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Global elliptic estimates on symmetric spaces

Michael Ruzhansky

Abstract. The domination properties of elliptic invariant differential operators on symmetric
spaces of noncompact type are investigated. Using the relation between parametrices and funda-
mental solutions on symmetric space we will show that the invariant differential operator applied
to a function can be uniformly estimated by function and an elliptic operator of higher order
applied to the function in LP spaces for all 1 < p < co. As a consequence, by algebraic methods
we will give a simple unifying proof that derivatives of a function can be uniformly estimated by
function and its Laplacian.

0 Introduction

In this paper we will investigate the question of the domination of the (invariant) differential
operator by the elliptic operator of higher order on symmetric spaces of noncompact type.
We are also interested in the estimates of the derivative of a function by the function and
its Laplacian in L? spaces for 1 < p < oco. Similar estimates are known for p = oo for
manifolds with bounded curvature ([1]). On the other hand estimates for 1 < p < oo
are well known for Euclidean spaces ([6]) and are closely related to the question of the
continuity of pseudo-differential operators of order zero, which hold only locally on general
manifolds. We will give a unifying algebraic proof for global estimates in LP-space for all
1 < p < o0 on symmetric spaces of the noncompact type.

In Section 2 we discuss local integrability properties of distributional kernels of pseudo
differential operators on manifolds and fix the notation. It will be applied to establish a
relation between parametrices and fundamental solutions of elliptic operators on symmetric
space in Section 3 (Lemma 3). Based on this lemma, we will prove the domination property
for invariant differential operators (Theorem 1). Then, reformulating the problem in Lie
group terms, we will show how the invariance condition can be dropped for the first order
differential operators reducing it to a problem on Lie group (Theorem 2). We will give a
simple proof of it in the last section. The general theory of the second order differential
operators on Lie groups can be found in [5], [7].

I would like to thank E.G.F.Thomas for drawing my attention to the subject and
many valuable discussions. I would also like to thank J.J.Duistermaat for broadening my
understanding of the topic and J.A.C.Kolk for his remarks about contents and presentation
of the material.
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1 Local properties on manifolds

In this section we will fix the notation and establish simple integrability properties neces-
sary for the sequel. Let P € U (R™) be an elliptic properly supported pseudo differential
operator of positive order m. Let @) € U=™(R") denote a left parametrix for P, i.e. a
pseudo differential operator satisfying

QP=1+R (1)

in the space of pseudo differential operators, with R € U=>°(R") a smoothing operator.
Let K denote a Schwartz distributional kernel for ). This means that K € D'(R" x R")
and for all ¢, € D(R™) holds

(Q9,¢) = (K, ¢ @ ).

We can write it formally as

Qola) = [ K(w.y)oly)dy. 2)
The singularities of K(x,y) are well known (see, for example, [6]):

Lemma 1 Let Q € U=%(R") be a properly supported pseudo differential operator of negative
order. Then its distributional kernel can be identified with function K(x,y), which is smooth
outside the diagonal x = y and has integrable singularities at the diagonal. Formula (2)
then makes sense.

Let M be a smooth Riemannian manifold. Let P € U (M) be a properly supported
pseudo differential operator on M of order m. This means that its distributional kernel K
is smooth in the complement of the diagonal and its behaviour at the diagonal locally looks
like behaviour in R", namely if (U, y) is a chart in M, then the restriction of K to U x U is
equal to the pullback by y x x of the distributional kernel of an element of U""(R"). Note,
that the existence of the Riemannian structure on M induces isomorphisms of line bundles
of smooth densities on M and smooth functions by fixing the Riemannian measure. This
fact essentially simplifies the calculus of pseudo differential operators on M.

The principal symbol o of P is an invariantly defined function on T*M\0. We assume
P to be elliptic, which means that o is nowhere vanishing on T*M\0. Ellipticity implies
existence of parametrix, an operator @) € V=" (M) satisfying

QP=1+R (3)
with R € U=*(M). In a sequel, writing

(Qui(e) = [ K(,y)uly)dm(y),

we view () as a singular integral operator with kernel K. In analogy with Lemma 1 we
have



Lemma 2 Let Q € U=*(M) be a properly supported pseudo differential operator of negative
order. Then its distributional kernel can be identified with function K(x,y), which is smooth
outside the diagonal v = y and has integrable singularities at the diagonal.

Proof. We must only show the integrability of the singularities. Using cutoff functions we
see, that in a chart U x U, K|yxv = (x x x)*K, K being the distributional kernel of an
element of U=*(R"). We have

/U[((x,y)dm(y) = /><<U> K(z,x7"p)g(p)dp,

where g(p) is the Jacobian of x, therefore locally bounded. Application of Lemma 1 finishes
the proof.

2 Symmetric space

Let M = G/H be a symmetric space of the noncompact type. This means, that it can
be viewed as a quotient M = G/H, where GG is a connected semisimple Lie group with
trivial center and H is its maximal compact subgroup. The Riemannian structure on M
is supposed to be invariant under the left action of G.

We will describe first a relation between parametrix and fundamental solutions of P.
This will lead to some integrability properties of fundamental solutions, which will be
applied for getting uniform L estimates. Let P be an elliptic differential operator of
order m on M. Then, as in Section 2, there exist a parametrix for P, namely a pseudo
differential operator () € =" (M), such that equation (3) is satisfied. Note also, that P
is automatically proper supported being a local operator.

Assume now that P is G-left invariant. Then, according to [3], there exist a funda-
mental solution for P, namely a distribution K € D'(M), such that

PK =4, (4)

0 being a delta function at the origin p of M.
Let o € D(M) be a test function, such that a(x) =1 for « in a small neighborhood of
p. Then equality (4) implies the existence of 8 € D(M), such that

P(aK) =6+ 8. (5)

In fact, taking 3 = P(aK') — 6 one readily verifies 3 € D(M).

The only singularity of K occurs at the point p due to the ellipticity of P and we will
be interested in the integrability properties of a/K. An application of formula (3) to aK
yields

aK 4+ R(aK) = QP(aK) = Q6 + QJ, 6)

(
the last equality due to (5). We have 5 € D(M) and R € V=*(M) implying R(aK),Qp €
C>(M). The operators () and R are properly supported, therefore all the functions in (6)
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are compactly supported. This means that the integrability properties of a K" are equivalent
to the integrability properties of (6, the latter being equal to the distributional kernel of
Q.

Let D € U*(M) be properly supported, k& < m. The application of D to (6) and our
arguments above imply

D(aK) = DQé + 1, (7)

with ¢» € D(M). Now, the operator D@ is of a negative order k —m and Lemma 2 implies
the integrability of of its integral kernel at p, the latter being equal to DQé(x). Equality
(7) implies the integrability of D(aK'). Thus, we have proved the following

Lemma 3 Let P be an invariant elliptic differential operator of order m on M and K its
fundamental solution at p. Then, for every D € W*(M), k < m, DK is locally integrable
DK € L, (M).

We will apply this lemma to two cases, D being an invariant differential operator and P
being the Laplace operator on M equipped with a Riemannian structure. The space of
G-left invariant differential operators of order k on M will be denoted D*(M).

Theorem 1 Let P € D™(M) be elliptic, D € D¥(M), 0 < k <m and 1 < p < co. Then
there exist constants A, B, such that for everyu € LP(M) satisfying Pu € LF(M), we have
Du € [P(M) and

|Dull, < Al[Pull, + Bl[ul[p. (8)

If p = oo, then Du is continuous.

Let X be a smooth vector field on M. X is called bounded if there exist a constant (' such
that ||X,|| < C for every point # € M, where || - || = (-,-)"/? is the Riemannian norm on
T.M, corresponding to the Riemannian structure.

Theorem 2 Let M be a Riemannian symmetric space and A the associated Laplace opera-
tor. Let 1 < p < oo and X a smooth bounded vector field on M. Then there exist constants
A, B, such that for every u € LP(M) satisfying Au € LP(M), we have the derivative of u
with respect to X is LP—integrable, Xu € EP(M) and

[ Xull, < AffAulf, + Bllull,. (9)

If p = o0, then Xu is continuous. Moreover, A and B can be chosen independently over
the set of the smooth vector fields X bounded by 1.

First, convolving (5) with u € D'(M) we conclude that

u=u*xbd=uxPlaK)—ux*f. (10)



Let Z(() denote the center of an algebra of left invariant differential operators on G. Let
7 : G — M = G/H be the canonical projection and g denote Lie algebra of G. Then
dr : g — T,M can be extended to an algebra of left invariant differential operators on ¢
with the property dr(z(G)) = D(M), (cf.[3]). This means that P € D""(M) is an image of
a bi-invariant operator on (G and, in particular, commutes with left and right convolution.
Therefore, (10) implies

u=PuxaK —uxp. (11)

Proof of Theorem 1. An application of D to equality (11) together with an argument
above imply

Du = Pux D(aK) — ux Dj.

By Lemma 3 we have D(aK) € L'(M) and Young inequality ([4]) yields estimate (8). In
case p = oo we have convolutions of the type L* % L', which give continuous functions.
This completes the proof.

3 Proof of Theorem 2

For the proof of Theorem 2 we will need some notation and auxiliary results. We start
with constructing an invariant Riemannian structure on (i, making the projection = a
Riemannian submersion. In the sequel l;h = gh, r,h = hg, g,h € G will denote the left
and right group action on . The induced actions of G on M will be denoted by the same
letters. The adjoint representation will be denoted by Ad : G — GL(T.G).

Lemma 4 There exists a G-left and H-right invariant Riemannian structure on GG, such
that the canonical projection 7 : G — M s a Riemannian submersion, i.e. a submersion,
for which horizontal lift of vector fields preserves Riemannian norms.

Proof. Let (-,-)o be an arbitrary inner product on T.G'. Then one can define Ad(H )-
invariant inner product (-,-)o on T.G by taking

(X¥)o = [ (AC), A odp(4), (12)

where g is Haar measure on a compact set Ad(H ). The tangent space T,M to M at p = = (e)
can be identified with the quotient T.G//T.H via an isomorphism ¢([X]) = dn(X), where
[X] € T.G/T.H is an equivalence class of X € T.G. For every g € G let K, = Ker d,x
(K, 2 T,H=T.H). Let N, be the orthogonal complement to K, with respect to (-,)o:
T,G = K, @® N,. Define an inner product (-,-)y, on N, for vectors X,Y € N, by

(X, V)N, = (X, Y ), (13)
where (-, ), is restriction to T, M of the given invariant Riemannian structure on M and
X = dn(X),Y = dr(Y) € T,M. Vectors X and Y are uniquely defined, dr being an
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isomorphism of N, and T,M, and they are called the horizontal lifts of X and Y. The

desired Riemannian structure on G can now be constructed by applying dl, to

(X,Y) = (X

I\/re 2 Y

K)o+ (X

N€7Y

Ne)Ne7 (14)

where XY € T.G, X|k,,Y|x., and X|n_, Y|y, are projections of X,Y on K. and N,
respectively. Inner product (14) is clearly Ad(H )—invariant, the expansion is therefore G-
left and H-right invariant. It follows immediately from formulas (13) and (14) that all d,=
are partial isometries (isometries from N, to Ty, M ). This completes the proof.

The following properties of the pullback § will be necessary.

Lemma 5 (i) Let ¢ € C.(G) be a continuous compactly supported function on GG. Then
for x = w(g) the function ¢"(x) is correctly defined by

o (2)= [ olghydn.

where dh is the normalized Haar measure on H. The function ¢ is continuous
and compactly supported on M: ¢° € C.(M). Moreover, mapping ¢ — ¢ is linear
surjective from C.(G) to C.(M) and from D(G) to D(M).

(ii) The transpose of ¢ — ¢° defined by
(T, 6) = (T,¢")
is injective mapping from D' (M) — D'(G).

(iii) Let S € D'(G). Then RyS =S for all h € H if and only if there exists T € D'(M),
such that S = T*. For T\, Ty € D'(M) the convolution products on G and M are
related by

Ths T3 = (Ty + Ty).

(iv) LetY be a horizontal lift of a vector field X on M and let T' € D'(M) be a distribution
on M. Then Y(T%) = (XT)".

The proof is left to the reader.
Proof of Theorem 2. The pullback of formula (11) now reads

ut = (Au)t* (o) — uf x (15)

Let X be a smooth vector field on M, bounded by one: || X,|| < 1. Let Y denote the
horizontal lift of X:

1. dy7(Y,) = X,, where © = 7(g).
2. Y, e N, = (Ker d,z)*.



It is not difficult to see that Y is smooth. Let Y7,..., Yy be an orthonormal basis of the Lie
algebra g, such that (Y1),,...,(Y,), € N, for all ¢ € . Vector field Y can be decomposed
with respect to the basis Yi,...,Y, at every point ¢ € G:

n

Y, = Zai(g)yi,g €N, CT,G, (16)
=1

where Y; , = (Y;), = d.l,(Yi)e are values at g of the left invariant vector fields Y;. Note,
that such decomposition is pointwise because Y need not be left invariant in general, we
use that Y, € N, and the fact that Y7 ,,....Y, , constitute a basis for a linear space V,.
It also has a global character and functions aq,...,a, are smooth due to the smoothness
of Y and Yi,...,Y,.

The norm of Y, at T,G is ||Y,|]* = X, |ai(¢)]?. In view of Lemma4, ||Y,|| = || X.|| < 1.
In particular, |a;(¢)| < 1 for all ¢ € G. Now we differentiate u* in (15) with respect to the
basis vector fields Y; and the left invariance of Y; yield:

Yiuh = (Au)? x YVi(aK)F 4 ub * Y3 (17)

Obviously Y;5* € D(G) € LY(G). In view of Lemma 3 the compactly supported distribu-
tion KK and its derivatives are integrable and so are their pullbacks, the pullback mapping
being an isometry of L? spaces. Let A; = ||Y;(aK)!||; and B; = ||Y;53%|;. Application of
Young inequality [4, Cor.20.14] to (17) yields

Vel < Aill(Au)l, + Billu?|l,-

Decomposition (16) together with bounds on a; and equalities ||(Au)*|, = ||Aul||, and

[1w[l, = lul], imply
1V ufll, < AllAull, + Bllul|,

with A =3Y", A; and B = X", B;. By Lemma 5 we have ||Yu!||, = || Xu]|,, establishing
inequality (9). In case p = oo, formulas (17) and (16) imply the continuity of Yuf. By
Lemma 5, (Xu)* = Yu¥ is continuous. The continuity of Xu now follows from the fact
that M is equipped with quotient topology, i.e. the strongest topology, for which 7 is a
continuous mapping. This finishes the proof of Theorem 2.
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