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Necessary and su�cient conditions for optimality, in the form of a duality result of Fritz-John

type, are given for an abstract optimization problem of Lyapunov type. The introduction of

a so-called integrand constraint quali�cation allows the duality result to take the form of a

Kuhn-Tucker type result. Special applications include necessary and su�cient conditions for

the existence of optimal controls for certain optimal control problems.

1 Introduction

In [7] P. Kaiser studied a one-dimensional problem in the calculus of variations, which, rewritten
in its equivalent optimal control form, runs as follows:

(PK) inf
u2U

f
Z 1

0

�(t)
p
1 + u2(t)dt :

Z 1

0

u(t)dt = dg:

Here U := L1
R
[0; 1] is the set of all Lebesgue-integrable functions on [0; 1], d 2 R is some constant,

and � 2 L1
R
[0; 1] is a strictly positive function. Let � be the essential in�mum of �. The main result

in [7] is the following characterization of existence of an optimal solution for (PK).

Theorem 1.1 ([7]) An optimal solution for the problem (PK) exists if and only if

jdj �
Z 1

0

�p
�2(t) � �2

dt:

In the above result the integral may have the value +1 when it is improper. Observe also that,
in comparison to [7], the conditions used here for � are somewhat less demanding (in [7] � is also
supposed to be smooth).

Subsequently, P. Brandi [4] and C. Marcelli [8, 9] gave generalizations of Theorem 1.1, by
replacing the integrand �(t)

p
1 + u2 with much more general expressions (including nonsmooth

ones).
This work presents a new approach to study existence problems of this variety. Namely, it

exploits the role played by the duality aspects of optimization problems of Lyapunov type. For
such problems, which include (PK) and the other ones mentioned above, we present Theorem 2.2,
a duality result �a la Fritz John; this result is of some independent interest, because its quite gen-
eral form combines and extends similar results in [1, x4.3.3,x4.3.4]. Under an integrand constraint
quali�cation of an apparently novel type, this duality result is applied to obtain in Theorem 3.3
a characterization of optimality for the Lyapunov type problem. Not surprisingly, this leads im-
mediately to Corollary 3.4, which gives a necessary and su�cient condition for the existence of an
optimal solution.
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2 Duality for Lyapunov type optimization problems

Let (T; T ; �) be a �nite measure space and let S be a Suslin space, e.g., a Polish space. Let MS be
the set of all (T ;B(S))-measurable functions u from T into S such that u(T ) is a relatively compact
subset of S; here B(S) stands for the Borel �-algebra on S. Let U be a set of (T ;B(S))-measurable
functions from T into S that is decomposable in the sense of [5, VII]. That is to say, U contains
MS and is closed for concatenations: for every pair u; u0 2 U and every A 2 T the concatenation
v : T ! S, de�ned by v := u on A and v := u0 on TnA, belongs to U .

Readers who are only interested in applications to the calculus of variations can just concentrate
on the situation considered in the next example:

Example 2.1 In case S = R
d the setMS is obviously the set L1

Rd
:= L1(T; T ; �;Rd) of all bounded

measurable functions from T into Rd. Moreover, Lp
Rd

is clearly decomposable for any p 2 N[f1g.

Let f0; � � � ; fm : T � S ! (�1;+1] be a �nite collection of T �B(S)-measurable functions, which
are such that for every u 2 U the functions

min(f0(�; u(�)); 0); � � � ;min(fm0 (�; u(�)); 0) and jfm0+1(�; u(�))j; � � �; jfm(�; u(�))j (2:1)

are �-integrable; here m0, 0 � m0 � m, is given. Consequently, integral functionals If0 ; � � � ; Ifm0
:

U ! (�1;+1] and If
m0+1

; � � � ; Ifm : U ! R are de�ned by

Ifi (u) :=

Z
T

fi(t; u(t))�(dt);

where the �rst m0 + 1 integrals are interpreted in the usual way as quasi-integrals [10]. Also, let X
be a subset of some vector space. Let g0; � � � ; gm0 : X ! (�1;+1] and gm0+1; � � � ; gm : X ! R be
given functions. The following Lyapunov-type optimization problem

(PL) inf
u2U ;x2X

fIf0(u) + g0(x) : If1 (u) + g1(x) ./ 0; � � � ; Ifm (u) + gm(x) ./ 0g;

will be studied, where Ifi (u) + gi(x) ./ 0 means Ifi(u) + gi(x) � 0 for indices i � m0 and Ifi (u) +
gi(x) = 0 for indices i with m0 < i � m. To prevent having to consider trivialities, we suppose

inf(PL) < +1: (2:2)

The following theorem characterizes the optimal solutions of (PL) and extend the corresponding
theorem in [1, x4.3.3].

Theorem 2.2 (Fritz John type duality) (i) If (û; x̂) is a feasible solution of (PL) for which

there exists (�̂0; � � � ; �̂m) 2 f1g � Rm0

+ � Rm�m0

such that the following three conditions hold:

û(t) 2 argmins2S

mX
i=0

�̂ifi(t; s) for a.e. t (s-minimum principle),

x̂ 2 argminx2X

mX
i=0

�̂igi(x) (x-minimum principle),

0 = �̂i(Ifi (û) + gi(x̂)) for i = 1; � � � ;m0 (complementarity relations);

then (û; x̂) is an optimal solution of (PL).
(ii) Suppose that the measure space (T; T ; �) is nonatomic, that the set X is convex, that

g0; � � � ; gm0 : X ! (�1;+1] are convex functions and that gm0+1; � � � ; gm : X ! R are a�ne func-

tions. If (û; x̂) is an optimal solution of (PL), then there exists (�̂0; � � � ; �̂m) 2 f0; 1g�Rm0

+ �Rm�m0

,

(�̂0; � � � ; �̂m) 6= (0; � � � ; 0), such that the s- and x-minimum principles and the complementarity re-
lations of part (i) all hold.
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But for the assertion about the value of the Fritz John multiplier �̂0, the statement in part (ii) of
the above theorem is the converse of the statement in part (i). Observe that Theorem 2.2 places
no convexity conditions whatsoever upon the integrands f0; � � � ; fm.

Before giving the proof, we briey illustrate the usefulness of this theorem by a simple application
that cannot be addressed by the results in [1] (observe that the integral functional If0 : u 7!R 1
0
u2(t) dt of this problem is not everywhere �nite on L1

R
, as requested in [1].)

Example 2.3 The optimal control problem

inf
u2L1 [0;1];x2R

f
Z 1

0
(u2(t)� yu;x(t))dt : x � 0; yu;x(1) = 1g;

where yu;x(t) := x+
R t
0 u(� ) d� , can also be rewritten as

inf
u2L1[0;1];x�0

f
Z 1

0
(u2(t)� (1� t)u(t)) dt� x :

Z 1

0
u(t) dt+ x� 1 = 0g:

This shows that it is of the same type as (PL), with U := L1
R
, X := R�, f0(t; s) := s2 � (1 � t)s,

g0(x) := �x, m0 = 0, m = 1, f1(t; s) := s and g1(x) := x� 1 for instance. Suppose for the moment

that the above problem has an optimal solution (û; x̂). Let (�̂0; �̂1) 6= (0; 0) be as guaranteed by

Theorem 2.2(ii). Then validity of the s-minimum principle implies �̂0 = 1, so û(t) = (1� t� �̂1)=2.
Also, validity of the x-minimum principle implies �̂1 � 1. The case �1 = 1 cannot occur, for
it would lead to û(t) = �t=2, whence x̂ = 5=4 62 X. So �1 < 1, which implies x̂ = 0 by the x-

minimum principle. Solving the equality constraint for �̂1, we �nd �̂1 = �3=2 for the only remaining

parameter, and this uniquely determines û(t) := 5=4� t=2 (and x̂ = 0). Next, for �̂ := (1;�3=2) we
invoke Theorem 2.2(i) to verify optimality of the above pair (û; x̂). This amounts to retracing the
preceding argument and is left to the reader. We conclude that ŷ(t) := 5t=4� t2=4 (corresponding
to û(t) := 5=4� t=2 and x̂ = 0) is the unique optimal solution of the original variational problem.

Remark 2.4 In Theorem 2.2(i) (�̂1; � � � ; �̂m) is easily seen to be the optimal solution of the follow-
ing dual optimization problem:

(QL) sup
(�1;���;�m)2Rm0

+
�Rm�m0

J(�1; � � � ; �m)

where J(�1; � � � ; �m) :=
R
T
[infs2S(f0(t; s) +

Pm
i=1 �ifi(t; s))]�(dt) + infx2Xfg0(x) +

Pm
i=1 �igi(x)g.

The same holds for (�̂1; � � � ; �̂m) in Theorem 2.2(ii), provided that �̂0 = 1. Moreover, under the

same provision �̂0 = 1 Theorem 2.2(ii) can be extended as follows: irrespective of whether (PL) has

an optimal solution or not, there exists (�̂1; � � � ; �̂m) 2 Rm0

+ � Rm�m0

such that

J(�̂1; � � � ; �̂m) = sup(QL) = inf(PL):

This can be derived immediately from the proof of Theorem 2.2(ii) given below.

The proof of Theorem 2.2, to which the remainder of this section is devoted, is a modi�cation
of the corresponding proof in [1, p. 354]. Observe, however, that much more general conditions are
imposed here: in [1] T is an interval, and while its S is a general topological space, its integrand
functions fi are supposed to be continuous, and no allowance is made for its fi's to take the value
+1. Not surprisingly, the proof of the weak duality part (i) of Theorem 2.2 is elementary:

Proof of Theorem 2.2(i). Let �̂ be as stated. For any feasible pair (u; x) for (PL) we

obviously have
Pm

i=0 �̂ifi(t; û(t)) �
Pm

i=0 �̂ifi(t; u(t)) a.e., by the s-minimum principle, and alsoPm
i=0 �̂igi(x̂) �

Pm
i=0 �̂igi(x) by the x-minimum principle. The former implies

Pm
i=0 �̂iIfi (û) �Pm

i=0 �̂iIfi(u), so combined with the latter we �nd

If0 (û) + g0(x̂) =
mX
i=0

�̂i(Ifi(û) + gi(x̂)) �
mX
i=0

�̂i(Ifi (u) + gi(x)) � If0 (u) + g0(x);
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where the identity holds by the given complementarity relations, and the last ineqality by feasibility
of (u; x) and the nature of the components of the vector �̂. This proves the optimality of (û; x̂) for
(PL). Q.E.D.

Next, we prepare the proof of part (ii) of Theorem 2.2. To begin with, let us observe that
the objective function (u; x) 7! If0 (u) + g0(x) cannot attain the value �1, so the fact that Theo-
rem 2.2(ii) supposes the existence of an optimal element in implies that � := inf(PL) is not equal to
�1; in view of (2.2), this means � 2 R. Let C be the set of all r := (r0; � � � ; rm) 2 Rm+1 for which
there exist u 2 U and x 2 X such that If0 (u) + g0(x) < r0 and Ifi (u)+ gi(x) ./ ri for i = 1; � � � ;m.

Lemma 2.5 C is a nonempty convex subset of Rm+1,

Proof. Nonemptiness follows immediately from (2.2). To prove the convexity of C, let r, r0 2 C
and � 2 (0; 1) be arbitrary. By de�nition of C there exist (u; x) and (u0; x0) in U �X such that for
 i := fi(�; u(�)) and  0i := fi(�; u0(�)) we have

R
 0+g0(x) < r0;

R
 00+g0(x

0) < r00;
R
 i+gi(x) � ri,R

 0i+gi(x
0) � r0i for 1 � i � m0 and

R
 i+gi(x) = ri,

R
 0i+gi(x

0) = r0i for i � m0+1. By (2.1) all
the component functions  i and  

0
i are integrable. By an application of Lyapunov's theorem to the

vector-valued measure � : A 7! R
A( 0;  

0
0; � � � ;  m;  0m), there exists A 2 T such that �(A) = ��(T )

(here we use the nonatomicity hypothesis). Let v 2 U be the concatenation given by v := u on A
and v := u0 on TnA. Then it is easy to see that Ifi (v) = �Ifi (u)+(1��)Ifi(u0) for all i, 0 � i � m.
By the given convexity/a�nity of the functions gi, it follows that (v; �x+(1��)x0) 2 U�X is such
that If0(v)+ g0(�x+(1��)x0) < �r0+(1��)r00 and Ifi(v)+ gi(�x+(1��)x0) ./ �ri+(1��)r0i
for all 1 � i � m. This shows that �r + (1� �)r0 belongs to C. Q.E.D.

Lemma 2.6 The set C does not contain the vector (�; 0; � � � ; 0).
Proof. An immediate consequence of the de�nition of C and �.

Lemma 2.7 There exist (�̂0; � � � ; �̂m) 2 f0; 1g�Rm0

+ �Rm�m0

, (�̂0; � � � ; �̂m) 6= (0; � � � ; 0), such that

inf
u2U ;x2X

mX
i=0

�̂i(Ifi (u) + gi(x)) = �̂0 inf(PL):

Proof. By Lemmas 2.5 and 2.6 the origin of Rm+1 does not belong to the convex set C �
(�; 0; � � � ; 0). By a well-known separation theorem in �nite dimensions [1, x1.3.3], there exists �̂ :=

(�̂0; � � � ; �̂m) in Rm+1, �̂ 6= 0, such that
Pm

i=0 �̂iri � �̂0� for all r 2 C. It follows that �̂0; � � � ; �̂m0 �
0, because C + (Rm

0+1
+ � f(0; � � � ; 0)g) = C. Normalizing in case �̂0 > 0 (divide all components of

�̂ by �̂0), we ensure �̂0 2 f0; 1g without loss of generality. By de�nition of the set C the inequality

inf
u2U ;x2X

mX
i=0

�̂i(Ifi (u) + gi(x)) � �̂0�

follows easily from the above separation inequality. The converse inequality follows by considering
any minimizing sequence (uk; xk) of (PL) (observe that �̂1(If1(uk) + g1(uk)); � � � ; �̂1(If

m0
(uk) +

gm0 (uk)) � 0). Q.E.D.

To prove Theorem 2.2(ii), we employ a reduction theorem that originated in the work of Io�e-
Tichomirov [6] and Rockafellar; results of this type are essentially sophisticated measurable selection
results. The present version, which comes from [2], was inspired by [5, VII]. It is stated with the
following integration convention in force: for any T -measurable function � : T ! R the integralR
T  is de�ned by

R
T  :=

R
T max( ; 0)�RT max(� ; 0), with the understanding that (+1)�(+1)

means here +1.

Theorem 2.8 ([2, Theorem B.1]) For every T �B(S)-measurable function f : T�S ! [�1;+1]
and every decomposable set V of (T ;B(S))-measurable functions from T intoS the identity

inf
v2V

Z
T

f(t; v(t))�(dt) =

Z
T

inf
s2S

f(t; s)�(dt)
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holds, provided that the left hand in�mum does not equal +1. Here the function t 7! infs2S f(t; s)
is T -measurable.

Here we should note that the measure space (T; T ; �) in [2] is complete. However, by a rather
standard argument this can be lifted (e.g., see [5, III.22] and the proof of Theorem 3 in [3]).

Proof of Theorem 2.2(ii). Let (�̂0; � � � ; �̂m) 2 f0; 1g � Rm0

+ � Rm�m0

be as guaranteed by
Lemma 2.7. Then by the given optimality of (û; x̂)

�̂0(If0 (û)+g0(x̂)) = inf
u2U;x2X

mX
i=0

�̂i(Ifi (u)+gi(x)) �
mX
i=0

�̂i(Ifi (û)+gi(x̂)) =
m0X
i=0

�̂i(Ifi (û)+ gi(x̂)):

Since the terms �̂1(If1 (û) + g1(x̂)); � � � ; �̂m0(If
m0
(û) + gm0 (x̂)) are all nonnegative, the complemen-

tarity relations follow immediately. Next, by additive separation the above yields

�̂0(If0 (û) + g0(x̂) = inf
u2U;x2X

mX
i=0

�̂i(Ifi (u) + gi(x)) = inf
u2U

mX
i=0

�̂iIfi (u) + inf
x2X

mX
i=0

�̂igi(x):

Since
Pm

i=0 �̂iIfi (u) =
R
T

Pm
i=0 �̂ifi(t; u(t))�(dt) by (2.1), we have for the �rst in�mum in the above

right hand side

inf
u2U

mX
i=0

�̂iIfi (û) =

Z
T

inf
s2S

mX
i=0

�̂ifi(t; s)�(dt);

by an application of Theorem 2.8. So if we combine the preceding results, we �nd

�̂0(If0 (û) + g0(x̂)) =
mX
i=0

�̂iIfi (û) +
mX
i=0

�̂igi(x̂) =

Z
T

inf
s2S

mX
i=0

�̂ifi(t; s)�(dt) + inf
x2X

mX
i=0

�̂igi(x):

This immediately leads to the x-minimum principle for x̂ and to

Z
T

[
mX
i=0

�̂ifi(t; û(t)) � inf
s2S

mX
i=0

�̂ifi(t; s)]�(dt) = 0:

In the above integral the integrand is nonnegative, which means that the integrand must be zero
a.e. This proves the s-minimum principle for û. Q.E.D.

3 Optimality characterization for Lyapunov type problems

Let f0; � � � ; fm : T �S ! [�1;+1] be T �B(S)-measurable functions, precisely as in the previous
section, satisfying (2.1). Let (PL) be as in section 2, but, for reasons of convenience, we set all
functions g0; � � � ; gm equal to constants �0; � � � ;�m in this section. Thus, we consider

(PL) inf
u2U

fIf0(u) : If1 (u) ./ 1; � � � ; Ifm (u) ./ mg:

Recall that Ifi (u) ./ i means Ifi (u) � i for i � m0 and Ifi (u) = i for m0 < i � m. To prevent
trivialities, we again suppose (2.2).

From Theorem 2.2 we can immediately derive necessary and su�cient conditions for optimality
for (PL), by means of an integrand constraint quali�cation (ICQ) for the integrands f1; � � � ; fm.
Its purpose is the same as the usual but quite di�erent constraint quali�cations for problems of
the usual convex programming type (which arise from (PL) by setting the integrands f0; � � � ; fm
identically equal to zero): that is, to guarantee that the Fritz John multiplier �̂0 in Theorem 2.2 is
nonzero.

5



De�nition 3.1 (integrand constraint quali�cation) The functions f1; � � � ; fm are said to sat-
isfy the ICQ if for every (�1; � � � ; �m) 2 Rm0

+ � Rm�m0

with (�1; � � � ; �m) 6= (0; � � � ; 0) there is no
u 2 U such that

u(t) 2 argmins2S

mX
i=1

�ifi(t; s) for a.e. t;

that is to say, no element in U satis�es the s-minimum principle for a nontrivial multiplier vector
(�0; � � � ; �m) with �0 = 0.

Example 3.2 Let T := (0; 1) be equipped with Lebesgue measure �, let S := R, m := 1, and let
U := Lp

R
for p � 1.

(a) Suppose that f1(t; s) := (s � 1p
t
)2. Obviously, for every �1 6= 0

argmins2S�1f1(t; s) =
� f 1p

t
g if �1 > 0,

; if �1 < 0.

Hence, if m0 = 0 then taking �1 = �1 shows that the ICQ does not hold for any p. Next, if m0 = 1
then the ICQ holds whenever p < 2 (for then t 7! tp=2 is integrable), and the ICQ does not hold
when p � 2.

(b) Suppose that f1(t; s) := �s + �, where �; � 2 R. For every �1 6= 0

argmins2S�1f1(t; s) =
�
R if � = 0,
; if � 6= 0.

Hence, the ICQ holds when � 6= 0. It does not hold when � = 0 (regardless of the values of p and
�).

Theorem 3.3 (Kuhn-Tucker type duality) Suppose that (T; T ; �) is nonatomic and that the
ICQ holds. Let ~� be any subset of Rm

0

+ � R
m�m0

which contains the set of all (�1; � � � ; �m) 2
R
m0

+ � Rm�m0

for which there exists u 2 U with

u(t) 2 argmins2Sf0(t; s) +
mX
i=1

�ifi(t; s) for a.e. t:

For every û 2 U the following are equivalent:
(a) û is an optimal solution of (PL).

(b) There exist (�̂1; � � � ; �̂m) 2 ~� such that

If1 (û) ./ 1; � � � ; Ifm (û) ./ m (feasibility), (3.3)

û(t) 2 argmins2Sf0(t; s) +
mX
i=1

�̂ifi(t; s) (s-minimum principle), (3.4)

�̂1(If1 (û)� 1) = � � � = �̂m0 (If
m0
(û) � m0 ) = 0 (complementarity). (3.5)

Proof. (a) ) (b): Let �̂ := (�̂0; � � � ; �̂m) 2 f0; 1g � R
m0

+ � R
m�m0

be as guaranteed by

Theorem 2.2(ii). Suppose we had �̂0 = 0. Then the s-minimum principle of Theorem 2.2(ii) gives

û(t) 2 argmins2S
Pm

i=1 �̂ifi(t; s), which implies (�̂1; � � � ; �̂m) = (0; � � � ; 0) by the ICQ. But the latter
contradicts the outcome (�̂0; � � � ; �̂m) 6= (0; � � � ; 0) of Theorem 2.2(ii). So we conclude that �̂0 = 1.

Since û satis�es the minimum principle, this means that (�̂1; � � � ; �̂m) 2 ~�, by the properties of
~�. The feasibility of û is obvious, and the desired complementarity is another consequence of
Theorem 2.2(ii).

(b) ) (a): If (�̂1; � � � ; �̂m) 2 ~� is as stated, then û and (1; �̂1; � � � ; �̂m) obviously meet the
su�cient conditions for optimality, given in Theorem 2.2(i). Q.E.D.
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Corollary 3.4 Suppose that (T; T ; �) is nonatomic and that the ICQ holds. Let ~� be any subset
of Rm

0

+ � Rm�m0

which contains the set of all (�1; � � � ; �m) 2 Rm0

+ � Rm�m0

for which there exists
u 2 U with

u(t) 2 argmins2Sf0(t; s) +
mX
i=1

�ifi(t; s) for a.e. t:

The following are equivalent:
(a) There exists an optimal solution of (PL).

(b) There exists (û; (�̂1; � � � ; �̂m)) 2 U � ~� for which (3.3)-(3.5) hold.

Example 3.5 ([7]) The optimization problem (PK), introduced in section 1, is of the same form
as (PL) with U := L1

R
, m0 = 0, m = 1, f0(t; s) := �(t)

p
1 + s2, f1(t; s) := s, 0 := 0 and 1 := d.

These substitutions give

argmins2Sf0(t; s) + �1f1(t; s) =

(
f� �1p

�2(t)��2
1

g if j�1j < �(t),

; otherwise,

It follows that the set ~�, de�ned by

~� := f�1 2 R : j�1j � �(t) for a.e. tg = [��;+�];
where � > 0 stands for the essential in�mum of �, meets the conditions of Corollary 3.4. Also, we
have

argmins2S�1f1(t; s) =
�
R if �1 = 0,
; otherwise,

which shows that the ICQ holds trivially. So application of Corollary 3.4 gives the following: there
exists an optimal solution of (PK) if and only if there exists �1 2 [��;+�] with

G(�1) :=

Z 1

0
� �1p

�2(t)� �21
dt = d (3:6)

(observe that complementarity holds automatically by m0 = 0). Since G is obviously monotone and
continuous on [��;+�], it follows that a necessary and su�cient condition for the above is

G(��) � d � G(+�);

which, since the function G is odd, is equivalent to the condition stated in Theorem 1.1. This is
regardless of whether the integrals G(+�) and G(��) take values +1 and �1 (i.e., are improper)
or not, because our conventions regarding integration automatically enforce integrability of t 7!
� �1p

�2(t)��2
1

when (3.6) is satis�ed.

See [8, 9] for more involved applications of this type; all of these have an integrand f0(t; s) that is
convex in s. In contrast, the following application of Corollary 3.4 involves an integrand f0(t; s) that
is both nonconvex and nonsmooth in s; therefore it is completely beyond the reach of [4, 7, 8, 9].

Example 3.6 Let T := (0; 1) be equipped with Lebesgue measure �, let S := R, m0 = 0, m := 1,

and let U := L1
R
. Further, let f0(t; s) := [max(s2 � 1; 0)]

1
4 , f1(t; s) := s, 0 := 0 and 1 := d. With

these substitutions (PL) becomes

inf
u2U

f
Z 1

0

[max(u2(t) � 1; 0)]
1
4 dt :

Z 1

0

u(t)dt = dg:

In this simple example the optimal solutions and a fortiori their existence/nonexistence follow by
elementary considerations: If d � 1 then û � d is optimal, and if d > 1 there is no optimal solution
(consider un(t) := dn 1[0;1=n](t)). More formally, it follows from Corollary 3.4 that the problem has
a solution if and only if d � 1: observe that the ICQ holds, just as in Example 3.5 and that we can
take ~� = f0g, since

argmins2Sf0(t; s) + �1f1(t; s) =

� ; if �1 6= 0,
(�1; 1] if �1 = 0.

7
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