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Abstract. The domination properties of elliptic invariant di�erential operators on symmetric

spaces of noncompact type are investigated. Using the relation between parametrices and funda-

mental solutions on symmetric space we will show that the invariant di�erential operator applied

to a function can be uniformly estimated by function and an elliptic operator of higher order

applied to the function in Lp spaces for all 1 � p � 1. As a consequence, by algebraic methods

we will give a simple unifying proof that derivatives of a function can be uniformly estimated by

function and its Laplacian.

0 Introduction

In this paper we will investigate the question of the domination of the (invariant) di�erential
operator by the elliptic operator of higher order on symmetric spaces of noncompact type.
We are also interested in the estimates of the derivative of a function by the function and
its Laplacian in Lp spaces for 1 � p � 1. Similar estimates are known for p = 1 for
manifolds with bounded curvature ([1]). On the other hand estimates for 1 < p < 1
are well known for Euclidean spaces ([6]) and are closely related to the question of the
continuity of pseudo-di�erential operators of order zero, which hold only locally on general
manifolds. We will give a unifying algebraic proof for global estimates in Lp-space for all
1 � p � 1 on symmetric spaces of the noncompact type.

In Section 2 we discuss local integrability properties of distributional kernels of pseudo
di�erential operators on manifolds and �x the notation. It will be applied to establish a
relation between parametrices and fundamental solutions of elliptic operators on symmetric
space in Section 3 (Lemma 3). Based on this lemma, we will prove the domination property
for invariant di�erential operators (Theorem 1). Then, reformulating the problem in Lie
group terms, we will show how the invariance condition can be dropped for the �rst order
di�erential operators reducing it to a problem on Lie group (Theorem 2). We will give a
simple proof of it in the last section. The general theory of the second order di�erential
operators on Lie groups can be found in [5], [7].

I would like to thank E.G.F.Thomas for drawing my attention to the subject and
many valuable discussions. I would also like to thank J.J.Duistermaat for broadening my
understanding of the topic and J.A.C.Kolk for his remarks about contents and presentation
of the material.
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1 Local properties on manifolds

In this section we will �x the notation and establish simple integrability properties neces-
sary for the sequel. Let P 2 	m(Rn) be an elliptic properly supported pseudo di�erential
operator of positive order m. Let Q 2 	�m(Rn) denote a left parametrix for P , i.e. a
pseudo di�erential operator satisfying

QP = I +R (1)

in the space of pseudo di�erential operators, with R 2 	�1(Rn) a smoothing operator.
Let K denote a Schwartz distributional kernel for Q. This means that K 2 D0(Rn � R

n)
and for all �; 2 D(Rn) holds

hQ�; i = hK;�
  i:

We can write it formally as

Q�(x) =
Z
Rn

K(x; y)�(y)dy: (2)

The singularities of K(x; y) are well known (see, for example, [6]):

Lemma 1 Let Q 2 	�k(Rn) be a properly supported pseudo di�erential operator of negative
order. Then its distributional kernel can be identi�ed with function K(x; y), which is smooth
outside the diagonal x = y and has integrable singularities at the diagonal. Formula (2)
then makes sense.

Let M be a smooth Riemannian manifold. Let P 2 	m(M) be a properly supported
pseudo di�erential operator on M of order m. This means that its distributional kernel K
is smooth in the complement of the diagonal and its behaviour at the diagonal locally looks
like behaviour in Rn, namely if (U;�) is a chart inM , then the restriction of K to U �U is
equal to the pullback by ��� of the distributional kernel of an element of 	m(Rn). Note,
that the existence of the Riemannian structure on M induces isomorphisms of line bundles
of smooth densities on M and smooth functions by �xing the Riemannian measure. This
fact essentially simpli�es the calculus of pseudo di�erential operators on M .

The principal symbol � of P is an invariantly de�ned function on T �Mn0. We assume
P to be elliptic, which means that � is nowhere vanishing on T �Mn0. Ellipticity implies
existence of parametrix, an operator Q 2 	�m(M) satisfying

QP = I +R (3)

with R 2 	�1(M). In a sequel, writing

(Qu)(x) =
Z
M
K(x; y)u(y)dm(y);

we view Q as a singular integral operator with kernel K. In analogy with Lemma 1 we
have
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Lemma 2 Let Q 2 	�k(M) be a properly supported pseudo di�erential operator of negative
order. Then its distributional kernel can be identi�ed with function K(x; y), which is smooth
outside the diagonal x = y and has integrable singularities at the diagonal.

Proof. We must only show the integrability of the singularities. Using cuto� functions we
see, that in a chart U � U , KjU�U = (� � �)� ~K, ~K being the distributional kernel of an
element of 	�k(Rn). We have

Z
U
K(x; y)dm(y) =

Z
�(U)

~K(x; ��1p)g(p)dp;

where g(p) is the Jacobian of �, therefore locally bounded. Application of Lemma 1 �nishes
the proof.

2 Symmetric space

Let M = G=H be a symmetric space of the noncompact type. This means, that it can
be viewed as a quotient M = G=H, where G is a connected semisimple Lie group with
trivial center and H is its maximal compact subgroup. The Riemannian structure on M
is supposed to be invariant under the left action of G.

We will describe �rst a relation between parametrix and fundamental solutions of P .
This will lead to some integrability properties of fundamental solutions, which will be
applied for getting uniform Lp estimates. Let P be an elliptic di�erential operator of
order m on M . Then, as in Section 2, there exist a parametrix for P , namely a pseudo
di�erential operator Q 2 	�m(M), such that equation (3) is satis�ed. Note also, that P
is automatically proper supported being a local operator.

Assume now that P is G{left invariant. Then, according to [3], there exist a funda-
mental solution for P , namely a distribution K 2 D0(M), such that

PK = �; (4)

� being a delta function at the origin p of M .
Let � 2 D(M) be a test function, such that �(x) = 1 for x in a small neighborhood of

p. Then equality (4) implies the existence of � 2 D(M), such that

P (�K) = � + �: (5)

In fact, taking � = P (�K) � � one readily veri�es � 2 D(M).
The only singularity of K occurs at the point p due to the ellipticity of P and we will

be interested in the integrability properties of �K. An application of formula (3) to �K
yields

�K +R(�K) = QP (�K) = Q� +Q�; (6)

the last equality due to (5). We have � 2 D(M) and R 2 	�1(M) implying R(�K); Q� 2
C1(M). The operators Q and R are properly supported, therefore all the functions in (6)
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are compactly supported. This means that the integrability properties of �K are equivalent
to the integrability properties of Q�, the latter being equal to the distributional kernel of
Q.

Let D 2 	k(M) be properly supported, k < m. The application of D to (6) and our
arguments above imply

D(�K) = DQ� +  ; (7)

with  2 D(M). Now, the operator DQ is of a negative order k�m and Lemma 2 implies
the integrability of of its integral kernel at p, the latter being equal to DQ�(x). Equality
(7) implies the integrability of D(�K). Thus, we have proved the following

Lemma 3 Let P be an invariant elliptic di�erential operator of order m on M and K its
fundamental solution at p. Then, for every D 2 	k(M), k < m, DK is locally integrable
DK 2  L1

loc(M).

We will apply this lemma to two cases, D being an invariant di�erential operator and P
being the Laplace operator on M equipped with a Riemannian structure. The space of
G{left invariant di�erential operators of order k on M will be denoted D

k(M).

Theorem 1 Let P 2 D
m(M) be elliptic, D 2 D

k(M), 0 < k < m and 1 � p � 1. Then
there exist constants A; B, such that for every u 2  Lp(M) satisfying Pu 2  Lp(M), we have
Du 2  Lp(M) and

jjDujjp � AjjPujjp +Bjjujjp: (8)

If p =1, then Du is continuous.

Let X be a smooth vector �eld on M . X is called bounded if there exist a constant C such
that jjXxjj � C for every point x 2 M , where jj � jj = h�; �i1=2 is the Riemannian norm on
TxM , corresponding to the Riemannian structure.

Theorem 2 Let M be a Riemannian symmetric space and � the associated Laplace opera-
tor. Let 1 � p �1 and X a smooth bounded vector �eld on M . Then there exist constants
A; B, such that for every u 2  Lp(M) satisfying �u 2  Lp(M), we have the derivative of u
with respect to X is Lp{integrable, Xu 2  Lp(M) and

jjXujjp � Ajj�ujjp+Bjjujjp: (9)

If p = 1, then Xu is continuous. Moreover, A and B can be chosen independently over
the set of the smooth vector �elds X bounded by 1.

First, convolving (5) with u 2 D0(M) we conclude that

u = u � � = u � P (�K) � u � �: (10)
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Let Z(G) denote the center of an algebra of left invariant di�erential operators on G. Let
� : G ! M = G=H be the canonical projection and g denote Lie algebra of G. Then
d� : g ! TpM can be extended to an algebra of left invariant di�erential operators on G
with the property d�(Z(G)) = D(M), (cf.[3]). This means that P 2 D

m(M) is an image of
a bi-invariant operator on G and, in particular, commutes with left and right convolution.
Therefore, (10) implies

u = Pu � �K � u � �: (11)

Proof of Theorem 1. An application of D to equality (11) together with an argument
above imply

Du = Pu �D(�K) � u �D�:

By Lemma 3 we have D(�K) 2 L1(M) and Young inequality ([4]) yields estimate (8). In
case p = 1 we have convolutions of the type L1 � L1, which give continuous functions.
This completes the proof.

3 Proof of Theorem 2

For the proof of Theorem 2 we will need some notation and auxiliary results. We start
with constructing an invariant Riemannian structure on G, making the projection � a
Riemannian submersion. In the sequel lgh = gh; rgh = hg; g; h 2 G will denote the left
and right group action on G. The induced actions of G on M will be denoted by the same
letters. The adjoint representation will be denoted by Ad : G! GL(TeG).

Lemma 4 There exists a G{left and H{right invariant Riemannian structure on G, such
that the canonical projection � : G!M is a Riemannian submersion, i.e. a submersion,
for which horizontal lift of vector �elds preserves Riemannian norms.

Proof. Let h�; �i0 be an arbitrary inner product on TeG. Then one can de�ne Ad(H){
invariant inner product (�; �)0 on TeG by taking

(X;Y )0 :=
Z
Ad(H)

hA(X); A(Y )i0d�(A); (12)

where � is Haar measure on a compact set Ad(H). The tangent space TpM toM at p = �(e)
can be identi�ed with the quotient TeG=TeH via an isomorphism i([X]) = d�(X), where
[X] 2 TeG=TeH is an equivalence class of X 2 TeG. For every g 2 G let Kg = Ker dg�
(Kg

�= TgH �= TeH). Let Ng be the orthogonal complement to Kg with respect to (�; �)0:
TgG = Kg

L
Ng. De�ne an inner product (�; �)Ne

on Ne for vectors �X; �Y 2 Ne by

( �X; �Y )Ne
:= hX;Y iMp

; (13)

where h�; �iMp
is restriction to TpM of the given invariant Riemannian structure on M and

X = d�( �X); Y = d�( �Y ) 2 TpM . Vectors �X and �Y are uniquely de�ned, d� being an
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isomorphism of Ne and TpM , and they are called the horizontal lifts of X and Y . The
desired Riemannian structure on G can now be constructed by applying dlg to

hX;Y i := (XjKe
; Y jKe

)0 + (XjNe
; Y jNe

)Ne
; (14)

where X;Y 2 TeG, XjKe
; Y jKe

and XjNe
; Y jNe

are projections of X;Y on Ke and Ne

respectively. Inner product (14) is clearly Ad(H){invariant, the expansion is therefore G{
left and H{right invariant. It follows immediately from formulas (13) and (14) that all dg�
are partial isometries (isometries from Ng to T�(g)M). This completes the proof.

The following properties of the pullback ] will be necessary.

Lemma 5 (i) Let � 2 Cc(G) be a continuous compactly supported function on G. Then
for x = �(g) the function �[(x) is correctly de�ned by

�[(x) =
Z
H
�(gh)dh;

where dh is the normalized Haar measure on H. The function �[ is continuous
and compactly supported on M : �[ 2 Cc(M). Moreover, mapping � ! �[ is linear
surjective from Cc(G) to Cc(M) and from D(G) to D(M).

(ii) The transpose of �! �[ de�ned by

hT ]; �i = hT; �[i

is injective mapping from D0(M)!D0(G).

(iii) Let S 2 D0(G). Then RhS = S for all h 2 H if and only if there exists T 2 D0(M),
such that S = T ]. For T1; T2 2 D0(M) the convolution products on G and M are
related by

T ]
1 � T

]
2 = (T1 � T2)

]:

(iv) Let Y be a horizontal lift of a vector �eld X on M and let T 2 D0(M) be a distribution
on M . Then Y (T ]) = (XT )].

The proof is left to the reader.

Proof of Theorem 2. The pullback of formula (11) now reads

u] = (�u)] � (�K)] � u] � �]: (15)

Let X be a smooth vector �eld on M , bounded by one: jjXxjj � 1. Let Y denote the
horizontal lift of X:

1. dg�(Yg) = Xx, where x = �(g).

2. Yg 2 Ng = (Ker dg�)?.
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It is not di�cult to see that Y is smooth. Let Y1; : : : ; YN be an orthonormal basis of the Lie
algebra g, such that (Y1)g; : : : ; (Yn)g 2 Ng for all g 2 G. Vector �eld Y can be decomposed
with respect to the basis Y1; : : : ; Yn at every point g 2 G:

Yg =
nX
i=1

ai(g)Yi;g 2 Ng � TgG; (16)

where Yi;g = (Yi)g = delg(Yi)e are values at g of the left invariant vector �elds Yi. Note,
that such decomposition is pointwise because Y need not be left invariant in general, we
use that Yg 2 Ng and the fact that Y1;g; : : : ; Yn;g constitute a basis for a linear space Ng.
It also has a global character and functions a1; : : : ; an are smooth due to the smoothness
of Y and Y1; : : : ; Yn.

The norm of Yg at TgG is jjYgjj2 =
Pn

i=1 jai(g)j
2. In view of Lemma 4, jjYgjj = jjXxjj � 1.

In particular, jai(g)j � 1 for all g 2 G. Now we di�erentiate u] in (15) with respect to the
basis vector �elds Yi and the left invariance of Yi yield:

Yiu
] = (�u)] � Yi(�K)] + u] � Yi�

]: (17)

Obviously Yi�] 2 D(G) � L1(G). In view of Lemma 3 the compactly supported distribu-
tion �K and its derivatives are integrable and so are their pullbacks, the pullback mapping
being an isometry of Lp spaces. Let Ai = jjYi(�K)]jj1 and Bi = jjYi�]jj1. Application of
Young inequality [4, Cor.20.14] to (17) yields

jjYiu
]jjp � Aijj(�u)

]jjp +Bijju
]jjp:

Decomposition (16) together with bounds on ai and equalities jj(�u)]jjp = jj�ujjp and
jju]jjp = jjujjp imply

jjY u]jjp � Ajj�ujjp+Bjjujjp

with A =
Pn

i=1Ai and B =
Pn

i=1Bi. By Lemma 5 we have jjY u]jjp = jjXujjp, establishing
inequality (9). In case p = 1, formulas (17) and (16) imply the continuity of Y u]. By
Lemma 5, (Xu)] = Y u] is continuous. The continuity of Xu now follows from the fact
that M is equipped with quotient topology, i.e. the strongest topology, for which � is a
continuous mapping. This �nishes the proof of Theorem 2.
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