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Abstract

The Edwards model in one dimension is a transformed path measure for one�

dimensional Brownian motion discouraging self�intersections� In van der Hofstad� den

Hollander and K�onig �preprint ����	 a central limit theorem �CLT	 is proved for the


uctuations of the endpoint of the path around its linear asymptotics� In the present

paper� we study the constants appearing in this CLT �which represent the mean and

the variance	 and the exponential rate of the normalizing constant� We prove that

the variance is strictly smaller than �� which shows that the weak interaction limit

is singular� Furthermore� we give a relation between the normalizing constant in the

Edwards model and the normalizing constant in the weakly interacting Domb�Joyce

model� The Domb�Joyce model is the discrete analogue of the Edwards model based

on simple random walk and is studied in van der Hofstad� den Hollander and K�onig

�preprint ����	�

The proofs are based on bounds for the eigenvalues of a certain one�parameter

family of Sturm�Liouville di�erential operators� These bounds are obtained by using

the monotonicity of the zeroes of the eigenfunctions in combination with computer

plots of the power series approximation of the eigenfunctions and exact error esti�

mates of the power series approximation�
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� Motivation and main results

��� The Edwards model

Let 
Bt�t�� be standard one�dimensional Brownian motion starting at �� Let bP denote its

distribution on path space and bE the corresponding expectation� The Edwards model is a

transformed path measure discouraging self�intersections� de�ned by the intuitive formula

d bP �
T

d bP �
�bZ�
T

exp
�
��

Z T

�
ds

Z T

�
dt �
Bs �Bt�

�

T � ��� 
����

Here � denotes Dirac�s function� � � 
���� is the strength of self�repellence and bZ�
T is the

normalizing constant� A rigorous de�nition of P �
T can be given in terms of Brownian local

times� namely

Z T

�
ds
Z T

�
dt �
Bs �Bt� �

Z
R

dx L�
T� x�� 
��
�

where L
T� x� is the local time at x until time T � In ��� a central limit theorem 
CLT� is

proved for the Edwards model� To formulate this we have to introduce some notation� For

a � R� de�ne Ka 	 L�
R�
� � � C�
R�

� �� C
R�
� � by

�
Kax

�

u� � 
ux��
u� � 
x�
u� � 
au� u��x
u� for u � R�

� � ������


����

The Sturm�Liouville operator Ka will play a key role in the present paper�� It is sym�

metric and has a largest eigenvalue �
a� with multiplicity �� The map a �� �
a� is real�

analytic� strictly convex and strictly increasing� with �
�� � �� lima��� �
a� � �� and

lima�� �
a� ��� De�ne a�� b�� c� � 
���� by

�
a�� � �� b� �
�

��
a��
� c�� �

���
a��
��
a���

� 
����

�The operator Ka is a scaled version of the operator La originally analyzed in ��� Section �� namely

�Kax��u� � �Lax��u��� where x�u� � x��u�	

�



Theorem � �van der Hofstad� den Hollander and K�onig �preprint ����		 For every � �

���� there exist b�� c� � 
���� such that

lim
T��

bP �
T

� jBT j � b��
�
�T

c�
p
T

� C

�
� N 

��� C�� for all C � R� 
����

where N denotes the normal distribution with mean 
 and variance �� Furthermore� there

exists bL � 
���� such that

bL � lim
T��

ea
��

�
� T bZ�

T � 
����

The simple dependence on � of the mean� the variance and the normalizing constant in

Theorem � follows from Brownian scaling 
see ��� Section �����

Since the standard deviation c� is independent of �� it is interesting to know whether

c� di�ers from �� In Theorem �
i�iii� below we shall give bounds on the constants a�� b�

and c�� Furthermore� Theorem �
iv� relates the asymptotic behavior of the normalizing

constant in the Edwards model� with the asymptotic behavior of the normalizing constant

in the Domb�Joyce model that we shall introduce now�

��� The Domb�Joyce model

Let 
Si�i�N� be simple random walk on Z� starting at the origin� Let E be expectation

w�r�t� the simple random walk measure� Let P �
n be the measure on n�step paths given by

dP �
n

dP
�

�

Z
�
n

exp
�
��

nX
i�j��

i ��j

�fSi�Sjg
�
� 
����

where Z�
n is the normalizing constant� The Domb�Joyce model is a transformed path

measure on the space of n�step paths as in 
����� where the Wiener measure is replaced by

the simple random walk measure and the exponent in 
���� by the exponent in 
����� It is

therefore the discrete analogue of the Edwards measure�

We have the following asymptotic behavior of Z�
n � similar to 
����	

�



Theorem � �van der Hofstad� den Hollander and K�onig �preprint ����		 Let �n � 
����

be such that

�n � � and n
�
��n �� as n��� 
����

Then there exists L � 
���� such that

lim
n�� �

� �
�

n ernnZ�n
n � L� 
����

where rn satis�es

lim
n�� �

� �
�

n rn � a�� 
�����

Theorem 
 is an important ingredient in the proof of the CLT for the weakly interacting

Domb�Joyce model in ���� This CLT �ts nicely with the CLT for the Edwards model

in Theorem �� in the sense that the mean� the variance and the exponential rate of the

normalizing constant have the same �n�scaling if �n satis�es 
����� This is illustrated by


����� and 
����� However� the behavior of the normalizing constant in 
����� is structurally

di�erent from the one in 
����� since there is no ��power in 
refscalingnc��

��� Main theorem� Theorem �

The following is our main theorem	

Theorem �


i� a� � �
����� 
�����


ii� b� � ������� ���
��


iii� c� � ������ �����


iv� bL � a�

� L � L�

The proof of Theorem � is given in Sections ��� and is based on estimates of the eigenvalues

of the di�erential operator Ka 
recall 
������ Section � describes the Sturm�Liouville theory

with which we can estimate the constants� In Sections 
�� we derive the estimates for a��

�



b�� c�� bL and L respectively� These estimates are computer�assisted and we give exact error

estimates�

The bounds in Theorem � 
i�ii� can be made arbitrarily sharp by making the estimates

of the eigenvalues sharper� For the bound in Theorem � 
iii� this is not the case� which is

due to the fact that c� in 
���� is a more complicated object�

��� Discussion

Our main results are that the constant c�� giving the standard deviation of the polymer in

both the Edwards model and the weakly interacting Domb�Joyce model� is strictly smaller

than � and that the O
���term of the normalizing constant in the CLT for the Edwards

model is larger than the one in the CLT for the weakly interacting Domb�Joyce model�

The �rst statement means that the variances in the CLT�s for the Domb�Joyce model

and the Edwards model are discontinuous at � � � and that� as the path is pushed out

to in�nity on a linear scale� the �uctuations around the asymptotic mean are squeezed

compared to the �uctuations of simple random walk� respectively� free Brownian motion�

Indeed� for free simple random walk and free Brownian motion we have E
S
�
n

n
� � bE
B�

T

T
� � �

for all n � N and T � �� Note� on the other hand� that the mean of the CLT is continuous

at � � ��

The second statement means that the normalizing constant in the Edwards model

is larger than the normalizing constant in the Domb�Joyce model� This is intuitively

reasonable	 simple random walk is restricted to the integers� while Brownian motion is free

to move over the real line and can therefore optimize the partition function better�

� Preparations� Lemmas ���

In this section we shall analyze the zeroes of the eigenfunctions of the Sturm�Liouville

di�erential operator Ka 
recall 
������ The method we use is more general and hence not

restricted to Ka�

�



��� Sturm�Liouville theory� Lemmas ���

Let u �� xa��
u� be the solution of

�
Kax

�

u� � 
x��
u� � 
x�
u� � 
au� u��x
u� � �x
u�� 
����

with

xa��
�� � �� x�a��
�� � � 
��
�


see also �
� Section 
���� This solution is unique by �
� Lemma ��� but by �
� Lemma 
�

it need not be in L�
R�
� �� In fact� the only values of � for which xa�� is in L�
R�

� � are the

eigenvalues ��k�
a� 
see ��� Section ����� In the sequel we shall use the extreme sensitivity

of the tails of xa�� w�r�t� a and � to get sharp numerical estimates�

Suppose that u
a� �� � � is a zero of xa��� The starting point of our investigation is

the following lemma	

Lemma � For all a� � � R and u
a� �� ���

�

��
u
a� �� � ��

�

�a
u
a� �� � ��


����

Proof� We shall prove the �rst statement only� The proof of the second statement is

analogous�

Fix a and suppose u
a� �� �� is a zero of xa��� Then� by the implicit function theorem

and the fact that x�a��
u
a� ��� 	� �� � �� u
a� �� is a di�erentiable function� By 
�����

below� xa�� can be represented as a power series with coe�cients that are di�erentiable in

a and �� Hence

ya��
u� �
d

d�
xa��
u� 
����

exists� Di�erentiate xa��
u
a� ��� � � w�r�t� � to get

� � x�a��
u
a� ���
�

��
u
a� �� � ya��
u
a� ���� 
����

�



Thus� to prove Lemma � it is su�cient to prove that x�a��
u
a� ��� and ya��
u
a� ��� have

opposite sign�

To that end� note that ya�� satis�es the inhomogeneous di�erential equation�
Kaya��

�

u�� �ya��
u� � xa��
u�� 
����

with

ya��
�� � �� y�a��
�� � �� 
����

which is obtained by di�erentiating 
������
� w�r�t� �� Now� let u �� �xa��
u� be any solution

of 
������
� such that limu	�
	xa���u�
lnu

� �� 
see �
� 
��

�� and note that xa�� and �xa�� are a

basis of solutions for the homogeneous equation Kax � �x� Since the Wronskian of the

di�erential equation 
������
� equals

ux�a��
u��xa��
u�� uxa��
u��x
�
a��
u� 
 �� 
����

the solution to 
�������� is given by

ya��
u� � ��xa��
u�
Z u

�
	x�

a��
	�d	 � xa��
u�
Z u

�
	xa��
	��xa��
	�d	� 
����

Since u � u
a� �� is a zero of xa��� we obtain

ya��
u
a� ��� � ��xa��
u
a� ���
Z u�a���

�
	x�

a��
	�d	� 
�����

so ya��
u
a� ��� has opposite sign from �xa��
u
a� ���� Finally� substitution of u � u
a� �� into


���� gives

u
a� ��x�a��
u
a� ����xa��
u
a� ��� � �� 
�����

which together with 
����� proves that x�a��
u
a� ��� and ya��
u
a� ��� indeed have opposite

sign� �

Lemma � states that if there is a 
�nite� zero for xa��� then this zero will move to the

left as � decreases or a increases and vice versa� Furthermore� xa��
�� � � prevents zeroes

to move to the negative axis� Hence� xa�� can only get more zeroes as � decreases or a

increases�

Using Lemma �� we shall prove the following stronger statement	

�



Lemma � Let n � n
a� �� be de�ned by

n
a� �� � �f�nite zeroes of xa��g� 
���
�

Then� for every a � R� � �� n
a� �� is a step function that makes a jump precisely at the

eigenvalues ��k�
a�� i�e�� n
a� �� � k for � � 
��k�
a�� ��k���
a�� 
k � ���

Proof� Fix a � R� For k � N� de�ne

Ak � f� 	 �I � R�
� bounded such that xa�� has at least k zeroes in Ig�


�����

Then Ak is an open interval� unbounded to the left by Lemma � and the fact that xa��
�� �

�� Consequently� Ac
k is a closed interval and has a smallest element ��k�� We shall show

that ��k� � ��k�
a��

To that end� let uk
a� �� be the kth zero of xa��� Then

lim
�
��k�

uk
a� �� ��� 
�����

To see why� suppose that lim�
��k� uk
a� �� � v � �� By continuity of � �� xa��
u��

v � uk
a� ��k�� is the kth 
�nite� zero of xa���k�
u�� Eq� 
����� together with x�
a���k�


v� 	� �

and ya���k�
v� 	� � 
recall 
����������� give that �

��
uk
a� ��k�� � �� which is a contradiction�

Furthermore� since � �� xa��
u�� � �� x�a��
u� and � �� x��a��
u� are continuous for all

u � R�
� 
see 
���������� below�� xa���k�
u� and x�

a���k�

u� have opposite sign for large u by

the following reasoning� Let

c
a� �� �
�



a�

�




q
a� � �� 
�����

be the last zero of fa��
u� � u� � au� �� Take � � ��k� such that uk
a� �� � c
a� �� 
recall


������� Then xa�� has a zero larger than c
a� ��� Next� rewrite 
���� as

�ux�a��
u��
� � fa��
u�xa��
u�� 
�����

where the � stands for di�erentiation w�r�t� u� Then� for all u � �c
a� ��� uk
a� ���� xa��
u�

and x�a��
u� have opposite sign� since otherwise these signs would remain the same for all

�



v � u by 
����� and hence xa�� would not have a zero larger than u� 
Note that fa��
u� � �

for all u � c
a� ���� Now let � 
 ��k� and use 
����� and the continuity of c
a� ��� to see

that xa���k�
u� and x�
a���k�


u� have opposite sign for u � c
a� ��k��� The only way this is

possible is when limu�� xa���k�
u� exists and is bounded� Use �
� Lemma 
� to see that

then xa���k� is in L�
R�
� �� Hence� ��k� has to be an eigenvalue of Ka in L�
R�

� �� It is now

easy to see that ��k� � ��k�
a� by counting the number of �nite zeroes of xa���k� � which has

to be exactly k � �� �

Lemma � If v � c
a� �� and if xa��
v� and x�a��
v� have the same sign� then xa��
u� and

x�a��
u� have the same sign for all u � v�

Proof� Easy� See 
������ �

Lemma � will be useful in order to determine the number of zeroes of xa�� from a computer

plot of xa��
u� for u in a bounded interval�

��� Power series approximation� Lemma �

We end this preparatory section by explaining how we can determine the number of zeroes

of xa�� in a bounded interval�

Use �
� 
��
�� to write xa��
u� as a power series

xa��
u� �
�X
n��

gnu
n� 
�����

where the gn�s satisfy the recurrence relation

gn �
�


n�

�gn�� � agn�� � gn��� 
n � ��� 
�����

with g� � �� g�� � g�� � �� By induction on n� it is easy to derive the following bounds	

gn � K
a� ��n


n��
�
�


n � ��� 
�����

where K
a� �� satis�es

j�j


�
�K
a� ��

�
jaj



	
�K
a� ���

�
�


K
a� ���
� �� 
��
��

��



In the sequel we shall take

K
a� �� � max
n

�

�
� j�j�

s
�jaj


	
�

�
�
p
�
o
� 
��
��


This corresponds to bounding the �rst term in 
��
�� by �
�
� the second by �

�
and the third

by �


� This choice turns out to be good enough for the choices of a and � that we shall use

in the sequel��

In order to estimate how well the power series with a �nite number of terms approx�

imates xa��
u� on a bounded u�interval� we have to know what the contribution is of the

remote summands in 
������

Lemma � For every k � N� �� a � R and K � R��

j
�X
n�k

gnu
nj � �NCk�k


� �NCk�
�
p


k

uniformly for u � ��� N �� 
��

�

where Ck is given by

Ck � Ck
a� �� �
K
a� ��e

�
�

k
�
�

� 
��
��

Proof� Use Stirling�s inequality

n� � p


n

�
n

e

�n


��
��

and 
������ to get

l�h�s� 
��

� � P�
n�k

�NCn�n
�p��n

�
P�

n��
�NCn
k�n
k

�
p

���n�k�

� �NCk�
k

�p��k

P�
n���NCk�n�


��
��

�

We have now completed our preparation and can start with the proof of Theorem ��

��



� Proof of Theorem ��i	

Fix � � � and N � �� k � ���� Use Lemma 
 to see that if xa�� has a zero then a � a��

while if xa�� has no zero then a � a�� Next� 
��
�� gives that

K
a� �� � ��� uniformly for a � 
�
� 

���

Hence� in 
��
���

Ck � ����� 

�
�

Thus� by 
��

�� the di�erence of xa�� and the power series approximation of xa��
u� with

��� terms is smaller than or equal to 
 � ���
� 
for these values of N � a� � and k�� The

proof now follows from Figure �� Lemma � and the fact that c
a� �� � a � N � � for

a � 
�
 
recall 
�������

� Proof of Theorem ��ii	

��� The lower bound for b
�

First we derive an equality� 
���� below� that we need later on to prove the lower bound

for b��

For a � R and � � R�� de�ne the 
�parameter family of di�erential operators Ka�� 	

L�
R�
� � � C�
R�

� � �� C
R�
� � given by

�
Ka��x

�

u� � 
ux��
u� � 
x�
u� � 
au� �u��x
u�� 
����

Let �
a� �� be the largest eigenvalue of Ka�� in L�
R�
� �� By a trivial scaling we get that for

every � � R�

��
�
��
a�

�
� � �� � �
a� �� � �
a�

with eigenfunction x�a��� � ��
�
�x

a�
�
�

��� �

� ��


��
�

�




Di�erentiation of 
��
� w�r�t� � on both sides gives




�
a��

�
���a�
a�

�
� � �� � ��

�
�����
a�

�
� � ��� �

�
��

	
��
a�

�
� � �� � �� 
����

where the subscript stands for di�erentiation w�r�t� that parameter� Next� use that 
a� �� ��
x�a��� is analytic as a function from R� 
���� to L�
R�

� � and that jjx�a���jjL��R
� � � �� to

get

����
a� �� �
�

��
hx�a����Ka��x�a���iL��R
� �

� �
Z �

�
u�x�

�a���
u�du�


����

respectively�

��a�
a� �� �
Z �

�
ux�

�a���
u�du� 
����

Substituting a � a�� � � �� using 
��
� and 
�������� and �
a�� � �� we get




�
a���
a���

Z �

�
du u� x�

a�
u� � �� 
����

To get the lower bound for b�� use �
b�
�
R�
� du ux�

a�
u� and write out using partial integra�

tion	

a� � �
b�

�
R�
� du 
a�u� u���x�

a�
u�

� �
 R�� du 
a�u� u��xa�
u�x�a�
u�

� �
R�
� du �x�a�
u�

� � ux��a�
u�x
�
a�
u��

� 
jjx�jj�
L��R
� �

�


����

Here the second equality uses 
����� while the third equality again follows from partial

integration� Therefore� a rough lower bound for b� is

a� � 


b�
� � or b� � 


a�
� 
����

��



which together with Theorem �
i� gives

b� � ����� 
����

However� 
���� can be improved using 
����� partial integration and the Cauchy�Schwarz

inequality	

� � �
 R�� du uxa�
u�x�a�
u�

� 
jjx�jjL��R
� �
qR�

� du u�x�
a�
u�

�
p

jjx�jjL��R
� �

q
�
�
a�

b�

� �
b�

p
a�b� � 


q
�
�
a��


�����

Rewrite this to get

a�b� � 
 � b��
�

�

�

a�

�����

or

b� � 


a�
� b��

�

�

�

a��
� 
���
�

Now� insert 
���� into the r�h�s� of 
���
� and use Theorem �
i� to get

b� � ������ 
�����

Iterating 
���
� seven times� each time with the improved lower bound in the r�h�s�� we

arrive at the lower bound in Theorem �
ii��

��� The upper bound for b
�

To prove the upper bound for b�� use the monotonicity of a �� ��
a� and the relation

b� � ���
a����� 
see �
� Theorems ��� and Theorem �
i�� to get that

b� � �

�����

����� � �

������
� 
�����

��



Furthermore� c
a� �� � � � N � � for these values of a� � 
recall 
������� so that Lemma �

applies� Recall 
��
�� to get

K
a� �� � ��� uniformly for � � ��������� ��� a � �
����� 
������ 
�����

Hence 
��
�� gives

Ck
a� �� � ���� uniformly for � � ��������� ��� a � �
����� 
������ 
�����

Thus� by 
��

�� the di�erence between xa��
u� and the power series approximation of

xa��
u� with ��� terms is smaller than or equal to 
 � ���
� 
for these values of N � a� �

and k�� Now use Lemma 
 and Figure 
 to get that

�

����� � �������
�

����� � ��������


�����

since xa�� has one zero for 
a� �� � 

�������� ����� 
note that xa��
N� � � for 
a� �� �



�������� ������� while xa�� has no zero for 
a� �� � 

�������� ����� 
note that xa��
N� �

� for 
a� �� � 

�������� �������

� Proof of Theorem ��iii	

In Sections ������
 we prove the upper bound for c�� in Section ��� the lower bound for c��

��� The upper bound for c
�� Lemmas 	�


By di�erentiating 
���� w�r�t� a 
take � � � and use 
��
��� we get

���
a� � 

Z �

�
du uxa
u�ya
u�� 
����

where ya � L�
R�
� � is the function

ya
u� �
d

da
xa
u�� 
��
�

��



Di�erentiating the relation jjxajj�L��R
� � � � w�r�t� a� we get

hxa� yaiL��R
� � � �� 
����

Hence� we can rewrite 
���� as

���
a� � 

Z �

�
du 
u� ��
a��xa
u� ya
u�� 
����

Note that by 
��
� and 
���� also u �� 
u � ��
a��xa
u� is orthogonal to xa 
again take

� � ��� Furthermore� di�erentiating the eigenvalue relation Kaxa � �
a�xa w�r�t� a� we get

that ya satis�es the inhomogeneous di�erential equation

�
�
Kay

�

u� � �
a�y
u� � fa
u�� 
����

where

fa
u� � 
u� ��
a��xa
u�� 
����

�
� Lemma 
� gives that all the ��k�
a��s have multiplicity one� The Rayleigh representation

for ����
a� reads

����
a� � sup
y�jjyjj

L����hxa�yiL���
hy�KayiL�� 
����

Hence� we have that for all x � L�
R�
� � such that hxa� yiL� � ��

hx� 
�
a��Ka�xiL� � ��
a�� ����
a��jjxjj�
L��R
� �

� 
����

Therefore� we are in the situation of Gri�el 
����� Proposition ������ Apply this proposi�

tion to get

hy� faiL� � �

��
a�� ����
a��
jjfajj�L�� 
����

Substitute 
���� and use 
���� to get

���
a� � 


��
a�� ����
a��

Z �

�
du 
u� ��
a��� x�

a
u�� 
�����

Because of 
����� and 
����� below� the following two inequalities su�ce for the upper

bound in Theorem �
iii�	

��



Lemma � b��
R�
� du 
u� ��
a���� x�

a�
u� � b�
�
�
a�b� � �� � ���
�

Proof� See 
���� and Theorems �
i�ii�� �

Lemma � �����

�
� � ����� �����

Proof� See Section ��
 below� �

��� Proof of Lemma 
� Spectral analysis of Ka�

In this section we shall prove bounds for �����

�
�� using computer plots of xa�� for a � 
�


and suitable values of �� Lemma 
 and the error estimates in Lemma �� Lemma � guarantees

that there are exactly as many zeroes as seen in the plot�

In the same way as in 
�������� below� we have

d

da
��k�
a� �

Z �

�
du ux�k�

a 
u�� � �� 
�����

where x�k�
a is the eigenfunction corresponding to the eigenvalue ��k�
a� 
recall ��� Section

����� Hence� all the eigenvalues are increasing in a� Therefore we can take a � 
�
� By


��
��

K

�
� �� � 
��� uniformly for � � ������ ��� 
���
�

Again we pick N � � and k � ���� Then by 
��
���

Ck

�
� �� � ����� uniformly for � � ������ ��� 
�����

Therefore� by 
��

�� the di�erence between xa��
u� and the power series approximation of

xa��
u� with ��� terms is smaller than or equal to �����
�� In Figure � the sum of the �rst

��� terms of the powerseries of xa��
u� is plotted for a � 
�
 and � � ����� respectively�
� � ����� Since c

�
������ � � and c

�
������ � � 
recall 
������� the number of zeroes

of x�������� is � and the number of zeroes of x�������� is 
 by Lemma �� This proves that

����

�
� � ������������

��



��� The lower bound for c�

For some s � �� let

y
u� � s
u� ��
a��xa
u�� 
�����

Then y is orthogonal to xa 
see 
��
� and 
���� with � � ��� By 
���� and Gri�el 
�����

Proposition ������ it follows that

�



���
a� � sup

x�hxa�xiL���
�
hx� faiL� � hx� 
�
a��Ka�xiL� � 
�����


recall 
������ Substitution of x � y 
see 
������ gives

�



���
a� � 


s
kyk�L� � hy� 
�
a��Ka� yiL� � 
�����

Next� compute for a � a��


Ka�y�
u� � s
u� ��
a���
Ka�xa��
u� � �sux�a�
u� � 
sxa�
u�

� s
�ux�a�
u� � 
xa�
u���


�����

where we use that �
a�� � � 
see 
������ Hence

hy�Ka�yiL� � s�
R�
� �u
u� ��
a���x�a�
u�xa�
u�

� �
s���
a���

�����

Furthermore� use 
���� for � � � and 
���� to compute

kyk�L� � s� 

R�
� u�x�

a�
u�du� ��
a����

� s���
a��
�
�a

� � ��
a����


�����

Substituting 
���������� into 
����� and maximizing over s� we get

���
a�� � ��
a���
�



�
a�b� � �

��

� 
��
��

The lower bound now follows from the de�nition c�� � ����a��
���a��� 
recall 
����� and Theorem

�
i�ii��

��




 Proof of Theorem ��iv	

Recall ��� Proposition � and ��� Proposition � where bL and L appear� In this section we

use the representations of bL and L to prove that bL � a�

�
L� Since a� � 
 by Theorem � 
i��

this will prove that bL � L as claimed�

Recall from ��� 

���� and Lemmas ���� and ��� 
����� and 

����
���� that

bL � b�hxa�� za�iL�hxa�� za�i�L� 
����

L �
b�



hxa�� za�i�L� � 
��
�


see footnote � for the factor �
�
� where za� satis�es the Airy equation


z��
u� � 
a� � u�z
u� � � 
u � R�� 
����

Hence we have to prove that

hxa�� za�i�L� �
a�



hxa�� za�iL� � 
����

The proof relies on the fact that the di�erential equations for xa� 
recall 
������ respectively�

za� 
recall 
����� are similar�

Since Ka�xa� � �
a��xa� � � 
recall 
����� and Ka� is symmetric in L�
R�
� �� we have

� � h
Ka��ixa�� za�iL� � hxa�� 
Ka��iza�iL� 
i � �� 
�� 
����

Compute 
for i � ��

�
Ka�za�

�

u� � 
z�a�
u� � u

h

z��a�
u� � 
a� � u�za�
u�

i
� 
z�a�
u�� 
����

This gives 
for i � 
��

Ka���za�

�

u� � 


�
Ka�z�a�

�

u�

� �z��a�
u� � 
u
h

z���a�
u� � 
a� � u�z�a�
u�

i

� �z��a�
u� � 
uza�
u��


����

��



Substitution of 
���� into 
���� gives

�

Ka���za�

�

u� � 
�u � 
a��za�
u�� 
����

After substituting 
���� into 
���� for i � 
� we end up with 
�����

Note� Just prior to completion of this paper� we received a letter from John Westwa�

ter explaining a di�erent functional analytic method to obtain sharp numerical estimates

on a�� b�� c�� Rather than working with the Sturm�Liouville di�erential equation 
����� he

uses the variational problem in Westwater 
����� and a truncation of the minimizer of this

variational problem of an expansion into Laguerre polynomials� His method gives rigorous

upper bounds on a�� All other estimates are non�rigorous for lack of error estimates� The

values found are fully in agreement with the bounds in Theorem � 
i�iii��
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i� iii�� Furthermore� we thank F� den Hollander for many helpful comments and sugges�

tions during all the stages of this work�

References

��� D� H� Gri�el� Applied functional analysis� Ellis Horwood� New York �����

�
� R� van der Hofstad and F� den Hollander� Scaling for a random polymer� Commun� of

Math� Phys� ���� ������� 
������

��� R� van der Hofstad� F� den Hollander and W� K�onig� Central limit theorem for the

Edwards model� Preprint ����� To appear in Ann� of Probab�


�



��� R� van der Hofstad� F� den Hollander and W� K�onig� Central limit theorem for a

weakly interacting random polymer� Preprint ����� To appear in Markov Proc� and

Rel� Fields�

��� J� Westwater� On the Edwards model for polymer chains� in	 Trends and Developments

in the Eighties 
S� Albeverio and P� Blanchard� eds��� Bielefeld Encounters in Math�

Phys� ���� World Scienti�c� Singapore �����


�



Figure caption
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Figure �a�b	 The power series approximation of xa�� with a � 
����� respectively�

a � 
���� and N � �� k � ����
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Figure 
a�b	 The power series approximation of xa�� with 
a� �� � 
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respectively� 
a� �� � 

������������� and N � �� k � ����
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Figure �a�b	 The power series approximation of xa�� with 
a� �� � 
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respectively� 
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������ and k � ���� N � ��
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