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1 Introduction

One of the first < and still one of the most important < results in the metrical theory of
continued fractions is the so-called Gauss-Kusmin theorem. Let £ € [0,1), and let

1
£:d1++:[O?dlvd%---,dn,---] (1)

dn+ °

be the regular continued fraction (RCF') expansion of £, then it was observed by Gauss [G]
in 1800 that for z € [0, 1]

log(1 4 2)

Jim (g€ 0.1 77 < 7)) = (2)

Here A is the Lebesgue measure and the RCF-operator 7' : [0,1) — [0, 1) is defined by

1 1
T = - |=],#0;T0 := 0,
£ ¢
where | .| denotes the floor - or entier function. It is not known how Gauss found (2), but
later, in a letter dated January 30, 1812, Gauss asked Laplace to give an estimate of the error
term r,(z), defined by

log(1 4 2)

r(2) = MT7"[0,2]) & log 2

n> 1.

It was Kusmin [Kus] in 1928 who was the first to prove (2) and at the same time to answer
Gauss’ question. Kusmin showed that

ra(z) = O(¢"™),
with ¢ € (0,1), uniform in z. Independently, Paul Lévy [L] showed one year later that
ra(z) = O(q"),

with ¢ = 0.7..., uniform in z. Lévy’s result, but with a better constant, was obtained by
P. Sziisz in 1961 using Kusmin’s approach. From that time on, a great number of such Gauss-
Kusmin theorems followed. To mention a few: F. Schweiger (1968) [Sch1,2], P. Wirsing (1973)
[Wir], K.I. Babenko (1978) [Ba], and more recently M. Iosifescu (1992) [los].



Gauss-Kusmin theorems for other continued fraction expansions were independently ob-
tained by G.J. Rieger (1978) [Riel] and A.M. Rockett (1980) [Roc]. Both Rieger and Rockett
obtained a Gauss-Kusmin theorem for the nearest integer continued fraction (NICF'). Rieger
also obtained a Gauss-Kusmin theorem for the closely related Hurwitz’ singular continued
fraction (SCF'), and other continued fraction expansions like the continued fraction with odd
partial quotients.

Both the NICF as well as the SCF are examples of a-expansions, which were introduced
and studied by H. Nakada in [N]. Let a € [, 1] be fixed, then the operator T, : [a &1, a) —
[ &1,a) is defined by

.6 = |%|(:>L|%|—|—1<:>aj,§7£0;Ta0 = 0. (3)

Putting

am(€) = sgn(TL71E); aan(€) = HT%IQ +1eal,n>1,

in case T27H # 0, and €4,0(€) := 0; ann(€) := 0o in case T271¢ = 0, one easily sees that

every irrational £ € [& <1, a) has a unique a-expansion

Eal
5 = Ao T o €a,2 = [07 Callals """ s Eanlam, * ] . (4)

T ca,n
aa,2+ -+ >

aa,n+ .

In case a = 1, (4) is simply the RCF-expansion of £; in case o = %, (4) is the NICF-expansion
of £ and in case @ = g := 1(\/(5) < 1) = 0.61- - - one has that (4) is Hurwitz’ SCF-expansion
of £.

It should be noted that the methods of Rieger and Rockett can be easily adapted to obtain
a Gauss-Kusmin theorem for any a-expansion, where o € [%, 1].

Nakada’s a-expansions are examples of semi-regular continued fraction (SRCF) expan-
sions. In general a SRCF is a finite or infinite fraction

&1
b1_|_5—2
bot+ .4 —2

bnt

by +

= [bo§ e1b1, e2bg, -+, €40y, ]7 (5)

with ¢, = £1; bg € Z; b, € N, for n > 1, subject to the condition
Ent1 + 0, > 1, for n > 1,
and with the restriction that in the infinite case
Ent1 + by > 2, infinitely often.

Moreover we demand that ¢, + b, > 1 for n > 1.

Remark In case a = % one has that

b, >2and b, +e,41 > 2,0 > 1, (6)



and conversely, if (5) is a SRCF-expansion of £ which satisfies (6), then (5) is the NICF-
expansion of £. In the same way the SCF-expansion of £ is characterized by

b,>2and b, +¢, >2, n>1, (7)

see also Section 3 or Perron’s classical book [Pe].

Taking finite truncations in (5) yields a finite or infinite sequence of rational numbers
A,/ By, n> 1, where

An &1
an g -t
B, T by

O

= [bo§ e1b1, €2ba, -+, €nbn]-

A SRCF-expansion (5) is a SRCF-expansion of £ if
Ay

lim — = £.
n—00 n

A fastest expansion of £ is an expansion for which the growth rate of the denominators B,, is
maximal; it turns out that this means that these denominators grow asymptotically as fast as
the denominators of the NICF (or SCF) convergents of that £, see e.g. [Bos] or [K1]. Closest
expansions are those for which sup{6y : 0 := By|Br{ < Ak|} is minimal. Since in general the
NICF does not provide closest expansions, and closest expansions (like Minkowski’s diagonal
continued fraction (DCF')) do not provide fastest expansions, a natural question arises whether
exist a SRCF which is both fastest and closest. In [Ke] it was shown that such an algorithm
does exist, and Selenius [Se] showed how such a SRCF of £ can be obtained, given the RCF
of £. In 1987, W. Bosma introduced a new continued fraction expansion which yields for
every £ € R a SRCF-expansion of £ which is both fastest and closest, without using the
RCF-expansion of £. This new continued fraction algorithm, the so-called optimal continued
fraction (OCF') expansion turned out to have approximation properties superior to any other
SRCF-expansion, see also [BK1,2].
The OCF-expansion of an irrational number £ € [<:%, %) is defined recursively as follows.

Put

r_1=1; ro=0;

s_1=0; sp=1;

to=2¢& 1 =sgn(to)
and let for & > 1

-1
be = Ity l]
v = brsk—1 +epsp—2  and wug = bprp_q + EpTr_2,
aL. = VptSk—1
k= QupFsp_s -

The partial quotients a; = a;(§) are given by
ap = L|t1:1| +1 <:)>Oékj ,
and the convergents r;/sp by

Tk = QpTE—1 + €xTh—2 and sp = apsp_1 + cpsp_2 .



Next put
t, = |t,:1| Say and €41 = sgn(ty).

For arbitrary (irrational) numbers £ we define OCF (&) = [ag; €101, £2a3, - - -], where ag € Z
is such that @ <ag € [©5,%) and [0; e1a1, e2az, - - -] is the OCF-expansion of €.

Notice that the OCF behaves like an a-expansion, where at every stage of the algorithm
the value of a (which is ay) is adjusted. For more details on this, see [Bos], Section 4. An
equivalent way of generating OCF-expansions < or any of the above mentioned continued
fraction algorithms < is via the mechanism of S-expansions, which is dicussed to some detail
in Section 3. This approach enables us to use ergodic theory in order to analyse the dynamical,
metrical and number theoretical properties of these expansions.

In contrast with most continued fraction algorithms the OCF-algorithm is ”two-dimensional”
(there are some exceptions, e.g. the afore mentioned diagonal continued fraction (DCF'), see
[K1]); In order to apply the OCF-algorithm "one needs to know where one has been”. It is
exactly this aspect of the OCF which makes it very difficult < if not impossible < to obtain
a Gauss-Kusmin theorem for the OCF in the same vein as those obtained for the NICF, SCF
or for the RCF (it should be noticed that the approach from [Wir] and [Ba] cannot be used
for the NICF or the SCF, see also [Riel], p. 444).

The aim of this paper is to obtain a Gauss-Kusmin theorem for the OCF. To be more
precise, we will show < among many other things < that for z € [@%,g]

(1) MEE [85.3) ¢ Toeg £ 2} = hoerl[#5. ) + 0"
(z), given by

where ¢ is a probability measure on [<:%,g) with density d.¢

1 2x+1
log G 202 4-20+1

if &1 <az< &g

1 +1 . ) .
docf(®) = { TogG Ph2rt2 if ©g?2<az<i, (8)

3 1—z—a?
log G (22 42x+2) (222 —22+1)

if 1 <w<yg,
and where Tgcff is given by

T3ef€ = [0 engabnyr, engabnya, -],

in case

£ =10;e1by, -+, enby, -]
is the OCF-expansion of &.

This paper is organized as follows. In Section 2 a "two-dimensional Gauss-Kusmin theo-
rem” for Hurwitz’ SCF will be discussed. Also a generalization of a Knuth-type theorem for
the SCF will be obtained. Proofs in this section will follow those from [DK], where similar
results for the RCF were obtained.

All these continued fraction expansion, that is, the NICF, SCF and OCF, are examples
of a very large class of SRCF-expansions, the so-called S-expansions. In Section 3 these
S-expansions will be briefly discussed.



In Section 4 we will recall a result from [K2] which states that maximal (i.e. fastest) S-
expansions like the NICF, SCF or OCF, are metrically isomorphic. This isomorphism will
then be used to carry over the results from section 2 to any maximal S-expansion, in particular
to the OCF, from which the above mentioned result () then follows.

2 A Two Dimensional Gauss-Kusmin Theorem

In this section we will derive a "two-dimensional” Gauss-Kusmin theorem, and also the analog
of a theorem by D.E. Knuth [Kn] for the SCF. To be more precise, let

(Xgy By, g, Ty)

be the dynamical system underlying Hurwitz’ SCF, where X, = [©g?, g), B, is the collection
of Borel sets on X, pi, is a probability measure on X, with density! (logG)™1(2 + 2)~! and
T, is defined as in (3). Then a Gauss-Kusmin theorem related to the natural extension

(ngggvﬂgv%)

of (Xg, By, 119, T,) will be derived. Here Q, = [&g?, g) x [0,%], B, is the collection of Borel
sets on §,, jiy is a probability measure with density (log G)™1(1+zy)~! on Q, and finally 7,
is defined by

1
+sgn(§) - n

For further reference we will mention here a slightly modified version of Rieger’s 1978
version of the Gauss-Kusmin theorem for the SCF, see also in [Riel] the proof of Satz 2 and

(7.1).

T,(6.n) = (ng, e ) (6 € Q. E£0.

Theorem 1 For every Borel set £ C X, one has
—n 3 n
NI E) ey (B)] < MBI
where A is Lebesgue measure on X, = [&g%, g) and where p, is defined as before, i.e.,

1 dx
F) = —
:ug( ) IOgG E2‘|‘$ ’

e By,

and C is a universal constant.

Remarks

1. A similar theorem can be formulated for the NICF, see [Riel], Satz 2, and also [Roc].
In this paper we choose to work with the SCF instead of the NICF only because the
natural extension of the SCF is 7slightly nicer” than the one for the NICF, see also
[Na], [K1]; one simply needs to discern less cases in the proofs of the various results in
case one uses the SCF.

'Here and in the following G := g+ 1 = %(\/g—l— 1). Also notice that ¢>=1—9¢=0.38---and ¢G = 1.



2. The constant % in Rieger’s theorem is not best possible, see also [Riel], p. 446 and the
remarks after [Riel], Satz 2.

Set
m(x) = M{€ € X3 Tj6 < x}), for z e [ag?g]. (9)
Since for €g? <ax <y
o 1 1 > &l &l
. < = - — -
{5 Tg€_$} kL;JQ [k—|-967k<:>gz]UkL:JS[k<:>927k+x]’ (10)
the relation
o 1 1 > &l &l
Mpy1(7) = ;(mn(@)@mn(m)) + ;(mn(m)@mn(ﬁgg)) (11)

follows, which is fundamental in any proof of a Gauss-Kusmin theorem for the SCF.

In fact, the measure i, is an eigenfunction of (11); viz. if we put m,(z) := log(2+ ), then
a simple calculation shows that m,41(z) = log(2 4 z). The factor 1/log G is a normalizing
constant.

Relation (10) easily follows from Figure 1.

Figure 1

(The map T})

Let £ € [©g%,¢)\ Q, with SCF-expansion (4) (with & = g). Finite truncation in (4) yields
the sequence of SCF-convergents A, /B, of £
Ay

B_n = [0, €1b1, HRLIN a’inbn], nZ 1.

One easily shows that

A1(§) =15 Ao(§) =05 An(§) = bpAn—1(8) +enAn—2(§),n > 1 )
12
B_1(§) =0; Bo(§) =1; Bu(§) =bpBu1() +enBrn2(§), n > 1.



(To,V5) = (&n) and (T, V) == 1(&,n), n 2 1,

then
Tn = [07 a,':n—l—lbn—l—lv €n+2bn+27 ©e ]7 V; = [07 bn7 5nbn—17 T 752(b1 + 77)]

Of course, for n > 0 we have that [0; €,410,41, €nt2bpt2, - - -] is the SCF-expansion of the
number T, = T;¢ € [&g°,g)\ Q; it satisfies (7) for every n > 0. Notice also that the first n
digits of V¥ satisfy (6). In particular we see that if » = 0 one has that

[07 bn7 5nbn—17 e 752b1]

is the NICF-expansion of the (rational) number V;*. In case n = 0 we will write V), instead of
V.
Now define

ma(z,y) = M(&n) € Qy : T} (2, y) € [&g% 2] x [0, 9]}, (13)

here (and in the rest of this paper) A is normalized Lebesgue measure on Q.

In this section we will obtain the following two theorems.
Theorem 2 For all n > 2 and all (z,y) € Q, one has
14z
log ( 1_g2yy)
log G

+0(g9"),

M (2, y) =
the constant of the big O-symbol is uniform.
Theorem 3 Let K be a simply connected subset of Qg, such that

oK = (1U...U{,,

where m € N and each {; is given by either

Gio= (& &) Bi < €<},
where ©g* < B3; < v, < g and f; 2 [Bi,vi] — [0, %] is continuous and monotone, or by

Go=A{(Bin); ki <<}

where (3; € [<g%, 9] and 0 < k; < 7, < L

2 221,,m
Put

Bu(K) = {€ € [6% 9)5 (T, Vi) i= THE0) € K }.
Then one has
MERK)) = pg(K) + O(g"),

where the constant in the big-O symbol is uniform.



Clearly
T4 (&) € [g?, 2] X [0, 9]

is equivalent to

1

T e leg? z]and 0< Vyyy = —M8M
g 5 [<:>g ] - i An41 ‘|’ 5n—|—1Vn -

;From (10) it follows that the former expression is equivalent to

o 1 1 [’j[ &l &l

Tyee |1 Ju T
g P ey keg? b+

) k+a keg? J.

The latter expression can be understood as follows. Let £ := L% + %J, then if y < 1/{, one

has ’];”"’1(5,77) € L.y := [&g% 2] x [0,y] is equivalent to
1 1 1 1

T —_— —&l,-]U
PEn) € [ el Xl o]
- 1 1 1
U == =] x [0.5]
Tt k+x' ksg? 2
U o Sy
i keg? b+ 2
and if y > 1/¢, then ’];”"’1 (&,n) € Iy, is equivalent to
<l <l 1
T —_— 0,{&-]uU
e € oo )X Dee)
- 1 1 1
Ul 5] x [0, 5]
2 btk eg? 2
T 1
U s 1 x 0,51
Tt keg? b+ 2
;From this and (13) one gets the following recursion formula
> 1 1 1
Mpt1(2, y) kZ:z k@gzﬁ)@mn(m@))
.- a1 sl 1
) (el 5) emali——3. 5))
oyl k+a2’2 keg?’ 2
€ 1 € 1
n\ 7, | 2\ 1 n\, .ot 1 ’
+ m (ﬁ—l—x €(y<:> ))em (£<:>g2 €(y<:> )

where



Lemma 1 Let n € N, n > 2 and let y be a rational number from the interval [0,%] with
NICF-expansion
Yy = [0;£1,€1£2,"',€d_1£d], KZ Z 2, € € {@1,1},

where d < [Z| + 1. Then for all x, 2™ € [©g?, g) with +* < & one has

1 1 142y
)

log G & 14+ x*y
Proof Let y = yg and for i = 1, -- -, d write

- 3 e
< ONZoy \ Loy (5)"

(ma(z,y) ©mu(a™,y)) &

yi = [0ilip1, €i41liza, -, €4-14a]
{ Lot ifyig < £,

Yi—1
£i<:>yi+1 if y;—1 > %

1
Yi—1
Note that ¢, = 1if y;,_1 < % and ¢, = <1 else.

= 62'( @ﬁz)

Applying the above recursion formula (14) one gets

N = 1 1 1 1
mn($7y) <iﬂnn(w 73/) = Z (mn—l(ma§) <:>’7nn—1(mv§))
{1

<l 1 <l 1
DY (O R 1)

€ €1
+ mn—l( | $7y1)<:>mn_1(ﬁ1—|-$*7y1)‘

£
Il

For any D € B,,
1 2 - 1 92 _
————MND) < u,(D) < ——2XD). 1
g1t ap ) = i) < e aAl) (15)

For each b = ( by, €1by, - -+, €,_1b,), where b; > 2 and ¢; € {1, +1} satisfy (6), let

i.e., Z(b) is a cylinder set (or: fundamental interval) for the nearest integer continued fraction.
Now from (15) and the fact that 7, is i -invariant

o 1 1 > &l &l

( - )+ > | & -
k=01 E+a* "k+a e k+z k+ax
_ 1 1 1
- ey
S =2 &l 1 1 1
+£12+1A[((wak”)U(Hx,kH*)) 0.5]]
< S(1+ G log G| y((2%,2) x Z(6)) + Y fyl(a%,2) x Z(k))
k=01 +1
< 2GPNToy \ Lory) -



A similar analysis leads to

o0

Z (|[07 kv Q—lﬁi—lv o '761(£1 + $*)] <:>[07 k? Q—lﬁi—lv ) €l(ﬁl + $)]|)
k={;

+ 0z 05k, e1liza, - a(l + 2)] 056k, 61 liog, -+ e (b + 27)]))

< 2GPNZpy \Tovy)

see also [DK] where the case of the RCF was dealt with.
;From the above discussion and Theorem 1 we get, since m,(z, 3) = m,(z)

> (mesln D emt— 1))
= TR a2 a2
—*t1
- sl 1 a1
+ Z (mn—l(—x7§)¢>mn—l(77§))

= Y ) A o

o0

S e ey s o ody

pofg1  RtEkta k=01 41
1 <2£1+2x*+1£1+x)
log G B\ 20 + 20 11 01 1 2
1 y Z”: ! <2k—l—2x*—|—12k—|—2x<:>1)
log G nto, 2= "8\ 2k £ 20 +1 2k + 207 &1
: 3 .
+2G2/\(Ix,y\1x*,y)0((g) b
1 b+ 27 3 n—1
1 2G2N( Loy \ Zov ) O((2)" ).
gl (fs ) + 268\ T O

_I_

Thus we see that

N 1 0+ - 3
maesn) @malaey) = olon (D) 4 26°M L \ L )OUG)

€
+ mn—1(—1$73/1) Smp_1( Y1) -

_a
0+ b + a*

Applying (14) d-times one gets

ma(z,y) &my(2",y) =
1 O+ [ly;e(l + o)) - [lq; €q—1la—1,- -, €2la, e1(Ly + 2)]

log G LUy + 2> [la; (€1 + 27)] [Cas €a—1lag—1, - -, €2l  e1( L1 4 2%)]

FMT\ T JOE ™) + o ATy \ T )O(EN ™).

Let
Pa=1 R=0 P=olii+telioi=1--.d

Q-1=0; Qo=1 Qi=0aiQi-1+€&Qi—2,1=1,",d,

10



where ay =41 + 2, ag = ly, -+, aqg = £4. Then

Qi-1

= [07 ﬁi, €i—1£i—17 ey €1(£1 + $)]
Qi
fore=1,---,d, from which it follows that
(b + )l er(by +2)] -+ [las ea—1la—1, -+, eala, e (ly + 2)] = €192 e 9
Qo1 Qi
T Qa-
Qo
Let P and @7 be defined as in (16), with oy replaced by af = {1 + ™.
Now
P,
_d = [07 £1—|—$, €1£27'”7€d—1£d]7
Qd
P*
;d* = [07 Kl + $*, €1£27 Tt €d—lﬁd]
Q3
and
Py = Pj.

Thus we find that
O+ [l e(ly + )] - [(lq; €d—1la—1,- -, €2la, e1(L1 + )]

O+ 2 [lo; e (b + 2%)] ' [(lq; €q—1lg—1, -, €2l €1 (L1 + 27)] -
Qa _ QaP; _ a+4[lials, ... 104

Q7 PiQy w4 [l aly, ... eq 10y
1

$‘|'§ _ 1—|—xy

x*—l—% 1+ a*y

Therefore,

) Aoy \ ToeyJO ((%)n—d) o

1 142y
n\T, n *7 = 1
Mol ) @ (") = g (S

Remarks The proof of Theorem 2 now follows from Lemma 1 and (15). It is similar to
the proof of [DK, Theorem 2], the essential difference being the fact that now the NICF-
expansion of y is considered, instead of the RCF-expansion of y. As is well-known (and this
follows directly from the fact that the NICF is an S-expansion, see also the next section),
the sequence of NICF-convergents (pi/qr)r>—1 forms a subsequence of the sequence of RCF-
convergents of y. Thus it is possible to obtain sharper bounds, e.g., one has that

ol . 9
qk qL

‘ Pr| _

Theorem 3 also follows from Lemma 1. Since Theorem 3 plays a key role in the proof of our
main result, Theorem 6, and Theorem 2 is just a nice result along the way, we will leave the
proof of Theorem 2 to the reader.

11



Proof of Theorem 3 Let b = (b1, €1b2,. .., €,-1b,) be some arbitrary admissible sequence
of length n for the NICF, i.e., ¢; and b; satisfy (6), and let Z(b) be defined as before. For each
1=1,---,m,let

1
,=1; (z,y) € |; for some z € [<:>g2,g]},

Z'(b) = Z(b)n{y € [0 5

and define L (b), R (b) as follows
[L,,(0), R,,(B)] := f7(Z'(D)).
Set
U UB.(b),
=1 §

where o _ -
o [L5,(b), Ry (D)] X Z(b) if fil[Bi,]) N Z(b) # 0,
By (b) :=
0 otherwise,
see also Figure 2. Let

= mm and max
A 1<i< pi T 1<i<m Tis

and define a partition P(n) of [5,7] b

\/ { L (b), 1, [, 3, [vi»7] : b is NICF-admissible of lenght n} .

12



Figure 2
Let d = [2] +1and Py = P(n) x Fy, with
Fy = {Z(b): bis NICF-admissible of lenght d},

and let @ = (e1aq, €2a9, -+, €,a,) be a SCF-admissible sequence, i.e., (7) is satisfied. Define
for a the sequence @ by @ := (ay,, €,0,-1, - -+, €2a1). Then @ is a NICF-admissible sequence,
i.e., (6) is satisfied. We denote by

A(@) = {$ € [99279)7 SCF($) = [07 €1a7, €202, *+ , €plp, ot

a cylinder set (or fundamental interval) for Hurwitz’ singular continued fraction.
Note that

1
7;71 ( U A(€1(117€2a27"'7€nan) X [075]) = [<:>g27g] X Z(an7€nan—17"'7€2@1)7
616{—1,1}
with the convention that A(€2, exaq,- -, €a,) = 0.
Thus,
n . 1
T (B(K) x [0.3)
n . 1
= T U BN AGes ) % [0.5])
all SCF-
admissible
(61@1, Tty €nan)
n . 1
= T U U (E.(K)N A(erar, -+, €na,)) X [0,5])
all SCF- a€{-1,1}
admissible
(alv Tty €nan)
= U (T;(En(ﬁ') N U Aeraq, - -,Gnan))) X Z(a).
all SCF- a€{-1,1}
admissible
(alv ) €nan)

13



Since K is simply connected
1
K\U;C K\U,C1} (En(lf) x [0, 5]) CKuUU,CKUUy,

where

K\U; = U{WGﬁdi W c K\ Uqg},
and similarly for K U Uy. By Lemma 1 one has

AT N Ta) = g (K Ua))+ O3 ).

and a similar statement for K U U;. Using techniques from [K1], Section 1, one has for b an
NICF-admissible sequence of length d, corresponding to a positive rational number p;/qq

2pa—pPd—1 2patPd—1 :
B (2qd—qd_1 ’ 2qd+qd_1) if bg > 2,
Z(b) =
Pd  2PdtPd—1 : _
(qd’ 2qd+qd_1) if ba = 2,
where? py_1/qqs_1 and py/qq are the last two NICF-convergents of pg/qq, and by is the last
partial quotient (i.e., digit) of b.
Since |pi—1q4 < pigi—1]| = 1 and any sequence of NICF-convergents is a subsequence of a
sequence of RCF-convergents,

- 4 4
MZ(b)) < < :
(2(8)) < (24 ©qa-1)(29a+ q3-1) ~ FaFaq

where F,,, n > 0, is the Fibonacci sequence 0,1,1,2,3,--- . ;From this and (15) one obtains

o 1 2 _

= K < _ K

BUBIO) < o DNEO)
L2 4y eB)
log G G2 FyFam

Since o
G
5 < FaFda+

it follows that
_ 5 & "
fig(Ua) < (@ > (v ﬁﬂi))g :
=1

The desired result now follows from the above and the observations that 2 < g and A(E,(K))
MEL(K) x[0,4]). O

2

Remark It should be clear that Theorem 3 remains correct if K is a finite union of simply
connected subsets K; of ), each satisfying the conditions of Theorem 3 imposed upon K.

2If a < B, (B, @) is understood to be the interval (o, 3).
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We finish this section with a number of direct corollaries of Theorem 3. Let ¢ € [©g?, g) be
an irrational number, with SCF-expansion (4) (where a = ¢), sequence of SCF-convergents
(An/Bp)p>—1, and let (T}, V}),>—1 be defined as before, i.e.,

Then we define the approzimation coefficients ©,, = 0,(£) by

Ay
£ oo

0.(€) = B[y

7n217

and one has that @, < g. We have the following corollaries.

Corollary 1 Let K,(z1,22) = {£ € [€9%,9)\Q: 0,1 < 21,0, < 2} for 0< 21, 23 < g.

Furthermore, let , 1 denote the interior of the quadrangle with vertices (0,0), (%, 0) (2—1|—g7 ;ng)

and (0,¢), and , _1 the interior of the quadrangle with vertices (0,0), (%, 0) (g,2¢%) and (0, g*).
Then

MEn(21,22)) = Hy(z1,22) + O(g"),

where H, is the distribution function with density hy given by

1 1 .
logG\/m Zf(avﬁ)evl\v—lv

1

1 1 .
log G (\/1—4aﬁ+\/1+4aﬁ) Zf(a7ﬁ)€71m7—17

1 1 .
logG\/m Zf(avﬁ)ev—l\vlv

0 otherwise.

The proof of Corollary 1 follows directly from Theorem 3 and the fact that

Vn €n—l—lfrn
Opt = —2  and 0, = I 59
YTy, Ly, "

Notice that we moreover have that for all £ the sequence (0,_1,0,), n > 1, is a sequence in
,1U, _1, see also [K1], Section 6, and [J].

Choosing in Corollary 1 z; to be equal to g yields the following corollary, which is analogous
to a theorem by D.E. Knuth [Kn] for the RCF-expansion.

Corollary 2 Let J,(z) = {£ € [€9%,9)\Q: 0, < 2} for 0 < 2 < g. Then
A(Jn(2)) = Fy(2) + O(g"),

where I is the distribution function given by

Fe: if0< 2 < g%,
Fy(2) = { pgg (7 €G2 +log(GP2) +1)  ifg* <2<y,
1 ifg <z<1.
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In 1983, W. Bosma, H. Jager and F. Wiedijk [BJW] obtained the "counterpart” of Corollary
2. They showed that for almost all £ € [€g?,g) (with respect to the Lebesgue measure) and
z € [0,1] one has that the limit

A}i_r}rlm%#{lgngj\f; 0, <z}
exists, and equals F},(z). We speak here of counterpart because the two theorems are like the
two faces of the same coin. One face deals with the pointwise convergence of ergodic averages,
the other with weak convergence of probability measures with a given speed of convergence.

In [J], H. Jager showed that for a generic £ € [0,1) the sequence 7"(£,0) is distributed
over Q according to the density of the invariant measure (log2)~(1+ zy)~2. Due to the way
S-expansions in general - and the SCF-expansion in particular - are defined it now at once
follows that for a generic & € [&g?, ¢) the sequence 74(&,0) = (T,,V,,) is distributed over Q,
according to the density function (logG)~!(1 + tv)™2, which is the density of the invariant
measure of 7,. From this and Birkhoft’s Ergodic Theorem it follows that for any K C €,
satisfying the hypothesis of Theorem 3 and for almost every £ (in the sence of Lebesgue) the
limit |

Jim S#{L<n < N3 (T, V) € K}

exists, and equals i, (X).

3 S-expansions

In this section we will recall some facts on S-expansions, which have been dealt with in [K1].

Let £ be an irrational number, and let (4) be some SRCF-expansion of £. Suppose that we
have for a certain £ > 0: agpyq =1, €x41 = €x+2 = 1. The operation by which the continued
fraction (2) is replaced by?>

[ao; e1a1, - .., Ep—1Gk—1, €k(ar + 1), Sags2 + 1), cpyaapts, ...,

which again is a SRCF-expansion of z, with convergents, say, (¢,/d,),>—1, is called the sin-
gularisation of the partial quotient apyy equal to 1. One easily shows that (c,/d,),>_1 is
obtained from (7,/s,),>—1 by skipping the term rj/s;. See also [K1], sections 2 and 4.

A simple way to derive a strategy for singularization is given by a singularization area 5.
Here we will choose S to be a subset of the natural extension

(9737 ﬂ? T)

of the RCF. Here Q := [0,1) x [0,1], B is the collection of Borel sets of Q, and the two-
dimensional RCF-operator 7 is given by

T(€,n) = (Tﬁ, ) e EAQ.

L&‘lj + 77> » (

Finally, ji is the invariant measure with density (log2)~!(1 +xzy)~2 It is well-known that the
dynamical system (Q, B, i, 7) is Bernoulli.

*In case k = 0 this comes down to replacing (4) by [ag + 1; —(az2 + 1), eaas, c4aq, ...].
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Definition 1 A subset S from Q is called a singularisation area if it satisfies
(1) S €B and p(05)=0;
(11) S ([3:1)\ Q) x [0, 1];

(ITI) T(S)NS = 0.

Remark It easily follows from Definition 1 and Figure 3 that

log G
0 < f(9) §1<:>&2 — 0.3057...,

log

see also [K1], Theorem (4.7). A singularisation area is called mazimal in case

log G
(S =1e—" — .
A(S) = 16 = 0.3057

Figure 3

Definition 2 lLet S be a singularisation area and let £ be a real irrational number. The
S-expansion of £ is that semi-reqular continued fraction expansion converging to &, which is
obtained from the RCF-expansion (1) of £ by singularizing d,4+1 if and only if T"(£,0) €
S, n > 0.

Some examples of singularisation areas are®

1. 51 := [%, 1) x [0, g] yields the nearest integer continued fraction (NICF). The area S1
2 2
is maximal;

2. 5, ={(T,V) € Q; (g,1) x[0,1]}; this area yields Hurwitz’ singular continued fraction
(SCF); it is maximal, see [K2].

3. Socf :={(T,V) € Q4 V < min(T, 21T_—_T1)}7 this area yields the OCF and is also maximal.

4. Sqer =T, V) € H-% > %}, this area yields the diagonal continued fraction (DCF')
of Minkowski; it is not maximal, see [K3].

*All these areas need some minor modifications in order to satisfy the above definition 1, see [K1], (4.6)ii).
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Remark Let £ € [0, 1) be some irrational number, with RCF-expansion (1). From Definition 2
and the above examples one easily sees that the following algorithm yields the NICF-expansion

of £

>>singularize in each block of m consecutive partial quotients d,,y 1 =1, -+, @pgrn = 1,
where m € NU {0}, @yymy1 # 1 and a, # 1 in case n > 0, the first, third, fifth, etc.
partial quotient< <

while doing the same in case m is odd, and in case m is even
>>singularize the first, third, fifth, etc. partial quotient<<

yields Hurwitz’” SCF. The OCF ”combines” both algorithms; first one singularizes the first
and last 1’s in every block of m consecutive 1’s, and then "move in”.

That the NICF, SCF and OCF-algorithms singularize blocks of odd length in the same way
reflects the fact that these expansions are maximal; There is only one way to "throw out” (=
to singularize) as many 1’s as possible in a block of odd length. In a block of even length a
”jump” has to be made somewhere, see also [K2]. E.g. for the NICF one makes this jump at
the end, and for the SCF at the beginning. The OCF chooses the jump in such a way, that
one is left with the smallest possible 6;’s. One can show, see [BK2], that for the OCF the
jump takes place in the middle of the block.

That for a maximal S-expansion one always makes the maximal number of "throw-outs”
in any block of consecutive 1’s has several nice consequences. One is, that maximal 5-
expansions are metrically isomorphic, a fact we will use in Section 4. Another consequence
is, that a Heilbronn-theorem for maximal S-expansions follows trivially from Rieger’s 1978
Heilbronn-theorem for the NICF [Rie2]. In order to see this, recall that each rational number
p/q € [0,1) has a unique finite RCF-expansion p/q = [0; dy,---,ds], with dy # 1 (clearly
[0;dy,---,dg] = [0;dy,---,dy<1,1], but the latter expansion cannot be obtained via T' <
and is therefore considered "illegal”). Thus the length of the S-expansion of p/q is the same
as the length of the NICF-expansion of p/q in case S is maximal.

Proposition 1 Let S be a mazimal singularization area (with® 5° = S° and (£,m7) € 05\ S
implies T(&,m) € S or T71(&,m) € S). Let a and N be positive integers, such that (a, N)= 1.
Denote by ((a) = ((a, N) the length of the S-expansion of a/N, i.e., if

= [b07 51()1, 7€fbf]

=] =

is the S-expansion of a/N, then (
o-1(N) = g 1/d. Then

~~

a) = L. Finally, let ¢ denote the Fuler ¢-function and let

S fa) = 12;LQ‘C{GL,Q(N)logzv + 0 (No?, (V) .
%(EJ&)SIJ\{

®This to prevent the existence of an exceptional subset of S of measure 0 where one does not singularize as
many 1’s as possible.
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Let 5 be a singularization area and let £ be a real irrational number, with RCF-expansion
(1) and RCF-convergents (P,/Q)n>—1. Furthermore, let [ag; e1aq, ..., exay, ...] be the
S-expansion of £, with convergents r/sg, k > <l. Define the shift ¢ by

(€ Sag) = [0; e2aq, ..., cpak, ...] .
For a fixed £ and for k£ > 0 we put
1, = tk(f Sag) = [0; €pq10k41, Shp2@hy2, ---] and vg = sp_1/sk,
where
Vg = [O;ka Eplk—15 -+ 52@1], k > 17 Vo = 0.

see also [K1], (1.4) and (5.1).
We have the following theorem.

Theorem 4 Let S be a singularization area and put Ag := Q\ S, Ay := TS5 and A:'g' =
As\Ag. Let £ be a real number, with RCF-expansion (1) and RCF-convergents (P, [Qy)n>—1-

Then one has

1. The system (Ag, B, ps, Og) forms an ergodic system. Here pg is the probability measure
on (As, B) with density ((1<u(9))log2) (1 +xy)~? and the map Og is induced by T
on Ag.

2. T"(£,0) e S & P,/Qy is not an S—convergent;
3. P,/Q, is not an S—convergent = both P,_1/Q,—1 and P,11/Qn1+1 are S-convergents;

Tk—lzpn—lv Tk:Pn
4. T(E,0) e AL & Fk: and T"(£,0) = (tg, vr);
Sk—1 = Qn—lv Sk = Qn
Tk—lzpn—Qv Tk:Pn
CTME0) e Ay & Tk and T™(€,0)
Sk—1 = Qn—?v Sk = Qn

S

(%, 1 evg);

(See also [K1], Theorem (5.3)).

In view of Theorem 2 we define the map M : Ag — R? by

I EVAS (T,V) e AL ;
M(T,V) == { (. 1eV) (T,V)€ Ai.

We have the following theorem.

Theorem 5 Let S be a singularization area and put Qg := M(Ag). Let B be the collection
of Borel subsets of Qg and let ps be the probability measure on (g, B), defined by

ps(E) := ps(M™Y(E)), E€B.
Furthermore, if we define the map Ts : Qg — Qg by
Ts(t,v) = M(Os(M™(t,0))), (t,0) € Qs

then Tg is conjugate to Og by M and (Qs, B, s, Ts) forms an ergodic system with density
(1 ©p(5))log2)~ (1 4 tv)~2. Finally, for almost all x € [0,1) the® sequence (ty, vi)gp>o0 is

5All almost sure statements in this paper are with respect to the Lebesgue measure.
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distributed over g according to this density.

Remarks

(I) From Theorem 4 and Theorem 5 it follows that (g, B, us, 7s), which is the two-
dimensional ergodic system underlying the corresponding S-expansion, is isomorphic (via
the M-map) to an induced system of (,7") with return-time bounded by 2.

(II) One can show that 75 can be written in the following way

1
sgn(t) - v+ fs(t,v)

Ts(t,0) = (1] @ fs(t,0), ), for (t,0) € 9.

Furthermore one has
ag+1 = fs(te,vk), k>0, where (fp,v9) = (2 <ag,0).

Thus we see that the S-expansion is the process associated with 75 and fs.
For the afore mentioned first three examples we have

Jyt0) = U1+ 5] (NICF) | fy(1,0) = L5147 (SCF)

and
1 31) + sgn(t)v
(L 3l) +sen(t)v) +1

(IIT) In case of the OCF the last statement of Theorem 5 says that for a.e. ¢ € [©1,1) the
sequence (7" .),>q is distributed according to the density function (log G)H 14 tv)72, e,
it behaves like the orbit of a generic point.

Joet(tsv) = H%| + 5 | (OCF).

4 Gauss-Kusmin for maximal S-expansions

Now we concentrate on maximal singularization areas S (like those for the NICF, SCF and
OCF), ie., u(5) =1 <:>11(;gg§ = 0.3057 - --. In [K2] it was shown that for such singularization
areas the systems (Ag, B, ps, Og) and (Ay, B, py, O,) are isomorphic via a map ¢ : Ag — Ay,

given by

(5777) (5777) € Gl = AS N Agv
(&, n) = (17)
7_1(5777) (5777) € G2 = AS \ Agv

and define moreover G5 := A \Ag, G4 := SNS, (in Figure 4 we have depicted G, ..., G4
in case 5 = 5, .)-
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Figure 4

We now will prove the following theorem, which is the main result of this paper.

Theorem 6 Let K C Q¢ be a simply connected subset of Q satisfying the conditions of

Theorem 3. Putting

ocf’

DA(K) = 1€ € [, ) Touf€0) € K1

1
2
one has

/\(Dn(IC)) = ﬂocf(lc)—l_ O(gn)v

where the constant in the big-O symbol is uniform.

Remark It should be mentioned that the same result holds (with the same proof) for any
maximal S-expansion, see also the final remarks at the end of this section.

Let K C .t be as in Theorem 6, and define

Ue = (€€ g, 00%)  Ty(60) €KY,
Vi = 16 €l 0): T(6.0) €KY,
We = {€€[0,5): Te(6,0) € K}

Lemma 2 Let K C Q¢ be a simply connected subset of Q satisfying the conditions of

Theorem 3, then

ocf’

M€ € 85, 5) s Touf€,0) € K) = A€ € [ 9) - T(6:0) € i),

N | —

where

Proof From the definitions of M and ¥, and by the S-mechanism (applied to S,.; and ;)
it follows that

<€ _ 1
m,l)e/\/l HK) and 1—|—f€[§,g)

& OM1+6,0)€ p(ML(K)) and 1+£e[%,g)

el & O

ocf

1
@ TM(1+60)eHe and 1+E€[5,0),

where we used that

T(14£,0) = ( hd 1) ,

1+¢°
incase 1+ €& ¢ [%,g). Furthermore,

R
1+ &
& 1(&0) € He and € € [eg%0),

EeVe & 0OF

ocf

1)e M~YK) and 1+€€]g,1)
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and

EeWr & TPE0)eHx and 56[0,%).

Now the lemma follows from the above relations. O

Proof of Theorem 6 First note that due to the fact that the density function (log G)~*(1+
tv)™? is invariant under M, Toefs 7 and 7y, one has

ﬂocf(lc) = fiy(Hk) .
Next, for n > 1 one has, due to Lemma 2
MDn(K)) S hgef(K) = AE(Hk)) S i (Hr)
where E, (Hx) is defined as in Theorem 3, viz.
En(Hx) = {€ € [&9%. 9); T,(£,0) € Hy}

The theorem now follows from Theorem 3, as soon as we have established that Hy is a finite
union of simply connected subsets of €, each satisfying the conditions from Theorem 3.
Let Gq,---,G4 be defined as in (17), and put

ICl = ICﬂGl, ICQ = ICQM(GQ), and IC3 = IC\(IC1UIC2),

see Figure 5.

Figure 5
JFrom the definitions of M and v it now follows that
MTHKY) = Ky, MTYKy) C Gy and M™HK3)
and

Y(MTHKY)) = Ky, v(MTH(K)) € G3 and Y(M™HK3)) = MTHK3)
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are simply connected subsets of A ¢ resp. Ay, all satisfying the conditions of Theorem 3
(Figure 6).
Putting
HY = KinQy MY = Ko\ M
Hy = $(MTHK)) N Qs Hy = d(MTH(K)) \ G
and
Hg = M_I(IC;),),

it follows that
Hie = HEU M(HY) UHIUM(HY) UK.

Figure 6

Thus it seems that Hx is the union of at most five simply connected subsets of Q, (with
disjoint interiors), each satisfying the conditions from Theorem 3. In fact, since K N Q, =
HY U K3, we see that Hx is the union of at most 4 of such subsets. This proves Theorem 6.
O

Figure 7
Let z € [<:%,g), and choosing K = K, in Theorem 6, where

K. = A{(t,v) € Qyep: t < 2}
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at once yields (*) as a corollary.

Corollary 3 For z € [&1,g] one has

MEE o550 That < 2} = paut([,2]) + Og"),

N | —

where Hocf is a probability measure on [<:%,g) with density d(x), given by (8).

Let £ € [<:%, %) be an irrational number with OCF-expansion [0; eyay, £2as, - - -], sequence
of OCF-convergents (rj/s;)r>—1 and

(e, on) = Togl(€,0), k > 0.

Then we define the optimal approzimation coefficients 8, = 0;(£) by

0,(6) = 52 k>

.
(et
Sk

That these 8’s are indeed optimal in many respects was shown in [BK2].
;From the definition of 7 .¢ one easily finds, see e.g. [K1], that

23
b, = L g (18)

6. 1 =
k—1 1‘|‘tkvk7

1+ tpv

The following corollary is a consequence of (18) and Theorem 6.
Corollary 4 Let J,(z) = {€ €[€3,5)\Q: 6, <z} for 0 <z < 1. Then

/\(JH(Z)) = OCf(Z) ‘|' O(gn) 9

where Focf is the distribution function given by

logG for0 <z <

e (\/1 S42% + log (Gl‘ivzl‘“)) for = <2< 3.

s

FOC](Z) =

Final remarks

1. Corollary 4 is the ”counterpart” of Theorem 5.13 from [BK1], which states that for a.e.
¢ and for every z € [0, %] the sequence (6 )r>1 is distributed over [0, %] according to the
distribution function Fy ¢, so for almost all £ and for all 2

. 1 . .
Jim {73 1< j <k and 6;(€) <2} = Foeql(2),

see also Corollary 2. Similar counterparts for many more theorems, e.g. from [BK1],
can easily be obtained in the same manner by choosing the sets K appropriately.
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2. As we mentioned before, all the result of this section can be obtained for any maximal

singularization area S there is no need (except clarity of exposition?) to stick to .S

ocf:

For instance, replacing S .¢ by 51 illuminates the relation between the Gauss-Kusmin
2

theorems for the NICF and the SCF, as found by [Riel]. That this close relation
between NICF and SCF not only follows from Rieger’s result, but also from the way
these continued fraction expansions are obtained via singularization, is illustrated by
the following. The analog of Corollary 1 for the NICF is obtained by interchanging , 1
with , _q, i.e., by reflecting them in the line & = . The analog of Corollary 2 for the
NICF is complete identical to Corollary 2.
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