A Gauss-Kusmin Theorem for Optimal Continued Fractions

Karma Dajani and Cor Kraaikamp

1 Introduction

One of the first \Leftrightarrow and still one of the most important \Leftrightarrow results in the metrical theory of continued fractions is the so-called Gauss-Kusmin theorem. Let $\xi \in[0,1)$ Гand let

$$
\begin{equation*}
\xi=\frac{1}{d_{1}+\frac{1}{d_{2}+\ddots+\frac{1}{d_{n}+} \cdot}}=\left[0 ; d_{1}, d_{2}, \cdots, d_{n}, \cdots\right] \tag{1}
\end{equation*}
$$

be the regular continued fraction (RCF) expansion of ξ Гthen it was observed by Gauss [G] in 1800 that for $z \in[0,1]$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \lambda\left(\left\{\xi \in[0,1) ; T^{n} \xi \leq z\right\}\right)=\frac{\log (1+z)}{\log 2} . \tag{2}
\end{equation*}
$$

Here λ is the Lebesgue measure and the RCF-operator $T:[0,1) \rightarrow[0,1)$ is defined by

$$
T \xi:=\frac{1}{\xi} \Leftrightarrow\left\lfloor\frac{1}{\xi}\right\rfloor, \xi \neq 0 ; T 0:=0
$$

where \lfloor.$\rfloor denotes the floor - or entier function. It is not known how Gauss found (2) Гbut$ laterTin a letter dated January 30Г1812 TGauss asked Laplace to give an estimate of the error term $r_{n}(z)$, defined by

$$
r_{n}(z):=\lambda\left(T^{-n}[0, z]\right) \Leftrightarrow \frac{\log (1+z)}{\log 2}, n \geq 1 .
$$

It was Kusmin [Kus] in 1928 who was the first to prove (2) and at the same time to answer Gauss' question. Kusmin showed that

$$
r_{n}(z)=\mathcal{O}\left(q^{\sqrt{n}}\right),
$$

with $q \in(0,1)$, uniform in z. Independently Paul Lévy [L] showed one year later that

$$
r_{n}(z)=\mathcal{O}\left(q^{n}\right),
$$

with $q=0.7 \ldots$, uniform in z. Lévy's result Γ but with a better constant Γ was obtained by P. Szuisz in 1961 using Kusmin's approach. From that time on Γ a great number of such GaussKusmin theorems followed. To mention a few: F. Schweiger (1968) [Sch1[2] [P. Wirsing (1973) [Wir]ГK.I. Babenko (1978) [Ba] Tand more recently M. Iosifescu (1992) [Ios].

Gauss-Kusmin theorems for other continued fraction expansions were independently obtained by G.J. Rieger (1978) [Rie1] and A.M. Rockett (1980) [Roc]. Both Rieger and Rockett obtained a Gauss-Kusmin theorem for the nearest integer continued fraction (NICF). Rieger also obtained a Gauss-Kusmin theorem for the closely related Hurwitz' singular continued fraction (SCF) Tand other continued fraction expansions like the continued fraction with odd partial quotients.

Both the NICF as well as the SCF are examples of α-expansions Γ which were introduced and studied by H. Nakada in [N]. Let $\alpha \in\left[\frac{1}{2}, 1\right]$ be fixedГthen the operator $T_{\alpha}:[\alpha \Leftrightarrow 1, \alpha) \rightarrow$ [$\alpha \Leftrightarrow 1, \alpha$) is defined by

$$
\begin{equation*}
T_{\alpha} \xi:=\left|\frac{1}{\xi}\right| \Leftrightarrow\left\lfloor\left|\frac{1}{\xi}\right|+1 \Leftrightarrow \alpha\right\rfloor, \xi \neq 0 ; T_{\alpha} 0:=0 . \tag{3}
\end{equation*}
$$

Putting

$$
\varepsilon_{\alpha, n}(\xi):=\operatorname{sgn}\left(T_{\alpha}^{n-1} \xi\right) ; a_{\alpha, n}(\xi):=\left\lfloor\left|\frac{1}{T_{\alpha}^{n-1} \xi}\right|+1 \Leftrightarrow \alpha\right\rfloor, n \geq 1,
$$

in case $T_{\alpha}^{n-1} \xi \neq 0 \Gamma$ and $\varepsilon_{\alpha, n}(\xi):=0 ; a_{\alpha, n}(\xi):=\infty$ in case $T_{\alpha}^{n-1} \xi=0$ Гone easily sees that every irrational $\xi \in[\alpha \Leftrightarrow 1, \alpha)$ has a unique α-expansion

$$
\begin{equation*}
\xi=\frac{\varepsilon_{\alpha, 1}}{a_{\alpha, 1}+\frac{\varepsilon_{\alpha, 2}}{a_{\alpha, 2}+\ddots+\frac{\varepsilon_{\alpha, n}}{a_{\alpha, n}+}}}=\left[0 ; \varepsilon_{\alpha, 1} a_{\alpha, 1}, \cdots, \varepsilon_{\alpha, n} a_{\alpha, n}, \cdots\right] . \tag{4}
\end{equation*}
$$

In case $\alpha=1 \Gamma(4)$ is simply the RCF-expansion of ξ; in case $\alpha=\frac{1}{2} \Gamma(4)$ is the NICF-expansion of ξ and in case $\alpha=g:=\frac{1}{2}(\sqrt{(5)} \Leftrightarrow 1)=0.61 \cdots$ one has that (4) is Hurwitz' SCF-expansion of ξ.

It should be noted that the methods of Rieger and Rockett can be easily adapted to obtain a Gauss-Kusmin theorem for any α-expansion Γ where $\alpha \in\left[\frac{1}{2}, 1\right]$.

Nakada's α-expansions are examples of semi-regular continued fraction (SRCF) expansions. In general a SRCF is a finite or infinite fraction

$$
\begin{equation*}
b_{0}+\frac{\varepsilon_{1}}{b_{1}+\frac{\varepsilon_{2}}{b_{2}+\ddots+\frac{\varepsilon_{n}}{b_{n+}} \because}}=\left[b_{0} ; \varepsilon_{1} b_{1}, \varepsilon_{2} b_{2}, \cdots, \varepsilon_{n} b_{n}, \cdots\right], \tag{5}
\end{equation*}
$$

with $\varepsilon_{n}= \pm 1 ; b_{0} \in \mathbf{Z} ; b_{n} \in \operatorname{N\Gamma for} n \geq 1$ Tsubject to the condition

$$
\varepsilon_{n+1}+b_{n} \geq 1, \text { for } n \geq 1,
$$

and with the restriction that in the infinite case

$$
\varepsilon_{n+1}+b_{n} \geq 2, \text { infinitely often } .
$$

Moreover we demand that $\varepsilon_{n}+b_{n} \geq 1$ for $n \geq 1$.
Remark In case $\alpha=\frac{1}{2}$ one has that

$$
\begin{equation*}
b_{n} \geq 2 \text { and } b_{n}+\varepsilon_{n+1} \geq 2, n \geq 1, \tag{6}
\end{equation*}
$$

and conversely if（5）is a SRCF－expansion of ξ which satisfies（6）Γ then（5）is the NICF－ expansion of ξ ．In the same way the SCF－expansion of ξ is characterized by

$$
\begin{equation*}
b_{n} \geq 2 \text { and } b_{n}+\varepsilon_{n} \geq 2, n \geq 1, \tag{7}
\end{equation*}
$$

see also Section 3 or Perron＇s classical book［Pe］．
Taking finite truncations in（5）yields a finite or infinite sequence of rational numbers $A_{n} / B_{n}, n \geq 1$ Twhere

$$
\frac{A_{n}}{B_{n}}=b_{0}+\frac{\varepsilon_{1}}{b_{1}+\frac{\varepsilon_{2}}{b_{2}+\ddots+\frac{\varepsilon_{n}}{b_{n}}}}=\left[b_{0} ; \varepsilon_{1} b_{1}, \varepsilon_{2} b_{2}, \cdots, \varepsilon_{n} b_{n}\right] .
$$

A SRCF－expansion（5）is a SRCF－expansion of ξ if

$$
\lim _{n \rightarrow \infty} \frac{A_{n}}{B_{n}}=\xi .
$$

A fastest expansion of ξ is an expansion for which the growth rate of the denominators B_{n} is maximal；it turns out that this means that these denominators grow asymptotically as fast as the denominators of the NICF（or SCF）convergents of that ξ Tsee e．g．［Bos］or［K1］．Closest expansions are those for which $\sup \left\{\theta_{k}: \theta_{k}:=B_{k}\left|B_{k} \xi \Leftrightarrow A_{k}\right|\right\}$ is minimal．Since in general the NICF does not provide closest expansions「and closest expansions（like Minkowski＇s diagonal continued fraction（DCF））do not provide fastest expansions「a natural question arises whether exist a SRCF which is both fastest and closest．In［Ke］it was shown that such an algorithm does exist「and Selenius［Se］showed how such a SRCF of ξ can be obtained given the RCF of ξ ．In 1987 T W ．Bosma introduced a new continued fraction expansion which yields for every $\xi \in \mathbf{R}$ a SRCF－expansion of ξ which is both fastest and closest Γ without using the RCF－expansion of ξ ．This new continued fraction algorithmFthe so－called optimal continued fraction（OCF）expansion turned out to have approximation properties superior to any other SRCF－expansionTsee also［BK12］．

The OCF－expansion of an irrational number $\xi \in\left[\Leftrightarrow \frac{1}{2}, \frac{1}{2}\right)$ is defined recursively as follows． Put

$$
\begin{array}{ll}
r_{-1}=1 ; & r_{0}=0 ; \\
s_{-1}=0 ; & s_{0}=1 ; \\
t_{0}=\xi ; & \varepsilon_{1}=\operatorname{sgn}\left(t_{0}\right)
\end{array}
$$

and let for $k \geq 1$

$$
\begin{aligned}
& b_{k}=\left\lfloor\left|t_{k-1}^{-1}\right|\right\rfloor \\
& v_{k}=b_{k} s_{k-1}+\varepsilon_{k} s_{k-2} \quad \text { and } u_{k}=b_{k} r_{k-1}+\varepsilon_{k} r_{k-2}, \\
& \alpha_{k}=\frac{v_{k}+s_{k-1}}{2 v_{k}+s_{k-1}} .
\end{aligned}
$$

The partial quotients $a_{k}=a_{k}(\xi)$ are given by

$$
a_{k}=\left\lfloor\left|t_{k-1}^{-1}\right|+1 \Leftrightarrow \alpha_{k}\right\rfloor,
$$

and the convergents r_{k} / s_{k} by

$$
r_{k}=a_{k} r_{k-1}+\varepsilon_{k} r_{k-2} \text { and } s_{k}=a_{k} s_{k-1}+\varepsilon_{k} s_{k-2} .
$$

Next put

$$
t_{k}=\left|t_{k-1}^{-1}\right| \Leftrightarrow a_{k} \text { and } \varepsilon_{k+1}=\operatorname{sgn}\left(t_{k}\right)
$$

For arbitrary (irrational) numbers ξ we define $\operatorname{OCF}(\xi)=\left[a_{0} ; \varepsilon_{1} a_{1}, \varepsilon_{2} a_{2}, \cdots\right]$ where $a_{0} \in \mathbf{Z}$ is such that $x \Leftrightarrow a_{0} \in\left[\Leftrightarrow \frac{1}{2}, \frac{1}{2}\right)$ and $\left[0 ; \varepsilon_{1} a_{1}, \varepsilon_{2} a_{2}, \cdots\right]$ is the OCF-expansion of ξ.

Notice that the OCF behaves like an α-expansion Γ where at every stage of the algorithm the value of α (which is α_{k}) is adjusted. For more details on this Γ see [Bos] SSection 4. An equivalent way of generating OCF-expansions \Leftrightarrow or any of the above mentioned continued fraction algorithms \Leftrightarrow is via the mechanism of S-expansions Γ which is dicussed to some detail in Section 3. This approach enables us to use ergodic theory in order to analyse the dynamical Γ metrical and number theoretical properties of these expansions.

In contrast with most continued fraction algorithms the OCF-algorithm is "two-dimensional" (there are some exceptions Γ e.g. the afore mentioned diagonal continued fraction (DCF) (see [K1]); In order to apply the OCF-algorithm "one needs to know where one has been". It is exactly this aspect of the OCF which makes it very difficult \Leftrightarrow if not impossible \Leftrightarrow to obtain a Gauss-Kusmin theorem for the OCF in the same vein as those obtained for the NICFTSCF or for the RCF (it should be noticed that the approach from [Wir] and [Ba] cannot be used for the NICF or the SCFTsee also [Rie1] Гp. 444).

The aim of this paper is to obtain a Gauss-Kusmin theorem for the OCF. To be more precise we will show \Leftrightarrow among many other things \Leftrightarrow that for $z \in\left[\Leftrightarrow \frac{1}{2}, g\right]$

$$
\begin{equation*}
\lambda\left\{\xi \in\left[\Leftrightarrow \frac{1}{2}, \frac{1}{2}\right): T_{\mathrm{ocf}}^{n} \xi \leq z\right\}=\mu_{\mathrm{ocf}}\left(\left[\Leftrightarrow \frac{1}{2}, z\right]\right)+\mathcal{O}\left(g^{n}\right), \tag{*}
\end{equation*}
$$

where $\mu_{\text {ocf }}$ is a probability measure on $\left[\Leftrightarrow \frac{1}{2}, g\right)$ with density $d_{\text {ocf }}(x)$ [given by

$$
d_{\mathrm{Ocf}}(x)= \begin{cases}\frac{1}{\log G} \frac{2 x+1}{2 x^{2}+2 x+1} & \text { if } \Leftrightarrow \frac{1}{2} \leq x<\Leftrightarrow g^{2} \tag{8}\\ \frac{1}{\log G} \frac{x+1}{x^{2}+2 x+2} & \text { if } \Leftrightarrow g^{2} \leq x<\frac{1}{2} \\ \frac{3}{\log G} \frac{1-x-x^{2}}{\left(x^{2}+2 x+2\right)\left(2 x^{2}-2 x+1\right)} & \text { if } \frac{1}{2} \leq x<g\end{cases}
$$

and where $T_{\text {ocf }}^{n} \xi$ is given by

$$
T_{\mathrm{ocf}}^{n} \xi=\left[0 ; \varepsilon_{n+1} b_{n+1}, \varepsilon_{n+2} b_{n+2}, \cdots\right]
$$

in case

$$
\xi=\left[0 ; \varepsilon_{1} b_{1}, \cdots, \varepsilon_{n} b_{n}, \cdots\right]
$$

is the OCF-expansion of ξ.
This paper is organized as follows. In Section 2 a "two-dimensional Gauss-Kusmin theorem" for Hurwitz' SCF will be discussed. Also a generalization of a Knuth-type theorem for the SCF will be obtained. Proofs in this section will follow those from [DK] Γ where similar results for the RCF were obtained.

All these continued fraction expansion Γ that is Γ the NICFTSCF and OCFTare examples of a very large class of SRCF-expansions Γ the so-called S-expansions. In Section 3 these S-expansions will be briefly discussed.

In Section 4 we will recall a result from [K2] which states that maximal (i.e. fastest) S expansions like the NICFTSCF or OCF厂are metrically isomorphic. This isomorphism will then be used to carry over the results from section 2 to any maximal S-expansion Tin particular to the OCFFfrom which the above mentioned result $(*)$ then follows.

2 A Two Dimensional Gauss-Kusmin Theorem

In this section we will derive a "two-dimensional" Gauss-Kusmin theorem land also the analog of a theorem by D.E. Knuth [Kn] for the SCF. To be more preciseГlet

$$
\left(X_{g}, \mathcal{B}_{g}, \mu_{g}, T_{g}\right)
$$

be the dynamical system underlying Hurwitz' SCFTwhere $X_{g}=\left[\Leftrightarrow g^{2}, g\right)$, \mathcal{B}_{g} is the collection of Borel sets on X_{g}, μ_{g} is a probability measure on X_{g} with density ${ }^{1}(\log G)^{-1}(2+x)^{-1}$ and T_{g} is defined as in (3). Then a Gauss-Kusmin theorem related to the natural extension

$$
\left(\Omega_{g}, \overline{\mathcal{B}}_{g}, \bar{\mu}_{g}, \mathcal{T}_{g}\right)
$$

of $\left(X_{g}, \mathcal{B}_{g}, \mu_{g}, T_{g}\right)$ will be derived. Here $\Omega_{g}=\left[\Leftrightarrow g^{2}, g\right) \times\left[0, \frac{1}{2}\right], \overline{\mathcal{B}}_{g}$ is the collection of Borel sets on $\Omega_{g}, \bar{\mu}_{g}$ is a probability measure with density $(\log G)^{-1}(1+x y)^{-1}$ on Ω_{g} and finally \mathcal{T}_{g} is defined by

$$
\mathcal{T}_{g}(\xi, \eta):=\left(T_{g} \xi, \frac{1}{\left\lfloor\xi^{-1} \mid+g^{2}\right\rfloor+\operatorname{sgn}(\xi) \cdot \eta}\right),(\xi, \eta) \in \Omega_{g}, \xi \neq 0
$$

For further reference we will mention here a slightly modified version of Rieger's 1978 version of the Gauss-Kusmin theorem for the SCFTsee also in [Rie1] the proof of Satz 2 and (7.1).

Theorem 1 For every Borel set $E \subset X_{g}$ one has

$$
\left|\lambda\left(T_{g}^{-n} E\right) \Leftrightarrow \mu_{g}(E)\right|<C \lambda(E)\left(\frac{3}{5}\right)^{n}
$$

where λ is Lebesgue measure on $X_{g}=\left[\Leftrightarrow g^{2}, g\right)$ and where μ_{g} is defined as before, i.e.,

$$
\mu_{g}(E):=\frac{1}{\log G} \int_{E} \frac{d x}{2+x}, E \in \mathcal{B}_{g}
$$

and C is a universal constant.

Remarks

1. A similar theorem can be formulated for the NICFTsee [Rie1] Γ Satz 2Γ and also [Roc]. In this paper we choose to work with the SCF instead of the NICF only because the natural extension of the SCF is "slightly nicer" than the one for the NICFT see also $[\mathrm{Na}] \Gamma[\mathrm{K} 1]$; one simply needs to discern less cases in the proofs of the various results in case one uses the SCF.

[^0]2. The constant $\frac{3}{5}$ in Rieger's theorem is not best possible Γ see also [Rie1] p .446 and the remarks after [Rie1]TSatz 2.

Set

$$
\begin{equation*}
m_{n}(x):=\lambda\left(\left\{\xi \in X_{g} ; T_{g}^{n} \xi \leq x\right\}\right), \text { for } x \in\left[\Leftrightarrow g^{2}, g\right] \text {. } \tag{9}
\end{equation*}
$$

Since for $\Leftrightarrow g^{2} \leq x \leq g$

$$
\begin{equation*}
\left\{\xi: T_{g} \xi \leq x\right\}=\bigcup_{k=2}^{\infty}\left[\frac{1}{k+x}, \frac{1}{k \Leftrightarrow g^{2}}\right] \cup \bigcup_{k=3}^{\infty}\left[\frac{\Leftrightarrow 1}{k \Leftrightarrow g^{2}}, \frac{\Leftrightarrow 1}{k+x}\right], \tag{10}
\end{equation*}
$$

the relation

$$
\begin{equation*}
m_{n+1}(x)=\sum_{k=2}^{\infty}\left(m_{n}\left(\frac{1}{k \Leftrightarrow g^{2}}\right) \Leftrightarrow m_{n}\left(\frac{1}{k+x}\right)\right)+\sum_{k=3}^{\infty}\left(m_{n}\left(\frac{\Leftrightarrow 1}{k+x}\right) \Leftrightarrow m_{n}\left(\frac{\Leftrightarrow 1}{k \Leftrightarrow g^{2}}\right)\right) \tag{11}
\end{equation*}
$$

follows which is fundamental in any proof of a Gauss-Kusmin theorem for the SCF.
In factГthe measure μ_{g} is an eigenfunction of (11); viz. if we put $m_{n}(x):=\log (2+x)$ Cthen a simple calculation shows that $m_{n+1}(x)=\log (2+x)$. The factor $1 / \log G$ is a normalizing constant.

Relation (10) easily follows from Figure 1.

Figure 1

(The map T_{g})
Let $\xi \in\left[\Leftrightarrow g^{2}, g\right) \backslash \mathbf{Q}$ with SCF-expansion (4) (with $\alpha=g$). Finite truncation in (4) yields the sequence of SCF-convergents A_{n} / B_{n} of ξ

$$
\frac{A_{n}}{B_{n}}=\left[0 ; \varepsilon_{1} b_{1}, \cdots, \varepsilon_{n} b_{n}\right], n \geq 1
$$

One easily shows that

$$
\left\{\begin{array}{lll}
A_{-1}(\xi)=1 ; & A_{0}(\xi)=0 ; & A_{n}(\xi)=b_{n} A_{n-1}(\xi)+\varepsilon_{n} A_{n-2}(\xi), n \geq 1 \tag{12}\\
B_{-1}(\xi)=0 ; & B_{0}(\xi)=1 ; & B_{n}(\xi)=b_{n} B_{n-1}(\xi)+\varepsilon_{n} B_{n-2}(\xi), n \geq 1
\end{array}\right.
$$

For $(\xi, \eta) \in \Omega_{g}$ Гput

$$
\left(T_{0}, V_{0}^{*}\right):=(\xi, \eta) \text { and }\left(T_{n}, V_{n}^{*}\right):=\mathcal{T}_{g}^{n}(\xi, \eta), n \geq 1
$$

then

$$
T_{n}=\left[0 ; \varepsilon_{n+1} b_{n+1}, \varepsilon_{n+2} b_{n+2}, \cdots\right] ; V_{n}^{*}=\left[0 ; b_{n}, \varepsilon_{n} b_{n-1}, \cdots, \varepsilon_{2}\left(b_{1}+\eta\right)\right] .
$$

Of course Γ for $n \geq 0$ we have that $\left[0 ; \varepsilon_{n+1} b_{n+1}, \varepsilon_{n+2} b_{n+2}, \cdots\right]$ is the SCF-expansion of the number $T_{n}=T_{g}^{n} \xi \in\left[\Leftrightarrow g^{2}, g\right) \backslash \mathbf{Q}$; it satisfies (7) for every $n \geq 0$. Notice also that the first n digits of V_{n}^{*} satisfy (6). In particular we see that if $\eta=0$ one has that

$$
\left[0 ; b_{n}, \varepsilon_{n} b_{n-1}, \cdots, \varepsilon_{2} b_{1}\right]
$$

is the NICF-expansion of the (rational) number V_{n}^{*}. In case $\eta=0$ we will write V_{n} instead of V_{n}^{*}.

Now define

$$
\begin{equation*}
m_{n}(x, y):=\bar{\lambda}\left\{(\xi, \eta) \in \Omega_{g}: \mathcal{T}_{g}^{n}(x, y) \in\left[\Leftrightarrow g^{2}, x\right] \times[0, y]\right\} \tag{13}
\end{equation*}
$$

here (and in the rest of this paper) $\bar{\lambda}$ is normalized Lebesgue measure on Ω_{g}.
In this section we will obtain the following two theorems.
Theorem 2 For all $n \geq 2$ and all $(x, y) \in \Omega_{g}$ one has

$$
m_{n}(x, y)=\frac{\log \left(\frac{1+x y}{1-g^{2} y}\right)}{\log G}+\mathcal{O}\left(g^{n}\right)
$$

the constant of the big \mathcal{O}-symbol is uniform.
Theorem 3 Let K be a simply connected subset of Ω_{g}, such that

$$
\partial K=\ell_{1} \cup \ldots \cup \ell_{m}
$$

where $m \in \mathbf{N}$ and each ℓ_{i} is given by either

$$
\ell_{i}:=\left\{\left(\xi, f_{i}(\xi)\right) ; \beta_{i} \leq \xi \leq \gamma_{i}\right\},
$$

where $\Leftrightarrow g^{2} \leq \beta_{i}<\gamma_{i} \leq g$ and $f_{i}:\left[\beta_{i}, \gamma_{i}\right] \rightarrow\left[0, \frac{1}{2}\right]$ is continuous and monotone, or by

$$
\ell_{i}:=\left\{\left(\beta_{i}, \eta\right) ; \kappa_{i} \leq \eta \leq \tau_{i}\right\}
$$

where $\beta_{i} \in\left[\Leftrightarrow g^{2}, g\right]$ and $0 \leq \kappa_{i}<\tau_{i} \leq \frac{1}{2}, i=1, \ldots, m$.
Put

$$
E_{n}(K):=\left\{\xi \in\left[\Leftrightarrow g^{2}, g\right) ;\left(T_{n}, V_{n}\right):=\mathcal{T}_{g}^{n}(\xi, 0) \in K\right\}
$$

Then one has

$$
\lambda\left(E_{n}(K)\right)=\bar{\mu}_{g}(K)+\mathcal{O}\left(g^{n}\right),
$$

where the constant in the big-O symbol is uniform.

Clearly

$$
\mathcal{T}_{g}^{n+1}(\xi, \eta) \in\left[\Leftrightarrow g^{2}, x\right] \times[0, y]
$$

is equivalent to

$$
T_{g}^{n+1} \xi \in\left[\Leftrightarrow g^{2}, x\right] \text { and } 0 \leq V_{n+1}=\frac{1}{a_{n+1}+\varepsilon_{n+1} V_{n}} \leq y
$$

¿From (10) it follows that the former expression is equivalent to

$$
T_{g}^{n} \xi \in \bigcup_{k=2}^{\infty}\left[\frac{1}{k+x}, \frac{1}{k \Leftrightarrow g^{2}}\right] \cup \bigcup_{k=3}^{\infty}\left[\frac{\Leftrightarrow 1}{k \Leftrightarrow g^{2}}, \frac{\Leftrightarrow 1}{k+x}\right] .
$$

The latter expression can be understood as follows. Let $\ell:=\left\lfloor\frac{1}{y}+\frac{1}{2}\right\rfloor \Gamma$ then if $y \leq 1 / \ell$ Гone has $\mathcal{T}_{g}^{n+1}(\xi, \eta) \in \mathcal{I}_{x, y}:=\left[\Leftrightarrow g^{2}, x\right] \times[0, y]$ is equivalent to

$$
\begin{aligned}
\mathcal{T}_{g}^{n}(\xi, \eta) \in & {\left[\frac{1}{\ell+x}, \frac{1}{\ell \Leftrightarrow g^{2}}\right] \times\left[\frac{1}{y} \Leftrightarrow \ell, \frac{1}{2}\right] \cup } \\
& \bigcup_{k=\ell+1}^{\infty}\left[\frac{1}{k+x}, \frac{1}{k \Leftrightarrow g^{2}}\right] \times\left[0, \frac{1}{2}\right] \\
& \bigcup_{k=\ell+1}^{\infty}\left[\frac{\Leftrightarrow 1}{k \Leftrightarrow g^{2}}, \frac{\Leftrightarrow 1}{k+x}\right] \times\left[0, \frac{1}{2}\right]
\end{aligned}
$$

and if $y>1 / \ell \Gamma$ then $\mathcal{T}_{g}^{n+1}(\xi, \eta) \in \mathcal{I}_{x, y}$ is equivalent to

$$
\begin{aligned}
\mathcal{T}_{g}^{n}(\xi, \eta) \in & {\left[\frac{\Leftrightarrow 1}{\ell \Leftrightarrow g^{2}}, \frac{\Leftrightarrow 1}{\ell+x}\right] \times\left[0, \ell \Leftrightarrow \frac{1}{y}\right] \cup } \\
& \bigcup_{k=\ell}^{\infty}\left[\frac{1}{k+x}, \frac{1}{k \Leftrightarrow g^{2}}\right] \times\left[0, \frac{1}{2}\right] \\
& \bigcup_{k=\ell+1}^{\infty}\left[\frac{\Leftrightarrow 1}{k \Leftrightarrow g^{2}}, \frac{\Leftrightarrow 1}{k+x}\right] \times\left[0, \frac{1}{2}\right] .
\end{aligned}
$$

¿From this and (13) one gets the following recursion formula

$$
\begin{align*}
& m_{n+1}(x, y)=\sum_{k=\ell}^{\infty}\left(m_{n}\left(\frac{1}{k \Leftrightarrow g^{2}}, \frac{1}{2}\right) \Leftrightarrow m_{n}\left(\frac{1}{k+x}, \frac{1}{2}\right)\right) \tag{14}\\
& +\sum_{k=\ell+1}^{\infty}\left(m_{n}\left(\frac{\Leftrightarrow 1}{k+x}, \frac{1}{2}\right) \Leftrightarrow m_{n}\left(\frac{\Leftrightarrow 1}{k \Leftrightarrow g^{2}}, \frac{1}{2}\right)\right) \\
& \quad+\quad m_{n}\left(\frac{\epsilon}{\ell+x}, \epsilon\left(\frac{1}{y} \Leftrightarrow \ell\right)\right) \Leftrightarrow m_{n}\left(\frac{\epsilon}{\ell \Leftrightarrow g^{2}}, \epsilon\left(\frac{1}{y} \Leftrightarrow \ell\right)\right),
\end{align*}
$$

where

$$
\epsilon=\left\{\begin{array}{cl}
1 & \text { if } y<\frac{1}{\ell} \\
\Leftrightarrow 1 & \text { if } y \geq \frac{1}{\ell}
\end{array}\right.
$$

Lemma 1 Let $n \in \mathrm{~N}, n \geq 2$ and let y be a rational number from the interval $\left[0, \frac{1}{2}\right]$ with NICF-expansion

$$
y=\left[0 ; \ell_{1}, \epsilon_{1} \ell_{2}, \cdots, \epsilon_{d-1} \ell_{d}\right], \ell_{i} \geq 2, \epsilon_{i} \in\{\Leftrightarrow 1,1\}
$$

where $d \leq\left\lfloor\frac{n}{2}\right\rfloor+1$. Then for all $x, x^{*} \in\left[\Leftrightarrow g^{2}, g\right)$ with $x^{*}<x$ one has

$$
\left|\left(m_{n}(x, y) \Leftrightarrow m_{n}\left(x^{*}, y\right)\right) \Leftrightarrow \frac{1}{\log G} \log \frac{1+x y}{1+x^{*} y}\right|<C \bar{\lambda}\left(\mathcal{I}_{x, y} \backslash \mathcal{I}_{x^{*}, y}\right)\left(\frac{3}{5}\right)^{n-d} .
$$

Proof Let $y=y_{0}$ and for $i=1, \cdots, d$ write

$$
\begin{aligned}
y_{i} & =\left[0 ; \ell_{i+1}, \epsilon_{i+1} \ell_{i+2}, \cdots, \epsilon_{d-1} \ell_{d}\right] \\
& = \begin{cases}\frac{1}{y_{i-1}} \Leftrightarrow \ell_{i} & \text { if } y_{i-1}<\frac{1}{\ell_{i}}, \\
\ell_{i} \Leftrightarrow \frac{1}{y_{i-1}} & \text { if } y_{i-1} \geq \frac{1}{\ell_{i}}\end{cases} \\
& =\epsilon_{i}\left(\frac{1}{y_{i-1}} \Leftrightarrow \ell_{i}\right) .
\end{aligned}
$$

Note that $\epsilon_{i}=1$ if $y_{i-1}<\frac{1}{\ell_{i}}$ and $\epsilon_{i}=\Leftrightarrow 1$ else.
Applying the above recursion formula (14) one gets

$$
\begin{aligned}
m_{n}(x, y) \Leftrightarrow m_{n}\left(x^{*}, y\right) & =\sum_{k=\ell_{1}}^{\infty}\left(m_{n-1}\left(\frac{1}{k+x^{*}}, \frac{1}{2}\right) \Leftrightarrow m_{n-1}\left(\frac{1}{k+x}, \frac{1}{2}\right)\right) \\
& +\sum_{k=\ell_{1}+1}^{\infty}\left(m_{n-1}\left(\frac{\Leftrightarrow 1}{k+x}, \frac{1}{2}\right) \Leftrightarrow m_{n-1}\left(\frac{\Leftrightarrow 1}{k+x^{*}}, \frac{1}{2}\right)\right) \\
& +m_{n-1}\left(\frac{\epsilon_{1}}{\ell_{1}+x}, y_{1}\right) \Leftrightarrow m_{n-1}\left(\frac{\epsilon_{1}}{\ell_{1}+x^{*}}, y_{1}\right) .
\end{aligned}
$$

For any $D \in \overline{\mathcal{B}}_{g} \Gamma$

$$
\begin{equation*}
\frac{1}{\log G} \frac{2}{(1+G)^{2}} \bar{\lambda}(D) \leq \bar{\mu}_{g}(D) \leq \frac{1}{\log G} \frac{2}{G^{2}} \bar{\lambda}(D) \tag{15}
\end{equation*}
$$

For each $\bar{b}=\left(b_{1}, \epsilon_{1} b_{2}, \cdots, \epsilon_{n-1} b_{n}\right)$ Fwhere $b_{i} \geq 2$ and $\epsilon_{i} \in\{\Leftrightarrow 1,+1\}$ satisfy (6) Гlet

$$
Z(\bar{b})=\{x \in\left[0, \frac{1}{2}\right] ; \operatorname{NICF}(x)=[0 ; b_{1}, \epsilon_{1} b_{2}, \cdots, \epsilon_{n-1} b_{n}, \underbrace{\ldots \ldots \ldots}_{\text {"free" }}] \text {, }
$$

i.e. $\Gamma Z(\bar{b})$ is a cylinder set (or: fundamental interval) for the nearest integer continued fraction.

Now from (15) and the fact that \mathcal{T}_{g} is $\bar{\mu}_{g}$-invariant

$$
\begin{aligned}
\sum_{k=\ell_{1}}^{\infty} & \left(\frac{1}{k+x^{*}} \Leftrightarrow \frac{1}{k+x}\right)+\sum_{k=\ell_{1}+1}^{\infty}\left(\frac{\Leftrightarrow 1}{k+x} \Leftrightarrow \frac{\Leftrightarrow 1}{k+x^{*}}\right) \\
= & \bar{\lambda}\left[\left(\frac{1}{\ell_{1}+x}, \frac{1}{\ell_{1}+x^{*}}\right) \times\left[0, \frac{1}{2}\right]\right] \\
& +\sum_{\ell_{1}+1}^{\infty} \bar{\lambda}\left[\left(\left(\frac{\Leftrightarrow 1}{k+x^{*}}, \frac{\Leftrightarrow 1}{k+x}\right) \bigcup\left(\frac{1}{k+x}, \frac{1}{k+x^{*}}\right)\right) \times\left[0, \frac{1}{2}\right]\right] \\
\leq & \frac{1}{2}(1+G)^{2} \log G\left[\bar{\mu}_{g}\left(\left(x^{*}, x\right) \times Z\left(\ell_{1}\right)\right)+\sum_{k=\ell_{1}+1}^{\infty} \bar{\mu}_{g}\left(\left(x^{*}, x\right) \times Z(k)\right)\right] \\
\leq & 2 G^{2} \bar{\lambda}\left(\mathcal{I}_{x, y} \backslash \mathcal{I}_{x^{*}, y}\right) .
\end{aligned}
$$

A similar analysis leads to

$$
\begin{gathered}
\sum_{k=\ell_{i}}^{\infty}\left(\left|\left[0 ; k, \epsilon_{i-1} \ell_{i-1}, \cdots, \epsilon_{1}\left(\ell_{1}+x^{*}\right)\right] \Leftrightarrow\left[0 ; k, \epsilon_{i-1} \ell_{i-1}, \cdots, \epsilon_{1}\left(\ell_{1}+x\right)\right]\right|\right) \\
+\sum_{k=\ell_{i}+1}^{\infty}\left(\left|\left[0 ; \Leftrightarrow k, \epsilon_{i-1} \ell_{i-1}, \cdots, \epsilon_{1}\left(\ell_{1}+x\right)\right] \Leftrightarrow\left[0 ; \Leftrightarrow k, \epsilon_{i-1} \ell_{i-1}, \cdots, \epsilon_{1}\left(\ell_{1}+x^{*}\right)\right]\right|\right) \\
\leq 2 G^{2} \bar{\lambda}\left(\mathcal{I}_{x, y} \backslash \mathcal{I}_{x^{*}, y}\right)
\end{gathered}
$$

see also [DK] where the case of the RCF was dealt with.
¿From the above discussion and Theorem 1 we get Γ since $m_{n}\left(x, \frac{1}{2}\right)=m_{n}(x)$

$$
\begin{aligned}
\sum_{k=\ell_{1}}^{\infty}(& \left.m_{n-1}\left(\frac{1}{k+x^{*}}, \frac{1}{2}\right) \Leftrightarrow m_{n-1}\left(\frac{1}{k+x}, \frac{1}{2}\right)\right) \\
& +\sum_{k=\ell_{1}+1}^{\infty}\left(m_{n-1}\left(\frac{\Leftrightarrow 1}{k+x}, \frac{1}{2}\right) \Leftrightarrow m_{n-1}\left(\frac{\Leftrightarrow 1}{k+x^{*}}, \frac{1}{2}\right)\right) \\
= & \sum_{k=\ell_{1}}^{\infty} \mu_{g}\left(\frac{1}{k+x}, \frac{1}{k+x^{*}}\right)+\sum_{k=\ell_{1}}^{\infty} \lambda\left(\frac{1}{k+x}, \frac{1}{k+x^{*}}\right) \mathcal{O}\left(\left(\frac{3}{5}\right)^{n-1}\right) \\
& +\sum_{k=\ell_{1}+1}^{\infty} \mu_{g}\left(\frac{\Leftrightarrow 1}{k+x^{*}}, \frac{\Leftrightarrow 1}{k+x}\right)+\sum_{k=\ell_{1}+1}^{\infty} \lambda\left(\frac{\Leftrightarrow 1}{k+x^{*}}, \frac{\Leftrightarrow 1}{k+x}\right) \mathcal{O}\left(\left(\frac{3}{5}\right)^{n-1}\right) \\
= & \frac{1}{\log G} \log \left(\frac{2 \ell_{1}+2 x^{*}+1}{2 \ell_{1}+2 x+1} \frac{\ell_{1}+x}{\ell_{1}+x^{*}}\right) \\
& +\frac{1}{\log G} \lim _{n \rightarrow \infty} \sum_{k=\ell_{1}+1}^{n} \log \left(\frac{2 k+2 x^{*}+1}{2 k+2 x+1} \frac{2 k+2 x \Leftrightarrow 1}{2 k+2 x^{*} \Leftrightarrow 1}\right) \\
& +2 G^{2} \bar{\lambda}\left(\mathcal{I}_{x, y} \backslash \mathcal{I}_{x^{*}, y}\right) \mathcal{O}\left(\left(\frac{3}{5}\right)^{n-1}\right) \\
= & \frac{1}{\log G} \log \left(\frac{\ell_{1}+x}{\ell_{1}+x^{*}}\right)+2 G^{2} \bar{\lambda}\left(\mathcal{I}_{x, y} \backslash \mathcal{I}_{x^{*}, y}\right) \mathcal{O}\left(\left(\frac{3}{5}\right)^{n-1}\right) .
\end{aligned}
$$

Thus we see that

$$
\begin{aligned}
m_{n}(x, y) \Leftrightarrow m_{n}\left(x^{*}, y\right) & =\frac{1}{\log G} \log \left(\frac{\ell_{1}+x}{\ell_{1}+x^{*}}\right)+2 G^{2} \bar{\lambda}\left(\mathcal{I}_{x, y} \backslash \mathcal{I}_{x^{*}, y}\right) \mathcal{O}\left(\left(\frac{3}{5}\right)^{n-1}\right) \\
& +m_{n-1}\left(\frac{\epsilon_{1}}{\ell_{1}+x}, y_{1}\right) \Leftrightarrow m_{n-1}\left(\frac{\epsilon_{1}}{\ell_{1}+x^{*}}, y_{1}\right)
\end{aligned}
$$

Applying (14) d-times one gets

$$
\begin{aligned}
& m_{n}(x, y) \Leftrightarrow m_{n}\left(x^{*}, y\right)= \\
& =\frac{1}{\log G}\left[\frac{\ell_{1}+x}{\ell_{1}+x^{*}} \frac{\left[\ell_{2} ; \epsilon_{1}\left(\ell_{1}+x\right)\right]}{\left[\ell_{2} ; \epsilon_{1}\left(\ell_{1}+x^{*}\right)\right]} \cdots \frac{\left[\ell_{d} ; \epsilon_{d-1} \ell_{d-1}, \cdots, \epsilon_{2} \ell_{2}, \epsilon_{1}\left(\ell_{1}+x\right)\right]}{\left[\ell_{d} ; \epsilon_{d-1} \ell_{d-1}, \cdots, \epsilon_{2} \ell_{2}, \epsilon_{1}\left(\ell_{1}+x^{*}\right)\right]}\right] \\
& \quad+\bar{\lambda}\left(\mathcal{I}_{x, y} \backslash \mathcal{I}_{x^{*}, y}\right) \mathcal{O}\left(\left(\frac{3}{5}\right)^{n-1}\right)+\cdots+\bar{\lambda}\left(\mathcal{I}_{x, y} \backslash \mathcal{I}_{x^{*}, y}\right) \mathcal{O}\left(\left(\frac{3}{5}\right)^{n-d}\right)
\end{aligned}
$$

Let

$$
\left\{\begin{array}{ll}
P_{-1}=1 ; & P_{0}=0 ; \tag{16}\\
P_{i}=\alpha_{i} P_{i-1}+\epsilon_{i} P_{i-2}, i=i, \cdots, d \\
Q_{-1}=0 ; & Q_{0}=1 ;
\end{array} \quad Q_{i}=\alpha_{i} Q_{i-1}+\epsilon_{i} Q_{i-2}, i=i, \cdots, d,\right.
$$

where $\alpha_{1}=\ell_{1}+x, \alpha_{2}=\ell_{2}, \cdots, \alpha_{d}=\ell_{d}$. Then

$$
\frac{Q_{i-1}}{Q_{i}}=\left[0 ; \ell_{i}, \epsilon_{i-1} \ell_{i-1}, \ldots, \epsilon_{1}\left(\ell_{1}+x\right)\right]
$$

for $i=1, \cdots, d$ from which it follows that

$$
\begin{gathered}
\left(\ell_{1}+x\right)\left[\ell_{2} ; \epsilon_{1}\left(\ell_{1}+x\right)\right] \cdots\left[\ell_{d} ; \epsilon_{d-1} \ell_{d-1}, \cdots, \epsilon_{2} \ell_{2}, \epsilon_{1}\left(\ell_{1}+x\right)\right]=\frac{Q_{1}}{Q_{0}} \frac{Q_{2}}{Q_{1}} \cdots \frac{Q_{d}}{Q_{d-1}} \\
=\frac{Q_{d}}{Q_{0}}=Q_{d} .
\end{gathered}
$$

Let P_{i}^{*} and Q_{i}^{*} be defined as in (16) Twith α_{1} replaced by $\alpha_{1}^{*}=\ell_{1}+x^{*}$.
Now

$$
\begin{aligned}
& \frac{P_{d}}{Q_{d}}=\left[0 ; \ell_{1}+x, \epsilon_{1} \ell_{2}, \cdots, \epsilon_{d-1} \ell_{d}\right], \\
& \frac{P_{d}^{*}}{Q_{d}^{*}}=\left[0 ; \ell_{1}+x^{*}, \epsilon_{1} \ell_{2}, \cdots, \epsilon_{d-1} \ell_{d}\right]
\end{aligned}
$$

and

$$
P_{d}=P_{d}^{*} .
$$

Thus we find that

$$
\begin{aligned}
& \frac{\ell_{1}+x}{\ell_{1}+x^{*}} \frac{\left[\ell_{2} ; \epsilon_{1}\left(\ell_{1}+x\right)\right]}{\left[\ell_{2} ; \epsilon_{1}\left(\ell_{1}+x^{*}\right)\right]} \cdots \frac{\left[\ell_{d} ; \epsilon_{d-1} \ell_{d-1}, \cdots, \epsilon_{2} \ell_{2}, \epsilon_{1}\left(\ell_{1}+x\right)\right]}{\left[\ell_{d} ; \epsilon_{d-1} \ell_{d-1}, \cdots, \epsilon_{2} \ell_{2}, \epsilon_{1}\left(\ell_{1}+x^{*}\right)\right]}= \\
& \quad=\frac{Q_{d}}{Q_{d}^{*}}=\frac{Q_{d}}{P_{d}} \frac{P_{d}^{*}}{Q_{d}^{*}}=\frac{x+\left[\ell_{1} ; \epsilon_{1} \ell_{2}, \ldots, \epsilon_{d-1} \ell_{d}\right]}{x^{*}+\left[\ell_{1} ; \epsilon_{1} \ell_{2}, \ldots, \epsilon_{d-1} \ell_{d}\right]} \\
& \quad=\frac{x+\frac{1}{y}}{x^{*}+\frac{1}{y}}=\frac{1+x y}{1+x^{*} y} .
\end{aligned}
$$

Therefore Γ

$$
m_{n}(x, y) \Leftrightarrow m_{n}\left(x^{*}, y\right)=\frac{1}{\log G} \log \left(\frac{1+x y}{1+x^{*} y}\right)+\bar{\lambda}\left(\mathcal{I}_{x, y} \backslash \mathcal{I}_{x^{*}, y}\right) \mathcal{O}\left(\left(\frac{3}{5}\right)^{n-d}\right) . \square
$$

Remarks The proof of Theorem 2 now follows from Lemma 1 and (15). It is similar to the proof of [DKГTheorem 2] the essential difference being the fact that now the NICFexpansion of y is consideredTinstead of the RCF-expansion of y. As is well-known (and this follows directly from the fact that the NICF is an S-expansion Γ see also the next section) Γ the sequence of NICF-convergents $\left(p_{k} / q_{k}\right)_{k \geq-1}$ forms a subsequence of the sequence of RCFconvergents of y. Thus it is possible to obtain sharper boundsTe.g. Гone has that

$$
\left|y \Leftrightarrow \frac{p_{k}}{q_{k}}\right|<\frac{g}{q_{k}^{2}} .
$$

Theorem 3 also follows from Lemma 1. Since Theorem 3 plays a key role in the proof of our main resultएTheorem 6 Гand Theorem 2 is just a nice result along the way F we will leave the proof of Theorem 2 to the reader.

Proof of Theorem 3 Let $\bar{b}=\left(b_{1}, \epsilon_{1} b_{2}, \ldots, \epsilon_{n-1} b_{n}\right)$ be some arbitrary admissible sequence of length n for the NICFTi.e. ϵ_{i} and b_{i} satisfy (6) Fand let $Z(\bar{b})$ be defined as before. For each $i=1, \cdots, m$ Clet

$$
Z^{i}(\bar{b})=Z(\bar{b}) \cap\left\{y \in\left[0, \frac{1}{2}\right] ;(x, y) \in l_{i} \text { for some } x \in\left[\Leftrightarrow g^{2}, g\right]\right\},
$$

and define $L_{n}^{i}(\bar{b}) \Gamma R_{n}^{i}(\bar{b})$ as follows

$$
\left[L_{n}^{i}(\bar{b}), R_{n}^{i}(\bar{b})\right]:=f_{i}^{-1}\left(Z^{i}(\bar{b})\right)
$$

Set

$$
U_{n}:=\bigcup_{i=1}^{m} \bigcup_{\bar{b}} B_{n}^{i}(\bar{b}),
$$

where

$$
B_{n}^{i}(\bar{b}):=\left\{\begin{array}{cl}
{\left[L_{n}^{i}(\bar{b}), R_{n}^{i}(\bar{b})\right] \times Z(\bar{b})} & \text { if } f_{i}\left(\left[\beta_{i}, \gamma_{i}\right]\right) \cap Z(\bar{b}) \neq \emptyset \\
\emptyset & \text { otherwise } \Gamma
\end{array}\right.
$$

see also Figure 2. Let

$$
\beta:=\min _{1 \leq i \leq m} \beta_{i} \text { and } \gamma:=\max _{1 \leq i \leq m} \gamma_{i},
$$

and define a partition $\mathcal{P}(n)$ of $[\beta, \gamma]$ by

$$
\mathcal{P}(n):=\bigvee_{i=1}^{m}\left\{\left[L_{n}^{i}(\bar{b}), R_{n}^{i}(\bar{b})\right],\left[\beta, \beta_{i}\right],\left[\gamma_{i}, \gamma\right]: \bar{b} \text { is NICF-admissible of lenght } n\right\} .
$$

Figure 2
Let $d=\left\lfloor\frac{n}{2}\right\rfloor+1$ and $\overline{\mathcal{P}}_{d}=\mathcal{P}(n) \times \mathcal{F}_{d}$ Twith

$$
\mathcal{F}_{d}=\{Z(\bar{b}): \bar{b} \text { is NICF-admissible of lenght } d\}
$$

and let $\bar{a}=\left(\epsilon_{1} a_{1}, \epsilon_{2} a_{2}, \cdots, \epsilon_{n} a_{n}\right)$ be a SCF-admissible sequence $\mathrm{Ci} . e . \Gamma(7)$ is satisfied. Define for \bar{a} the sequence \tilde{a} by $\tilde{a}:=\left(a_{n}, \epsilon_{n} a_{n-1}, \cdots, \epsilon_{2} a_{1}\right)$. Then \tilde{a} is a NICF-admissible sequence Γ i.e. $\Gamma(6)$ is satisfied. We denote by

$$
\Delta(\bar{a})=\{x \in\left[\Leftrightarrow g^{2}, g\right) ; \operatorname{SCF}(x)=[0 ; \epsilon_{1} a_{1}, \epsilon_{2} a_{2}, \cdots, \epsilon_{n} a_{n}, \underbrace{\ldots \ldots \ldots]}_{" \text { free" }}],
$$

a cylinder set (or fundamental interval) for Hurwitz' singular continued fraction.
Note that

$$
\mathcal{T}_{g}^{n}\left(\bigcup_{\epsilon_{1} \in\{-1,1\}} \Delta\left(\epsilon_{1} a_{1}, \epsilon_{2} a_{2}, \cdots, \epsilon_{n} a_{n}\right) \times\left[0, \frac{1}{2}\right]\right)=\left[\Leftrightarrow g^{2}, g\right] \times Z\left(a_{n}, \epsilon_{n} a_{n-1}, \cdots, \epsilon_{2} a_{1}\right)
$$

with the convention that $\Delta\left(\Leftrightarrow 2, \epsilon_{2} a_{2}, \cdots, \epsilon_{n} a_{n}\right)=\emptyset$.
Thus Γ

$$
\begin{aligned}
& \mathcal{T}_{g}^{n}\left(E_{n}(K) \times\left[0, \frac{1}{2}\right]\right) \\
& =\mathcal{T}_{g}^{n}\left(\quad \bigcup_{\text {all SCF- }}\left(E_{n}(K) \cap \Delta\left(\epsilon_{1} a_{1}, \cdots, \epsilon_{n} a_{n}\right)\right) \times\left[0, \frac{1}{2}\right]\right) \\
& \text { all SCF- } \\
& \left(\epsilon_{1} a_{1}, \cdots, \epsilon_{n} a_{n}\right) \\
& =\mathcal{T}_{g}^{n}\left(\bigcup_{\text {all SCF- }}^{\bigcup} \bigcup_{\epsilon_{1} \in\{-1,1\}}\left(E_{n}(K) \cap \Delta\left(\epsilon_{1} a_{1}, \cdots, \epsilon_{n} a_{n}\right)\right) \times\left[0, \frac{1}{2}\right]\right) \\
& \text { admissible } \\
& \left(a_{1}, \cdots, \epsilon_{n} a_{n}\right) \\
& =\quad \bigcup_{\text {all SCF- }}\left(T_{g}^{n}\left(E_{n}(K) \cap \bigcup_{\epsilon_{1} \in\{-1,1\}} \Delta\left(\epsilon_{1} a_{1}, \cdots, \epsilon_{n} a_{n}\right)\right)\right) \times Z(\tilde{a}) . \\
& \text { admissible } \\
& \left(a_{1}, \cdots, \epsilon_{n} a_{n}\right)
\end{aligned}
$$

Since K is simply connected

$$
K \backslash U_{d} \subset K \backslash U_{n} \subset \mathcal{T}_{g}^{n}\left(E_{n}(K) \times\left[0, \frac{1}{2}\right]\right) \subset K \cup U_{n} \subset K \cup U_{d}
$$

where

$$
K \backslash U_{d}=\bigcup\left\{W \in \overline{\mathcal{P}}_{d}: W \subset K \backslash U_{d}\right\}
$$

and similarly for $K \cup U_{d}$. By Lemma 1 one has

$$
\left.\bar{\lambda}\left(\mathcal{T}_{g}^{-n}\left(K \backslash U_{d}\right)\right)=\bar{\mu}_{g}\left(K \backslash U_{d}\right)\right)+\mathcal{O}\left(\left(\frac{3}{5}\right)^{n-d}\right)
$$

and a similar statement for $K \cup U_{d}$. Using techniques from [K1] TSection 1 Tone has for \bar{b} an NICF-admissible sequence of length d Ccorresponding to a positive rational number p_{d} / q_{d}

$$
Z(\bar{b})= \begin{cases}\left(\frac{2 p_{d}-p_{d-1}}{2 q_{d}-q_{d-1}}, \frac{2 p_{d}+p_{d-1}}{2 q_{d}+q_{d-1}}\right) & \text { if } b_{d}>2 \\ \left(\frac{p_{d}}{q_{d}}, \frac{2 p_{d}+p_{d-1}}{2 q_{d}+q_{d-1}}\right) & \text { if } b_{d}=2\end{cases}
$$

where ${ }^{2} p_{d-1} / q_{d-1}$ and p_{d} / q_{d} are the last two NICF-convergents of $p_{d} / q_{d} \Gamma$ and b_{d} is the last partial quotient (i.e. Γ digit) of \bar{b}.

Since $\left|p_{d-1} q_{d} \Leftrightarrow p_{d} q_{d-1}\right|=1$ and any sequence of NICF-convergents is a subsequence of a sequence of RCF-convergents Γ

$$
\lambda(Z(\bar{b})) \leq \frac{4}{\left(2 q_{d} \Leftrightarrow q_{d-1}\right)\left(2 q_{d}+q_{d-1}\right)} \leq \frac{4}{\mathcal{F}_{d} \mathcal{F}_{d+1}}
$$

where $\mathcal{F}_{n}, n \geq 0$ एis the Fibonacci sequence $0,1,1,2,3, \cdots$. ¿From this and (15) one obtains

$$
\begin{aligned}
\bar{\mu}_{g}\left(\bigcup_{\bar{b}} B_{d}^{i}(\bar{b})\right) & \leq \frac{1}{\log G} \frac{2}{G^{2}} \sum_{\bar{b}} \bar{\lambda}\left(B_{d}^{i}(\bar{b})\right) \\
& \leq \frac{1}{\log G} \frac{2}{G^{2}} \frac{4\left(\gamma_{i} \Leftrightarrow \beta_{i}\right)}{\mathcal{F}_{d} \mathcal{F}_{d+1}} .
\end{aligned}
$$

Since

$$
\frac{G^{2 d}}{5} \leq \mathcal{F}_{d} \mathcal{F}_{d+1}
$$

it follows that

$$
\bar{\mu}_{g}\left(U_{d}\right) \leq\left(\frac{5}{G^{2}} \sum_{i=1}^{m}\left(\gamma_{i} \Leftrightarrow \beta_{i}\right)\right) g^{n}
$$

The desired result now follows from the above and the observations that $\frac{3}{5}<g$ and $\lambda\left(E_{n}(K)\right)=$ $\bar{\lambda}\left(E_{n}(K) \times\left[0, \frac{1}{2}\right]\right)$.

Remark It should be clear that Theorem 3 remains correct if K is a finite union of simply connected subsets K_{i} of Ω_{g} Гeach satisfying the conditions of Theorem 3 imposed upon K.

[^1]We finish this section with a number of direct corollaries of Theorem 3. Let $\xi \in\left[\Leftrightarrow g^{2}, g\right)$ be an irrational number「with SCF-expansion (4) (where $\alpha=g$) 「sequence of SCF-convergents $\left(A_{n} / B_{n}\right)_{n \geq-1}$ Гand let $\left(T_{n}, V_{n}\right)_{n \geq-1}$ be defined as beforeTi.e. Γ

$$
\left(T_{n}, V_{n}\right)=\mathcal{T}_{g}^{n}(\xi, 0)
$$

Then we define the approximation coefficients $\Theta_{n}=\Theta_{n}(\xi)$ by

$$
\Theta_{n}(\xi)=B_{n}^{2}\left|\xi \Leftrightarrow \frac{A_{n}}{B_{n}}\right|, n \geq 1,
$$

and one has that $\Theta_{n}<g$. We have the following corollaries.
Corollary 1 Let $K_{n}\left(z_{1}, z_{2}\right)=\left\{\xi \in\left[\Leftrightarrow g^{2}, g\right) \backslash \mathbf{Q}: \Theta_{n-1} \leq z_{1}, \Theta_{n} \leq z_{2}\right\}$ for $0 \leq z_{1}, z_{2} \leq g$. Furthermore, let Γ_{1} denote the interior of the quadrangle with vertices $(0,0),\left(\frac{1}{2}, 0\right)\left(\frac{1}{2+g}, \frac{2 g}{2+g}\right)$ and $(0, g)$, and Γ_{-1} the interior of the quadrangle with vertices $(0,0),\left(\frac{1}{2}, 0\right)\left(g, 2 g^{3}\right)$ and $\left(0, g^{2}\right)$. Then

$$
\lambda\left(K_{n}\left(z_{1}, z_{2}\right)\right)=H_{g}\left(z_{1}, z_{2}\right)+\mathcal{O}\left(g^{n}\right)
$$

where H_{g} is the distribution function with density h_{g} given by

$$
h_{g}(\alpha, \beta)=\left\{\begin{array}{cl}
\frac{1}{\log G} \frac{1}{\sqrt{1-4 \alpha \beta}} & \text { if }(\alpha, \beta) \in \Gamma_{1} \backslash \Gamma_{-1}, \\
\frac{1}{\log G}\left(\frac{1}{\sqrt{1-4 \alpha \beta}}+\frac{1}{\sqrt{1+4 \alpha \beta}}\right) & \text { if }(\alpha, \beta) \in \Gamma_{1} \cap \Gamma_{-1}, \\
\frac{1}{\log G} \frac{1}{\sqrt{1+4 \alpha \beta}} & \text { if }(\alpha, \beta) \in \Gamma_{-1} \backslash \Gamma_{1}, \\
0 & \text { otherwise. }
\end{array}\right.
$$

The proof of Corollary 1 follows directly from Theorem 3 and the fact that

$$
\Theta_{n-1}=\frac{V_{n}}{1+T_{n} V_{n}} \quad \text { and } \quad \Theta_{n}=\frac{\epsilon_{n+1} T_{n}}{1+T_{n} V_{n}}, n \geq 2
$$

Notice that we moreover have that for all ξ the sequence $\left(\Theta_{n-1}, \Theta_{n}\right), n \geq 1$ Tis a sequence in $\Gamma_{1} \cup \Gamma_{-1}$ Isee also [K1] CSection 6 [and [J].
Choosing in Corollary $1 z_{1}$ to be equal to g yields the following corollaryTwhich is analogous to a theorem by D.E. Knuth [Kn] for the RCF-expansion.
Corollary 2 Let $J_{n}(z)=\left\{\xi \in\left[\Leftrightarrow g^{2}, g\right) \backslash \mathbf{Q}: \Theta_{n} \leq z\right\}$ for $0 \leq z \leq g$. Then

$$
\lambda\left(J_{n}(z)\right)=F_{g}(z)+\mathcal{O}\left(g^{n}\right)
$$

where F_{g} is the distribution function given by

$$
F_{g}(z)= \begin{cases}\frac{z}{\log G} & \text { if } 0 \leq z \leq g^{2} \\ \frac{1}{\log G}\left(z \Leftrightarrow G^{2} z+\log \left(G^{2} z\right)+1\right) & \text { if } g^{2} \leq z \leq g \\ 1 & \text { if } g \leq z \leq 1\end{cases}
$$

In 1983 ГW. BosmaГH. Jager and F. Wiedijk [BJW] obtained the "counterpart" of Corollary 2. They showed that for almost all $\xi \in\left[\Leftrightarrow g^{2}, g\right.$) (with respect to the Lebesgue measure) and $z \in\left[0, \frac{1}{2}\right]$ one has that the limit

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{1 \leq n \leq N ; \Theta_{n} \leq z\right\}
$$

exists「and equals $F_{g}(z)$. We speak here of counterpart because the two theorems are like the two faces of the same coin. One face deals with the pointwise convergence of ergodic averages Γ the other with weak convergence of probability measures with a given speed of convergence.

In [J] CH . Jager showed that for a generic $\xi \in[0,1)$ the sequence $\mathcal{T}^{n}(\xi, 0)$ is distributed over Ω according to the density of the invariant measure $(\log 2)^{-1}(1+x y)^{-2}$. Due to the way S-expansions in general - and the SCF-expansion in particular - are defined it now at once follows that for a generic $\xi \in\left[\Leftrightarrow g^{2}, g\right)$ the sequence $\mathcal{T}_{g}(\xi, 0)=\left(T_{n}, V_{n}\right)$ is distributed over Ω_{g} according to the density function $(\log G)^{-1}(1+t v)^{-2} \Gamma$ which is the density of the invariant measure of \mathcal{T}_{g}. From this and Birkhoff's Ergodic Theorem it follows that for any $K \subset \Omega_{g}$ satisfying the hypothesis of Theorem 3 and for almost every ξ (in the sence of Lebesgue) the limit

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{1 \leq n \leq N ;\left(T_{n}, V_{n}\right) \in K\right\}
$$

exists「and equals $\bar{\mu}_{g}(K)$.

$3 \quad S$-expansions

In this section we will recall some facts on S-expansions Twhich have been dealt with in [K1].
Let ξ be an irrational numberFand let (4) be some SRCF-expansion of ξ. Suppose that we have for a certain $k \geq 0: a_{k+1}=1, \varepsilon_{k+1}=\varepsilon_{k+2}=1$. The operation by which the continued fraction (2) is replaced by ${ }^{3}$

$$
\left[a_{0} ; \varepsilon_{1} a_{1}, \ldots, \varepsilon_{k-1} a_{k-1}, \varepsilon_{k}\left(a_{k}+1\right), \Leftrightarrow\left(a_{k+2}+1\right), \varepsilon_{k+3} a_{k+3}, \ldots\right],
$$

which again is a SRCF-expansion of $x \Gamma$ with convergents $\Gamma \operatorname{say} \Gamma\left(c_{n} / d_{n}\right)_{n \geq-1}$, is called the singularisation of the partial quotient a_{k+1} equal to 1 . One easily shows that $\left(c_{n} / d_{n}\right)_{n>-1}$ is obtained from $\left(r_{n} / s_{n}\right)_{n \geq-1}$ by skipping the term r_{k} / s_{k}. See also [K1] [sections 2 and 4 .

A simple way to derive a strategy for singularization is given by a singularization area S. Here we will choose S to be a subset of the natural extension

$$
(\Omega, \overline{\mathcal{B}}, \bar{\mu}, \mathcal{T})
$$

of the RCF. Here $\Omega:=[0,1) \times[0,1] \Gamma \overline{\mathcal{B}}$ is the collection of Borel sets of $\Omega \Gamma$ and the twodimensional RCF-operator \mathcal{T} is given by

$$
\mathcal{T}(\xi, \eta):=\left(T \xi, \frac{1}{\left\lfloor\xi^{-1}\right\rfloor+\eta}\right),(\xi, \eta) \in \Omega, \xi \neq 0 .
$$

Finally $\Gamma \bar{\mu}$ is the invariant measure with density $(\log 2)^{-1}(1+x y)^{-2}$. It is well-known that the dynamical system $(\Omega, \overline{\mathcal{B}}, \bar{\mu}, \mathcal{T})$ is Bernoulli.

[^2]Definition $1 A$ subset S from Ω is called a singularisation area if it satisfies
(I) $S \in \mathcal{B}$ and $\mu(\partial S)=0$;
(II) $S \subset\left(\left[\frac{1}{2}, 1\right) \backslash \mathbf{Q}\right) \times[0,1]$;
(III) $\mathcal{T}(S) \cap S=\emptyset$.

Remark It easily follows from Definition 1 and Figure 3 that

$$
0 \leq \bar{\mu}(S) \leq 1 \Leftrightarrow \frac{\log G}{\log 2}=0.3057 \ldots,
$$

see also [K1] ГTheorem (4.7). A singularisation area is called maximal in case

$$
\bar{\mu}(S)=1 \Leftrightarrow \frac{\log G}{\log 2}=0.3057 \cdots
$$

Figure 3
Definition 2 Let S be a singularisation area and let ξ be a real irrational number. The S-expansion of ξ is that semi-regular continued fraction expansion converging to ξ, which is obtained from the $R C F$-expansion (1) of ξ by singularizing d_{n+1} if and only if $\mathcal{T}^{n}(\xi, 0) \in$ $S, n \geq 0$.

Some examples of singularisation areas are ${ }^{4}$

1. $S_{\frac{1}{2}}:=\left[\frac{1}{2}, 1\right) \times[0, g]$ yields the nearest integer continued fraction (NICF). The area $S_{\frac{1}{2}}$ is maximal;
2. $S_{g}:=\{(T, V) \in \Omega ;(g, 1) \times[0,1]\}$; this area yields Hurwitz' singular continued fraction (SCF); it is maximal「see [K2].
3. $S_{\text {ocf }}:=\left\{(T, V) \in \Omega ; V<\min \left(T, \frac{2 T-1}{1-T}\right)\right\}$; this area yields the OCF and is also maximal.
4. $S_{\mathrm{dcf}}:=\left\{(T, V) \in \Omega ; \frac{T}{1+T V}>\frac{1}{2}\right\} ;$ this area yields the diagonal continued fraction (DCF) of Minkowski; it is not maximalTsee [K3].
[^3]Remark Let $\xi \in[0,1)$ be some irrational numberTwith RCF－expansion（1）．From Definition 2 and the above examples one easily sees that the following algorithm yields the NICF－expansion of ξ
\gg singularize in each block of m consecutive partial quotients $d_{n+1}=1, \cdots, a_{n+m}=1 \Gamma$ where $m \in \mathbf{N} \cup\{\infty\} \Gamma a_{n+m+1} \neq 1$ and $a_{n} \neq 1$ in case $n>0 \Gamma$ the firstГthirdГfifthГetc． partial quotient \ll
while doing the same in case m is oddrand in case m is even
\gg singularize the first「third「fifth「etc．partial quotient \ll
yields Hurwitz＇SCF．The OCF＂combines＂both algorithms；first one singularizes the first and last 1＇s in every block of m consecutive 1＇s Γ and then＂move in＂．
That the NICFTSCF and OCF－algorithms singularize blocks of odd length in the same way reflects the fact that these expansions are maximal；There is only one way to＂throw out＂（＝ to singularize）as many 1＇s as possible in a block of odd length．In a block of even length a ＂jump＂has to be made somewhereГsee also［K2］．E．g．for the NICF one makes this jump at the end「and for the SCF at the beginning．The OCF chooses the jump in such a way t that one is left with the smallest possible θ_{k}＇s．One can showTsee［BK2］［that for the OCF the jump takes place in the middle of the block．

That for a maximal S－expansion one always makes the maximal number of＂throw－outs＂ in any block of consecutive 1＇s has several nice consequences．One is Γ that maximal S－ expansions are metrically isomorphic Γ a fact we will use in Section 4．Another consequence is Γ that a Heilbronn－theorem for maximal S－expansions follows trivially from Rieger＇s 1978 Heilbronn－theorem for the NICF［Rie2］．In order to see thisTrecall that each rational number $p / q \in[0,1)$ has a unique finite RCF－expansion $p / q=\left[0 ; d_{1}, \cdots, d_{\ell}\right] \Gamma$ with $d_{\ell} \neq 1$（clearly $\left[0 ; d_{1}, \cdots, d_{\ell}\right]=\left[0 ; d_{1}, \cdots, d_{\ell} \Leftrightarrow 1,1\right]$ Cbut the latter expansion cannot be obtained via $T \Leftrightarrow$ and is therefore considered＂illegal＂）．Thus the length of the S－expansion of p / q is the same as the length of the NICF－expansion of p / q in case S is maximal．

Proposition 1 Let S be a maximal singularization area（with ${ }^{5} \bar{S}^{\circ}=S^{\circ}$ and $(\xi, \eta) \in \partial S \backslash S$ implies $\mathcal{T}(\xi, \eta) \in S$ or $\left.\mathcal{T}^{-1}(\xi, \eta) \in S\right)$ ．Let a and N be positive integers，such that $(a, N)=1$ ． Denote by $\ell(a)=\ell(a, N)$ the length of the S－expansion of a / N ，i．e．，if

$$
\frac{a}{N}=\left[b_{0} ; \varepsilon_{1} b_{1}, \cdots, \varepsilon_{\ell} b_{\ell}\right]
$$

is the S－expansion of a / N ，then $\ell(a)=\ell$ ．Finally，let φ denote the Euler φ－function and let $\sigma_{-1}(N):=\sum_{d \mid N} 1 / d$ ．Then

$$
\sum_{\substack{1 \leq a \leq N \\(a, N)=1}} \ell(a)=\frac{12 \log G}{\pi^{2}} \varphi(N) \log N+\mathcal{O}\left(N \sigma_{-1}^{3}(N)\right) .
$$

[^4]Let S be a singularization area and let ξ be a real irrational numberTwith RCF-expansion (1) and RCF-convergents $\left(P_{n} / Q_{n}\right)_{n \geq-1}$. Furthermoreए let [$\left.a_{0} ; \varepsilon_{1} a_{1}, \ldots, \varepsilon_{k} a_{k}, \ldots\right]$ be the S-expansion of ξ, with convergents $r_{k} / s_{k}, k \geq \Leftrightarrow 1$. Define the shift t by

$$
t\left(\xi \Leftrightarrow a_{0}\right):=\left[0 ; \varepsilon_{2} a_{2}, \ldots, \varepsilon_{k} a_{k}, \ldots\right] .
$$

For a fixed ξ and for $k \geq 0$ we put

$$
t_{k}:=t^{k}\left(\xi \Leftrightarrow a_{0}\right)=\left[0 ; \varepsilon_{k+1} a_{k+1}, \varepsilon_{k+2} a_{k+2}, \ldots\right] \text { and } v_{k}:=s_{k-1} / s_{k},
$$

where

$$
v_{k}=\left[0 ; a_{k}, \varepsilon_{k} a_{k-1}, \ldots, \varepsilon_{2} a_{1}\right], k \geq 1 ; v_{0}=0 .
$$

see also [K1] Γ (1.4) and (5.1).
We have the following theorem.
Theorem 4 Let S be a singularization area and put $\Delta_{S}:=\Omega \backslash S, \Delta_{S}^{-}:=\mathcal{T} S$ and $\Delta_{S}^{+}:=$ $\Delta_{S} \backslash \Delta_{S}^{-}$. Let ξ be a real number, with $R C F$-expansion (1) and $R C F$-convergents $\left(P_{n} / Q_{n}\right)_{n \geq-1}$. Then one has

1. The system $\left(\Delta_{S}, \mathcal{B}, \rho_{S}, \mathcal{O}_{S}\right)$ forms an ergodic system. Here ρ_{S} is the probability measure on $\left(\Delta_{S}, \mathcal{B}\right)$ with density $((1 \Leftrightarrow \mu(S)) \log 2)^{-1}(1+x y)^{-2}$ and the map \mathcal{O}_{S} is induced by \mathcal{T} on Δ_{S}.
2. $\mathcal{T}^{n}(\xi, 0) \in S \Leftrightarrow P_{n} / Q_{n}$ is not an S-convergent;
3. P_{n} / Q_{n} is not an S-convergent \Rightarrow both P_{n-1} / Q_{n-1} and P_{n+1} / Q_{n+1} are S-convergents;
4. $\mathcal{T}^{n}(\xi, 0) \in \Delta_{S}^{+} \Leftrightarrow \exists k:\left\{\begin{array}{ll}r_{k-1}=P_{n-1}, & r_{k}=P_{n} \\ s_{k-1}=Q_{n-1}, & s_{k}=Q_{n}\end{array} \quad\right.$ and $\mathcal{T}^{n}(\xi, 0)=\left(t_{k}, v_{k}\right)$;
5. $\mathcal{T}^{n}(\xi, 0) \in \Delta_{S}^{-} \Leftrightarrow \exists k:\left\{\begin{array}{ll}r_{k-1}=P_{n-2}, & r_{k}=P_{n} \\ s_{k-1}=Q_{n-2}, & s_{k}=Q_{n}\end{array} \quad\right.$ and $\mathcal{T}^{n}(\xi, 0)=\left(\frac{-t_{k}}{1+t_{k}}, 1 \Leftrightarrow v_{k}\right) ;$
(See also [K1]TTheorem (5.3)).

In view of Theorem 2 we define the $\operatorname{map} \mathcal{M}: \Delta_{S} \rightarrow \mathbf{R}^{2}$ by

$$
\mathcal{M}(T, V):= \begin{cases}(T, V) & (T, V) \in \Delta_{S}^{+} \\ \left(\frac{-T}{1+T}, 1 \Leftrightarrow V\right) & (T, V) \in \Delta_{S}^{-}\end{cases}
$$

We have the following theorem.
Theorem 5 Let S be a singularization area and put $\Omega_{S}:=\mathcal{M}\left(\Delta_{S}\right)$. Let \mathcal{B} be the collection of Borel subsets of Ω_{S} and let μ_{S} be the probability measure on $\left(\Omega_{S}, \mathcal{B}\right)$, defined by

$$
\mu_{S}(E):=\rho_{S}\left(\mathcal{M}^{-1}(E)\right), E \in \mathcal{B} .
$$

Furthermore, if we define the map $\mathcal{T}_{S}: \Omega_{S} \rightarrow \Omega_{S}$ by

$$
\mathcal{T}_{S}(t, v):=\mathcal{M}\left(\mathcal{O}_{S}\left(\mathcal{M}^{-1}(t, v)\right)\right),(t, v) \in \Omega_{S},
$$

then \mathcal{T}_{S} is conjugate to \mathcal{O}_{S} by \mathcal{M} and $\left(\Omega_{S}, \mathcal{B}, \mu_{S}, \mathcal{T}_{S}\right)$ forms an ergodic system with density $((1 \Leftrightarrow \mu(S)) \log 2)^{-1}(1+t v)^{-2}$. Finally, for almost all $x \in[0,1)$ the e^{6} sequence $\left(t_{k}, v_{k}\right)_{k \geq 0}$ is

[^5]distributed over Ω_{S} according to this density.

Remarks

(I) From Theorem 4 and Theorem 5 it follows that $\left(\Omega_{S}, \mathcal{B}, \mu_{S}, \mathcal{T}_{S}\right) \Gamma$ which is the twodimensional ergodic system underlying the corresponding S-expansion Γ is isomorphic (via the \mathcal{M}-map) to an induced system of (Ω, T) with return-time bounded by 2 .
(II) One can show that \mathcal{T}_{S} can be written in the following way

$$
\mathcal{T}_{S}(t, v)=\left(\left|\frac{1}{t}\right| \Leftrightarrow f_{S}(t, v), \frac{1}{\operatorname{sgn}(t) \cdot v+f_{S}(t, v)}\right), \quad \text { for }(t, v) \in \Omega_{S}
$$

Furthermore one has

$$
a_{k+1}=f_{S}\left(t_{k}, v_{k}\right), k \geq 0, \text { where }\left(t_{0}, v_{0}\right)=\left(x \Leftrightarrow a_{0}, 0\right) .
$$

Thus we see that the S-expansion is the process associated with \mathcal{T}_{S} and f_{S}.
For the afore mentioned first three examples we have

$$
f_{\frac{1}{2}}(t, v)=\left\lfloor\left|\frac{1}{t}\right|+\frac{1}{2}\right\rfloor(\mathrm{NICF}), f_{g}(t, v)=\left\lfloor\left|\frac{1}{t}\right|+g^{2}\right\rfloor(\mathrm{SCF})
$$

and

$$
f_{\mathrm{Ocf}}(t, v)=\left\lfloor\left|\frac{1}{t}\right|+\frac{\left\lfloor\left.\frac{1}{t} \right\rvert\,\right\rfloor+\operatorname{sgn}(t) v}{2\left(\left\lfloor\left|\frac{1}{t}\right|\right\rfloor+\operatorname{sgn}(t) v\right)+1}\right\rfloor(\mathrm{OCF}) .
$$

(III) In case of the OCF the last statement of Theorem 5 says that for a.e. $\xi \in\left[\Leftrightarrow \frac{1}{2}, \frac{1}{2}\right)$ the sequence $\left(\mathcal{T}_{\text {ocf }}^{n}\right)_{n \geq 0}$ is distributed according to the density function $(\log G)^{-1}(1+t v)^{-2}$ Гi.e. Γ it behaves like the orbit of a generic point.

4 Gauss-Kusmin for maximal S-expansions

Now we concentrate on maximal singularization areas S (like those for the NICFTSCF and OCF) Гi.e. $\Gamma \mu(S)=1 \Leftrightarrow \frac{\log G}{\log 2}=0.3057 \cdots$. In [K2] it was shown that for such singularization areas the systems $\left(\Delta_{S}, \mathcal{B}, \rho_{S}, \mathcal{O}_{S}\right)$ and $\left(\Delta_{g}, \mathcal{B}, \rho_{g}, \mathcal{O}_{g}\right)$ are isomorphic via a map $\psi: \Delta_{S} \rightarrow \Delta_{g} \Gamma$ given by

$$
\psi(\xi, \eta):= \begin{cases}(\xi, \eta) & (\xi, \eta) \in G_{1}:=\Delta_{S} \cap \Delta_{g} \tag{17}\\ \mathcal{T}^{-1}(\xi, \eta) & (\xi, \eta) \in G_{2}:=\Delta_{S} \backslash \Delta_{g}\end{cases}
$$

and define moreover $G_{3}:=\Delta_{g} \backslash \Delta_{S}, G_{4}:=S \cap S_{g}$ (in Figure 4 we have depicted G_{1}, \ldots, G_{4} in case $S=S_{\text {ocf }}$).

Figure 4
We now will prove the following theorem「which is the main result of this paper.
Theorem 6 Let $\mathcal{K} \subset \Omega_{\mathrm{ocf}}$ be a simply connected subset of Ω_{ocf}, satisfying the conditions of Theorem 3. Putting

$$
D_{n}(\mathcal{K}):=\left\{\xi \in\left[\Leftrightarrow \frac{1}{2}, \frac{1}{2}\right) ; \mathcal{T}_{o c f}^{n}(\xi, 0) \in \mathcal{K}\right\},
$$

one has

$$
\lambda\left(D_{n}(\mathcal{K})\right)=\bar{\mu}_{O c f}(\mathcal{K})+\mathcal{O}\left(g^{n}\right),
$$

where the constant in the big-O symbol is uniform.
Remark It should be mentioned that the same result holds (with the same proof) for any maximal S-expansion Γ see also the final remarks at the end of this section.

Let $\mathcal{K} \subset \Omega_{\text {ocf }}$ be as in Theorem 6 Tand define

$$
\begin{aligned}
\mathcal{U}_{\mathcal{K}} & :=\left\{\xi \in\left[\Leftrightarrow \frac{1}{2}, \Leftrightarrow g^{2}\right): \mathcal{T}_{\mathrm{ocf}}^{n}(\xi, 0) \in \mathcal{K}\right\} \\
\mathcal{V}_{\mathcal{K}} & :=\left\{\xi \in\left[\Leftrightarrow g^{2}, 0\right): \mathcal{T}_{\mathrm{ocf}}^{n}(\xi, 0) \in \mathcal{K}\right\}, \\
\mathcal{W}_{\mathcal{K}} & :=\left\{\xi \in\left[0, \frac{1}{2}\right): \mathcal{T}_{\mathrm{ocf}}^{n}(\xi, 0) \in \mathcal{K}\right\} .
\end{aligned}
$$

Lemma 2 Let $\mathcal{K} \subset \Omega_{\text {ocf }}$ be a simply connected subset of Ω_{Ocf}, satisfying the conditions of Theorem 3, then

$$
\lambda\left(\left\{\xi \in\left[\Leftrightarrow \frac{1}{2}, \frac{1}{2}\right): \mathcal{T}_{o c f}^{n}(\xi, 0) \in \mathcal{K}\right\}\right)=\lambda\left(\left\{\xi \in\left[\Leftrightarrow g^{2}, g\right): \mathcal{T}_{g}^{n}(\xi, 0) \in \mathcal{H}_{\mathcal{K}}\right\}\right)
$$

where

$$
\mathcal{H}_{\mathcal{K}}:=\mathcal{M}\left(\psi\left(\mathcal{M}^{-1}(\mathcal{K})\right)\right)
$$

Proof From the definitions of \mathcal{M} and ψ Гand by the S-mechanism (applied to $S_{\text {ocf }}$ and S_{g}) it follows that

$$
\begin{aligned}
\xi \in \mathcal{U}_{\mathcal{K}} & \Leftrightarrow \mathcal{O}_{\mathrm{ocf}}^{n}\left(\frac{\Leftrightarrow \xi}{1+\xi}, 1\right) \in \mathcal{M}^{-1}(\mathcal{K}) \text { and } 1+\xi \in\left[\frac{1}{2}, g\right) \\
& \Leftrightarrow \mathcal{O}_{g}^{n}(1+\xi, 0) \in \psi\left(\mathcal{M}^{-1}(\mathcal{K})\right) \text { and } 1+\xi \in\left[\frac{1}{2}, g\right) \\
& \Leftrightarrow \mathcal{T}_{g}^{n}(1+\xi, 0) \in \mathcal{H}_{\mathcal{K}} \text { and } 1+\xi \in\left[\frac{1}{2}, g\right)
\end{aligned}
$$

where we used that

$$
\mathcal{T}(1+\xi, 0)=\left(\frac{\Leftrightarrow \xi}{1+\xi}, 1\right),
$$

in case $1+\xi \in\left[\frac{1}{2}, g\right)$. Furthermore Γ

$$
\begin{aligned}
\xi \in \mathcal{V}_{\mathcal{K}} & \Leftrightarrow \mathcal{O}_{\text {off }}^{n}\left(\frac{\Leftrightarrow \xi}{1+\xi}, 1\right) \in \mathcal{M}^{-1}(\mathcal{K}) \text { and } 1+\xi \in[g, 1) \\
& \Leftrightarrow \mathcal{T}_{g}^{n}(\xi, 0) \in \mathcal{H}_{\mathcal{K}} \text { and } \xi \in\left[\Leftrightarrow g^{2}, 0\right),
\end{aligned}
$$

and

$$
\xi \in \mathcal{W}_{\mathcal{K}} \Leftrightarrow \mathcal{T}_{g}^{n}(\xi, 0) \in \mathcal{H}_{\mathcal{K}} \text { and } \xi \in\left[0, \frac{1}{2}\right)
$$

Now the lemma follows from the above relations.
Proof of Theorem 6 First note that due to the fact that the density function $(\log G)^{-1}(1+$ $t v)^{-2}$ is invariant under $\mathcal{M}, \mathcal{T}_{\text {ocf }}, \mathcal{T}$ and \mathcal{T}_{g} Гone has

$$
\bar{\mu}_{\mathrm{ocf}}(\mathcal{K})=\bar{\mu}_{g}\left(\mathcal{H}_{\mathcal{K}}\right) .
$$

NextTfor $n \geq 1$ one hasTdue to Lemma 2

$$
\lambda\left(D_{n}(\mathcal{K})\right) \Leftrightarrow \bar{\mu}_{\text {ocf }}(\mathcal{K})=\lambda\left(E_{n}\left(\mathcal{H}_{\mathcal{K}}\right)\right) \Leftrightarrow \bar{\mu}_{g}\left(\mathcal{H}_{\mathcal{K}}\right),
$$

where $E_{n}\left(\mathcal{H}_{\mathcal{K}}\right)$ is defined as in Theorem 3Γ viz.

$$
E_{n}\left(\mathcal{H}_{\mathcal{K}}\right):=\left\{\xi \in\left[\Leftrightarrow g^{2}, g\right) ; \mathcal{T}_{g}(\xi, 0) \in \mathcal{H}_{\mathcal{K}}\right\} .
$$

The theorem now follows from Theorem 3 Гas soon as we have established that $\mathcal{H}_{\mathcal{K}}$ is a finite union of simply connected subsets of Ω_{g} Гeach satisfying the conditions from Theorem 3.

Let G_{1}, \cdots, G_{4} be defined as in (17) Fand put

$$
\mathcal{K}_{1}:=\mathcal{K} \cap G_{1}, \mathcal{K}_{2}:=\mathcal{K} \cap \mathcal{M}\left(G_{2}\right), \text { and } \mathcal{K}_{3}:=\mathcal{K} \backslash\left(\mathcal{K}_{1} \cup \mathcal{K}_{2}\right),
$$

see Figure 5.

Figure 5
¿From the definitions of \mathcal{M} and ψ it now follows that

$$
\mathcal{M}^{-1}\left(\mathcal{K}_{1}\right)=\mathcal{K}_{1}, \mathcal{M}^{-1}\left(\mathcal{K}_{2}\right) \subset G_{2} \text { and } \mathcal{M}^{-1}\left(\mathcal{K}_{3}\right)
$$

and

$$
\psi\left(\mathcal{M}^{-1}\left(\mathcal{K}_{1}\right)\right)=\mathcal{K}_{1}, \psi\left(\mathcal{M}^{-1}\left(\mathcal{K}_{2}\right)\right) \subset G_{3} \text { and } \psi\left(\mathcal{M}^{-1}\left(\mathcal{K}_{3}\right)\right)=\mathcal{M}^{-1}\left(\mathcal{K}_{3}\right)
$$

are simply connected subsets of $\Delta_{\text {ocf }}$ resp. Δ_{g} 「all satisfying the conditions of Theorem 3 (Figure 6).

Putting

$$
\begin{aligned}
\mathcal{H}_{1}^{d}:=\mathcal{K}_{1} \cap \Omega_{g} ; & \mathcal{H}_{1}^{u}:=\mathcal{K}_{1} \backslash \mathcal{H}_{1}^{d} ; \\
\mathcal{H}_{2}^{d}:=\psi\left(\mathcal{M}^{-1}\left(\mathcal{K}_{2}\right)\right) \cap \Omega_{g} ; & \mathcal{H}_{2}^{u}:=\psi\left(\mathcal{M}^{-1}\left(\mathcal{K}_{2}\right)\right) \backslash \mathcal{H}_{2}^{d}
\end{aligned}
$$

and

$$
\mathcal{H}_{3}:=\mathcal{M}^{-1}\left(\mathcal{K}_{3}\right),
$$

it follows that

$$
\mathcal{H}_{\mathcal{K}}=\mathcal{H}_{1}^{d} \cup \mathcal{M}\left(\mathcal{H}_{1}^{u}\right) \cup \mathcal{H}_{2}^{d} \cup \mathcal{M}\left(\mathcal{H}_{2}^{u}\right) \cup \mathcal{K}_{3} .
$$

Figure 6
Thus it seems that $\mathcal{H}_{\mathcal{K}}$ is the union of at most five simply connected subsets of Ω_{g} (with disjoint interiors) Teach satisfying the conditions from Theorem 3. In fact Γ since $\mathcal{K} \cap \Omega_{g}=$ $\mathcal{H}_{1}^{d} \cup \mathcal{K}_{3}$, we see that $\mathcal{H}_{\mathcal{K}}$ is the union of at most 4 of such subsets. This proves Theorem 6 .

Figure 7
Let $z \in\left[\Leftrightarrow \frac{1}{2}, g\right)$ Tand choosing $\mathcal{K}=\mathcal{K}_{z}$ in Theorem 6 Twhere

$$
\mathcal{K}_{z}:=\left\{(t, v) \in \Omega_{\mathrm{ocf}}: t \leq z\right\}
$$

at once yields (*) as a corollary.
Corollary 3 For $z \in\left[\Leftrightarrow \frac{1}{2}, g\right]$ one has

$$
\lambda\left\{\xi \in\left[\Leftrightarrow \frac{1}{2}, \frac{1}{2}\right): T_{\mathrm{ocf}}^{n} \xi \leq z\right\}=\mu_{\mathrm{ocf}}\left(\left[\Leftrightarrow \frac{1}{2}, z\right]\right)+\mathcal{O}\left(g^{n}\right),
$$

where $\mu_{o c f}$ is a probability measure on $\left[\Leftrightarrow \frac{1}{2}, g\right)$ with density $d(x)$, given by (8).

Let $\xi \in\left[\Leftrightarrow \frac{1}{2}, \frac{1}{2}\right.$) be an irrational number with OCF-expansion $\left[0 ; \varepsilon_{1} a_{1}, \varepsilon_{2} a_{2}, \cdots\right]$ Tsequence of OCF-convergents $\left(r_{k} / s_{k}\right)_{k \geq-1}$ and

$$
\left(t_{k}, v_{k}\right)=\mathcal{T}_{\mathrm{ocf}}^{k}(\xi, 0), k \geq 0 .
$$

Then we define the optimal approximation coefficients $\theta_{k}=\theta_{k}(\xi)$ by

$$
\theta_{k}(\xi)=s_{k}^{2}\left|\xi \Leftrightarrow \frac{r_{k}}{s_{k}}\right|, k \geq 1 .
$$

That these θ 's are indeed optimal in many respects was shown in [BK2].
¿From the definition of $\mathcal{T}_{\text {ocf }}$ one easily finds「see e.g. [K1] Cthat

$$
\begin{equation*}
\theta_{k-1}=\frac{v_{n}}{1+t_{k} v_{k}} \quad \text { and } \quad \theta_{k}=\frac{\varepsilon_{k+1} t_{n}}{1+t_{k} v_{k}}, k \geq 2 . \tag{18}
\end{equation*}
$$

The following corollary is a consequence of (18) and Theorem 6.
Corollary 4 Let $J_{n}(z)=\left\{\xi \in\left[\Leftrightarrow \frac{1}{2}, \frac{1}{2}\right) \backslash \mathbf{Q}: \theta_{n} \leq z\right\}$ for $0 \leq z \leq \frac{1}{2}$. Then

$$
\lambda\left(J_{n}(z)\right)=F_{o c f}(z)+\mathcal{O}\left(g^{n}\right),
$$

where $F_{\text {ocf }}$ is the distribution function given by

$$
F_{o c f}(z)= \begin{cases}\frac{z}{\log G} & \text { for } 0 \leq z \leq \frac{1}{\sqrt{5}} \\ \frac{1}{\log G}\left(\sqrt{1 \Leftrightarrow 4 z^{2}}+\log \left(G \frac{1-\sqrt{1-4 z^{2}}}{2 z}\right)\right) & \text { for } \frac{1}{\sqrt{5}} \leq z \leq \frac{1}{2}\end{cases}
$$

Final remarks

1. Corollary 4 is the "counterpart" of Theorem 5.13 from [BK1] Twhich states that for a.e. ξ and for every $z \in\left[0, \frac{1}{2}\right]$ the sequence $\left(\theta_{k}\right)_{k \geq 1}$ is distributed over $\left[0, \frac{1}{2}\right]$ according to the distribution function $F_{\text {ocf }}$ 「so for almost all ξ and for all z

$$
\lim _{k \rightarrow \infty} \frac{1}{k} \#\left\{j ; 1 \leq j \leq k \text { and } \theta_{j}(\xi) \leq z\right\}=F_{\mathrm{ocf}}(z)
$$

see also Corollary 2. Similar counterparts for many more theoremsएe.g. from [BK1]Г can easily be obtained in the same manner by choosing the sets \mathcal{K} appropriately.
2. As we mentioned before Call the result of this section can be obtained for any maximal singularization area S; there is no need (except clarity of exposition?) to stick to $S_{\text {ocf }}$. For instanceTreplacing $S_{\text {ocf }}$ by $S_{\frac{1}{2}}$ illuminates the relation between the Gauss-Kusmin theorems for the NICF and the SCFFas found by [Rie1]. That this close relation between NICF and SCF not only follows from Rieger's result Γ but also from the way these continued fraction expansions are obtained via singularization Γ is illustrated by the following. The analog of Corollary 1 for the NICF is obtained by interchanging Γ_{1} with Γ_{-1} Гi.e. Fby reflecting them in the line $\alpha=\beta$. The analog of Corollary 2 for the NICF is complete identical to Corollary 2.

References

[Ba] Babenko「K. - On a problem of Gauss, Soviet Math. Dokl.Г19 (1978)Г136-140.
[Bos] BosmaГW. - Optimal Continued FractionsГIndag. Math.Гt. 50Г1988Гp. 353-379.
[BK1] BosmaГ W.Г C. Kraaikamp - Metrical Theory for Optimal Continued Fractionsए J. Number Th.Г34 (1990)Г251-270.
[BK2] BosmaГW.ГC. Kraaikamp - Optimal approximation by optimal continued fractions Γ J. Austr. Math. Soc. (Series A)Г50 (1991)Г481-504.
[BJW] BosmaГW.ГH. Jager and F. Wiedijk - Some metrical observations on the approximation by continued fractions, Indag. Math.Г45 (1983)Г281-299.
[DK] DajaniГ K.Г C. Kraaikamp - Generalization of a Theorem by KusminГ Monatsh. f. Math.Г118 (1994)Г55-73.
[Ios] IosifescuГ M. - A very simple proof of a generalization of the Gauss-Kuzmin-Lévy theorem on continued fractions, and related questions, Rev. Roumaine Math. Pures App1.Г 37 (1992)Г901-914.
and
-On the Gauss-Kuzmin-Lévy theorem, I, Rev. Roumaine Math. Pures Appl.Г 39 (1994)Г97-117.
-On the Gauss-Kuzmin-Lévy theorem, II, Rev. Roumaine Math. Pures Appl. 40 (1995)Г91-105.
[J] JagerTH. - The distribution of certain sequences connected with the continued fraction, Indag. Math.Г48 (1986)Г61-69.
[Ke] KellerTO.H. - Eine Bemerkung zu den verschiedenen Möglichkeiten eine Zahl in einen Kettenbruch zu entwickeln ГMath. Ann.Г116 (1939)Г733-741.
[Kn] KnuthएD.E. - The Distribution of Continued Fraction Approximations, J. Number Th.Г19 (1984)Г443-448.
[K1] KraaikampГС. - A new class of continued fraction expansionsएActa Arithm.Ct. LVIIT 1991Гр. 1-39.
[K2] KraaikampГC. - Maximal S-expansions are Bernoulli shifts「Bull. Soc. math. FranceГ 121Г1993Г117-131.
［Kus］KusminГR．O．－Sur un probléme de Gauss「Atti Congr．BologneГ6（1928）［83－89．
［L］LévyГP．－Sur le loi de probabilité dont dependent les quotients complets et incomplets d＇une fraction continue，Bull．Soc．Math．de FranceГ 57 （1929）Г178－194．
［Na］NakadaГ H．－Metrical theory for a class of continued fraction transformations and their natural extensions，Tokyo J．of Math．Г4（1981）Г399－426．
［Pe］PerronTO．－Die Lehre von den KettenbrüchenГChelseaГNew York（1929）．
［Rie1］RiegerГG．J．－Ein Gauss－Kusmin－Levy－Satz für Kettenbrüche nach nächstem Ganzen， Manuscripta Math．「24（1978）「437－448．
［Rie2］RiegerTG．J．－Über die mittlere Schrittanzahl bei Divisionsalgorithmen，Math．Nachr．「 82 （1978）Г157－180．
［Roc］RockettTAndrew M．－The metrical theory of continued fractions to the nearer integer， Acta Arithm．Г38（1980）Г97－103．
［Sch1］SchweigerT F．－Metrische Theorie einer Klasse zahlentheoretischer Transformatio－ nen，Acta Arithm． $\mathrm{C15}$（1968）Г1－18．
and
－Metrische Theorie einer Klasse zahlentheoretischer Transformationen，Acta Arithm．Г16（1998）Г217－219．
［Sch2］SchweigerT F．－Ergodic Properties of Fibered Systems and Metric Number Theory， Clarendon PressFOxfordГ1995．
［Se］Selenius［ C．－Konstruktion und Theorie halbregelmässiger Kettenbrüche mit idealer relativer ApproximationएActa Acad．Aboensis Math．et Phys．ГXXII． 2 （1960）Г1－75．
［Wir］WirsingTE．－On the theorem of Gauss－Kuzmin－Lévy and a Frobenius－type theorem for function spaces，Acta Arith．Г24（1974）Г507－528．

Faculteit Wiskunde en Informatica
Budapestlaan 6
P．O．Box 80.010
3508TA Utrecht「the Netherlands
e－mail：dajani＠math．ruu．nl

Technische Universiteit Delft and
Thomas Stieltjes Institute for Mathematics
Fac．der Technische Wiskunde en Informatica（SSOR）
Mekelweg 4
2628 CD Delft「the Netherlands
e－mail：c．kraaikamp＠twi．tudelft．nl

[^0]: ${ }^{1}$ Here and in the following $G:=g+1=\frac{1}{2}(\sqrt{5}+1)$. Also notice that $g^{2}=1-g=0.38 \cdots$ and $g G=1$.

[^1]: ${ }^{2}$ If $\alpha<\beta,(\beta, \alpha)$ is understood to be the interval (α, β).

[^2]: ${ }^{3}$ In case $k=0$ this comes down to replacing (4) by $\left[a_{0}+1 ;-\left(a_{2}+1\right), \varepsilon_{3} a_{3}, \varepsilon_{4} a_{4}, \ldots\right]$.

[^3]: ${ }^{4}$ All these areas need some minor modifications in order to satisfy the above definition 1, see [K1], (4.6)ii).

[^4]: ${ }^{5}$ This to prevent the existence of an exceptional subset of \bar{S} of measure 0 where one does not singularize as many 1＇s as possible．

[^5]: ${ }^{6}$ All almost sure statements in this paper are with respect to the Lebesgue measure.

