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A simple proof of the exponential convergence of

the modified Jacobi-Perron algorithm

Ronald Meester

Abstract

It has recently been shown in Tto et al. (1993) that the modified
Jacobi-Perron algorithm is strongly convergent (in the sense of Bren-
tjes 1981) almost everywhere with exponential rate. Their proof re-
lies on very complicated computations. In this paper we will show
that the original paper of Podsypanin (1977) on the modified Jacobi-
Perron algorithm almost contains a proof of this convergence with ex-
ponential rate. The only ingredients missing in that paper are some
ergodic-theoretical facts about the transformation generating the ap-
proximations. This leads to a very simple proof of the beforementioned

exponential convergence in the modified Jacobi-Perron algorithm.

Mathematics Subject Classification: 11J70, 11K50, 28D05.

1 Background of the problem

The archetypal example of a multi-dimensional generalisation of the regu-
lar continued fraction expansion is the Jacobi-Perron algorithm (JPA), see

Bernstein (1971), Brentjes (1981) and Schweiger (1973). This algorithm
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produces, for almost all points (#,y) in the unit square, a sequence (z—z, g—z)

of rational vectors with the same denominator such that

]i—>x, andr—n—>y7 (1)

qn an
for n — oo.

In Podsypanin (1977) a modification of this algorithm was introduced
which is referred to as the modified Jacobi-Perron algorithm (MJPA). Podsy-
panin showed that this algorithm also produces a sequence of rational vectors
with the convergence properties in (1). For a general account on convergence
in this type of algorithms, see Kraaikamp and Meester (1997). We begin
this paper with a description of the MJPA.

Let £ be the unit square and define the subsets Ey = E N {(z,y);z >
y,x > 0} and By = FN{(z,y);2 < y}. For (z,y) € F we define the map
T:F— Fby

(%7{%})7 if (ac,y) €E07
T($7y) = ({§}7£)7 if ($7y) €E17
(0,0), if e =y =0,
where {-} denotes fractional part. We write (2,,v,) = T"(x,y), n > 0, and

define two sequences of digits (a,), and (), by

([x 1 ]70)7 if ($n—lvyn—1) € Eo,

(anvgn) = 1 ]
([ ]7 1)7 if (wn—lv yn—l) € by,

where [-] denotes integer part. Podsypanin shows that

1 ag £k 1—¢p 1

z | =60, H 1 —eg 0 £k Ty (2)
k=1

Yy e l—egg 0 Yn



where
n—1

071 — H max(xlmyk) € [07 1]
k=0

For n > 1, the matrix product
ar Ek 1 — &k
e
II 1—¢g 0 £k
k=1

Ek 1 — &k 0

is denoted by B = B(")(z,y) and written as

9 4 4p
BYW =\ p, p, ol |- (3)
Tw rrooTH
Note that ¢, = ¢,(2,y) and similarly for the other quantities. For future
use we define in addition (¢_z, p—2,7-2) = (0,0, 1), (¢-1, p-1,7-1) = (0,1, 0),
(g0, po,7m0) = (1,0,0) and gg =1 = 1.
Among other things, Podsypanin showed that if (z,y) € F and at least

one of x and y is irrational, then

lim 22 = z, lim In y. (4)

In Ito, Keane and Ohtsuki (1993), the following result concerning the
speed of the approximations in (4) was given. See also the corrected version

of their proof in Fujita et al. (1996):

Theorem 1 For the MJPA there exists a constant § > 0 such that for almost
every pair of numbers (z,y) in the unit square there exists ng = ng(z,y)
such that for any n > ng,

1
Tl

Pn
r — —

qn

'n

< J—
qn

y—
Tl



where the integers p,,,r, and q, are as in (3).

The proof of Theorem 1 in Ito, Keane and Ohtsuki (1993) requires the
explicit density of the invariant measure associated with 7. (This density
was given by Schweiger (1978)) The computations in their proof are very in-
volved and complicated. Schweiger (1996) introduced a completely different
approach to the problem; he was able to prove the analogue of Theorem 1 for
the JPA. This is remarkable, since the invariant measure for the transforma-
tion generating the JPA is not known explicitly. In fact, Schweiger pointed
out that the classical paper of Paley and Ursell (1930) already essentially
contains a proof of the theorem; the only ingredient which was not available
to Paley and Ursell was the ergodic theorem and some ergodic theory of

multidimensional continued fractions.

In this paper, we will show that the original paper of Podsypanin on the
MJPA contains all the ingredients for a proof of Theorem 1. The only addi-
tional ingredient will be some ergodic theory. The method used is similar in
spirit to the method in Schweiger (1996), although the important estimates
are based on completely different quantities. The next section reviews well
known facts about the MJPA. The new proof of Theorem 1 is given in the
last section. As in Ito et al. (1993), this new proof also in fact leads to a
value for ¢ in the statement of Theorem 1.

I would like to thank Cor Kraaikamp for stimulating discussions, and

Fritz Schweiger for explaining his result on the JPA.

2 Ingredients

In this section we collect some classical facts about the MJPA.



Lemma 1 (Schweiger (1978, 1991)) The transformation T" admits an invari-
ant probability measure y on F such that (F,T, u) is ergodic. The measure

1 1s absolutely continuous with respect to Lebesgue measure.

Corollary 1 (see also Ito et. al (1993)) For p almost all (z,y) € E we have

1
lim_ -~ logg, =~ [ logb(z,y)du(z.y)
E

n—oo 1
where 6(z,y) = max{z,y}.

Proof From (2) we have

1=0,(q, + Tnq,, + ynq;z/)v

and hence

! 1"
In

1 1 1
0= —logh, + —logq, + —log(1 —I—an—” + yn—2).
n n n dn

n

Since ¢, > ¢, and ¢, > ¢, the last term tends to zero and we find

| |
lim ~logg, = — lim —log6, = —/ log a1,
E

n—oo n, n—00 1
where the last equality is just the ergodic theorem. a

We write v,,, v/, and v for the columns of B . Furthermore, define
jn)=max{m < n;e, #ch1F - F Emt2 = Em+1}-

In words, j(n) is found by looking backwards from time n: j(n) is the
first time after we have seen two equal consecutive £;’s. So for instance, if

£, = €p—1, then j(n) = n — 2, which is the maximal value j(n) can obtain.

Lemma 2 (Podsypanin (1977)) If &, = 1 then vj, = v,y and v;] = vj@,); if

£, = 0 then v, = v;(,y and vy} = v, ;.



Proof This follows from straightforward inspection of the algorithm. a

Remark The fact that the relations in Lemma 2 involve indices arbitrarily
far back from n is one of the main differences between the JPA and the

MJPA. In the JPA, the analogue of j(n) is always equal to n — 2.

Next we define

A, = 2q, — pn, A, = 2q), — py,, Al = 2q,, — D).

Lemma 3 (Podsypanin (1977))
(i) For all n > 1 we have

[Anga] < max{|A],[AL] |AT]}

= max{|A|, |[An_1], [A;m)l}-

(i) If epyr = 1 then Ay = =211 A0 — Y1 AL If €01 = 0 then Apqy =

—Ynt1Dn — 1 AL We therefore always have

[Angi] < (@t + yogr) max{|An], |AL] AT

= (xn-l—l + yn-l—l) max{|An|7 |An—1|7 |A](n)|}

Proof (i) The inequality is Lemma 6 in Podsypanin (1977) and the equality
follows from Lemma 2. (ii) The inequality is obtained in the course of the
proof of Lemma 6 in Podsypanin (1977) and the equality is again Lemma

2. a



3 A simple proof of Theorem 1

We only prove the first inequality, the second is proved similarly. From the

definitions we have, for all n,

= . (5)
It follows from Corollary 1 that for some R > 1 we have
¢n < R". (6)

Suppose now that we can show that |A,| goes down exponentially fast, i.e.

suppose we can show

|An| <r" (7)

for some 0 < r < 1. We can then choose § > 0 so small that r < R™°. It
then follows, using (6), that

1 1)
AL <7 < (ﬁ) <q°.

Hence the right hand side of (5) is bounded above by q;(l-l_é) and the proof
is complete.

It remains to prove (7), and this is where Lemma 3 comes in. Exponential
decay is not immediate from this lemma, although it is not hard to believe
that it is not too far off either. The problem lies in the fact that we have
no a priori control over j(n) (and as mentioned before, this problem does
not arise in the JPA). To deal with this problem, we will create ‘blocks’ of
consecutive £;’s equal to 1, which will force the j(n)’s to be not too far away

from n. Let

F=FEn{(z,y);z+y <1}



and

2 5

A= (ﬂ T—Z’Eo) N (ﬂ T—Z’F) :
=0 =3

It is not hard to check that (A) > 0. Define the function f by

J(@yy) = max{ (23 + y3), (va + ya), (x5 + y5) },
where (z,,y,) = T™(z,y) as before. Let
no = no(z,y) = min{n > 0; 7" (z,y) € A},
and for k > 1,
ng = ng(z,y) = min{n > np_1; T"(x,y) € A}.

Note that ng(z,y) = 0 for (z,y) € A. Also, by construction we have nyy; >
nr + 6 which makes the recursion in the next lemma simple to state and to

prove. Finally, let

Mk - Mk(xv y) = max{|Ank|7 |Ank+1|7 |Ank+2|}

Lemma 4 For all np + 3 < n < ng4q + 2 we have
|An| < F(T™) M.

In particular, we have

My < f(T7™) My, (8)

Proof Since 17 (z,y) € A, we have that €, 41 = €, 42 = 0 and hence

J(ng +2) = ng. Therefore it follows from Lemma 3(ii) that

|Ank+3| S (xnk+3 + ynk-l-?)) max{|Ank|7 |Ank+1|7 |Ank+2|}



For ni + 4 we obtain in a similar fashion,

IA

|Ank+4| ($nk+4 + ynk+4) max{|Ank+1|7 |Ank+2|7 |Ank+3|}

IA

(xnk+4 + ynk+4) max{|Ank+1|, |Ank+2|7

ma‘X{|Ank|7 |A7’Lk+1|7 |Ank+2|}}

($nk+4 + ynk+4) max{|Ank|7 |Ank+1|7 |Ank+2|}7

and similarly for ng + 5.

For the indices n; +6 < n < ng4q + 2 we use induction: Suppose that
for all ny +3 < ¢ < n we have |A;] < f(1T™)Mj. Since by construction
j(n) > ng + 3 for all these values of n, it follows from Lemma 3(i) that also
Al < FT7) M o

Define on A the induced transformation T4 by T4 = T™ and more
generally, T = T". Since (E,T, u) is ergodic, so is the system (A, Ta,
p(-)/1(A)). From (8) we find, writing g = 770,

log f(T™) + z logMo

I =

1
z log M11

IA

M £

1
log f(T™) + logMo + Elog(fog)

I =

k

.
Il
—

1 1
ElogMo—l— Elog(fog)

I
I =
-

—_

log f(T™ ™ 0 g)+

—
-
x>l

1 1
= 2 log f(Thog)+ log Mo+ log(fog).

=1

Eal

Since g cannot map a set of positive p measure onto a set of p measure
zero, the point g(z,y) is generic for p almost all (z,y) € F. Therefore the
ergodic theorem (applied to T'4) tells us that for almost all (z,y) € F, this



last expression converges for k — oo to

p(4) " [ 1o fd

which is strictly negative since f(z,y) < 1 on A. It follows that M} goes
down exponentially fast almost surely. From Lemma 4 we see that for all
n > ng + 3, |A,] < My. Finally, ng/k converges almost surely to u(A)~! as
n — oo by the ergodic theorem (applied to T'). Therefore, |A,| itself also
goes down exponentially fast, and the proof is complete.

In fact, we even get an explicit bound on the rate at which |A,| tends to
zero: Since My goes down at least as fast as exp{ku(A)~" [, log fdu}, |A,]
goes down at least as fast as exp{n [, log fdu}. Since the behaviour of ¢,
on the exponential scale is known exactly (see Corollary 1), this leads to a

value for ¢ in the statement of Theorem 1. O
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