned a Delaunay cell-decomposition where points of
P determine a k-cell if their Voronoi cells meet in a n� k-dimensional face. These are dual cell
complexes.

For the existence of critical points of the function D it seems to be important if the Delaunay
face cuts its `dual' Voronoi face in its interior, in a boundary point or not.
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