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Abstract

In this paper we show that the integral map of Routh�s sphere has monodromy when the sphere

becomes gyroscopically unstable� This uses the non�Hamiltonian monodromy of ���

Routh�s sphere has center of mass not at its geometrical center and moment of inertia
tensor with two equal principal moments of inertia� Moreover� it rolls on a horizontal
plane under the in�uence of a constant vertical gravitational force�

� The equations of motion

In this section we derive the equations of motion of Routh�s sphere�
To set up the equations of motion� consider a reference sphere of radius r and mass m

with center of mass at C� which is a distance � �� � � � r� from its geometric center that
lies at the origin� see �gure 	� The position of the moving sphere is given by applying the
element �A� a� of the 
�dimensional Euclidean group E�
� � SO�
� � R

� to a position of
the reference sphere� The center of mass C � of the moving sphere is a�

The tangent of left translation in E�
� gives the trivialization

L � E�
�� e�
� � T E�
� � �A� a�� b� �
�
A� a�A�� �A�A�� �a

�
� � �A� �a��

Here e�
� is the Lie algebra of E�
�� Using the map L� we pull back the Lagrangian of the
unconstrained moving sphere to E�
� � e�
� and obtain the Lagrangian

L � Trot � Ttrans� V� �	�

Trot � �
� mhI���� �i is the rotational kinetic energy of the unconstrained moving sphere

about its center of mass with I � diag�I�� I�� I�� its moment of inertia tensor with respect
to its principal axes at the center of mass and h � i is the Euclidean inner product on

R
�� Here we have identi�ed the matrix  �

�� � �� ��
�� � ���

��� �� �

�A� so�
� with the angular

velocity vector � � ���� ��� ��� � R
�� The translational energy of the center of mass of the

unconstrained moving sphere is Ttrans � �
�
mhb� bi and its potential energy is V � mgha� e�i�
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The Lagrangian derivative of L is

�L �

�
d

dt
�I��� �I��� �� m

db

dt
�m �b� ���mgA��e�

�
� ���

Figure 	� Routh�s sphere� �a� The reference sphere�
�b� The moving sphere�

The moving sphere is subjected to two kinds of constraint� a holonomic constraint of
moving on a horizontal plane and a nonholonomic constraint of rolling� To treat these
constraints let

u � u�A� � �A��e� �
�

and let s � s�A� be the vector in the reference sphere from the center of mass C to a point
Q on the sphere� Thus the vector

n �
	

r
�s� � e��

is a unit normal vector to the reference sphere at Q� In order that the point of contact P
of the moving sphere with the horizontal plane be equal to As � a� the rotation A must
map the unit normal vector n to the unit normal vector �e� to the horizontal plane at P �
Hence

�e� � An �
	

r
A�s� � e���

which gives
s � �r A��e� � � e� � r u � � e�� ���

Because the point of contact P lies on the horizontal plane� it follows that

� � hAs � a� e�i � hs�A��e�i� ha� e�i�

�



that is�
a� � ha� e�i � hs� ui� ���

which is the holonomic constraint� The condition that the sphere rolls without slipping is
equivalent to requiring that the velocity of the point of contact P of the moving sphere
with the horizontal plane is zero� In other words�

� � �As � �a�

which is equivalent to�
� � A�� �As � A�� �a � � � s � b� ���

Equations ��� and ��� de�ne the ��dimensional constraint manifold

C �
n

�A� a� �� b� � E�
��R
� b � �� � s�A� � ha� e�i � hs�A�� u�A�i

o
� ���

� Reduction of the E��� symmetry

We now reduce the E��� symmetry in Routh�s sphere which is generated by translations of
the horizontal plane and rotations about a vertical axis�

More formally� consider the ��dimensional Euclidean group

E��� �
n
�R�� x� � E�
� R� �

�� cos� � sin� �
sin� cos� �
� � �

�A�x � �x�� x�� ��
o
�

Viewed as a subgroup of E�
�� the group E��� acts on the left on the constraint manifold
C by

� � E���� C � C �
�
�R�� x�� �A� a� �� b�

�
� �R�A�R�a � x� �� b�� ���

Note that � maps C into itself because

u�R�A� � �A��R��
� e� � �A��e� � u�A�

and consequently�
s�R�A� � s�A��

using ���� Since the action � is free and proper� the orbit space C� E��� is a smooth
manifold� which� after a little thought� is seen to be di�eomorphic to S� �R

�� The action
� preserves the Lagrangian L �	�� because

hR�a� x� e�i � ha� e�i�

Thus E��� is a symmetry of Routh�s sphere�
We now derive the classical equations of motion of Routh�s sphere �which in fact are

the equations of motion on S� � R
� obtained after reducing E��� symmetry�� We apply

the d�Alembert principle� which states that the Lagrangian derivative �L ��� of L �	� is






perpendicular to all vectors �e�� eb� � R
��R

� that satisfy the nonholonomic constraint ����
In other words�

� �
D d
dt

�I��� I���� �� e�E �
D
m
db

dt
�m �b� �� � mg u� ebE

�
D d
dt

�I��� I���� �

�
n
�m

d

dt
�� � s� � m �� � s�� � �mg u

o
� s� e�E

for every e� � R
�� Therefore

d

dt
�I�� � I���� � �m hs� si d�

dt
� m hd�

dt
� si s �m� hds

dt
� si

�m hs� �i ds
dt

� m h�� si� � s � mg u� s ���

and
du

dt
� u� �� �	��

which is obtained by di�erentiating �
�� Equations ��� and �	�� may be rewritten as

d

dt

�
I� � ms� �� � s�

�
� I� � � � m

ds

dt
� �� � s� � m h�� si� � s � mg u� s �		�

and
du

dt
� u� �� �	��

where �u� �� � S� �R
�� Since s � ru� �e� ���� we see that solutions of �		� and �	�� are

integral curves of a vector �eld eV on S� �R
�� A straightforward calculation shows that

the energy of the sphere�

eE�u� �� � �
�
hI�� �i� �

�
m h� � s� � � si � mg hs� ui� �	
�

is an integral of eV �

� Reduction of the S	 symmetry

Next we reduce the S� symmetry of Routh�s sphere� which is generated by rotations about
its e� principal axis�

More formally� de�ne a right S� action on the constraint manifold C ��� by

� � C � S� � C �
�
�A� a� �� b�� �

�
� �AR��

� � R�a�R���R�b�� �	��

Since
u�AR��

� � � �R�A
��e� � R�u�A�� �	��

�



R�e� � e�� and s�A� � ru�A� � �e� ���� it follows that s�AR��
� � � R�s�A�� Hence

R�� � s�AR��
� � � R��� � s�A�� � R�b

and D
s�AR��

� �� u�AR��
� �

E
�

D
R�s�A�� R�u�A�

E
� hs�A�� u�A�i

� ha� e�i � hR�a�R�e�i � hR�a� e�i�

Therefore � maps C into itself� Since R� �I � I �R�� the action � preserves the Lagrangian
L �	�� Thus S� is a symmetry of Routh�s sphere�

Because E��� acts on the constraint manifold C on the left and S� on the right� the
actions � ��� and � �	�� commute� Hence � induces an action 	 on the ��orbit space
S� �R

�� From �	�� and �	��� we see that 	 is given by

	 � S� � �S� �R
�� � S� �R

� �
�
�� �u� ��

�
� �R�u�R���� �	��

A straightforward calculation shows that the E����reduced vector �eld eV ��		� and �	���
and energy eE �	
� are invariant under the action 	�

We now reduce the S� symmetry using invariant theory� The algebra of S��invariant
polynomials on S� �R

� is generated by


� � u� � hu� e�i

� � u��� � u��� � hu � �� e�i

� � u��� � u���


� � ��


� � ��
� � ��

�


� � u�� � u��

�	��

subject to the relations


�
� � 
�

� � 
�
�� 
� � � � 
� � �


�
� � 
� � 	�

�	��

Thus the 	�orbit space �S� �R
���S� � M is the semialgebraic subvariety of R� de�ned

by

�
� � 
�

� � �	 � 
�
��
�� j
�j � 	 � 
� � �� �	��

M is not smooth� because 	 leaves the lines

L� �
n

��� ���	� �� �� ��� � S� �R
� �� � R

o
pointwised �xed� Thus the half planes

�� �
n

��	� �� �� 
�� 
�� � R
� 
� � R � 
� � �

o
����

form the set of singular points of M �

�



We now determine the �vector �eld� V on M obtained by reducing the S� symmetry
of the vector �eld eV � To do this we need only compute the Lie derivatives of the invariants

i� i � 	� � � � � � with respect to eV � Consider the following inner products�										
										�

�� �
D
I� � ms� �� � s�� e�

E
�� �

D
I� � ms� �� � s�� u

E
�� �

D
I� � ms� �� � s�� s

E
�� �

D
I� � ms� �� � s�� u� e�

E
�� �

D
I� � ms� �� � s�� �

E
�

It is easy to see that they are invariant under the action 	 �	��� A calculation shows that�												
												�

�� � �I� � mr� �mr� 
��
� � �mr� � mr� 
��
�

�� � �I� � m�� � mr�
��
� � ��mr� � I� 
� � mr� 
�
��
�

�� � rI� 
� � rI� 
�
� � �I� 
�

�� � ��I� � mr� � m�� � �mr� 
��
�

�� � �I� � mr� � m�� � �mr� 
�
�

� � �I� � mr��
�

�

�mr��
� � 
�
��� � �mr� 
�
��

��	�

Using the de�nition of the vector �eld eV � we compute the Lie derivative of �i� i � 	� � � � � �
with respect to eV and obtain�																			
																			�

��� � LeV �� � �mr� 
�
� �mr� 
�
�
�

��� � mr� 
�
� � mr� 
�
�
�

��� � �

��� � �
�
I� � mr� � mr� 
�

�

�
� � �mr� 
�

� � mg� �	 � 
�
��

� 
�
�
mr� � �I� � m�� � mr��
� � mr� 
�

�

�
��� � mr� 
�
� �mg�
� � �I� � mr��
� �
�

� �
�
mr�

d

dt
�
� � 
�
��

� �mr� �
� �
� � 
� �
��

� �
�

�
I� � mr� � m�� � �mr� 
�

�
�
��

����

Di�erentiating the equations in ��	� and equating the results to ���� gives

�
� � 
�

T �
�� �
� �
�
I� � mr� � mr� 
�

�

�
� �mg� �	� 
�

��

� 
�
�
mr� � �I� � m�� � mr��
� � mr� 
�

�

�
�
� � �I� 
�
�

P �
��

�
I� � mr� � mr� 
�

�
��
�

�



�
� � �mr 
�
�
P �
��

�
I�� � r�I� � I��
�

�
T �
�� �
� � ��mr�
�
� � �mg�
�

� �mr��I� � I��
�I� � mr� � mr� 
��

P �
��

�
�
��

where �
P �
�� � I�I� � mr�I��	 � 
�

�� � mI��� � r
���

T �
�� � I� � mr� � m�� � �mr� 
�
����

The solutions of ��
� which lie on the S� orbit space M are integral curves of the �vector
�eld� V on M �

Since the energy eE �	
� is invariant under the S� action 	� eE induces a �smooth�
function E on the orbit space M given by

E�
�� � � � � 
�� � �
�
T �
��
�� �

�
�I��mr��
�

�� �
�
mr��
��
�
��

��mr�
�
��mg�
�� ����

E is an integral of the E���� S��reduced �vector �eld� V � From ���� we see that

J �
�� � � � � 
�� � rI� 
� � I��� � r 
��
� � �� ����

is an integral of V � The following calculation shows that

K�
�� � � � � 
�� � 
�
q
P �
�� ����

is also an integral of V �

�K �
�

�
�
q
P �
�� � 
�

�
� P

��
��q
P �
��

�
�
�

�

���mr 
�
�q
P �
��

�I�� � r�I� � I��
�� � 
�
�

�
� P

��
��q
P �
���

�A �
��

using ���� and ����

� �� since �
� P

��
�� � mr� I� � mr��I� � I���

Therefore the functions

fJ �u� �� � rI��u��� � u���� � I����� � ru�� ����

and eK�u� �� � ��

q
I�I� � mr�I��	� u��� � mI��� � ru��� ����

are integrals of the vector �eld E����reduced eV on S� �R
�� fJ is Jellet�s integral�

�



� Invariant varieties E����S	 reduced �vector �eld�

In this section we study the geometry of the invariant varieties Mj�k � M 	J ���j�	K���k�
of the E����S� reduced �vector �eld� V on the orbit space M de�ned by the j and k level
sets of the integrals J and K�

case 	� j � k � ��
In this subsection we study the invariant variety M����

From the de�ning equation �	�� of the orbit space M � we see that M��� is given by

�	� 
�
��
� � 
�

� � 
�
� � �� j
�j � 	 � 
� � �

rI� 
� � I� 
��� � r
�� � � �
��


�
q
P �
�� � ��

Since P �
�� � � when j
�j � 	� �
�� is equivalent to


� � 
� � � � �	� 
�
��
� � 
�

� � 
�
� � �� j
�j � 	 � 
� � ��

Thus M��� is the semialgebraic variety in R
� de�ned by

f�
� � f�
��
�� 
�� � 
�
� � �	� 
�

��
� � �� j
�j � 	 � 
� � �� �
	�

The only singular points of M��� are p� � ��	� �� �� � �� �� ��� since

� � df�
� �
�
�
�
�� �
�� 	� 
�

�

�
implies that 
� � �	� 
� � 
� � �� and f�p�� � �� Because the Taylor polynomial
of f about p� to second order is 
�

� � �� � 
��
�� the tangent cone to M��� at p� is
nondegenerate� see �gure 
b�

case �� j 
� � or k 
� ��
Consider the integral variety Mj�k � M 	 J ���j� 	 K���k�� where j and k are not both
zero� Eliminating 
� from the de�ning equation of the orbit space M �	�� shows that Mj�k

is de�ned by

� � F �
�� 
�� 
�� � �	 � 
�
��
� � 
�

� �
	

r�I��

�
j � kI�G�
��

��
� �
��

where G�
�� � �� � r
���
q
P �
�� and j
�j � 	 � 
� � �� The point 
� � �
�

�� 

�
�� 


�
�� is a

singular point of Mj�k if and only if � � F �
�� and

� � DF �
�� �
�
��
�

�

�
� �

�kI�
r�I��

�j � kI�G�
�
���G��
�

�����
�
�� 	� �
�

��
�
�
� �

�

From �

� we �nd that 
�
� � �	 and 
�

� � �� Therefore the condition F �
�� � � becomes

� �
�
j � kI�G�
�

��
��

� Consequently� if Mj�k has singular points� then �j� k� lies on the locus

�



�� � j � kI�G��	�� which is two lines intersecting at the origin� The de�ning equation of
�� is equivalent to

k �

q
P ��	�

I��� � r�
j� �
��

Using the �rst component of DF �
��� 
�
� � �	� and �
��� we obtain 
�

� � �� Conversely� if
�j� k� � �� � f��� ��g� then Mj�k has exactly one singular point 
� � ��	� �� ��� see �gure

�a and �b� At the singular point 
� it follows that 
�
� � � and 
�

� � k�
q
P ���� When

�j� k� 
� �� ���� the variety Mj�k is a smooth manifold� which is the graph of the smooth
function


� �
	

	 � 
�
�



�
� �

	

r�I��
�j � kI�G�
���

�

�
� j
�j � 	�

see �gure �c� Next we determine the tangent cone to Mj�k at the singular point 
�� To do
this we need only calculate D�F �
�

��� We obtain

D�F �
� �

�B� ���� 	
�kI�

r�I�
�

�
�kI�
G�
����� 	 
j � kI�G
����G��
���

�
� ����

� �� �
���� � �

�CA�
Since 
� � ��	� �� ��� 
� � �� and j � kI�G��	� � � �because 
� is a singular point of
Mj�k�� we �nd that

D�F �
�� �

�B� �
�k

�
I
�

�

r�I�
�

G�
���� � ��

� �� �
�� � �

�CA�

Figure �� The integral variety Mj�k� �a� �j� k� � �� �
f��� ��g� �b� �j� k� � �� � f��� ��g� �c� �j� k� 
� �� � ���

�



D�F �
�� is nondegenerate� Thus the equation of the tangent cone C to Mj�k at 
� �
��	� �� �� is

� �
�k�I��
r�I��

G���	�
�
�
� � ��� � �
�

� � ��
� � 	�
�� �
��

� The �vector �eld� V on Mj�k

In this section we carry out an analysis of the E��� � S��reduced �vector �eld� V ��
�
on the invariant variety Mj�k after discarding its singular points� Our discussion follows
Routh  	! and shows that this vector �eld is a ��parameter family of one degree of freedom
Hamiltonian systems�

We start o� by removing the singular half planes �� ���� from M �	��� What remains
is a smooth submanifold M� � M � f�� ���g of R� which is the product of R and the
graph of the smooth function


� �

�
� � 
�

�

	 � 
�
�

� j
�j � 	� �
��

Note that the orbit map

� � S� �R
� � fL� � L�g �M � �u� �� � �
�� � � � � 
�� �
��

is a proper submersion with �ber a unique S� orbit� Projecting V onto ��	� 	��R
� gives

the vector �eld V whose integral curves satisfy�															
															�

�
� � 
�

T �
�� �
� � 
�
�
�
I� � mr� � mr� 
�

�
�mg� �	� 
�

��

��
�
� � 
�

��

	 � 
�
�

�
mr� � �I� � m�� � mr��
� � mr� 
�

�

�
�
� � �I� 
�
�

P �
��

�
I� � mr� � mr� 
�

�
�
� � �mr 
�
�

P �
��

�
I�� � r�I� � I��
�

�
�

�
��

Suppose that 
 � �
�� 
�� 
�� lies on M�
j�k � J ���j�	K���k�	M�� Eliminating 
� and 
�

from the �rst two equations in �
�� using


� � k�
q
P �
�� and 
� �

	

rI�

�
j � kI�G�
��

�
� �
��

where G�
�� � �� � r
���
q
P �
��� we see that the integral curves of V on the invariant

manifold M�
j�k satisfy the equations

	�



�
� � 
�

T �
�� �
� � �R�
��

	� 
�
�


�
� � j�


	

r�I��

R�
��

	� 
�
�

�

� jk

�� 	

r�I��

	q
P �
��

�
rI��I� � mr� � mr� 
�� � �I�

�� � r
��R�
��

	� 
�
�

���
� k�


I�
r�I��

�� � r
���r � �
��

	 � 
�
�

�
� ����

where
R�
�� � mr� � �I� � m�� � mr��
� � mr� 
�

��

Use �
�� and �
�� to eliminate 
�� 
�� and 
� from the E��� � S��reduced energy E �����
After some remarkable cancellations we obtain

Hj�k�
�� 
�� � �
�

T �
��

	� 
�
�


�
� � Uj�k�
��� j
�j � 	 ��	�

where

Uj�k�
�� � �
�

	

r�I��

�
k
p
I��� � r
��� jp

I�

q
P �
��

��
	 � 
�

�

� mg�
� ����

up to the additive constant �
�I�
k�� m

�I�
�
I�
j�� A calculation shows that the vector �eld VjM�

j�k

���� is in Hamiltonian form on ��	� 	��R with Hamiltonian Hj�k ��	� and symplectic form
T 	��

����

�

d
�  d
��

	 Homoclinic orbits

In this section we study the invariant varieties of the E��� � S��reduced �vector �eld� V
��
� which correspond to homoclinic trajectories�

We consider the restriction of V to the integral variety Mj�k � M 	 J���j� 	 K���k�

when k � kj �

p
P 	��


I�	��r

j� because only then does Mj�k contain the point �
�

�� � � � � 

�
�� �

�	� �� �� �� �� which corresponds to the sphere having its center of mass vertically above its
geometric center� Let

Mj � Mj�kj � ��
�

Removing the singular points of Mj gives a smooth manifold M�
j � Restricting the �vec�

tor �eld� V �
�� to M�
j gives the Hamiltonian vector�eld on ��	� 	� � R whose special

Hamiltonian is

Hj�
�� 
�� � �
�

T �
��

	 � 
�
�


�
� � Uj�
�� j
�j � 	� ����

		



where Uj is the special e�ective potential

Uj�
�� � Uj�kj �
�� � ��
�

P �	�

r�I��I�
j�

	

	 � 
�

�
F �
��� F �	�


� � 	

��

�
� � 	� � mg�
� ����

and

F �
�� �
� � r
�
� � r

�
vuutP �
��

P �	�
� ����

We want to study the graph of the special e�ective potential Uj and to see how many
times and with what multiplicities it intersects the horizontal line mg� when j
�j � 	�
This will give us information about asymptotic motions of Routh�s sphere�

��� The special e�ective potential

In this subsection we prove some general facts about the special e�ective potential Uj�

First we show that the graph of the special e�ective potential Uj crosses the horizontal line
mg� at least once in ��	� 	� when jjj � j�� We argue as follows� From ���� we �nd that

Uj�	� � lim
�����

Uj�
�� � mg�� lim
������

Uj�
�� �

�
��� if j 
� �

�mg�� if j � ��

and

U �
j�	� � lim

�����
U �
j�
�� � ��

�

P �	�F ��	��

r�I��I�
j� � mg� � mg�

�
	 � j�

j��

�
�

where

j� �
�rI�

F ��	�
q
P �	�

q
mg�I�� ����

Thus U �
j�	� � � for jjj � j� and U �

j�
�	� � �� This shows that bUj�
�� � Uj�
�� �mg� has

at least one zero in ��	� 	! when j � j� and at least two zeros when jjj � j��

Next we show that when j
�j � 	 the graph of Uj crosses the horizontal line mg� at
most four times if jjj � j�� From the de�nition of Uj ���� we see that if 
� is a zero of bUj

then

�CjD�� � r
��
q
P �
�� � Cj

�
D��� � r
��

� � P �
��
�
�mg��	 � 
���	 � 
��

��

where Cj � �
�

j�

r�I�
�
I�

and D �

p
P 	�


��r � Squaring both sides of the above equation and

simplifying gives
� � Qj�
���	 � 
��

�� ����

	�



where

Qj�
�� �
C�
j r

�I��
m�g����� � r��

�
��I� � r�I� � m�� � r����	 � 
��

��
� �Cj

mg�

�
D��� � r
��

� � P �
��
�
�	 � 
�� � �	 � 
�

���� ����

Clearly Qj is a quartic polynomial in 
�� If bUj has more than four zeros in ��	� 	�� then
the above argument shows that Qj would have to have more than four zeros� which is
impossible�

For future reference we note that

Qj�	� � �Cj

�
Cjr

� ��� r��D� �mI�� � mrI�!
� � �mg�P �	�

�
����

is � if and only if j � � or j � j�� Moreover

Qj��	� �
��rI�I�
�� � r�

C�
j � ��	�

In the next two subsections we will discuss two special cases� The �rst case occurs
when the Routh sphere is spinning very slowly about an vertical axis which passes through
the center of mass and the geometric center� The second occurs when the axis is in the
same vertical position as in the �rst case but the spin is less than j� ����� In both cases
we want to describe the qualitative features of special integral curves of the �vector �eld�
V near the singularities of the invariant variety Mj � These integral curves correspond to
homoclinic trajectories� Knowing these homoclinic trajectories is essential in x� where we
verify the hypotheses of the non�Hamiltonian monodromy theorem�

��� The case when jjj is small

When j � � the invariant variety M��� M���� has two singular lines f��	� �� �� �� 
�� �
R

� 
� � �g� If we remove these singularities it becomes a smooth submanifold M�
� of R�

which is the graph of the function

f�
�� 
�� 
�� � 
�
� � �	� 
�

��
� � � j
�j � 	 � 
� � �� ����

In this case� the Hamiltonian vector �eld on ��	� 	��R has special Hamiltonian

H��
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�� � �
�

T �
��

	 � 
�
�


�
� � U��
�� j
�j � 	� ��
�

where U��
�� � mg�
�� Because H� is an integral of VjM�
� and 
� � �
� we know that

h� � H��
�� �
�� � �
�

T �
��

	 � 
�
�

�
�
� � U��
��� j
�j � 	 ����

	




is constant throughout the motion�
We now look at motion on the h��level set of the special Hamiltonian H�� Then ����

becomes

�
�
� �

��h� �mg�
���	� 
�
��

T �
��
� ����

Since the left hand side of ���� is nonnegative� motion on H��
� �h�� can take place only on

�
�� 
�� � ��	� 	�� where 
� � �	 and


� �

�
	� if h� � mg�

h��mg�� if �mg� � h� � mg��

Since lim����� T �
�� � I� �m��� r
��� � �� using ���� we obtain lim����� �
� � �� Thus
motion in H��

� �h�� has two limit points �
�� �� in the 
�" �
� plane� We investigate these
limit points further� Separating variables in ���� and integrating gives

I� �
Z ��

c�

d
�q
��h� �mg�
���	� 
�

��
and I� �

Z ��

c�

d
�q
��h� �mg�
���	� 
�

��
�

where c� � �
�� 
��� I� is the time it takes a motion in H��
� �h�� to reach the limit point

�
�� ��� Since I� is always �nite and I� is �nite when h� 
� mg�� we see that �
�� ��
is not an equilibrium point of the motion when h� 
� �mg�� �When h� � �mg�� the
motion is an equilibrium point because H��

� ��mg�� � f�
�� ��g�� When �
�� �� is not
an equilibrium point� the motion on H��

� �h�� passes through it� To see this we argue as
follows� From ���� we see that

lim
������


�
���	 � 
�

�� � ��h� � mg���T ��	�

is nonzero when h� 
� �mg�� From �
�� and �	�� it follows that �� � 
� is nonzero when

� � �	� Therefore Routh�s sphere is not in equilibrium� When h� � mg�� the limit
point �
�� �� � �	� �� is an equilibrium point because motion in H��

� �h�� � f�	� ��g takes
an in�nite time to reach it�

Since the special e�ective potential U� has no critical points on ��	� 	� and is strictly
decreasing� motion in H��

� �h�� proceeds directly from �
�� �� through �
�� �� and back to
�
�� �� when h� 
� �mg�� Thus we obtain the phase portrait given in �gure 
a� Note that
the level set H��

� �mg�� is not smooth at �	� �� whereas it is smooth at ��	� ��� All other
level sets of H� are smooth at �
�� ���

To understand the above phase portrait better we look at the zero level sets of the
integrals J ���� and K ���� on the orbit space M �	��� In other words� we use the space
M��� M���� �
	�� We now look at the level curves of the reduced energy E ���� on M�� Let
E� � EjM�� Since E��� �� �� � mg� and p� � �� �� �� is a singular point of M�� mg�
are critical values of E� and p� are critical points� To see if E� has any other critical values�

	�



we use Lagrange multipliers on the smooth manifold M�
� � M� � fp�g ����� If 
 � M�

� is
a critical point then � � dE��
� � � df�
�� This is equivalent to

mr� 
� � mg� � ��
�
� � �

��
� � �

I� � mr� � m�� � �mr� 
� � ��	 � 
�
�� � � ����


�
� � �	� 
�

��
� � �� j
�j � 	 � 
� � ��

Suppose that � � �� Then

� � I� � mr� � m�� � �mr� 
� � I� � m�r � ��� � ��

where the �rst inequality follows because 
� � �	� This is a contradiction� Therefore
� 
� �� Consequently� 
� � � and hence � � �	 � 
�

��
�� If 
� � �� then mg� � �� which is
a contradiction� Therefore 
� � �� Hence 
�

� � 	� But then

� � I� � mr� � m�� � �mr� 
� � I� � m�r � ��� � ��

Figure 
� �a� Level curves of the special Hamiltonian H� � �
�
T 	��

����

�


�
� �

mg�
� on ��	� 	� � R� The points ��	� �� are limit points of the
motion on H��

� �h��� �b� Level curves of E� � �
� T �
��
� � mg�
� on

M� � � � 
�
� � �	 � 
�

��
� j
�j � 	 � 
� � ��

	�



This is a contradiction� Thus � 
� � is also false� Hence ���� has no solutions� that is�
E� has no critical points on the smooth manifold M�

� � To sum up� we have shown that
if h� 
� �mg�� then h� is a regular value of E� on M�

� and hence E��� �h�� is a smooth
submanifold of M�

� �
Note that because the closure of the mg��level set of the special Hamiltonian H�

��
� passes through ��	� ��� the mg��level set of E� intersects the half line f��	� �� 
�� �
R

� j
� � �g� At this intersection the level set E��� �mg�� is smooth� Hence the motion in
the 
�" �
� plane passes through ��	� ��� Since the motion of H��

� �h�� proceeds from �
�� ��
and goes to �
�� ��� the level sets E��� �h�� are topological circles when h� 
� �mg�� see
�gure 
b�

The motion on E��� �mg�� �or on H��
� �mg��� has the following physical interpretation�

The point �	� �� �� corresponds to the position of the Routh sphere when its center of mass
is vertically above its geometric center� Since j � �� the sphere is not spinning� Giving the
sphere a small push� it rolls over the position ��	� �� ��� which corresponds to the center
of mass being vertically below its geometric center� and then returns very near its initial
position� Thus E��� �mg�� � f�	� �� ��g corresponds to an orbit of the E��� � S��reduced
�vector �eld� V jM� which is homoclinic to �	� �� ���

We now suppose that jjj is small� Note that when j � � the quartic polynomial Qj ����
becomes �	� 
�

���� which has zeros of multiplicity two at �	� Let j� � � and C� � �
�

�
r�I�

�
I�

where � is positive and small� Then we may write Qj ���� as

eQ��x� � x� � A���x� � B���x� � C���x� D����

where A��� � �� � O����� B��� � �� � �� � O����� C��� � �� � O����� and D��� �
	 � �� � O����� When � is small and positive� from ���� and ��	� we see that eQ��	� � �
and eQ���	� � �� Because

eQ��� � � � � � �  � � ���� O�����

with � � 	 and � su#ciently small and positive� it follows that x� �  � � � �  � � � is
negative� when  � 	� and is positive otherwise� Suppose that ex �  � d�

p
� � O��� is a

zero of eQ�� Then
� � eQ��ex� � ��d�� � x��� � O�������

which implies d� �  �
�

p�x�� Therefore eQ� has two real zeros near 	� and two zeros near
�	� which are purely imaginary� Consequently� for every � su#ciently small and positive�eQ� has exactly one zero in ��	� 	� and this zero is simple� Therefore bUj has at most one
real root in ��	� 	� for every j with jjj su#ciently small� for if it had two such roots� then
so would Qj� which is a contradiction� If this root of bUj were multiple� then Qj would have
a multiple root� This is a contradiction� From x��	 we know that bUj has at least one root
in ��	� 	�� Hence bUj has exactly one root in ��	� 	� and this root is simple for every j with
jjj su#ciently small�

An important consequence of the above argument is that mg� is a regular value of
the special Hamiltonian Hj for every j with jjj su#ciently small� Moreover� H��

j �mg�� is

	�



a connected smooth one dimensional submanifold of ��	� 	� �R� whose closure in R
� is

the one point compacti�cation obtained by adding the point �	� ��� This is the homoclinic
orbit which we will need in x� when we verify the hypotheses of the non�Hamiltonian
monodromy theorem�

This completes our discussion of the homoclinic orbits of the �vector �eld� V on Mj when
jjj is small�

��� The case when jjj is near j�

In this subsection we see if small homoclinic orbits exist when jjj is close to but less than
the critical value j�� When jjj decreases through j�� Routh�s sphere becomes gyroscopically
unstable�

To do this we look at the Taylor polynomial of bUj at 
� � 	� From the de�ntion ����
of the special e�ective potential Uj we obtain

bUj�
�� � ��
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j�

	

	 � 
�

�
F �
��� F �	�


� � 	

��

�
� � 	� � mg��
� � 	�

�

��Ej
	

�	 � �
� �
� � 	��

�
F �
��� F �	�


� � 	

��

� mg�

�� �
� � 	��

where Ej � ��
�

P 	�
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�
I�
j� and F �
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��r �
r

P 	��

P 	�


� bF �
���
� � 	� ����

A straightforward calculation shows that

bF �
�� � �EjF
��	�

�
� mg�� � EjF

��	�
�
F ���	�� �

�
F ��	�

�
�
� � 	� � O��
� � 	����

where

F ��	� �
rI�
I�

I� � mr�� � r�

I� � �� � r��

and

F ���	� � �
mr�I�

�
�I� � I���I� � mr���m��I�

�
I��
�
I� � m�� � r��

�� �

When jjj � j� the �rst order term of the Taylor polynomial of bUj� at 
� � 	 vanishes
identically whereas the second order term is

�
�
Ej�F

��	�
�
F ���	�� �

�
F ��	�

�
� ����

From now on we assume that �
� F

��	� � F ���	�� that is�

�mr�I�
�
�I� � I���I� �mr���m��I�

�
� rI�I��I� � mr��� r���I� �m�� � r��� � �� ����
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Then bUj� is a Morse function with a nondegenerate critical point of index � at 
� � 	�
Note that ���� is an open condition on the parameters m� r� �� I�� and I� de�ning Routh�s
sphere� Since U �

j�	� � � for every j with jjj close to j�� we see that bUj has a simple zero
in ��	� 	� which is close to 	 when jjj close to j�� In other words� the mg��level set of the
special reduced Hamiltonian Hj is smooth �except at 
� � 	 and is connected�� This level
set is the desired small homoclinic orbit of the �vector �eld� V on Mj when jjj close to j��

To understand the phase portrait of the special reduced Hamiltonian Hj when jjj is
close to but less than j�� we analyze the behavior of the integral curves of the �vector �eld�
V near the singular point 
� � �	� �� �� of the invariant variety Mj ��
�� We will look at
the level sets of the reduced energy Ej � EjMj near 
�� Explicitly� Ej is restriction to Mj

of the function on R
� given bybEj�
� � �
�
T �
��
� � �

�
�I� � mr��
��
��

� � �
�
mr��
��
�� � 
�
��
���

�

�mr� 
��
��
��
�� � mg�
� ����

with 
��
�� � �j� kI�G�
����rI� and 
��
�� � k�
q
P �
��� Let e� � bEj�
��� To determine

the tangent plane �e� to the e��level set of bEj we calculate d bEj�
�� and obtain

d bEj�
�� � �
� T ��� d
� � mg� d
��

Therefore the equation of �e� is

� � mg��
� � �� � �
�

�
I� � m�� � �r��

�

�� ��	�

Next we �nd the intersection of the plane �e� with the tangent cone C �
��� Eliminating

� from �
�� and ��	� gives

� �


�k�I��
r�I��

G����� � �mg� �

I� � m�� � �r��

�
�
� � ��� � �
�

� � Q�
�� 
��� ����

If � � �	� the quadratic form Q is positive de�nite� Hence 
� � 	 � 
� � �� This implies

� � �� In other words� the plane �e� intersects the tangent cone C only at its vertex�
Therefore for e slightly larger than e�� the tangent plane to bE��j �e� intersects C in a smooth
circle� Thus the singular point 
� is an �elliptic� equilibrium point of the �vector �eld� V
on Mj when �j� k� � ��� If � � �	� then the quadratic form Q is inde�nite when

jkj � �rI�
I�G��	�

vuut mg��
I� � m�� � r��

� � k� ��
�

and positive de�nite otherwise� Therefore �e� intersects the tangent cone C only at its
vertex if ��
� does not hold� whereas it intersects C in a topological circle �with only
one singular point 
�� when ���� and ��
� hold� In this latter case� 
� is a �hyperbolic�
equilibrium point of V � This is very reminiscent of the Hamiltonian Hopf bifurcation in
the Lagrange top� see  �� chapter V!� However� there is a fundamental di#culty with this
analogy� we are not in a Hamiltonian situation� that is� V is not a Hamiltonian vector
�eld�
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 Monodromy

In this section we verify the hypotheses the non�Hamiltonian monodromy theorem� which
is proved in  
!� The non�Hamiltonian monodromy theorem allows us to conclude that
geometry of the integral map

Fj � fJ ���j� � R
� � m�

�
� eEjJ ��

�j���m�� � eKjJ ��
�j���m�

�
����

of Routh�s sphere is complicated� More precisely� let p be a hyperbolic equilibrium point
of the E����reduced vector �eld eV on the j�level set of Jellet�s integral fJ and let �ej� kj� �
Fj�p�� Then� for every �xed value of j for which jjj is su#ciently small or close to but less
than j� and every �e� k� near but not equal to �ej� kj� in R

�� the ��torus �bration de�ned
by the �e� k��level sets of the integral map Fj is nontrivial�

In the next few paragraphs we give a precise statement of the non�Hamiltonian mon�
odromy theorem�

Assumptions� Let v and w be two smooth vector �elds on a smooth ��dimensional
manifold M � Let p � M and let f be a smooth mapping from M to R

� with f�p� � ��
For every c � R

� we write Fc � fx �M j f�x� � cg for the �ber of f over c� We assume�

a� v�p� � � and Dv�p� has no real eigenvalues� Moreover� one complex conjugate pair
of eigenvalues has negative real part while the other has positive real part�

b�  v� w! � ��

c� Lvf � � and Lwf � ��

d� At each point x � F� n fpg� v�x� and w�x� are linearly independent and Df�x� has
rank equal to two�

e� F� is a compact connected subset of M �

Remark� If F� is not connected� but is equal to the union of two disjoint closed subsets
K and L� where p � K and K is compact and connected� then one can replace M by an
open neighborhood fM of K such that fM 	 F� � K� One then requires that assumptions
a�"e� hold with M replaced by fM �

Conclusions�

a� F� n fpg is di�eomorphic to the cylinder �R���Z� �R and F� is homeomorphic to
the one point compacti�cation of this cylinder� Near p� F� is equal to the union two
two�dimensional submanifolds of M which intersect transversally at the point p� If
S� denotes the set of x �M such that �t�x� � p as t���� then F� � S� � S��

b� There is an open neighborhood fM of F� in M and a simply connected open neigh�
borhood U of � in R

� such that the restriction of f to fM nF� de�nes a locally trivial
��torus �bration over U n f�g�
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c� Let � �  �� 	! � U nf�g be a smooth closed curve in U nf�g which winds once around
the origin in the positive direction� The ��torus bundle F�	�
� � �  �� 	!� over the

loop � has monodromy M �
�

� ��
� �

�
with respect to a suitable basis of generators

of the two�dimensional lattice H� � H�

�
F�	�
 	 fM� Z

�
�

In the course of proving the non�Hamiltonian monodromy theorem the following proposi�
tions are proved�

Proposition 	� There exist unique smooth functions 
 and � on U such that 
��� � �
and the �ow of the vector �eld u � �
 �f�w � �� �f� v de�nes a free action of the circle
group R���Z on fM n fpg�
If c � U n f�g� then a u�circle in Fc de�nes a generator �� � ���c� of the group of elements
of H� �Fc� Z� which are �xed under the monodromy operator M � Mc� For the second
generator �� � ���c� we can take a v�solution curve� starting and ending on a u�circle in
Fc� followed by a part of the u�circle in order to close it up� The linear transformation
Du�p� in TpM de�nes a complex structure in TpM � which in turn de�nes an orientation
in TpS�� the eigenspace of Tpv on which the real part of Tpv is positive� This orientation
extends in a continuous fashion to an orientation of TxM�TxS�� for x � S�� x 
� p�

Proposition �� If� for x � S�� x 
� p� the orientation of TxM�TxS� de�ned by the
complex structure in TpM agrees with the pullback of the orientation of R� by means of
Txf � then we can take ���� ��� as the ordered basis of H� in the theorem� If the orientations
do not agree� then we get the inverse monodromy matrix on this basis of H��

In the non�Hamiltonian case the orientations in proposition � need no longer agree� because
the mapping f is no longer determined by the vector �elds v and w as in the Hamiltonian
case� More precisely� if � is a local di�eomorphism near the origin in R� such that ���� � ��
then the assumptions a�$e� remain satis�ed with f replaced by � �f � If � reverses the
orientation of the plane� then the case where the orientations in proposition � agree is
turned into a case where they don�t�

In outline our veri�cation of the hypotheses of the non�Hamiltonian monodromy theo�
rem proceeds as follows� The E����reduced vector �eld eV on S� �R

� has three integralsfJ � eK� and eE � These integrals and the vector �eld eV are invariant under the S� action 	�
whose in�nitesimal generator is the vector �eld fX� In step 	 we show that every value j in
the range of fJ is a regular value� Thus the j�level set fJ ���j� is a smooth ��dimensional
submanifold of S��R�� which we denote by fMj� From the fact that fJ is an integral of the

S��invariant vector �elds fX and eV � it follows that fMj is an invariant manifold of fX andeV � Thus fXj � fX jfMj and eVj � eV jfMj are S��invariant vector �elds on fMj � Because fXj is

the in�nitesimal generator of the S� action on fMj � the vector �elds fXj and eVj commute�

On fMj the S� action 	 has two �xed points p� �
�
�� ���	� �� �� j��I���� r��

�
� Therefore

p� is an equilibrium point of fXj and eVj � In what follows we only consider the equilibrium
point p � p�� In step � we show that D eVj�p� has two pairs of nonzero complex conjugate

��



complex eigenvalues which are not real or purely imaginary when � � jjj � j�� In step 
 we
show that the derivative of Fj has rank � on F��

j �fj��fpg where fj � F �p�� Moreover� we
verify that the �ber F��

j �fj� of the integral map Fj is compact� In step � we show that the

vector �elds fXj and eVj are linearly independent along the connected component F��
j �fj�

�

of F��
j �fj� which contains p� F��

j �fj�
�

is the unstable manifold of eVj corresponding to the

hyperbolic equilibrium point p� Note that the orbits of eVj lie on the �bers of the integral

map Fj ����� since Ej � eEjfMj and Kj � eKjfMj are S��invariant integrals of eVj �
We now verify all the unproved assertions in the above outline�

Step 	� By construction� the E����reduced vector �eld eV �		� and �	�� on S� � R
� is

invariant under the S� action 	 �	��� Consider the S��invariant functions

fJ �u� �� � rI� �u��� � u���� � I����ru� � �� ����

and eK�u� �� � ��

q
I�I� � mr� �	� u��� � mI� �� � ru��� ����

on S� �R
�� We have show that fJ and fK are integrals of eV � Note that the in�nitesimal

generator fX of the S� action 	 is the restriction of the vector �eld

X�u� �� � �u� �

�u�
� u�

�

�u�
� ��

�

���
� ��

�

���

on R
� �R

� to S� �R
��

Using Lagrange multipliers we verify that fJ has no critical points as follows� Suppose
that �u� �� � S� �R

� is a critical point of fJ � Then

� �
�
rI���� rI���� rI���� rI�u�� rI�u�� I��ru� � ��

�
� �� �u�� u�� u�� �� �� ���

Therefore u� � u� � � and u� � ���r� But 	 � u�� � u�� � u�� � ���r�� which implies
that � � r� This contradicts the asssumption that � � � � r� Therefore fJ has no critical
points on S� �R

�� Hence every j is a regular value of fJ � From now on we will assume
that j is in the range of fJ � �

Step �� If we linearize the vector �eld eV at the equilibrium point p� we obtain

D eVj �p� �

�BBB�
� �� � ��
� � � �
� �� � ��
� � � �

�CCCA �

where

� � � j

I��� � r�
� � � 	�

� � � mg�

I� � m�r � ���
� � � � j�I� � I� � m�� � mr��

I��� � r��I� � m�r � ����
�

����

�	



Since the characteristic polynomial of D eVj�p� is

�
�� � �

� ��� � ��� � ���
��

�
�
��� � ���� � �

� ��� � ��� � ����
�
�

D eVj �p� has a pair of complex conjugate complex eigenvalues which are not purely imaginary
if and only if

��� � ���� � �
�

��� � ��� � �����

that is�
� �� � �

�
�� � ���� ����

Using ����� we see that ���� is equivalent to requiring that

� � jjj � j� �
�I��� � r�

I� � mr�� � r�

q
mg��I� � m�� � r����

As a check� if we substitute the above value of j� into k� � �
I�G	�
 j�� a short calculation

gives the value of k� obtained in ��
�� �

On fMj � the vector �eld eVj has two integrals eEj and eKj which are invariant under the

S� action generated by the �ow of the vector �eld fXj � In step � we have shown that the
equilibrium point p is hyperbolic when � � jjj � j�� Consider the integral map Fj ����
with Fj�p� � �ej� kj� � fj � The stable and unstable manifolds of eVj associated to p lie in
the connected component F��

j �fj�� of the level set F��
j �fj� � eE��j �ej�	 eK��

j �kj� containing

p� Since the integrals eEj and eKj and the vector �elds eVj and fXj are invariant under the

S� action� we may reduce the S� symmetry on fMj 	 eK��
j �kj� by passing to the orbit space

Mj ��
�� After reducing the S� symmetry� the level set F��
j �fj� becomes the subvariety

E��j �ej� of Mj� Here Ej ���� is the function obtained from eEj by reducing the S� symmetry�
Note that Mj is smooth except at � which is ��	� �� ��� if j � � and �	� �� ��� if jjj � j��

Restricted to fMj �fp�g the vector �eld eVj pushes down to the vector �eld V �
��� On
the invariant manifold M�

j � Mj � �� the vector �eld V has integral curves which satisfy

����� These equations are in Hamiltonian form on the symplectic manifold
�
��	� 	� �

R� T 	��

����

�

d
�  
�
�

with special Hamiltonian Hj �����

Step 
� We now show that the derivative of the integral map Fj ���� has rank � on
F��
j �fj��fpg� First� note that the orbit map � �	�� is a proper submersion when restricted

to the smooth manifold�
�S� �R

��� fL� � L�g
�
	 fJ ���j� � fMj � fp�g � fM�

j �

Since M�
j � is a smooth manifold contained in the orbit space M �	��� we see that

����M�
j � � eK���kj�� fpg

��



is a smooth submanifold of fMj � The subvariety E��j �ej��� of Mj is a smooth 	�dimensional
manifold� because it corresponds to the mg��level set of the special HamiltonianHj � There�
fore

����E��j �ej�� �� � � eE��j �ej�� fpg� 	 � eK���kj�� fpg� � F��
j �fj�� fpg

is a smooth ��dimensional submanifold of Mj� Consequently� for every m � F��
j �fj� �

fpg� we �nd that dimkerDFj�m� � dimTm�F��
j �fj� � fpg� � �� which implies that

rankDFj�m� � dimTmMj � dimkerDFj�m� � ��
Since the closure of H��

j �mg�� is compact and connected� we deduce that E��j �ej� is

compact and connected� Therefore F��
j �fj�

�
� ����E��j �ej��

�
is compact and connected�

�

Step �� Let E��j �ej�� be the connected component of E��j �ej� which contains 
�� We now

show that the vector �elds eVj and fXj are linearly independent on the smooth submanifold

F��
j �fj�� � fpg of fMj� Suppose not� Then at some point q � F��

j �fj�� � fpg there is a

nonzero real number � such that � eVj�q��fXj�q� � �� After reducing the S� symmetry� this
equation becomes V�c
�� � �� where c
� lies in E��j �ej��� In other words� c
� is an equilibrium
point of the vector �eld VjMj on E��j �ej��� This is equivalent to saying that the special
Hamiltonian Hj has a critical point on the connected component of the closure H��

j �mg��
which contains �	� ��� But this contradicts the fact that mg� is a regular value of Hj for
all j with jjj su#ciently small or jjj close to but less than j�� �

Thus we have veri�ed that the hypotheses of the non�Hamiltonian monodromy hold
for Routh�s sphere when its center of mass is vertically above its geometric center and it
is rotating slowly about a vertical axis or when it is rotating near the onset of gyroscopic
instability�
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