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Introduction.

In this paper a systematic study is made of various notions of “proper map” in the
context of toposes.

Modulo some separation conditions, a proper map ¥ — X of spaces is generally
understood to be a continuous function which preserves compactness of subspaces under
inverse image, and which therefore in particular has compact fibers. In this spirit, a first
definition of proper map between toposes was put forward by Johnstone in [|. There, a
map of toposes f: F — & was called proper if f.(Qr) is a compact lattice object in the
topos £. This is probably the most direct way of expressing that F is compact when
viewed as a topos over the base £. (In fact, Johnstone used the term “perfect” rather
than ”"proper”, and developed the theory mostly in the context of localic maps between
toposes, see []).

A related — indeed more restrictive — definition was proposed by M. Tierney
and subsequently investigated by T. Lindgren []. They called a map f:F — & of
toposes proper if the direct image functor f. commutes with directed colimits (in a
sufficiently strong, “indexed” sense). This notion had earlier been considered for the
canonical morphism & — Set associated with a topos & by K. Edwards in her thesis
[], where it had been shown to be equivalent to a finiteness condition (a strong kind of
“compactness”) for £.

In this paper, both senses of “propriety” will play a fundamental role. To distin-
guish the two concepts, we shall reserve the term “proper” for the Johnstone version,
and refer to Tierney-Lindgren proper maps as “tidy”. Our exposition will contain most
of the basic results about proper and tidy maps proved by these authors, although our
proofs are generally quite different and, we believe, easier. (There is moreover a qualita-
tive difference, in that our proofs are completely constructive and therefore apply over
an arbitrary base topos.)

Besides these known results with new proofs, we also present many new results.
On the one hand, these new results are partly motivated by our attempt to complete
the parallel between proper and tidy maps. For example, parallel to the “classical”
Bourbaki characterization of proper maps as stably closed maps, we develop a natural
notion of “firmly closed map” and show that the tidy maps are exactly the stably firmly
closed ones. On the other hand, we also present new results of a more specific nature.
For example, in the context of proper maps we prove a Reeb stability theorem for the
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compact fiber of a map between toposes, which generalises the classical Reeb stability
theorem for foliations. We also characterise the classifying toposes of profinite groups as
exactly those hyperconnected pointed toposes with proper diagonal, and prove a similar
characterization for classifying toposes of profinite groupoids. In order to deal with
descent problems in the context of coherent toposes, we examine a relative notion of
tidiness.

Let us describe the contents of the paper.

In Chapter I we study proper maps. We give several examples, and prove the main
closure properties of the class of proper maps. Some of these properties are stated in
their full generality in [|, whereas others were only known for special cases (e.g. under
extra separation conditions []). In particular, we show that the pullback of any proper
map is again proper, thus providing the full solution of a problem raised by Johnstone
in [| and partially answered there. This pullback stability of proper maps is in fact
an immediate consequence of an appropriate characterization of such maps in terms of
(internal) sites, which will be one of our basic technical tools.

For any pullback square
b

H F

there is a canonical transformation
* *
a* fo — gib*.

The map f is said to satisfy the (weak) Beck-Chevalley condition if for any morphism
a this transformation is an isomorphism (a monomorphism). We shall prove that f
is proper precisely when f and any pullback of f satisfies the weak Beck-Chevalley
condition.

After introducing a natural notion of closedness for topos morphisms, we obtain the
familiar Bourbaki-style characterization of a proper map as one for which all pullbacks
are closed. We end Chapter I by developing some of the theory from [| for open maps
in the context of proper maps, showing that proper maps are of effective descent, for
sheaves as well as for internal locales.

Any notion of propriety is accompanied by a separation condition. In particular, it
is natural to define a topos £ to be separated (or Hausdorfl) if its diagonal £ — £ x £ is
proper. Similarly, a map f: F — & is said to be separated if the diagonal F — F x¢ F
is proper. Separated maps are introduced in Chapter II. We establish the elementary
closure properties of separated maps, and prove various new results. In particular, we
give a characterization of hyperconnected Hausdorff toposes in a surprisingly simple
way: they are exactly the classifying toposes of compact groups!

As a more elaborate application, we formulate and prove a topos version of the well
known Reeb stability theorem for foliations. It states that, under suitable conditions,
a separated map of toposes f:F — & has the property that in the neighbourhood of
any given compact fiber, all the fibers must be compact. Our proof was to some extent



inspired by the treatment of Reeb stability in Haefliger’s thesis []. The classical Reeb
result for foliations is a consequence of our topos theoretic version, as we shall show
explicitly. It also has other applications in foliation theory, as discussed in [|.

In Chapter III, we study the basic properties of tidy maps. Two (related) funda-
mental results were proved in []. Firstly, the class of tidy maps is stable under pullback;
and secondly, a map is tidy iff it as well as any of its pullbacks satisfies the Beck-
Chevalley condition. The change-of-base formula a* f, = ¢.b* in (1) above is of course
familiar for proper maps between paracompact Hausdorff spaces [], which are special
instances of tidy maps.

We shall use a relative form of a criterion due to K. Edwards to derive a description
of tidy maps in terms of sites which is appropriately “geometric”, hence stable. Lind-
gren’s results follow more or less directly from this description, as does the stability of
tidy maps under filtered inverse limits. The final part of Chapter III is devoted to a
description of tidy maps as those for which all pullbacks are “firmly” closed. En route,
we shall extend to arbitrary tidy maps variuous results obtained in [] for the special
case of proper separated maps.

We shall call a topos & strongly Hausdorff if the diagonal £ — &£ x £ is a tidy map.
Chapter IV contains a discussion of some properties of such strongly Hausdorff toposes.
In particular, we present a basepoint-free version of Grothendieck’s Galois theory. More
precisely, we prove that a coherent topos is strongly Hausdorff iff it is the classifying
topos of a profinite groupoid, iff every coherent object in that topos is locally constant.
This result of course has as an immediate corollary that a pointed connected coherent
topos is strongly Hausdorff iff it is the classifying topos of a profinite group, which is
the result underlying Grothendieck’s treatment of the fundamental group.

In the final chapter, we introduce relatively tidy maps. We shall say a map f: F — &
over a base topos B is tidy relative to § when its direct image functor commutes with
colimits indexed by directed categories in §. Thus, as an extreme case, a map f: F — &
is tidy relative to £ iff it is tidy in the ordinary sense. At the other extreme, such a map
is tidy relative to the “universal” base topos of sets iff f, preserves directed colimits
in the ordinary naive sense. For example, any coherent map between coherent toposes
is tidy relative to Set. The main result of Chapter V states that, in a laz pullback of
toposes over a given base topos C,

(G=e F) s F
N
g

do !

g———¢.

the map dg will be tidy even if f is only relatively so; and moreover, in this case the lax
pullback square will satisfy the Beck-Chevalley condition

G fx Z dody™.

This result was conjectured by A. Pitts for coherent toposes and maps. By standard
tripleability theory, it will follow that relatively tidy maps are lax descent maps for
sheaves. We therefore obtain the so-called lax descent theorem for pretoposes as a
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special case. The first proof of this theorem, due to Zawadowski [], relied heavily on
Makkai’s theory of ultracategories and Stone duality [,,].
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CHAPTER I. PROPER MAPS

We begin with an account of the formal properties of proper maps between toposes.
Our exposition will proceed along lines which generalise naturally to the treatment of
tidy maps in Chapter III, with a pivotal role being played by Beck-Chevalley-type
conditions (see section 3).

Our starting point is Johnstone’s Louvain-la-Neuve notes [], where a number of the
basic examples and results of sections 1 and 2 already appear. Proper maps of locales
were extensively studied in []. Although we extend many results of [| to toposes, our
approach is rather different in style, and for the most part independent. The exception
is the final section, where we shall use standard tools to “lift” the descent properties of
localic proper maps obtained in [] to the general case (Theorem 7.2).

The central results are contained in section 5: the stability of proper maps under
pullback (Theorem 5.8) and filtered inverse limits (Theorem 5.10). Our proofs of these
use a “geometric” site description of compactness (Lemma 5.4), based on a careful
analysis of the interplay between finite and directed covers in a site with “enough”
finite covers (section 4). We also give a Bourbaki-style characterization of proper maps
as those closed maps which remain so upon pullback (section 6).

§1 DEFINITION AND EXAMPLES

Let X be a topological space, and consider the topos Sh(X') of sheaves on X. Since open
subsets of X correspond to subobjects of the terminal object 1 in Sh(X), compactness of
X can be expressed as a property of Sh(X): every cover of 1 by subobjects has a finite
subcover, or equivalently, the global sections functor I': (X') — Set maps directed covers
of 1 to covers of the one-point set. Generalising, one says a topos & is compact if right
direct image along the (unique) geometric morphism ~: & — Set, namely the functor
v &€ — Set which which assigns to an object of £ its “global” elements, preserves
directed suprema of subobjects of 1:

(VUi = V7a(Ui) (1)

for any directed family {U;}, U; C 1.

1.1. Remark. An object E of a topos & is said to be compact if any epimorphic family
{E; — E} contains a finite subfamily (or equivalently, is refined by a finite family) which
is still epimorphic [, 7.31]. That is, E is compact precisely when the localization £/ FE
of £ at E is compact as a topos.

1.2. Examples. (1) For a set I, the topos of I-indexed families of sets is compact iff
I is finite.

(2) A topos of G-sets for any group G is compact. More generally, a topos of presheaves
C' for a small category C' is compact if C' has a finite set of objects F' which is final in
the sense that every object ¢ of C' admits an arrow ¢ — f into some f € F.



(3) For any locale X (like a spatial locale as above), the sheaf topos Sh(X) is compact
iff X is. A general notion of compact site for a topos will be introduced in §4.

(4) Any coherent topos is compact.

The fundamental notion of proper map between toposes is that of a morphism
which is “relatively” compact. Recall that a topos € can be viewed as a “universe of
sets,” and that any topos morphism f: F — £ can be regarded as a single topos “inside”

this universe &, i.e. as an £-topos.

1.3. Definition [|. A map f: F — & is proper if it renders F compact as an E-topos.

Later, in §5, we shall characterise a proper map in the style of Bourbaki [], as a
morphism for which all pullbacks are closed maps.

1.4. Examples. Each example in (1.2) can be interpreted in an arbitrary topos &
in place of Set, with finite meaning “enumerated by [n] = {0,1,2, ... ;n — 1} for some
natural number n,” or Kuratowski-finite [, 9.11]. Thus, relativised, (1.2.1) states that
for an object I € £, the canonical morphism £/I — £ is proper iff I is Kuratowski-finite
in €. The relativised form of (1.2.2) says that for a locale X in &, the induced morphism
She(X) — &, from the topos of internal sheaves on X, is proper iff X is a compact locale
in .

We shall often use Definition 1.3 as it stands, treating £ as if it were the category
of (naive) sets while taking care to argue “constructively” in the sense required for a
valid interpretation in any topos. It will nevertheless be useful to give an “external”
version (as prescribed by the standard interpretation in a topos of statements made in
the language of set theory) of at least one of the equivalent definitions of compactness.

Before doing so, let us remark that it is implicit in the form of a definition like
(1.3), and easily provable from the explicit version (1.8) below, that propriety is a local
property. To state this explictly, consider the morphism f/E: F/f*E — £/E induced
by an object E in £, which is the pullback of f along the canonical morphism £/FE — €.

1.5. Proposition. If f is proper, then so is f/E. Conversely, if E — 1 is an
epimorphism and f/E is proper, then so is f.

1.6. Example. For a group-homomorphism p: H — G, the induced morphism p: H—
G between the corresponding toposes of respectively (right) H-sets and G-sets (where
p* restricts the action of G along p) is proper iff G/p(H) is finite. Indeed, there is a
pullback square

C H
v p
Set é’,

of (presheaf) toposes, where C' is the groupoid whose objects are the elements g € G,
and whose arrows g — ¢' are h € H with g - p(h) = g’. By letting G act on itself from
the right by multiplication, one has G/G = Set, and the bottom map in the pullback
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square is equivalent to the canonical morphism (;'/G — G. It follows from (1.5) that p
is proper iff v is. By (1.2.1), the latter is the case precisely when the groupoid C has a
finite set of components, i.e. when G/p(H) is finite.

Returning to Definition 1.3, consider an internal category

do

RN

IE(Il :Io)
dy

in £ An I-indexzed family of objects of £ is an object in the topos £ of internal
diagrams on I [, 2.14], that is, of covariant (or “left”) actions of I on objects of £. An
I-indexed family of subobjects of 1 in € then corresponds to a subobject of 1 in &7,
which is to say, a subobject R C Iy such that djR C dj R. Of course, via the classifying
map of R, we could also view such a family as a functor I — Q¢ in &, where ¢ is the
subobject-classifyer of £ equipped with its usual order. A directed family of subobjects
of 1 is one indexed by a directed (or filtered, see [, 2.51]) category I.

The canonical morphism 7=77: &7 — & has inverse image 7* sending an object E
to the corresponding “constant” diagram (E with trivial I-action); #* has, apart from
a right adjoint 7, = 1i<£n1, also a left adjoint 7y = 1i_r>n1. Now, if [ is a directed category,

the functor m is exact [, 2.58], and the pair m - 7* defines a canonical section of T,
which we denote coy or 0o (as representing a virtual object of I “at infinity”):

>0
£S5 8 oot =m, 00, =7t

In this case the colimit of an I-indexed family of subobjects of 1 coincides with its
supremum. It follows that direct image for f: F — & preserves suprema of I-indexed
famailies of subobjects of 1 precisely when the square

oo

F FIil

f 7t

ngI

has the property that
o' (f1)e(V) = feoo*(V),

for any subobject V' C 1 in F/"1. We shall have more to say about the form of this
property, a so-called Beck-Chevalley condition for the square, in §3.

1.7. Examples. (1) If I is a constant directed category in &, say I = ~*J where
~: & — Set is the canonical map and J an ordinary small category, then f, preserves
I-indexed suprema of subobjects of 1 iff it preserves J-indexed suprema of subobjects
of 1 in the usual sense.

(2) Let U and V be subobjects of 1 in, respectively, £ and F. Let I — 2 be the ideal
of 2 = {0 < 1} in &€ which contains 1 over U (and 0 globally). Then the inclusion
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V + f*U C f*I defines an [-indexed family of subobjects of 1 in F, of which the
supremum is preserved by fi iff £,V VU = f(V VvV f*U).

1.8. Definition (of proper map, “indexed” version). A map f:F — & is said to be
proper if, for any object E € &£ and any directed category I in £/E, the associated
square

FIf'E——(F/fE)"!

fIE (f/E)

£/E ———(¢/E)

has the property that
o™ (f/E)(V) = (f/E)so0™(V) (2)
for any V C 1in (F/f*E)/" 1.

1.9. Example. Let f:Y — X be a continuous function between topological spaces.
The induced morphism Sh(f): Sh(Y) — Sh(X) between the associated sheaf-toposes is
proper when f is a proper map of topological spaces, that is, a closed map with compact
fibers; the converse holds if the points of X are locally closed. Indeed, Sh(f) satisfies
(1.8) for constant I as in (1.7.1) when f has compact fibers, and for I as in (1.7.2) when
f is closed (here the mild separation is needed for the converse). These two special
instances suffice (see []).

1.10. Remarks. (1) Given a surjective family {E; — E} in &, it is readily seen that
(1.8) is satisfied at E as soon as it holds at each E;. Thus the second (less immediate)
part of Proposition 1.5 follows, and also that it is enough to check the definition at
those E in any given set of generators for €.

(2) Subobjects of 1 in (F/f*E)/"! correspond to functors (f/E)*I —s Qr/prp =
f*E x Qg in F/f*E, or by the adjunction (f/E)* 4 (f/E)., to functors

in £/E. Since the supremum of such a family coincides with that of its image, it
suffices to take for (3) the generic directed subobject of f.Qr, which lives over the
object E = If.Qr of directed subobjects of f.Qr. Chasing this family through (2)

gives an alternative rendering of Definition 1.3, namely commutativity of the square

7 f«

Tf.QF IQ¢

V V

e

f*QT QS 5
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which is the obvious equivalent of (1) in € (here the bottom map f. classifies

I A Ao

the top map is “image along f.” and the side maps internalize the supremum operation).

(3) The “indexed” version in £ of compactness of F as “every cover of 1 by objects is
refined by a finite cover” runs as follows: Any factorization of an epimorphism S — f*E
of F in the form

AN N
can locally be refined by another such factored epimorphism
AN I Y ol

where ' — E' is finite in €. Here “locally refined” means there are maps a: B/ - E
epi, : K — [ and v:T — S such that the diagrams

N
K i I T S
o P and T o
B —"F FE s

commute. (Intuitively, one should think of the first, given factorization as a cover {S; —
1|7 €1} in E/F and the second factorization as a finite refinement {7, — 1 | k& € K}
of {Si — 1|1 € I} in a further localization £/E'.)

1.11. Example (generalising (1.6)). For a functor p: D — C between small categories,
the induced morphism p: D — C' is proper iff for any object ¢ in C' and any final (1.2.1)
family of the form

{p(d;) RN c}

in the comma category p/c, there exists a finite final family {p(fx) %y ¢} with the
property that, for each index k, there is some index 7 and a commutative diagram of

the form

(8)

p(fx) p(di)

Pk o;

(0%
Cc——mM> ¢

in C such that o splits v;, i.e. v; 0 @ = 1d.
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§2  FIRST PROPERTIES
In this section we collect those (closure) properties of the class of proper maps which
follow from the definition in a more or less formal fashion. Not treated here are sta-
bility under pullback and filtered inverse limits, for which will shall depend on a site
description of propriety (§4).
A straightforward calculation with (1.8) yields:
2.1. Proposition. (i) Any equivalence F = £ of toposes is proper. (ii) If G — F and

F — & are proper, so is their composite G — E. =

2.2. Proposition. In a commutative diagram

G 4 F
&,

if g 18 a surjection and h 1s proper, then so 1s f.

PrROOF.  We use (1.8). Consider for an internal category I in &€ the diagram

G — !
X B BK
h F i
AL A
£ gl

(where we write I also for the category f*I in F and for ¢*f*I = h*I in G). For any
subobject V' C 1 in F', propriety of h gives

hyoo*G*V = co*h,g*V. (1)
Since g is a surjection, so is g. Hence g,g*V =V, and thus hog*V = fog.5*V = f.V.
So (1) yields h,o0*g*V = co*f*V. But
heoo®g*V = hyug* o™V
= fxgxg oo™V
= f*OO*Vv

again because ¢ is surjective. Thus f,o00*V = co* f,V, as desired. The same argument
applied to any slice £/E proves the proposition. m

2.3. Proposition. In a commutative diagram as in (2.2), iof h is proper and f is an
embedding, then g 1s proper.
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ProoF. We use the notation as in the previous proof. For a subobject W C 1 in G/,
we want to show

g0 W = 00 g, W. (2)

Since f is an embedding, and the inequality > in (2) always holds (by adjunction), it
suffices to show that f,g.00*W < fioo*g,.W. But

Fegxo0™W = hyoo™W
= oco*h, W (h proper )
= OO*JE*Q*W
< froo® g W (adjunction).
The same argument applied to any slice £/ E proves the proposition. =
Recall that a map f: F — &£ is hyperconnected if f induces an isomorphism

Subg(E) = Subx(f*E)
for any F; or equivalently, the canonical map f,{27 — ¢ is an isomorphism.
2.4. Proposition. Any hyperconnected map 1s proper.

PrROOF. Suppose f: F — & is hyperconnected, and consider a diagram of the form

oo

F Fi

for directed I. Since f is a pullback of f, it is hyperconnected too, which means any
given V C 1 in F! is of the form V = f*U for a unique U C 1 in &’. It follows that

fooo*V = fooo* FFU
= fuf oc™U
= oo*U,
the latter since f is (in particular) connected. But U = fo U = £V, so froo*V =
oco™ f*V, as desired.

The same argument applied to any slice proves the proposition. =

Next, recall that any map f:F — & can be factored as f = [ o h where h is

hyperconnected (hence surjective) and [ is localic; thus [ is of the form She(X) — € for
a locale X in &.

2.5. Corollary. A map f:F — £ is proper iff its localic reflection She(X) — & 1is,
that 1s, iff X 1s a compact locale n E.

PrROOF. Immediate from (2.1), (2.2), (2.4) (and using (1.4)). =
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2.6. Remark. By Corollary 2.5, showing properties of proper maps of toposes reduces
to adding the “hyperconnected part” to corresponding properties of proper maps of
locales [], a strategy which we shall employ in §6 for establishing descent properties. In
the meantime however, we continue our independent build-up of the basic properties
along lines which are designed to generalise to the treatment of tidy maps in Chapter

I1I.

2.7. Proposition. Consider a pullback square

m

H F

where | 1s open and surjective. If q 1s proper, then so s p.

PROOF.  Suppose that ¢ is proper. Let I be a directed category in € (and write I also
for the induced categories p*I, etc.). The square in the proposition induces a similar
square

HI f‘]

Gl ——¢! .

with [ again an open surjection. Form the cube

F T
e
H HT
S

g b ;gl

N
g LN g[

in which a, b, ¢ and d denote “points at infinity.” Since [ is open, I*p.V = ¢.m*V

for any V C 1 in F; similarly, by openness of [, the identity [*p, = ¢,m* holds on

subobjects of 1 in the pullback on the right.
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Given now any W C 1 in F!, we claim that b*p, W = p,d*W; since [ is surjective,
it suffices to show [*0*p, W = *p,d*W. But

Fo*p W =a*l*p, W
= a*q.m*W since [ is open
= g«"m*W  since ¢ is proper
= qm*d*W
=["p,d*W  since [ is open.

The same argument applied in an arbitrary slice of £ proves that p is proper. =

63 BECK-CHEVALLEY CONDITIONS

Consider a pullback square of toposes

H

N

g 7 (1)

G——¢

Just by commutativity of this square (up to a given natural isomorphism), one obtains
a natural transformation

a* fr — gb*. (2)

The square (1) is commonly said to satisty the Beck-Chevalley condition (BCC) if this
natural transformation is invertible; that is, for any object F in F, (2) is an isomorphism

a* f F = g, b*F.

We shall study this property in Chapter III. For the moment, the following weakening
is more relevant.

3.1. Definition. The square (1) is said to satisfy the weak Beck-Chevalley condition
if, for any object F in F, the canonical map (2) is a mono

a* fy F — ¢.b*F.

We observe that this condition is stable under localization at an object of £. More
precisely, if a square (1) satisfies the weak BCC, then so does the localized square

b

H/g*a*E = H/b* f*E F/f*E

Gla*E —" E/E .
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for any object E in £. Indeed, this follows easily from the description of the direct
image functor of the morphism f = f/E in (3): for an object F — f*E in F/f*E, the
object f.(F — f*E) is the pullback of f. F' — f,f*E along the unit n: E — f.f*E.

3.2. Proposition. For a pullback square (1), the following are equivalent:

(i) The square satisfies the weak BCC.
(ii) For any mono V — F in F, the square

a*f,.V bog*V

a* fo F byg* F

18 a pullback.
(iii) The square satisfies the BCC for subobjects of 1 (i.e. a*f,V = b,g*V for V C 1

in F), and the same is true for any localized square (3).

PrROOF. (i) = (ii). Consider for the subobject classifier Qx of F the square
a* [ Qr ———b,g*Qr
a* fu(true) geb* (true) (5)
a*fil ———~1b,g*1 .

Here the upper arrow is mono, by assumption (i), so the square is a pullback. For any
mono V — F in F, its classifying map cy: F' — Qg fits into a pullback square

F v Qr

1% 1

Y

of which the images under ¢* f, and ¢.f* span a cube with (5). The side of this cube
opposite to (5),

a* fo F byg* F

a* £,V bog'V

must then also be a pullback, proving (ii).

(ii) = (iii). Again, the explicit description of f, and a carefully drawn cubical diagram
will show that property (ii) is stable under localization at an object E of £. Therefore
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it suffices to prove (iii) for the case E = 1. But, if a square of the form (4) with F =1
is a pullback, then a* f,V — b,¢*V must be an iso.

(iii) = (ii). For an object V' s f*Ein F/f*E, write f.V — E for f,m, so that the
definition of f, gives a pullback

£V LV

n

E HfE .

Then condition (iii) can be rephrased by stating that the rectangle

a*f.V a .V g.bV

(6)

*

an

a*F a*fof*E g« b* f*E
is a pullback (because, modulo the isomorphism ¢*b* f*E = g.g*a*E, the lower com-
posite is the unit «*E — ¢g.g*a* E, the pullback along which is, by definition, g.a*(V —
f*E)).

Now consider any mono W — F in F, and putting E = f,F, form the pullback

V w

(7)

ffE———F

of W along the counit of the adjuction. Notice that in this special case, f,V — E is
[+ W — f.F. by the triangular identities for an adjunction. Composing the image of
(7) under g,b* with the pullback (6) yields that a* f,V = a* f,W as the pullback of W
along the composite

CGE Y8 P E — g b E Y g b F

By the naturality of € and the triangular identities, this composite is the canonical map
a*E =a* f FF — ¢,b*F. Thus the square

a* f W —— b "W

a* fo F g« b* F
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is a pullback, as required for (ii).

(ii) = (i). Consider for any object F' in F the equalizer
FFxF=F

formed by the projections and the diagonal. This gives a diagram with similar equalizer
rows,

a* fo Fe———a*f (F x F) a* fi F

g F ——— g, b*(F x F) g:b*F .

By assumption (ii), the lefthand square is a pullback. The exactness properties of this
diagram together now imply that the right-hand map must be mono. =

Next, we shall say that a map f: F — £ satisfies the weak BCC if, for any morphism
a:G — &, the pullback square (1) satisfies the weak BCC. Say f satisfies the stable weak
BCC if any pullback of f satisfies the weak BCC.
3.3. Proposition. [If f: F — & satisfies the stable weak BCC, then f is proper.
(In the next section, we shall show that the converse is also true.)
ProoF. Consider a directed category [ in &, and the diagram

oo

F FIil F
b 7t b
£ X el £ .

Since the (total) rectangle and the right-hand squares are pullbacks, so is the left-
hand square. By assumption, the weak BCC holds for the left-hand square, which, by
Proposition 3.2, implies that for any U C 1 in Ff/,

oo™ (f1)(U) = feoo™(U).
The same argument applies to any slice F/f*E — £/ E, since these slices are pullbacks
of f: F — &. This shows that f is proper in terms of Definition 1.8. =

3.4. Remark. The morphism & — £ is a subtopos inclusion. Thus it is sufficient
to require the weak BCC stably for pullbacks to subtoposes in Proposition 3.3.



17
§4  PRETOPOS SITES

In this section we introduce a special kind of site which will turn out to be useful when
dealing with compactness properties of toposes.

Since we shall work with internal sites in toposes, we need to be precise about
the basic definitions. For many purposes, a convenient notion of site is that of a pair
(C,.J) consisting of a small category C, together with a Grothendieck topology J on C
[] (called a “pre-topology” in []), an operation assigning to each object C € C a family
J(C) of “covers” {C; — C} of C, such that the following three conditions are satisfied:

(i) (identities) The singleton family {C BN C} is a cover of C.

(i) (stability) If {C; — C} is a cover of C and D S ois any arrow in C, then there
exists a cover {D; — D} such that each composite D; — D — C factors through
some C; — C (the family {D; — C} “refines” {C; — C'}).

(iii) (transitivity) If {C; — C} is a cover, and for each index ¢ the family {D;; — C;}
is a cover, then the family of composites {D;; — C'} is a cover.

4.1. Remark. If C has pullbacks, it is sometimes convenient to ask for “strict”
stability in (ii):
(ii’) If{C; —» C}is a cover of C and D LoCis any arrow in C, then {C; x¢ D — D}

is a cover of D.

For every topos £ there exists a site (C,.J) such that £ = Sh(C,.J), the topos of
sheaves on (C,J) [, 0.45]. More generally, for any morphism p: £ — S, there exists a
site (C,.J) in the base S for p (or, by abuse of language, for £ as S-topos), giving an
equivalence of toposes over S:

~

& ShS((Cv J)

S,

where Shg(C, J) is the topos of S-internal sheaves on (C,.J) and ~ the canonical map
[, 4.46].

The notion of site as above unfortunately becomes awkward to work with in sit-
uations where a change of base topos is involved: if (C,.J) is a site in a topos S, its
inverse image ¢*(C,J) = (¢*C,p*J) along a morphism ¢:S" — § generally fails to
satisfy (iii) (unless all covers in .J are finite), hence is not a site in &’. It then becomes
necessary to deal with a Grothendieck topology in terms of a “basis” for it, a system
of covering families which is only required to satisfy the stability condition (ii): such
a system generates a Grothendieck topology J under (i) and (iii) and defines the same
sheaves on C as J.

4.2. Convention. A site (in an arbitrary topos) is a pair (C,.J) where C is a small
category and .J is a system of covers satisfying the stability condition (ii). We refer to
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the covers in J as the basic covers of the site, and to the covers in the full Grothendieck
topology obtained by adding the singleton covers (i) and closing under composition of
covers (iil), as the generated covers of the site. The term “cover” — unqualified — will
refer to any family refined by a generated cover. We say an arrow D — C' in the site
“covers” if the singleton family {D — C} is a cover. We shall mostly abuse notation,
and just write C for the site (C,.J).

In this terminology now, if C = (C,.J) is a site in S, then its inverse image ¢*C =
(p*C, p*J) along any morphism ¢:S’ — S remains a site in S’. Moreover, given a
pullback square of toposes

(4

g &

s —r—S,

if Cis a site for £ in §, so is p*C for £ in §'.

If C is a site for &, the canonical map h:C — & is flat (see []), hence preserves
all finite limits which exist in C. The covers of C are exactly those families mapped
to epimorphic families in €& under h. Moreover, any epimorphic family of the form
{E; — h(C)} in & is refined by the image of some (generated) cover of C. These facts
forn part of the statement that h is universal (in the obvious appropriate sense) amongst
flat, cover-preserving functors from C into a topos.

By a morphism of sites F:C — D we mean a functor which is flat (expressed in
terms of the covers of D) and which maps basic covers to covers. A morphism of sites
induces a map of toposes Sh(D) — Sh(C), as the unique such (up to ismomorphism)

which makes the square
h

D F

F i

C &

commute. Any map of toposes is equivalent to a morphism induced by sites (more
generally, any small diagram of toposes is induced by a corresponding diagram of sites,
see below).

4.3. Definition. A pretopos site (C,.J) is a site for which the underlying category C is
a pretopos (see e.g. [,]) and the system .J of basic covers is the union of two subsystems
P and S, where P is the topology of finite epimorphic families in C and S is a system
of directed families of monomorphisms in C which is stable (ii) and moreover satisfies

(iv) (compatibility) If {S; — C} is a basic S-cover, then so is the family of sums
{Si+ D — C + D} for any D, and the family of images {f(S;) — f(C)} for any
arrow f:C'— D in C.
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We refer to the covers in P and S as, respectively, the P-covers and basic S-covers of
the pretopos site; the latter covers give rise to a sub-topology of that generated by .J,
the topology of generated S-covers.

The canonical functor h:C — & into a topos & from a pretopos site C for it,
is characterized by being universal amongst pretopos morphisms from C into a topos
which transform S-covers into epimorphic families.

We can construct a “subcanonical” pretopos site (C,.J) for any given topos & as
follows. Take any full subcategory of £ spanned by a set of generators for £, and close
this category under “canonical” finite limits, finite sums and coequalizers of equivalence
relations (if necessary). The result is a sub-pretopos C of &€, which will become a site
for £ provided its covers are exactly the epimorphic families in C. But any such cover
is clearly decomposable into a family of finite covers followed by a directed cover of
monomorphisms. Thus, if we let S consist of the latter covers (and let the basic covers
J be the union of these with the finite covers), we obtain a pretopos site for €.

The additional data associated with a pretopos site can be interpreted in any topos,
and, being evidently “geometric” [, 6.5], is preserved under change of base. Thus, given
a map p: & — §, there exists a pretopos site C for £ in S, and this situation is stable
under pullback as in (1).

The decomposition property of covers in the subcanonical site described above has
a generalization to arbitrary pretopos sites, as we now go on to show. First, we need:

4.4. Lemma. Let C be a pretopos site.

(1) All generated S-covers of C consist of monomorphisms and satisfy the compatibility
condition (iv).

(ii) If {S; — C} and {T; — D} are generated S-covers of C, then so is their sum
{Si—I—Tj — C—I—D}.

PROOF. (i) Both properties are clearly possessed by trivial covers and preserved
under composition of covers, hence are properties of generated S-covers by induction.

(ii) The sum can be written as the composition of the families {S; + D — C + D} and,
for each 1, {S; + T — S; + D}; each of these is a generated S-cover by (i). =

4.5. Lemma. Any cover in a pretopos site C is refined by the composition of a P-cover
followed by a generated S-cover.

ProOOF. It is enough to show that each composition of a generated S-cover followed
by a P-cover is refined by the composition of a P-cover followed by a generated S-cover.
For then the property of covers as stated is (trivially) satisfied by all basic covers, and
preserved at each generating step, hence (by induction) inherited by all generated covers.
Since any cover is refined by a generated cover, the lemma will follow.

Consider such a composition of a P-cover {f;: D; - C |1 =1,...,n} and a family
of generated S-covers {E;x — D; | A € Ay} Write D = Dy +--- + Dy, and E) =
Eix,+--- By, foreach A= (A1,---,\) € A=Ay x--- xA,. Then by Lemma 4.4(ii),
each individual sum {Ey ~— D | A € A} of generated S-covers is again a generated
S-cover, as is, by Lemma 4.4(i), the image {f(Ex) | A € A} along the induced
epimorphism f: D — C. But for each A € A, the family {E;x, — f(Ex) |i=1,...,n}
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is a P-cover, and the composition {E;x, — f(Ex) — C | A € A, i =1,...,n} clearly

refines the given composition {E;x — D; — C | A € A;, 1 = 1,...,n} we started out
with. =
4.6. Corollary. In a pretopos site C, a directed cover of monomorphisms is an

S-cover. m

4.7. Remark. Let C be a category with pullbacks and universal (that is, stable under
pullback) coproducts and coequalizers of equivalence relations. Call a finite epimorphic
family {C; — C} in C regular if the induced map [[, C; — C is a coequalizer. Then
the last three results remain true for any site of the form (C, P U S), where P is the
topology of finite regular epimorphic families and S is a stable (ii) system of directed
covers which is compatible in the sense of (4.3) (iv) with sums and (regular) images.
For want of a descriptive name, we shall refer to this situation as a “site with stable
compatible system of directed covers.”

A morphism between pretopos sites F:C — D preserves the pretopos structure
(equivalently, is flat and preserves P-covers) and maps basic S-covers to (directed)
covers. Any morphism between toposes is induced by a morphism between pretopos
sites. Indeed, suppose, more generally, that we are given a diagram {&;} of toposes
indexed by a small category I (here we tacitly assume that this entails giving explicitly,
for each indexing object i, a set G; of generators for &). For each i, let C; be the
subcanonical pretopos site for &; constructed, in the way described before, from the set
of generators J,, ta*[G;] where a:i — j varies over all arrows out of 7. Then for each
arrow a:1 — j in I, inverse image for the corresponding transition map t,: & — &; has
a restriction to a map of pretopos sites T,,: C; — C;, and T, induces ¢,.

We end this section with a description of filtered inverse limits of toposes in terms
of pretopos sites. Consider any (pseudo-)limit

&

€ ta o (2)
&j j

of a diagram {&;} of toposes, indexed by an inversely filtered small category I, and

induced by a corresponding diagram {C; } of pretopos sites (e.g. as constructed above).

4.8. Lemma. The filtered inverse limit of toposes (2) is induced by a diagram of
pretopos sites

(@
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such that each finite commutative diagram (resp. basic S-cover) in C lifts up to isomor-
phism through some P;, to a finite commutative diagram (resp. S-cover) in C;.

PrROOF.  We construct the site C for the limit £ in the standard way (see []). Let
C be the category with as objects the disjoint union of those of the categories C;, and
with arrows between C' € C; and D € C; given by the filtered colimit of sets

C(C,D) = lgn(aﬁ)

Ci (Ta(C), T3(D)),

where (o, 3) varies over pairs of maps i <— k N J with common domain k. For each
i € I, let P;: C; — C be the functor which takes an object to itself (or more accurately,
its representative) in the disjoint union and maps arrows between C,D € C; by the
colimit function

C:(C,D) — C(C,D)
at (id,id).

It is then a straightforward matter to check that each arrow a:¢ — 5 in I gives
a (pseudo-)commutative diagram as in (3), and that C is the (pseudo-)colimit of the
diagram of categories {C; }. It is also clear from the construction that finite commutative
diagrams in C can be lifted as stated. This, together with the filteredness of I and the
fact that the transition functors in (3) are pretopos morphisms, in turn implies that C
inherits the (finitary) pretopos structure from its components so as to make the functors
P;: C; — C pretopos morphisms. Thus, (3) is in fact a (pseudo-)colimit in the category
of pretoposes.

Now let the S-covers of C be those families which (up to isomorphism) lift through
some P; to an S-cover in C;. Then the P-covers and S covers are compatible, since
the data involved in the compatibility condition (4.3) (iv) can always be lifted to some
single C;, where compatibility is assured by Lemma 4.4. Thus, C becomes a pretopos
site and the P; morphisms of pretopos sites having the stated lifting property of basic
S-covers by construction. Finally, C is indeed a pretopos site for £, since the pretopos
morphism h: C — £ induced by the canonical functors h;: C; — &; is easily seen to be
universal in mapping S-covers in C to epimorphic families. =

4.9. Remark. It is clear from the proof of Lemma 4.8 that it can be extended to a
corresponding result for a limit f: F — &£ of a diagram of maps {f;: F; — &;}. That
is, if {F;:C; — Dy} is a diagram of pretopos site morphisms inducing {fi: F; — &},
there is a morphism F: C — D between the pretopos sites for £ and F as in Lemma 4.8,
which induces f.

§5 PRESERVATION UNDER PULLBACK AND FILTERED INVERSE LIMITS

Our main purpose in this section is to show that proper maps are stable under pullback.
We shall do this by encoding propriety of a map f:F — &£ in terms of an inductive
property of a pretopos site for F in £ (see Lemma 5.4 below) which is preserved under
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change of base. The same property will be involved in the proofs of various other facts,
like the converse of Proposition 3.3, and stability of propriety under filtered inverse
limits.

First we need a site version of compactness.

5.1. Definition. A pretopos site C (4.3) is compact if any directed cover of 1 by
monomorphisms in C has a single member which already covers.

5.2. Remark. Definition 5.1 makes sense for any “site with stable compatible system
of directed covers” (4.7). We make the blanket observation that all results in this section
remain true (and most proofs unaltered) upon substitution of this notion for “pretopos
site.”

We hayve:

5.3. Proposition. A pretopos site C for a topos € 1s compact iff € 1s compact.

Proor. Immediate from the fact that the canonical functor h: C — & preserves 1,
preserves and reflects covers, and that any directed cover of 1 in & is refined by the
image under h of a directed cover of 1 in C. m

The stability properties of compactness that concern us in this secton, are unlocked
by the following lemma.

5.4. Lemma. Let C be a pretopos site equipped with a system M of distinguished
covering monomorphisms U »— 1 such that

(i) The trivial cover 1 — 1 € M.
(ii) If VU — 1, thenU — 1 € M whenever V — 1 € M.
(iii) For any basic S-cover {U; — U}, if U — 1€ M then U; — 1 € M for some i.

Then M contains all monomorphic covers U — 1 of C, and C s compact.

ProoF. It will be enough to prove that any generated S-cover of 1 contains a member
of M. For then any directed cover of 1 contains a member of M by (4.6) and (ii). To this
end, consider the property of families {U; — U} stating that, if U — 1 € M, then there
is some ¢ for which U; —+ 1 € M. Since this property is given to hold for basic S-covers
(iii), trivially holds for the family {1 — 1} and is preserved by composition, it must
hold for generated S-covers by induction. But then any generated S-cover contains a
member of M, sincel 1€ M. =

5.5. Example. Suppose C is a pretopos site in which the basic S-covers of 1 are
trivial (i.e. contain an isomorphism). Then, by letting the isomorphisms U = 1 be the
distinguished covers, it follows that C is a compact site in which all directed covers of
1 are trivial (as in the case when C is compact and subcanonical).

5.6. Corollary. A pretopos site C 1s compact iff the system of all covering subobjects
of 1 in C satisfies the conditions of (5.4).
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PrROOF.  Basic S-covers consist of monomorphisms and are directed, a property in-
herited under (post-)composition with a monomorphism. The statement is therefore an
immediate consequence of Lemma 5.4. =

5.7. Lemma. Let ¢:& — & be a morphism of toposes and suppose C is a compact
pretopos site in E. Then the pretopos site o*C is compact in E'. Moreover, if M denotes
the object of subobjects of 1 which cover in C, then ¢*M 1is the corresponding object for
e*C.

Proor. By Corollary 5.6, M is a system of covers of 1 satisfying the conditions of
Lemma 5.4 internally in £. But these conditions are “geometric” and hence preserved
under change of base. This means that o* M is a system of “distinguished” monomorphic
covers of 1 for ¢*C in &'. Since (the proof of) Lemma 5.4 is constructive, it can be
interpreted in £’ to yield the result. =

5.8. Theorem. In a pullback square

F F

f I

g/Lg;

suppose that f is proper. Then f' is proper and the weak BCC s satisfied.

ProoOF. We write as if £ = Set and argue constructively.

Let C be a pretopos site for F. Then C is compact by Proposition 5.3, and it
follows that p*C is a compact site for F' in & by Lemma 5.7. Thus, f’ is proper, by
applying Proposition 5.3 in &.

To deduce the weak BCC, consider any subobject V' C 1 of F, represented by a
closed sieve R on 1 € C. It will be enough to deduce, in the internal language of &',
that 1 — 1 is in * R whenever ¢*R contains a cover of 1 in ¢*C. But — arguing in &’
— @*R remains closed under all finite covers of ¢*C in the image of ¢*, in particular
under P-covers and the singleton covers ¢*M of Lemma 5.7. Therefore, if ¢* R contains
a cover of 1 at all, it must also contain a directed cover of 1 and consequently, by Lemma
5.7, an element of @*M. Since the latter is only possible if 1 — 1 € ¢*R already, we
are done. m

5.9. Corollary. A map f:F — &£ s proper off it satisfies the stable weak BCC.

PROOF. One direction is Proposition 3.3, the other is immediate from Theorem

58. =m
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5.10. Theorem. Suppose f:F — £ is the limit of a diagram

F = F;
N :
£

of proper maps {fi: F; — E} indexed by a filtered category I. Then [ is proper. More-
over, for any 1 € I and V C 1 in F;, the natural inclusion

V{fita™V [ a:j =i} C fupi™V, (2)

where to: F; — F; denotes the transition map induced by o, 1s an 1somorphism.

ProoF.  We can regard I as an internal category in &, so it will be enough to treat
the case & = Set constructively.

Let {C;} be a diagram of pretopos sites inducing {F;}, and let C be a pretopos
site for the limit F as given by Lemma 4.8. For each i, let M; be the set of covering
subobjects of 1 in C;, and let M be the set of covering subobjects of 1 in C which are
(up to isomorphism) in the joint image of the M; under the morphisms P;:C; — C
which induce the projections p;: F — F;.

By Proposition 5.3, each C; is compact, so that M; satisfies the conditions of Lemma
5.4. Using the directedness of I and the lifting property of commutative diagrams and
basic S-covers in C, the system M is readily seen to inherit these conditions from the
M;. Tt follows that any covering subobject U — 1 in C lifts to some C;, and that C is
compact. Thus F is compact.

For the second part, consider ¢+ € [ and V C 1 in F;. Represent V by a closed
sieve R of 1 € C;. It will be enough to show that the family P;(R) in C covers 1 only if
there is some a:j — i and U — 1 € R such that T,U — T,(1) 2 1 covers in C; (where
To:C; — C; induces the transition map t: F; — F;). But R is closed under P-covers,
hence is generated as a sieve by a directed family of subobjects of 1. Thus, if P;(R) covers
1, there exists, by compactness of C, some U »— 1 in R such that P;(U) — P;(1) = 1
covers. Thus, by the lifting property of subobject covers of 1 in C and the directedness
of I, we can find an arrow a:j — ¢ € I such that T,,(U) — T, (1) 2 1 already covers in
C;, as required. m

5.11. Corollary. Suppose in (1) that for each a:j — i in I and V C 1 in F;, the
natural inclusion f;, V. C f; ta*V induced by the transition morphism to:F; — F; 1is
an 1somorphism. Then the natural inclusion f; V. C fip;*V 1s an wsomorphism for each
1€l =

5.12. Remark. The natural inclusion (2) is the component at V. C 1 € F; of a
canonical natural transormation

lim fj ta" — fipi®, (3)



25

where o:j — ¢ varies over the category I/i. Since the data in (1) localizes, we could
have stated equivalently in Theorem 5.10 that the transormation (3), and similarly in
Corollary 5.11 the canonical natural transormation f;, — f.p;*, are monomorphisms
(see the proof of Proposition 3.2).

§6  PROPRIETY AND CLOSED MAPS
This section is devoted to proving the following result:

6.1. Theorem. A map f:F — & between toposes is proper ioff f us stably closed.

Here f is said to be stably (or “universally”) closed if the pullback of f along an arbitrary
map is closed. Before proving the theorem, we define the notion of closed map between
toposes and deduce some elementary properties.

6.2. Definition. A map f:F — £ is said to be closed if, for any E € £ and any closed
subtopos C C F/E, the image of C along f/E: F/f*E — £/E is a closed subtopos of
E/E.

In order to deal with the definition in more detail, we need to recall some notation
related to subtoposes of a given topos.
Subtoposes of F correspond to closure operators on F (see [,]). Any subobject

U C 1in F uniquely determines an open subtopos denoted U C F, with closure operator
(for any object F of F)

Sub(F) — Sub(F), S (U x F) = §).

U has a complement F — U in the lattice of subtoposes of F, given by the closure
operator

Sub(F) — Sub(F), S~ ((UxF)US).

By definition, a closed subtopos is such a complement of an open subtopos.
Any subtopos D C F is contained in a smallest closed subtopos, its c¢losure C1(D) C
F. It is explicitly described as

Cl(D) =F -0, (1)
(where 0 € Sub(1) is obtained by applying the closure operator Sub(1) — Sub(1)
associated with D to the initial (sub-)object 0).

For a map f: F — £ and a subtopos D C F, the closure of a subobject S C E in &,
for the closure operator corresponding to the image f(D) C &, is given by the pullback

fr8)

S
[ (2)
E

I T E
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where f*S is the closure of f*S C f*FE for the closure operator corresponding to D and
n is the unit of the adjunction (see []).

6.3. Lemma. A map f:F — & 1s closed iff the identity
(f/E)((f/EYUUW) =UU(f/E)W (3)
holds for E € £ and subobjects U C E, W C f*E.

Proor.  For a subobject V C 1 in F, consider the closed subtopos F — V and its
image f(F — V). By (1), the closure of the latter subtopos is F — f.(V).
If f is closed, comparing the closure operators for f(F —V) and F — f,V on Sub(1)
shows that
H(fTUV)=UULV

for any U C 1. Applied to slices of £, this argument shows that (3) follows if f is closed.
Conversely, the closure operators corresponding to the image f(F — V) and its

closure F — f,V are at E € £ and for U C E given by
U= (f/U)(f/U)(U)U(V x E))

and

U s UU(f/E).(V x E)

respectively. If (3) holds, then these are equal by substituting V' x E C E for W. Thus
fisclosed. =

The next lemma is essentially a reformulation of (6.3). Note already that, by (5.8),

it furnishes the forward implication in Theorem 6.1.

6.4. Lemma. A map f:F — & s closed iff for any E € £ and closed subtopos
C C E/E, the pullback square

DC—~ F/f*E
g f/E

satisfies the weak BCC.

PROOF. Suppose f is closed. It is enough, for each E, to show the weak BCC
restricted to subobjects of 1 in F/E; replacing f by f/E, it then suffices to consider
the case E = 1. Write C = & — U and let ¢:C — & be the inclusion. Then the pullback
1s D =F — f*U, say with inclusion d: D — F:
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For W C 1 in F, the Beck-Chevalley identity ¢* f,W = g,d*W holds iff c,c* f,W =
cxgxd*W, since ¢ is an embedding. But c,c*f,W = f,W U U, whereas c,g.d*W =
fadid™W = fo (WU f*U), and since f is closed these are identical by Lemma 6.3.

The converse is proved by an obvious inversion of the argument, applying the weak
BCC “globally” in an arbitrary slice. =

For the reverse implication in Theorem 6.1, we shall make use of the idea of a
“splitting topos”. To explain this notion and its basic properties, fix a topos &, and
let ¥ be any family of subtoposes of £. A morphism f:F — & is said to split 3 if for
any subtopos A C &€ in the family ¥, the pullback f~1(A) is a closed subtopos of F.
A splitting topos for X is an E-topos s: &y — £ which universally splits 3. This means
that if f: F — & as above also splits 3, then f will factor through s by an essentially
unique map F — & over &.

Observe that, by the universal property, if s: &y, — £ is a splitting topos for ¥ then
for any morphism ¢: G — £ the pullback & xX¢ G — G is a splitting topos for the family
g1 (2) = {97 (A) | A € X} of subtoposes of G. Thus, the notion of splitting topos is
stable under change of base.

We shall also have to apply this notion to the slightly more involved case of an
“internal” family of subtoposes of €. Such a family ¥ is generated by a collection ¥(E)
of subtoposes of the slice £/ E, where E ranges over the objects of £. The terminology
extends in the obvious way: f:F — & splits such a ¥ if for each object E the map
f/E:F]/f*E — £/E splits 5(E) in the sense above. The universal such F is called the
splitting topos for ¥ and again denoted &x.

If ¥ is the internal family of all subtoposes (of £/E for all E) then the splitting
topos for ¥ will be called the full splitting topos of £, and will be denoted s: Spl(€) — £.

6.5. Proposition. Let £ be a topos. For any (internal) family ¥ of subtoposes of &,
the splitting topos s:E — & for £ exists. Moreover, it has the following properties:

(1) s:& — &€ s a localic (stable) surjection.
(ii) Any closed subtopos D C Ex is of the form s~1(A) for a unique subtopos A of €
(which must then be the image f(D), by (1)).

Proor. We give a sketch. Since subtoposes of £ correspond to internal sublocales of
the terminal locale 1 in &, it suffices to prove the properties for locales instead of toposes
while working constructively (in fact, we only need splitting locales of the terminal locale
1).

If X is any locale, the lattices of closed sublocales and all sublocales of X are both
dual to frames, and the inclusion of the first into the second preserves meets and finite
joins (see [] or [] for the details). This gives a map of locales s: X' — X, where the
frame of opens of X' is isomorphic to the dual of the lattice of sublocales of X and
s1(U) for U C X open given by (the dual to) the closed complement of U. The map s
clearly splits all open sublocales of X and satisfies properties (i) and (ii) by definition.
But pulling back sublocales preserves meets and finite joins, and any sublocale of X is
the intersection of sublocales of the form U U (X — V) for U,V C X open. These facts
imply that splitting all open sublocales is equivalent to splitting all sublocales, and that
s: X" — X does so universally.
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It is now immediate that for a general family ¥ of sublocales of X, the localic
splitting Xy, is the quotient of X’ for which the frame of opens is generated by (the
duals of ) members of ¥, and that the induced map ¢: Xy, — X inherits properties (i)
and (ii) from s.

6.6. Remark. For a family ¥ of open sublocales of the locale X in the last proof,
the splitting locale ¢: Xy; — X has has as basis opens of the form ¢~1(U) — ¢=1(V)
for U,V open sublocales of X, with V a finite (possibly empty) join of members of ¥.
Thus, a splitting topos s: &' — & for an internal family of open subtoposes of £ is a
localic £-topos with (internal) basis of open subtoposes of the form s~!'(A) for which
the inclusion A C & is locally closed.

6.7. Lemma. Let [:F — & be any map. Let D = F — U be a closed subtopos of F,
and let s: & — &€ be any E-topos which splits the image f(D) C E. Then f(D) is closed
iff for the pullback

t

F F

f I

g/;g;

the identity s* f.U = fit*U holds.

PROOF.  Let us write C = f(D). Since & splits C, the subtopos C' = s7!C of &' is
closed. We observe first that C’ is in fact the closure of f'(¢+7!D), in other words

C'=¢& — fitU (4)

Indeed, by Proposition 6.5 (ii), this closure C1(f'¢!1D) is of the form s~!(A) for a
uniquely determined subtopos A C €. This A is the image of £ of the composite

Ll

tipes ;Lo fe
or equivalently, since t:t~1D — D is surjective, the image of

D%]—"LE.

It follows that A coincides with f(D) = C.

Now C = f(F —U) is closed iff C = € — f,.U, and by the surjectivity of s this holds
iff s71C = s71(E — £.U), that is, iff ' = & — s* f,U. By (4), this is equivalent to the
identity

S*f*U = fﬂlﬁt*U7

which is what we needed to show. =

6.8. Proposition. A map f:F — & is closed iff the weak BCC holds for the pullback
of f with the full splitting topos Spl(E) — & of £.
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Proor. Clear from Proposition 3.2 and Lemma 6.7. =

Proof of Theorem 6.1. As already remarked, the forward implication follows since
any proper map f satisfies the weak BCC for a pullback square as in Lemma 6.4, by
Theorem 5.8. For the converse, it will by Remark 3.4 be enough to show that the weak

BCC holds for a pullback
fflA——F

I
A———¢.

of f along an arbitrary embedding A < &, given that f is stably closed. Let s: &' — &
be a splitting topos for A, so that A" = 57! A is closed in &. Then in the pullback
diagram

f/_l.A/ C F! F

f I

A€ g €
f'is closed, so the left-hand square satisfies the weak BCC by Lemma 6.4. Furthermore,
the right-hand square satisfies the weak BCC by Lemma 6.7. Thus, the composed

rectangle satisfies the weak BCC. Now write this rectangle as another composite of
pullbacks

FA——=f14 F

A’ A £ .

As indicated, the left horizontal maps are surjections, being pullbacks of the splitting
cover & — £. Using the surjectivity of A" — A, one sees that the required weak
BCC for the right-hand square follows from that for the composite rectangle (already
established) and left-hand square (which holds by Lemma 6.7). This completes the
proof. m

Having established Theorem 6.1, we can reformulate the weak BCC for proper
maps (Theorem 5.8) as follows.

6.9. Corollary. In a pullback square

f/
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with f (and hence f') proper, the identity o~ f(C) = f'(1»~1C) holds for closed subto-
posesCCF. m

6.10. Corollary. In the pullback square (5), suppose f is a proper surjection. Then

(i) The proper map f' is also surjective.
(i1) If 4 is proper, then so is ¢.

ProOF. (i) follows immediately from (6.9), and (ii) then follows using Proposition
2.1 and Proposition 2.2. =

6.11. Corollary. Suppose a proper map f:F — & 1s giwen as the limit of a diagram

F = F;
£

of proper surjections { fi: F; — £}, indexed by a filtered category I. Then f is surjective.
PROOF.  Let ig € I. Then by (5.10) the identity

Flpi €)= Nfit3'C) [ ari = io}

(where to: F; — F;, denotes the transition map induced by «) holds for closed subto-
poses C C F;,. The statement follows by taking C = F;,. =

§7 DESCENT ALONG PROPER MAPS

In this section, we shall use the descent theorem for proper maps between locales [] to
deduce some of the properties of descent along proper maps between toposes. We begin
by recalling the basic definitions.

Consider for each topos £ the (2)-category (E-locales) of internal locales in €. This
category is equivalent to that of localic toposes over £. A map f:F — & of toposes
induces a functor

f#: (E-locales) — (F-locales) (1)
by pullback. The map f: F — & gives a diagram of pullbacks

T2

F xegF xeF :;Z F xegF F ! £ .
s 2
5 2)
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Descent data (relative to f) on a locale X in F consists of a map 6: ﬂ'féX — F;%éX such
that the following two identities hold:

7 () =1
71';%,)(9) o 77#2 = wﬁ(e) cocycle condition
(these identities should of course be expressed more carefully by taking the 2-isomorph-
isms 5#71';#E =~ id, ﬂ'fgﬂ'f o F;%gﬂ'fé, etc. into account). If (X, 6) and (T, 7) are locales in F
equipped with descent data, a morphism (X, 6) — (7, 7) is a map of locales a: X — Y
in F which is compatible with the descent data, i.e. ﬂ'f(a) of=r1o0 77#(0(). In this way,

one obtains a category

Des(f)

of locales in F equipped with descent data.

If Z is a locale in &, the natural isomorphism of functors in (2), ﬂ#E o f# = F;%é of,
provides the pullback f#Z with canonical descent data. This construction defines a
functor

f#:(E-locales) — Des(f). (3)

7.1. Definition ([]). The map f: F — £ is said to be of effective descent for locales if
the functor (3) is an equivalence of categories.

(One should really speak of equivalence of 2-categories, but we shall not mention
straightforward 2-categorical details explicitly.)

One also expresses Definition 7.1 informally by saying “locales descend along f.”
The definition applies of course to any (2-categorical) fibration of toposes. In particular,
it applies to subcategories of locales which are stable under pullback along topos mor-
phisms, such as compact locales, discrete locales (i.e. sheaves), etc. Thus, if {1 F — &
is of effective descent for sheaves, we say that “sheaves descend along f.”

We shall prove the following:

7.2. Theorem. Let f:F — & be a proper surjection of toposes. Then locales and
sheaves descend along f.

We prove Theorem 7.2 by reduction to localic descent, by means of the next two
lemmas.
7.3. Lemma. Consider a commutative diagram of toposes

g

g F

g .

If f 1s of effective descent for locales and g s hyperconnected, then h s of effective
descent for locales.
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PrOOF. The proof is by elementary category theory, using the fact that for a hyper-
connected map ¢: G — F, the functor g7: F-locales — G-locales is fully faithful. The
argument is otherwise analogous to [, p. 67], and we only give a sketch.

Suppose (X, 8) is a locale in G with descent data 6 for h. To see that X descends
to JF, first observe that by pullback along the map

G§xrG—0xed,

X also has descent data for g. Since ¢ is open, hence of effective descent [], we have
X = g#(Y) for a locale Y in F. Now, the map

GgXeq:GxXeG—F xeF

is hyperconnected, inherited from g. Thus (g x¢ ¢)¥ is fully faithful, and the descent
data @ for h must therefore be of the form (g x¢ ¢)#(7) where 7 is descent data for f
on Y. Since f is assumed to be of effective descent, we conclude that Y = f#(Z) for a

locale Z in &; that is, X descends to &.
We leave the remaining details to the reader. m

7.4. Lemma. Let f:F — &£ be a proper surjection between toposes. Suppose a: X — 'Y
is a map between locales in €. If f7%a is open, then so is a.

PROOF.  Factor f as h ol where F —<> L is hyperconnected and I: £L — & is localic.
Thus, £ is equivalent (as an £-topos) to the topos She(L) of sheaves on an internal
locale L in £. By Corollary 2.5, [ is proper, or equivalently, L is a compact locale in £.
Consider now first the pullback squares of toposes

Shor( f#X) 2% St ( £4Y)

h'! I h

#
She (1% X) ——%~ Sh,(I#Y) c.
Since h is hyperconnected, so are h' and h”. Since any hyperconnected map is an open
surjection, our assumption that f#a is open implies (see [,]) that [#a is open.
Next, consider the similar diagram

She(I#X) —2% Sh, (1#Y)

v v z (4)

She(X) ——— She(Y)
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As a diagram of localic toposes over &£, (4) corresponds to the diagram of locales in £

#a
LxX——LxY L
U U l

X Y L,

where the projections I’ and [ are proper surjections by pullback-stability. Since [#a
is open, it follows from [, 5.10] that « is open. =

Proof of Theorem 7.2. As in the proof of the last lemma, we factor the proper
surjection f:F — & as a hyperconnected map h: F — L followed by a localic proper
surjection I: L — &, where £ = Shg(L) for an internal compact locale in €. Then locales
in £ correspond to locales over L in £. By applying [, 5.6] to the proper surjection L — 1
of locales in &, it follows that locales descend along [. Also, since h is an open surjection,
locales descend along h [, Ch VIII, Thm 1]. By Lemma 7.3, we conclude that f =1loh
is of effective descent for locales.

To show that sheaves descend, one first identifies a sheaf S with a discrete locale,
i.e. a locale S with the property that S — 1 and the diagonal S — S x S are open
maps. Since open maps are preserved by pullback, and descend down proper surjections
by Lemma 7.4, descent of sheaves now follows formally from that of locales.

This proves Theorem 7.2. m

A useful application of Theorem 7.2 concerns the representation of toposes by localic
groupoids. For a groupoid G in the category of locales, we write Gg, G for the locales
of objects and arrows respectively, and denote the structure maps by

GixXa,Gi —2>Gy — Go—2 G —

t

(u for units, ¢ for inverse, s and ¢ for source and target). The associated topos of (right)
G-sheaves is denoted BG. It is extensively discussed in [,]. We recall in particular the
following invariance property from []. A homomorphism p: G — H between localic
groups is called a weak (or essential) equivalence if

(i) The map Go %, Hy LGEN Hy is an open surjection.

(ii) The square

Gy H,

GoXGo HOXHO

is a pullback.
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Here Gy X, Hy in (i) is the pullback along s: Hy — Hp. It is shown that such a weak
equivalence induces an equivalence of toposes

¢:BG ~ BH.
We shall also refer to a weak equivalence ¢ of this kind as open, and contrast it with

the notion of proper weak equivalence, defined by replacing “open” by “proper” in (i).

7.5. Proposition. Any proper weak equivalence ¢: G — H induces an equivalence of
toposes w: BG ~ BH.

PROOF. Asin [, 5.15], with the use of descent of sheaves along an open map replaced
by an application of Theorem 7.2. =

We shall see some particular applications of this result in the next chapter.



CHAPTER 1II. SEPARATED MAPS

In this chapter we consider the separation property which accompanies propriety
of a map, namely that of having a proper diagonal. As a typical illustration of the role
played by this property, we show that the classifying toposes of compact localic groups
are precisely the hyperconnected pointed toposes which are separated or “Hausdorft”
in this sense (section 3). We also use it to formulate and prove a topos-version of the
so-called Reeb stability theorem for foliations (sections 5 and 6).

The definition and elementary formal properties of separated maps are dealt with in
the first two sections. For Reeb stability, we shall also need to recall various properties
of locally connected and locally compact internal locales in a topos (section 4).

§1 DEFINITION AND EXAMPLES

Recall that a topological space X is Hausdorff precisely when the diagonal embedding
A: X — X x X is closed, that is, a proper map of topological spaces. Based on this
idea, we say a topos & is Hausdorff if the diagonal map A: & — & x &€ is a proper map
of toposes.

1.1. Examples. (1) Let X be a locale. Since the construction of Sh(X) from X
preserves finite limits, Sh(X) is a Hausdortf topos iff X is a (strongly) Hausdorff locale
[,]. A Hausdorfl topological space need not be Hausdorfl as locale (since the localic
product is in general bigger than the topological one); those which are include the
locally compact Hausdortfl spaces.

(2) Let G be a discrete group. Then the topos G of G-sets is Hausdorff iff G is finite.
Indeed, let p: Set — G be the unique point. Then p is an open surjection (in fact, a
slice). So (I 4.7) applied to the pullback

Set/G G

pXp

Set Gx G

implies that G is Hausdorff iff Set /G — Set is proper, that is, iff G is finite (I1.2).

The Hausdorff property extends to maps of toposes in the obvious way, to give the
following general notion of separated map:

1.2. Definition. A map f:F — & between toposes is said to be separated if F is
Hausdorff as an £-topos, that is, if its diagonal Ay: F — F Xg F is a proper map.

35
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1.3. Examples. (1) Let E be any object in a topos £ The canonical morphism
E/E — £ is separated iff the map £/F — £/EXE induced by the diagonal E — EXE
is proper. Since this map is an embedding, (I 5.1) tells us this is the case it E — Ex E
defines a closed subtopos of £/E x E. This means that the diagonal is a complemented
subobject of E x E. Thus, £/E — £ is separated iff E is decidable.

Recall from (I 1.4) that £/E — & is proper iff E is Kuratowski-finite. It follows
that £/E is proper and separated iff E is a finite locally constant object in &, i.e. iff
E/E — & is a finite covering projection of toposes.

(2) Let ¥ — X be a map of locales. Then the associated map Sh(Y) — Sh(X) is
separated iff Y — Y x xV is closed.

Example 1.1 (2) of a Hausdortff topos is “typical” in a sense which we now explain.
Recall that for a localic groupoid G, its topos of G-equivariant sheaves is denoted BG.
We say the localic groupoid G is open (resp. proper) if its source and target maps

8
. N

G _ Go (1)

t

are open (resp. proper). Following [|, we say a (not necessarily open) groupoid G is
étale complete if the diagram

Sh(G) ——— Sh(Gp)

s (2)

Sh(Go) BG

is a pullback. We recall that any topos can be represented as BG for some open étale
complete G []. Moreover, the notion of étale completeness is invariant both under
open weak equivalence (see [, 3.2]) and (by a similar formal argument) proper weak
equivalence.

1.4. Proposition. For an open or proper étale complete groupoid G, its classifying
topos BG is separated iff (s,t): G1 — Go x G is proper.

PrROOF.  The pullback (2) can be rewritten as the pullback

Sh(G1) BG

(s;1) A

Sh(Go) x Sh(Go) —= BG x BG .

Since the bottom map is an open or a proper surjection, the diagonal A of BG is proper
iff (s,t): Sh(G1) — Sh(Go) x Sh(Go) = Sh(Go x Go) is by (I 2.7), (I 5.8) and (I 6.9), iff
(s,t):G1 — Go x Gp is proper by (I 1.4). =
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1.5. Example. Let G be a discrete group acting on a space X. The topos Shg(X)
of G-equivariant sheaves on X is separated iff the action by G on X is proper. The
canonical map Sh(X) — Shq(X) (with the forgetful functor as its inverse image) is
proper iff GG is finite.

1.6. Example. Recall that a localic groupoid G is called étale if its source and
target maps (1) are local homeomorphisms. Any étale groupoid is étale complete [].

The toposes of the form BG for étale G are exactly the (localic) étendues ([, VIII 3]).
Separated étendues are closely related to orbifolds; see [] for details.

§2  FORMAL PROPERTIES
Separated maps have the following elementary closure properties:

2.1. Proposition. (i) Any embedding F — £ is separated.

(ii) In a commutative triangle

if f and g are separated, then so is h;
(iii) 4f ¢ is a proper surjection and h is separated, then so is f; and
(iv) of h s proper and f is separated then g is proper.

PROOF. These all follow from properties of proper maps by elementary diagram
arguments of a well-known kind:

(i) The diagonal of an embedding is an equivalence, hence proper (I 2.1(1)).

(ii) Consider the diagram

G

Ag I

GxrG F (2)
p Ay

GxeG—0 s FxeF

where the (bottom) square is a pullback. Then p is proper since Ay is (I 4.7). Hence
Ap:G — G X G, as the composite of Ay and p, is proper by (I 2.1(ii)).
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(iii) The diagram (2) contains a triangle

g F

Apo(gxyg) Ay
F Xe& F .

If h is separated and g is a proper surjection, then (¢ X ¢g) o Ay, is proper, and hence by
(I2.2) sois Ay.

(iv) The map g is the composition g = 72 o (id, ¢) in the following diagram where both
squares are pullbacks:

g F
(id,g) Ay
GG xe F—L s F e F
h T2
& F

Since h and Ay are proper by assumption, so are w3 and (id, g), and hence g. =
2.2. Proposition. In a pullback square

H—F

f f

g —"——=¢,

(i) if f is separated, then so is f;
(ii) the converse holds if g is a proper (or open) surjection.

Proor. By the equivalence 6 in the diagram

(f,Af)
H—"sg xeg (F xe F)

HXgH,
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the diagonal A is a pullback of the diagonal Ay. Thus the proposition follows from
(14.7,49). =

2.3. Corollary. In the triangle (1), if h is separated and the diagonal Ay: F — F x¢F
is separated (for example, if f s localic), then g is separated.

Proor. Form the diagram

Ag
Gg—0x50

f’

A
Ap !

gxyg

g xe@

If Ay is separated, then so is its pullback G X G — G X¢ G by (2.2). But then Ay is
proper, by Proposition 2.1 (iv). =

.7'-ng.

2.4. Proposition. Suppose f:F — & is the limit

F = F;
N :
£

of a diagram of separated maps {fi: Fi — £} indexed by a filtered category I. Then f
18 separated.

PrOOF.  The diagonal Ag: F — F x¢ F is the limit of the diagram {g;: G; — F x¢ F}
obtained by pulling back each diagonal Ay,: F; — F; x¢ F; along F xe¢ F = F; xe¢ F;
(and the obvious induced transition maps). The statement therefore follows from the
stability of proper maps under pullback and filtered inverse limits (I 5.8, 5.10). =

2.5. Proposition. A map f:F — & is separated iff both parts of its hyperconnected-
localic factorization are.

PROOF.  Let X be the localic reflection of f in €. Then, writing £ = She(X) for the
E-topos of internal sheaves on the locale X, the map f factors as a hyperconnected map
h: F — L followed by a localic map I: L — £. If h and [ are separated, sois f =[oh
by 2.1(i). Conversely, suppose f is separated. Then, first of all, since h is a proper
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surjection (I 2.4), [ must be separated by 2.1(iii). To prove that h is also separated, we
use a diagram as in the proof of 2.1(iv), in this case

F d c
(id,h) A
Ka Fxel " pver
7 T2
£ c.

Note that since [ is localic, A, and therefore its pullback (id, k), is an embedding, hence
separated. Furthermore, by 2.2(i), the pullback 7y of f is separated. By 2.1(ii), the
composition h = 73 o (id, h) must be separated. m

§3 HYPERCONNECTED HAUSDORFF TOPOSES

In this section we characterize hyperconnected Hausdortf toposes with a base point. Fix
an arbitrary base topos §. For a localic group G in §, there is a topos BG = BsG of
internal G-sets in § with a canonical point ¢: S — BG. Clearly BG is hyperconnected,
and separated if G is compact and étale complete, by Proposition 1.4 (applied to the
case where Gq is the one-point space). Our first theorem states that every pointed
hyperconnected Hausdorff topos is of this form.

3.1. Theorem. Let f:€ — S be a topos over S with a base point (section) s:S — E.
Then &£ 1s hyperconnected and Hausdorff over S iff there exists a compact étale complete
localic group G such that € 2= BG (as pointed S-toposes).

PrROOF. (<) This implication is proved before the statement of the theorem.
(=) Let

do

H= H . Hy

dq
be an open étale complete localic groupoid in & so that &€ =2 BH as S-toposes. We can
choose H so large that p lifts to a point (again denoted) p: 1 — Hy. Since £ is separated
and hyperconnected, the map (do, dy): Hi — Hg x Hyg is proper while

do

H, Ho

dy

is a coequaliser of locales in S. Let R be the image of (dy,dy) in Hyo x Hg. Then R is
a closed sublocale of Hy x Hy while the projections R = Hy are open. Thus by [], R is
the kernel pair of its coequaliser, that is, R = Hy x Hy and Hy — Hy X Hg 1s a proper
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surjection. But this means that for the vertex group G = H, at the point p € Ho, the
full inclusion G — H is a proper weak equivalence of localic groupoids. By (I 7.5), it
induces an equivalence of S-toposes

BG s BH ~ €,

and 1t is clear that under this equivalence the point p:S — BH corresponds to the
canonical point of &£.
This proves the theorem. =

In the case where the base topos is Set (or any other Boolean topos) this can be
sharpened:
3.2. Theorem. Let £ be a pointed topos over Set. Then & s hyperconnected and
Hausdorff iff € 1s the topos BG of continuous G-sets for some profinite group G.

Note in particular that this implies that every pointed hyperconnected Hausdortf topos
is coherent.

For the proof of this second theorem, we recall the construction of the étale com-
pletion of a localic group from []. Let G be a localic group, and consider the topos BG of
continuous G-sets with its canonical point ¢: Set — B(G. The monoid of endomorphisms
of ¢ can be explicitly described in terms of G, as

End(q) = liénU G/U = M(G).

Here U ranges over all open subgroups of G (ordered by inclusion), and G/U is the
discrete space of right cosets. So a point in M(G) can be denoted

t={U -tv}u,
and multiplication is then described as
U - (t'S)U =U- -ty 'StglUtU € G/U

Let A(G) C liénU G/U denote the localic group of invertible elements of this monoid.
There are canonical maps

G—2 A(G)——~ M(G)

T
proj

G/U .

Here o: G — M(G) is defined by ¢(g) = {U - g}v. This is a homomorphism of localic
monoids. Note that it follows from this diagram that each projection A(G) — G/U is
open.

Proof of Theorem 3.2. We only need to establish the forward implication. By
Theorem 3.1, there is a compact localic group G so that £ =2 BG. If GG is étale complete,
then the map ¢: G — A(G) is an isomorphism. If G is compact, then each G/U is a
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finite set, so M(G) is a compact Hausdorff monoid. Since G = A(G) is compact, it is
closed in M(G). Since A(G) maps surjectively onto each G/U, it is also dense in M (G).
Thus G = A(G) = M(G). In particular, the compact group G is Hausdorff and totally
disconnected, hence profinite [, 8.41]. =

§4 LOCALLY CONNECTED AND LOCALLY COMPACT MAPS OF LOCALES

In this section, we review some definitions and facts involving locally connected and
locally compact locales in a topos. These locales will play a role in our treatment of the
Reeb stability theorem. Most of the material presented here is well-known, although our
approach to the stability of local compactness in the spirit of (I §5) is to some extent
novel. Our arguments, presented in the language of set theory, will be constructive
throughout to ensure a valid interpetation in an arbitrary base topos S (fixed for the
duration of the present section).

Our review of local connectedness is primarily based on the Appendix of []. Let X
be a locale. Recall that X has “global support” (the map X — 1 is surjective) if and
only if any covering family of opens of X has an element (in other words, is non-empty
in a strong sense). An open U C X which (considered as locale) has global support is
said to be positive. A cover {U;} of X by positive opens U; is said to be connected if,
for any U; and U;/, there is a chain.

UZ‘ZUZ‘O, rs v Uin =Upy

with U;, N U;, ., positive for each k& = 0,..., n — 1. The locale X is connected if it
has global support, and every cover of X by positive opens is connected. X is locally
connected if it has a basis consisting of connected opens; if X is also connected (cle),
this basis can of course be chosen to contain X itself. A locally connected locale is in
particular open, by [, V 3.2].

Like compactness, any constructively defined property of locales can be made to
apply to a map between locales by “relativising” to a sheaf topos, that is, by using the
well-known equivalence (see e.g. [| or []) between localic maps f:Y — X and internal
locales in Sh(X). Thus, we say a map f:Y — X is (locally) connected if f is (locally)
connected when viewed as locale in Sh(X). Interpreting the definitions given above in

the topos Sh(X) yields:

4.1. Lemma. A map f:Y — X s locally connected iff f 1s an open map, and Y
has a basis B with the following property: If B = \/,B; in'Y where B, B; belong to B,
then for any pair of indices i and ', f(B;) N f(By) s covered by those open U C X
for which there is a chain B; = By, By, ..., B;, = By with U C f(B;, 0 By,_,) for
k=0,...,n—1. The map f s in addition connected iff f s surjective and B can be
chosen to contain Y. =

As can be shown directly from this description:

4.2. Lemma. The class of (connected and) locally connected maps is closed under
composition and pullback. m
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Our review of local compactness draws upon [| (but see also []). Recall that for two
opens U, V C X, one says that U is “way below” V', denoted U < V, if every cover of
V' contains a finite cover of U. Thus, X is compact precisely when X < X. The locale
X is said to be locally compact if, for every open V C X, one has V = \/{U | U < V}.
In a locally compact locale, the way below relation interpolates: U < V only if there
exists W C X open such that U < W < V.

We first extend the notions of compactness and local compactness to a suitable
presentation for a locale, namely a site (P, C') as defined in (I 4.2) where the underlying
category P is a preordered set. Thus, for « € P, the members of C(z) (the basic covers
of @) are families {x;} of elements of |(x). The stability condition states that for any
basic cover {z;} of z and y < x in P, there is a basic cover {y;} of y with members in
Haxi} (thus, C is a covering system in the sense of []).

The data (P,C) presents the locale X if the frame of opens of X can be recon-
structed as the downsets D of P which are closed in the sense that C(x) C D = x € D.
This can also be formulated by saying that there is an association z — B, C X of
elements of P with opens of X such that

(1) The family {B,} constitutes a basis for X, in the strong sense that each B, N B,
is covered by {B, | z <z and z < y};

(ii) For a family {x;} C PP, the corresponding family of opens {B,,} covers B, in X iff
Wz} contains a generated cover of z.

If : 8" — S is a topos over (our chosen base topos) S, then *(P, C') remains a presen-
tation for the locale # X in S'.

4.3. Definition. Let (P,C) be a presentation with a “stable compatible system of
directed covers” (I 4.7), or directed presentation for short. Explicitly, P has finite meets
and joins satisfying the distributive law, and C' = P U .S where P is the topology given
by finite joins and S is a system of stable directed covers which are compatible with
binary joins: if {z;} is a basic S-cover, then so is {z; V y}. Say y is “way below” z in
P = (P,C), and write y < x, if any directed cover z; of « has an element x; such that
y A x; is a cover of y. P is compact if the terminal element 1 € P satisfies 1 <« 1 (as
anticipated in (I 5.2)) and locally compact if the (directed) family {y | y < z and y < '}
is a cover for each x € P.

Note that any locale X has a directed presentation, namely its own frame of opens,
which is compact (resp. locally compact) in the sense just defined precisly when X is
compact (resp. locally compact). More generally, we have:

4.4. Proposition. A directed presentation P for a locale X is compact (resp. locally
compact) iff X is compact (resp. locally compact).

PROOF.  The assignment @ — B, preserves and reflects the waybelow relation (since
it preserves binary meets, preserves and reflects covers, and any directed cover of a basis
element B, in the frame of opens of X is refined by a directed cover of basis elements).

Since By = X, the equivalence for the case of compactness is now clear (by (I 5.2),
we could also have referred to (I 5.3)).
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If P is locally compact, then for each x € P, the basis element B, is covered by the
family {B, | y < «}. Thus, for any open U of X, U = \/{B, | B, < U} = \V{B, |
B, < U}, which shows that X is locally compact. Conversely, suppose X is locally
compact. Then for any = € P,

B, =\{U|U <« B,}
=V{By | B, <U < B, and y < z}
=V{By |y <zandy < z},

which says that {y |y <2 and y < 2} isa cover of . =

4.5. Lemma. Let P be a directed presentation equipped with a binary relation < —
or “strong inclusion” — with the following properties:

(1) If z <y <z, then z < x.

(i1) If y <« and {x;} is a basic S-cover of x, then y < x; for some i.
(iii) The family {y |y < x} is a cover of x.

Then y <z =y < x and P 1s locally compact.

PrROOF.  The system of families {z;} C [(x) for € P with the property that y <
r = y < x; for some i is easily seen to be a full (i.e. upclosed under refinement, using
(1)) topology on P. Since it contains the basic S-covers by (ii), it contains all S-covers,
and in particular the directed ones (here we may apply (I 4.6) in view of (I 4.7)). This
shows that y < # = y < «. But then local compactness follows by (iii). =

4.6. Lemma. Let p:S" — S be a S-topos and let P be the presentation of a locale X

by its frame of opens.

(1) If X is compact, then the (directed) presentation ©*P is compact in S', with {1}
the only directed cover of 1 € ¢*P.

(i1) If X s locally compact, then *P is locally compact and ¢*(<p) is contained in
KL p*Pp-

Proor. (i) If X is compact, then P is compact by Proposition 4.4. Since a compact
directed presentation is a special instance of a compact site with stable compatible
directed covers (I 5.2), the may apply (I 5.7) (after substituting “directed presentation”
for “pretopos site”) to obtain the result.

(ii) If P is locally compact, then the way below relation < on P is a strong inclusion
(4.5). Since the defining properties of a strong inclusion are “geometric” it follows that
©* < is a strong inclusion on ¢*P. So the result follows by an application of Lemma

45. =
Using (4.4) we conclude:

4.7. Corollary. Local compactness of a locale is preserved under change of base. m

A locale with a basis of compact neighbourhoods is evidently locally compact. The
converse is not true in general, but does hold for (strongly) Hausdorff locales, as we
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shall now show. Recall that a locale X is said to be regular if every open U C X can
be written as U = \/{V | V C U}, where V denotes the closure of V.

4.8. Proposition. A compact or locally compact Hausdorff locale is reqular.

PROOF. Let X be a Hausdorff locale, with P the presentation of X by its lattice of
opens. Since X is Hausdorff, we have for any open U C X:

XxUCUxX)U(X xX—-A)
=V{PxQ|PCUorPNQ=0}, (1)
CV{PxQ|PC-QUU}

where =Q denotes X — @Q, the largest open of X disjoint from Q.

Suppose first that X is compact. Given an open sublocale 1:U — X, let R C
P x P be the set of pairs {(P,Q) | P C =Q U U}. Consider the topos Sh(U), with
¢:Sh(U) — Set the canonical map. Identify the projection m3: X x U — U with the
locale ¢# X in Sh(U), so that the embedding (id,i): U = X x U becomes a point p of
©#*X. Any P € ¢*P gives internally an open Bp of ¢# X in Sh(U). In particular, any
P € P gives for the corresponding “constant” element Pe ©*(P) an internal open B
of ¥ X, corresponding to the external open P x U C X x U. Now (1) is easily seen to
imply the internal truth of the statement

B C\/{Bp | Forsome Q € ¢'P, (P,Q) € "R and p € By}

in Sh(U). But this then says that the (internally) directed family {P | For some @) €
©*P, (P,Q) € ¢*R and p € Bg} is a cover of the terminal element X of o*P. By
Lemma 4.6 (i), it therefore contains X: it is true in Sh(U) that there is some @ € @*P
such that p € @ while (X, Q) € *R. Externally,

U=\V{VCU|XC-QUUandV CQ}=\{V |V CU}.

Since U was arbitrary, this shows that X is regular.

Next, suppose that X is locally compact. Consider any U,V C X open such that
V <« U. We show that V C U, which will prove regularity of X. To this end, we
regard the projection 71: X x X — X as the locale »# X in the topos Sh(X), where
¢:Sh(X) — Set again denotes the canonical map. Let ¢ be the “generic” point of 0* X,
defined by the diagonal A: X — X x X. With notation as before (but now applying to
Sh(X)), (1) implies the internal statement

By C\{Bg | Q€ ¢'P, q¢ Bgorqe By}

in Sh(X), in other words, the internal ideal {@Q | ¢ ¢ Bg or q € By} is a cover of U. But

by Lemma 4.6 (ii), V < U in the site o*P. We conclude that it is true in Sh(X) that
q ¢ By or q € By,. Externally, X C -V UU, or V C U, as required. This completes
the proof. =

4.9. Corollary. A compact Hausdorff locale has a basis of compact neighbourhoods,
hence 1s locally compact.
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Proor. Immediate from Proposition 4.8 and the fact that a compact regular locale
has a basis of closed, hence compact neighbourhoods. =

4.10. Lemma. For any open U of a locally compact Hausdorff locale X, its closure
U 1s compact whenever U < X

Proor.  First note that for U, V C X open in any locale X, U C V and U <« X
together imply U < V.

Suppose X is locally compact Hausdorff, hence regular by Proposition 4.8. Let
U < X, U C X open. If U is covered by a directed family {U;} of opens, then
U < V{U;} by our starting comment, and we can choose W C X open such that
U < W < V{U:}; it follows that U < U; for some i, and then that U < U; by
regularity of X. =

4.11. Proposition. The following conditions are equivalent to local compactness for

a Hausdorff locale X :

(1) X s covered by the interiors of a family of compact sublocales.
(i1) X has a basis of compact neighbourhoods.

Proor. If X is locally compact, then X = \/{U | U <« X}, and (i) follows from
(4.10). In turn, (i) implies (ii) by (4.9). That X is locally compact if (ii) holds is

clear. =

As usual, a map f:Y — X of locales is said to be locally compact if Y 1is locally
compact as a locale in Sh(X). By Corollary 4.7:

4.12. Proposition. Locally compact maps are stable under pullback. m

Like local connectedness, local compactness for a map f:Y — X can be translated
into a property directly expressed in terms of f. In particular, if f is separated, i.e. Y
is Hausdorff as a locale in Sh(X'), we have the following.

4.13. Lemma. Let f:Y — X be a separated map. Then f is locally compact iff Y has
an open cover V such that for each V€V, f can be restricted to a proper map V. — U
into some open U C X

Proor. If'Y has a cover V as described, then the family of maps
{YIV:V U |VeEVandV 25 U a proper restriction of 1}

defines an internal cover of f:Y — X as a locale in Sh(X), by open sublocales each
contained in a compact sublocale. So f is locally compact by Proposition 4.11 (i).
Conversely, if f is locally compact as locale in Sh(X), then Proposition 4.11 (i)
gives a cover V of Y such that for each V' € V), there exists a sublocale C of ¥ with
V C C CY and some open U C X such that f restricts to a proper map C' — U. But
then such C' is closed by Proposition 2.1 (iv). Hence, V' C C and the further restriction
of f to V remains proper. Thus, the cover V has the property required by the lemma. m
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§5 A TOPOS VERSION OF THE REEB STABILITY THEOREM

In this section we shall present a topos-theoretic generalisation of the “Reeb stability
theorem.” Its relation to the classical Ehresman-Reeb stability theorem for foliations
will be explained in §6.

Before stating the result, we recall from [] that for a point z: Set — &£ of a topos &,
an ( “étale”) neighbourhood of x is a pair (U, &), where U is an object in € and & € *(U).
This element & may be identified with a lifting of « to a point of £/U:

For a map f: F — & between toposes, we denote by F, the fiber over x, and by Fy the
pullback over £/U, as in the diagram

fx fU F

Set —— EIU

where both squares are pullbacks. Thus Fry = F/f*U.

If L is a locale in the topos &, we write L, for the locale in Set obtained by
pullback along z:Set — &, and call it the fiber of L over . We shall also write Ly
for the pullback of L along £/U — £. Thus, taking toposes of internal sheaves, in the
diagram (1) for F = She(L), the topos F, = She(L), is Sh(Ly), while Fy = She(L)r
18 Shg/U(LU)

5.1. Theorem. Let & be a topos. Let L be a connected, locally connected, locally
compact Hausdorff locale in &, and let x be a point of €. If L, 1s compact, then there
is an €tale neighbourhood (V,&) of x such that Ly is a compact locale in E/V .

We shall reduce the proof of Theorem 5.1 to the following lemma for locales.
5.2. Lemma. Let ¢:Y — X be a map of locales. Assume ¢ 1s connected, locally
connected, locally compact and separated. Let x be a point of X for which the fiber

o 1 (x) CY is compact. Then there exists an open neighbourhood U C X of x such that
the restriction o~ Y (U) — U of ¢ is proper.

PrROOF.  Using Lemma 4.13 and Proposition 2.1 (iv), the set
{V C X |V open and V - U proper for some open neighbourhood U of 2}

is easily seen to be a directed cover of the compact fiber o ~!(z). Thus, we can find opens
U, Vof Xwithe € UCX and p~1(2) CV CVY, and such that the restriction V — U
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is proper. It follows that ¢(V — V) is closed in U. Since p~!(z) C V, there is an open
neighbourhood W of @ such that o(V — V)N W = 0, giving (V — V)N Y(W) = 0;
since ¢ is open, we can assume that W C ¢(V). It folows that V N~} (W) C V
and (Y — V) N Y (W) form an open disjoint cover of ¢ (W). But ¢:Y — X is
stably connected, which means its restriction ¢ 1 (W) — W remains connected; since
W C (V) this implies o1 (W) C V. Thus, the square

(W) ——V

We———X

is a pullback. Since ¢:V — U is proper, so is @ 1(W) = W. =

Proof of Theorem 5.1. Let X be a locale for which there exists an open surjection
7:Sh(X) — & (see []). We may choose X so large that that the point x can be lifted to
a point & of X with n(2) = x. The fibered product Sh(X) x¢ She(L) = ShSh(X)(ﬂ'#L)
is the topos of sheaves on a locale Lx with the projection Sh(X) xg She(L) — Sh(X)
corresponding to a map ¢: Lx — X. The fiber ¢~ !(z) is the locale L,, which we
assumed to be compact. Moreover, since Shg(L) — £ is cle, locally compact and
separated, so is the map ¢:Lx — X, by (4.2), (4.7), and (2.2). Thus, Lemma 5.2
applies, to give an open neighbourhood U C X of z for which ¢ restricts to a proper
map ¢ 1 (U) = U. Now let £/V = 7(U) be the corresponding open subtopos of £, and
consider the diagram (where we write X for the topos Sh(X), and similarly for Lx,
etc.)

She v (L)
v v

e H(U) Lx

|
gV C

/

U </ X .
In this diagram, the front, back, left and right squares are pullbacks. Since U — £/V

is an open surjection, the propriety of ¢ ~!'(U) — U implies that of She,y (Ly) — E/V
(I 2.7). Thus, Ly is a compact locale in £/V =

She (L)
&

There is a version of Theorem 5.1, purely in terms of toposes. We say a map
f:F — € between toposes is locally compact if the localic reflection She(L) — € of f is
given by a locally compact locale L in £.

5.3. Corollary.  Let £ be a Hausdorff topos. Let f:F — & be a connected, locally
connected, locally compact and separated map of toposes, and let x be a point of £. If
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the fiber F, is compact, then there is a neighbourhood (U, &) of x so that f restricts to
a proper map Fuy — E/U.

ProOOF. By (I 2.5), it suffices to prove the conclusion for the localic reflection of f in
E. The result then follows from (5.1). m

For some applications, it is useful to state explicitly a version of Theorem 5.1
where the map f:F — & is not necessarily connected. Let f:F — & be a locally
connected map, and let C be a connected component of the fiber F,. Let U be an étale
neighbourhood of z, so that F restricts to a map Frr — £/U. An étale neighbourhood
of C over U is an object V of Fy together with a lifting of C — Fyr to Fyr/V:

Fu Ve FulV
-
v
v
v
v
v
v

C( fx fU f
7
Set EIU £ .

We say that V has compact (connected) fibers if the map Fy/V — E/U is proper
(connected). Now (5.1) has the following generalization.

5.4. Corollary. Let f: F — &£ be a locally connected, locally compact and separated
map. Let x:Set — & be a point of £, and let C be a compact connected component of
the fiber Fy. Then there exists (étale) neighbourhoods U of x in € and V of x in Fu so

that V has connected and compact fibers.

PrROOF.  This follows formally from (5.1). Let mo(f) be the object in € of connected
components of f, so that f factors as

F L eimo(f) — &,

where f is connected (and otherwise retains all the E-local properties of f). The pair

x, C together define a point & = (x,C) of £/mo(f), with fiber Fz = C:

C F

Set LE/FO(JC) .
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By (5.1) there is a map U — mo(f) with a lifting y of @ so that the pullback V over
E/mo(f) maps properly into £/U:

C V F

Set EIU
N z

The map V — £/U is also connected, as a pullback of f: F — &/mo(f). We claim
that V is the required étale neighbourhood of C. Indeed, it only remains to be verified
that there is an object V of F so that V = F/V, and this is indeed the case, for
V = f*(U — 7mo(f)), by the righthand pullback above. =

E/molf) -
J

§6 THE CLASSICAL REEB STABILITY THEOREM

In this section we shall explain the relation between Theorem 5.1 and the well-known
Reeb stability theorem for foliations (see e.g. []). We first recall various notions from
foliation theory (holonomy, leaves, etc.) in topos-theoretic terms.

Let G be a localic (or topological) groupoid, and assume that G is étale, i.e. the
source and target maps s,m: Gy = Gg are local homeomorphisms. Let BG be the
classifying topos of G. Recall [] that for any locale X, topos morphisms Sh(X) — BG
can be described in terms of groupoid homomorphisms

0:UY = G (1)

where UX is the obvious groupoid U x x U = U defined from an open cover X = |JU;
with associated étale surjection U = [[U; — X. Note that BU~ = Sh(X) (because
there is an open weak equivalence U~ — X (I §7), if we view the locale X as a groupoid
with identity arrows only).

Such a groupoid homomorphism (1) can equivalently be described by maps ¢;: U; —
Go and ¢;;: U;; = U;NU; — G satistying the evident conditions (soc¢;; = gj, toci; = gi,
¢ij 0 ¢jr = ¢ on Uy i). The system (g;,¢;;) is called a cocycle on X with values in G.
If 7: ¢ — ¢’ is a continuous natural transformation between two homomorphisms as in
(1), the two corresponding cocycles are conjugate (via mappings 7;: U; — G.

We remark that a topos map Sh(X) — BG is locally connected iff it can be repre-
sented by a cocycle for which the maps ¢g;: U; — G are all locally connected. A Haefliger
G-structure on X, or a G-foliation on X, is by definition an isomorphism class of locally
connected topos morphims X — BG. It is represented by a “locally connected” cocycle,
unique up to conjugacy and up to refinement of the cover U —» X.

6.1. Remark. Later, in Theorem 6.6, we shall require the map Sh(X) — BG to be
separated. We note that this is the case if X is Hausdorff while the locale Gy of objects
is locally Hausdorff (that is, has an open cover of Hausdorff locales).
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6.2. Example. Let G = T'? be the “Haefliger groupoid,” with R? as space of
objects and germs of diffeomorphisms as arrows. For a ¢'**-manifold, a C'*°-foliation of
codimension ¢ is by definition a topos morphism Sh(X) — BI'Y, which is represented by
a cocycle for which all the ¢;: U; — R? are C'*°-submersions (hence are locally connected
maps).

If yo € Gy is a point in the space of objects of G, we write G, for the vertex group
at yo. It is a discrete group because G is assumed to be étale. There are obvious topos
maps

Set 2% BG,, — BG,

where 9g is the canonical point of the topos BGy of Gg-sets, and ¢ is induced by the
inclusion Gy, — G (but ¢ need not be an embedding of toposes). If X is any locale,
and ¢: Sh(X) — BG is any topos morphism, we obtain by pullback a diagram

Sh(L) ——— Sh(L) Sh(X)

Set ———~ BGy, ——~BG .

Here 7 is automatically a covering projection of locales with group G, because Set —
BG,, is one of toposes.

Now suppose ¢:Sh(X) — BG is locally connected. One can then factor ¢ as a
connected and locally connected morphism followed by a local homeomorphism (i.e. a
slice), say

Sh(X) -2 (BG)/E -2 BG.

There is an étale groupoid H, up to weak equivalence uniquely determined, for which

(BG)/E = BH and A is induced by an étale groupoid homomorphism H — G.

6.3. Definition. For a G-foliation ¢:Sh(X) — BG on a locale X, its holonomy
groupoid is an étale localic groupoid H for which ¢ can be factored as a connected,

locally connected morphism ¢:Sh(X) — BH followed by a slice \: BH — BG. (This

groupoid H is uniquely determined up to weak equivalence.)

6.4. Example. If ¢:Sh(X) — BI'? is an ordinary foliation on a smooth manifold
X (see Example 6.2), this defines (an étale groupoid weakly equivalent to) the usual
holonomy groupoid (cf. []).

Now let 29 be a point of X. Its image ¢(xo) is a point of the topos BH. Since
the canonical morphism Sh(Hy) — BH is an étale surjection, we can choose a point
Yo € Hy such that the corresponding point of the topos BH is isomorphic to 1(xg). We
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shall abuse notation and also write ¢ (2 ) for such a chosen point yg of Hg. Let us form
a pullback diagram analogous to (2):

Sh(L,,) — Sh(Ly,) Sh(X)
v . (3)
Set plre) BH () — BH A BG .

We can now define the following notions, which specialize to the usual ones in the case
of an ordinary foliation ¢:Sh(X) — BI'? on a manifold X.

6.5. Definition. (cf. diagram (3)). The vertex group Hy,,) is called the holonomy
group at xg of the G-foliation on X given by ¢. (In view of the implicit choice of
Yo = ¥(xp), it is uniquely defined up to conjugation.) The locale L, is called the leaf
of xg, and the map =: f/xo — L, the holonomy covering of this leaf.

The following theorem for a G-foliation on a locale X is now an immediate conse-
quence of Theorem 5.1. For ordinary foliations, it is exactly the Reeb stability theorem.

6.6. Theorem. Let G be an étale localic groupoid. Let ¢:Sh(X) — BG be a G-
foliation on a locale X, and let xo be a point of X. Suppose the map ¢ is separated (see
(6.1)), while the leaf Ly, is compact and the holonomy group at xq is finite. Then the
same s true for all points in an open neighbourhood of xq.

PROOF.  Since f/xo — L, is a covering with group Hol(xq), which is assumed to be
finite, the locale f/xo is compact since L, is. Thus, the fiber of ¢:Sh(X) — BH at
Y(xg) is compact (cf. diagram (3)). Since \: BH — BG is a slice, Hy is again locally
Hausdorff, so we can apply Theorem 5.1 to find an étale neighbourhood V' of ¢(x¢) such
that ¢ restricts to a proper map over V. This neighbourhood V' is an object of BH, i.e.
V' is an étale H-space. We may assume V is of the form

t~ (Vo) = Hy

for an open neighbourhood V; of ¢(x¢) in Hp, since such étale H-spaces generate the
topos BH (see []). Thus, if # € X is any point in X with ¢(x) €q, the point ¢(z): Set —
BH factors through (BH)/V. Therefore Sh(f/x) is compact, because Sh(L,) — Set is
the pullback of the proper map ¢/V, hence is itself proper:

Sh(L,) — . Sh(X)

¥(x)

Set (BH))V — BH .

Since Ly, — L, is a covering projection with groups Hol(x), it follows that L, is compact
and Hol(x) is finite. m



CHAPTER III. TIDY MAPS

In Chapter III we study the fundamental properties of tidy maps between toposes,
maps which are proper in the strong sense considered by K.E. Edwards [] and T. Lind-
gren [|. We shall build upon the methods and results of Chapter I: as before, our strategy
for showing the non-trivial closure properties of the class of tidy maps will rest on a
good site-description of tidiness.

After giving the definition and basic examples (section 1), we deduce various el-
ementary formal properties of tidy maps (sectons 2). We also show that tidiness is
implied by the stable BCC (section 3). In section 4, which is the most technical, we
first introduce, and establish needed properties of, a covenient type of “strongly com-
pact” site. We then show tidy maps are stable under pullback with BCC (Theorem 4.8)
and filtered inverse limits (Theorem 4.11).

The profinite reflection of a map between toposes was considered by P.T. Johnstone
in [], where it was called the “pure-entire” factorization. After compiling a number of
relevant properties of this factorization (section 5), we show that tidy maps are exactly
those for which the pure part is connected, and stably so in an appropriate sense. The
result is a Bourbaki-style characterization of tidiness (section 6).

§1 DEFINITION AND EXAMPLES

Let € be a topos, and let v: £ — Set be its canonical morphism into the “terminal”
topos of sets. We shall call £ strongly compact if the global sections functor commutes
with all directed colimits; i.e. if

lim, 7. (Ei) — 7« (lim, E)

is an isomorphism for every diagram {E;} of objects of £ indexed by a small directed
(= filtered) category I.

Comparing this definition with the one at the beginning of §1 of Chapter I, one sees
that “strongly compact” is indeed a strengthening of “compact.” Following are various
elementary examples, which also serve to illustrate the difference between the ordinary
and strong versions of compactness for toposes.

1.1. Examples. (1) For a group G, the topos BG of G-sets has for its global sections
functor ~v,: BG — Set the fixed point functor, v, = S¢ = {s | s-g = s for all g € G}.
So, clearly, BG is strongly compact if G is finite. (In fact it is not difficult to show that
BG is strongly compact iff G is finitely generated.)

(2) Any coherent topos is strongly compact. To see this, recall ([, 7.31]) that a topos
€ is coherent if it has a site (C,.J) with finite limits, all of whose covers are finite. For
such a site, the inclusion Sh(C,.J) — @, of sheaves into presheaves, preserves filtered
colimits. From this property it follows that the global sections functor ~,:& — Set,
given by evaluation at the terminal object of C, commutes with filtered colimits.

53
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(3) For any compact Hausdorff space X, the sheaf topos Sh(X) is strongly compact. To
see this, consider for any diagram {S;} of sheaves indexed by a directed category I its
colimit S = lim S;. Just by compactness of X, the canonical mapping

ﬁ.

e:limI'S; — [(limS;) =T'S
= =

is injective (I 1.8, 3.2). To see it is also surjective, write ¢;: S; — S for the evident
map, and take any s € I'S. Then there is an open cover X = Uy U ... U U, such that
s1Uk = ¢i, (sk) for some sg € S;, (Ug). And by directedness of I, we may assume that
Si, = 5; does not depend on k. Let X =V, U... UV, be a refinement with Vi C Uy,
and write Vi for Vi N Vi, Then s;1Vi; and s;1Vi; are both mapped to s1Vi. So, by
directedness of I and compactness of Vi, we can find a transition S; — S; in the colimit
such that the images of s1, ... s; in .S; form a compatible family for the closed cover
{Vi1, ... Vi }. Thus, they glue to an element s’ € I'S;, mapped to the given s € T'S.
This shows that ¢ is surjective.

The definition of strong compactness can be relativised in the evident way, to give
the notion of a tidy map between toposes. Thus f: F — & is tidy if, internally in £, F
is strongly compact as an £-topos. An “external” form of this definition, in the style of
(and using the notation from) the earlier definition (I 1.8) is as follows.

1.2. Definition []. A map f: F — £ is said to be tidy if, for any object E € £ and any
directed category I in £/E, the associated square

FIf'E——(F/fE)"!

fIE (f/E)

/B —= (&/E)
has the property that the canonical map
o™ (f/E) (V) = (f/E)wcc™(V)
is an isomorphism for any object V' in (f/f*E)f*I.
Like propriety, tidiness is of “local nature”:

1.3. Proposition. If f is tidy, then so is f/E for any E € £. Conversely, if E — 1
is an epimorphism in € and f/E is tidy, then so is f.

1.4. Examples. (1) Consider, for an object E in a topos &, the slice £/E and the
canonical map £/E — £. Internally in £, the object E can be written (i) as a directed
colimit of its Kuratowski-finite subobjects, or, using the natural numbers object of &,
(i) as a directed colimit of finite cardinals
E = lim n
5 nen

an—FE
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where n = {0,1,...,n — 1}. We have already seen that £/E — & is proper iff E
is Kuratowski-finite, and this can be proved using (i). From (ii), it follows that that
E/E — & is tidy iff E is Kuratowski-finite and decidable, i.e. E is a locally constant
finite object of £, or in other words, £/E — £ is a finite covering projection.

We can easily “relativise” the examples and the proof of (1.1), to obtain:
(2) For a Kuratowski-finite group G in a topos &, the map BG — £ is tidy.
(3) For any coherent site (C, J) in &, the map She(C, J) — £ is tidy.
(4) If X is any compact Hausdorfl (hence compact regular, (II 4.9)) locale in a topos &,
the map She(X) — € is tidy.

As a final example, we mention the following generalization of (2) above.

1.5. Proposition. For any compact localic group G in a topos E, the map Be(G) — €
is tidy. (Be(G) s the topos of continuous G-objects in E.)

PrROOF. We reduce to & = Set by arguing constructively. For a G-set X, write X¢
for the subset of fixed points for the action. We have to show, for any filtered system
{Xi} of G-sets, that the canonical map

mXE — (limX;)° (1)
— —

is a bijection.

Since BG has a surjective point Set — BG, BG is compact, which means (1) is
injective. To show that (1) is surjective, consider any element of the right-hand side,
say n(x) where n: X;, — 1i_r>nXi is a colimit map and = € X; . For each a:ig — j in I,

let Uy C G be the stabiliser of a - 2 € X, that is (applying set-theoretic notation to
locales)

Us={9€G|g-(a-z)=a-za}.

Since n(x) is fixed, these U, form an open cover of G. Explicitly, consider the two maps

of locales ¢, : G — X, ¢(g) = g-x and ¥(g) = x. Then né = ny, so that ((¢,v)
factors through the kernel pair R of n,

R=A(y,z) € X;, x X, | Ja:ig — j such that a -y = a - z}.
But for (y,z) € R,

(6:0) " y.2) ={g | g- ¢ =y and v = 2}
CH{g|datig =+ jsuchthat g-z =yand a-y =« -z}

= \/aUa'

Now, since G is compact, there are ag:iop — jr (k =1,...,n) so that G is covered
by Uayy. .., Uy, . Since I is filtered, there is a map f3:1p — [ dominating all the ay, as
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in the commutative diagram

Jk
y \ (k=1,...,n)
i0 i [.

Thus 8-z € X, is fixed by G, so that n(z) is in the image of X — (li_r>nXi)G. This

proves that (1) is surjective. m

§2 FIRST PROPERTIES

In this section we catalogue some of the immediate properties of the class of tidy maps.
The fact that tidy maps are stable under pullback will be established in §4.

2.1. Proposition. Any tidy map is proper. =

2.2. Proposition. (i) Any equivalence F = £ of toposes is tidy. (ii) If G — F and
F — & are tudy, so is their composite G — E.

Proor. Obvious from Definition 1.2. =

2.3. Proposition. In a commutative diagram

if g 18 connected and h 1s tidy, then so is f.

PrROOF.  The proof is almost verbally the same as that for (I 2.2), now using the fact
that for a connected map ¢:G — F, the induced map §: G’ — F' is again connected,
so that the unit V — §,¢*V is an isomorphism for each object V of . m

2.4. Corollary. If f: F — &£ s tidy, then so is its localic reflection. =

2.5. Remark. There is no reason for the hyperconnected part of a tidy map to be
tidy in general, but as we shall see later, a tidy map does indeed factor as a connected
map followed by a localic map in such a way that both factors are tidy, in analogy with
the image factorization of a proper map, see (6.6) below.

2.6. Proposition. In a commutative diagram as in (2.3), if h s tidy and [ is an
embedding, then g 1s tidy.
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PrROOF.  The proof is analogous to that of (I 2.3), and we use the same notation. Let
W be any object in G/. We have to show that the canonical map

o0 g W — g™ W (1)

is an isomorphism. Since ¢ is proper by (2.1) and (I 2.3), we already know (by (I 3.2))
that this map (1) is mono. To show that it is also epi, it suffices to prove that its
image under f, is, because f is assumed to be an embedding. Consider for this the
commutative diagram

fx00*guW ——— fi g™ W

|

oo*h, W

~

hoo*W .

Here the lower arrow is an isomorphism because h is assumed proper. Hence the upper
horizontal arrow must be epi. =

2.7. Remark. The analogue of (I 2.4) for tidy maps is false, as is clear from Example
1.1.1.

The following proposition generalises Example 1.1.3.

2.8. Proposition. Any proper and separated map of toposes is tidy.

PrOOF.  Our argument needs the fact that tidiness descents down open surjections,
the proof of which is postponed until §4 (Proposition 4.10).

Since every map f: F — & factors as a hyperconnected map followed by a localic
map, and since these two maps are both proper and separated whenever f is, it suffices to
prove the theorem for the two special cases where f is either localic or hyperconnected.
The first case is taken care of by Proposition 1.5.

For the second case, suppose f:F — & is hyperconnected (hence proper) and
separated. Consider the pullback

F xe F F

F E.

The map 7, is again hyperconnected and separated and has the diagonal A as a section.
Thus, up to equivalence, this map is of the form Shx(G) — F for some compact localic
group in F, by (II Theorem 3.1). By (1.5), 7y is tidy. Since f is an open surjection, we
conclude by (4.10) that f is itself tidy. m
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63 THE BECK-CHEVALLEY CONDITION

Recall from (I §3) that a commutative square

g 7 (1)

g

is said to satisfy the Beck-Chevalley condition (BCC) if the canonical natural transfor-
mation

a* fo = g.b*.
is an isomorphism. The map f is said to satisfy the BCC if for any map a: G — &, the
pullback square of f along a satisfies the BCC. If any pullback of f satisfies the BCC,

we say [ satisfies the stable BCC. This terminology is analogous to that introduced for
the weak Beck-Chevalley condition in (I §3).

3.1. Proposition. [If f: F — & satisfies the stable BCC then f is tidy.

ProoF. Consider a directed category [ in &, and the diagram

F———FI"1 F
b 7t b
£ * el £ .

Since the (total) rectangle and the right-hand squares are pullbacks, so is the left-hand
square. By assumption, the BCC holds for the left-hand square, which says that for
any object U of F¥'1 the canonical map

co* (1)U = froo*U.

is an isomorphism. The same argument applies to any slice F/f*E — £/ E, since these
slices are pullbacks of f: F — £. But this is tidiness of f, according to Definition 1.2. =

3.2. Remark. As in (I 3.4) we observe that the morphism & — £’ is a subtopos
inclusion. Thus it is enough to require the BCC stably for pullbacks to subtoposes in
Proposition 3.1.

One of the main results of this chapter is the converse of Proposition 3.1, to be
proved in the next section.



59
64 STABILITY UNDER CHANGE OF BASE

In this section we give a description of tidy maps in terms of sites, based on a result
of K. Edwards []. As a first application, we obtain new proofs of two theorems of
T. Lindgren [], namely a characterisation of strongly proper maps in terms of the Beck-
Chevalley condition (the converse of (3.1)), as well as the preservation of strong propriety
under pullback. Our proofs are simpler than those of [], and also constructive (avoiding
the transfinite iteration involved in the original arguments), hence are valid over an
arbitrary base topos.

We begin with a formulation of the Edwards criterion for a topos € to be strongly
compact. Although we state it in the informal language of sets, it applies over an
arbitrary base topos.

4.1. Proposition [|. A topos £ is strongly compact iff £ 1s compact and, moreover, for
any object E in € with global support (i.e. E — 1 ept) the following condition holds: for
any directed epimorphic family {R; C E x E} of equivalence relations on E there exists
a subobject U C E with global support such that U x U C R; for some 1.

PROOF. (=) Suppose & is strongly compact, and let {R; C E x E} be as in the
statement of the proposition. Then the directed diagram of quotients E/R; has colimit
1i_r>nE/Ri = E/\/R; = 1. Since & is assumed tidy, it follows that li_r>nT(E/Ri) =1.In
particular, we find for some i a global section s:1 — E/R;. The pullback of s along
E — E/R; is a subobject U C E with the required properties.

(<) To show that & is strongly compact, consider any directed diagram {D;} of
objects of £, and write D = 1i_r>nDi. Since & is compact, the canonical map

linI'D; — T(lim D;) = T'D

is injective (I 3.2). To see that it is also surjective, take x € I'(D), and write E; C D;
for the pullback of D; — D along x:1 — D. Then limE; = 1. So by compactness of
£, there exists an index ¢o such that E,;, — 1 is epi. Each transition map D;, — D; in
the diagram restricts to a map E,;, — E,;, with kernel pair R; C E;, x E, , say. Since
limE; = 1, the family {R;} covers E;, x E,;,. By the assumption, there exists a U C E;,
such that U —» 1 and U x U C R; for some i. Then the composite map U — E;, — E;
factors through U — 1, providing the required section 1 — E; — D; mapping to z. =

Before proceeding to the next definition, we need to introduce some notation
concerning equivalence relations in a pretopos site (I 4.3). Given a subobject U »—
C x C in a pretopos site C, one can define a sequence of subobjects U™ — C x C
which jointly form the equivalence relation generated by U in the usual way: let
U© = A¢ (the diagonal), UM = U® U U U U, and let U™t be the image of
(71, m3): U e UM s Cx C xC — C xC. We shall call a family of monomorphisms
of the form {U; — C x C | i € I} effective if there exists a subobject D ~— C such that
both D — 1 and the induced family {(D x D)N U™ »» D x D |i € I, n € N} are
covers of C. A subobject U — C' x C' is effective if it is so as a singleton family.

The definition of strong compactness for a pretopos site is an appropriate reformu-
lation of the Edwards criterion.
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4.2. Definition. A pretopos site C is strongly compact if C is compact (I 5.1) and,
moreover, for any €' — 1 which covers, any directed cover of C' x C' by monomorphisms
in C has an effective member.

4.3. Remark. Like the definition of compactness (I 5.1), Definition 4.2 makes sense
for any “site with stable compatible system of directed covers” (I 5.2). The results
of this section remain true (and most proofs unaltered) if we work with such a site C
instead of a pretopos site, provided we add the requirement that the coproducts in C are
disjoint (see []), to ensure that “preservation of covers” entails “preservation of sums.”

We hayve:

4.4. Proposition. A pretopos site C for a topos £ is strongly compact iff € is strongly
compact.

PROOF.  We need to add to the proof of (I 5.3) the verification that a compact C
satisfies the additional condition for strong compactness precisely when the (compact)
topos & satisfies the Edwards criterion.

Suppose C is indeed strongly compact, and let E — 1 and {R; — FE x E} be
as assumed in (4.1). By compactness and the existence of finite sums and images in
C, preserved by the canonical functor h:C — &, we find an object C of C such that
C — 1 covers and h(C) — h(l) = 1 refines E — 1, say by a map e:h(C) — E. Let
{S; = C x C} be a cover by monomorphisms in C such that the family {h(S;) —
h(C x C) = h(C) x h(C)} refines {(e x )71 (R;) — h(C) x h(C)}. Since the family
{R; — E x E} is directed, we can assume that {S; — C x C} is directed too. By
strong compactness of C, some S; = C x C is effective. Thus, we can find a subobject

D »— C with D — 1 a cover such that the family {D x DN S;n) — D x D} is a cover.
By construction h(S;) — h(C x C') — E x E factors through some equivalence relation

R, — E x E. But then h(S;n)) — h(C x C) — E x E factors through R; for all n, and
this is easily seen to imply that the map h(D) x h(D) — E x E factors through R;. Let
V C E be the image of h(D) — E. Then V — 1 is epi and V x V C R;, as required in
(4.1).

Conversely, suppose & satisfies the Edwards criterion. For a suboject V — E X E
in &, let V = \/nV(") — FE x E denote the equivalence relation on E generated by
V. Consider any directed cover {S; — C x C'} in C, where C' — 1 covers. Since the

—

family {h(S), = h(C) x h(C)} of equivalence relations in € is directed, (4.1) gives some

—

U C h(C) with global support in £ and some j such that U x U C h(S;), that is, such

that the family {U x U ﬂh(SEn)) — U x U | n € N} is epimorphic. But by compactness
and the existence of finite sums and images in C, we can assume that the inclusion
U C h(C) lies in the image of h, say U = h(D) where D — C is a subobject in C such
that D — 1 covers. But this says that S; — C' x C is an effective subobject of C' x C.
Thus, we have shown that C is strongly compact. =

The next “induction” lemma is the counterpart of (I 5.3) for dealing with strong
compactness.
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4.5. Lemma. Let C be a compact pretopos site equipped with a system N of distin-
guished effective subobjects (of products C x C) such that

(1) The trivial effective subobject C x C 2y 0 x C € N whenever C — 1 covers.

(i) nV — U »— DxD»— CxC (where D — C), if V. »» D x D € N then
U—CxCeN.

(ii) U™ C xC € N only if U = C x C € N.

(iv) For any basic S-cover {U; — U}, if U — C x C € N then U; — C x C € N for

some 1.

Then N contains all effective subobjects U »— C' x C of C, and C s strongly compact.

Proor.  Consider the following property of families {U; — U}: for any U — C x C €
N, there is some ¢ for which U; — U is a monomorphism and U; — C'xC' € N. Since this
property is given to hold for basic S-covers (iv), trivially holds for the family {1 — 1}
and is preserved by composition, it must hold for generated S-covers by induction. But
then, if C' — 1 is a cover, any generated S-cover {S; » C x C} contains a member of
N, since the identity C x C' — C x C' € N. By (I 4.3) and condition (ii), the same is
true for any directed cover of C' x C'. This shows that C is strongly compact.

To prove that N contains all effective subobjects, consider any such, say U — C xC,
and let D »— C be a monomorphism such that D — 1 and the family {(D x D)NU™ —
D x D | n € N} are covers. Then, by what we have just shown, some (D x D)\ U™ »—
D x Disin N, whence U — C x C € N by conditions (ii) and (iii). m

4.6. Corollary. A compact pretopos site C 1s strongly compact iff the system of all
effective subobjects satisfies the conditions of (4.5).

4.7. Lemma. Let p:& — & be a morphism of toposes and suppose C 1s a strongly
compact pretopos site i E. Then the pretopos site p*C s strongly compact in &'
Moreover, if L denotes the object of objects which cover 1, and N the object of effective
subobjects in C, then ©*L and ¢*N are the corresponding objects, respectively, for ¢*C.

ProOOF. By (I 5.4), ¢* preserves both the compactness and the object of covering
subobjects of 1 of C. It therefore also preserves the object of objects with covering
support. It follows that the conditions of Lemma 4.5, which are satisfied by N (Corollary
4.6), are “geometric” and hence inherited by ¢*N. Thus, the lemma follows by an
application of (4.5) in &'. =

4.8. Theorem [|. In a pullback square

f/

f f (1)

f’

&g €,

suppose that f is tady. Then f' 1s tady and the BCC 1is satisfied.
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PrOOF.  We reduce to the case £ = Set and argue constructively.

Let C be a pretopos site for F. Then C is strongly compact by Proposition 4.4 and
it follows that ¢*C is a strongly compact site for ' in & by Lemma 4.7. Thus, f' is
tidy, by applying Proposition 4.4 in &’.

To deduce the BCC, consider any object F' of F, represented by a sheaf P on C.
The corresponding sheaf for »* F' made in the topos £’, is given by the sheafification ) =
(e*P)tt in £ of the presheaf p* P, and the map ¢*fu F' — fl4*F by the component
at the terminal object 1 € C of the canonical natural transformation n: o*P — (). We
need to show that this map is epi (we already know it is mono by the weak BCC which
holds since f is proper (I 5.8)).

The sheaf P has the following property: for any effective subobject U — C' x C
and element p € P(C) such that the restrictions of p along the projections U = C
agree, there is a subobject D »— C where D — 1 covers, and a unique “global” element
s € P(1) such that s1D = p|D in P(D). For, choose this D ~ C to be any subobject
for which D — 1 covers and for which the family {D x D N U™ » D x D} covers
(U — C x C is eflective). Then the restrictions of p along each pair of projections
UM = C agree, which implies that plD is locally compatible, that is to say, compatible
over a cover of D x D. By the sheaf condition, it has a global element s of the form
claimed. Since the notions of “object with covering support” and “effective subobject”
for a strongly compact C are preserved under change of base by Lemma 4.7, this property
is inherited by ¢*P (despite not being a sheaf in general) in £’

We now argue internally in £’. An element ¢ € Q(1) is given by a cover {C; — 1}
in ¢*C and a family of elements p; € ¢*P(C;) which are locally compatible in the
sense that p; and pj agree on a cover of C; x C'j. By compactness and the existence
of sums in p*C, we can take this cover of 1 to consist of a single arrow C' — 1, with
q given by some p € ¢*P(C). Local compatibility of p means that there is a cover
{S; = C x C} such that for each 1, the restrictions of p along the induced maps S; = C
agree; since ™ P still satisfies the sheaf property for P-covers, we can assume that each
S; — C x C is a monomorphism and that the family {S; — C x C} is directed. By
strong compactness, some S; — C' x C is effective. As shown above, we can find some
s € p*P(1) and a subobject D »— C such that D — 1 covers and such that s1D = p|D.
Since such s is mapped to (the equivalence class of ) p by n1: ¢*P(1) — Q(1), this shows
that the map pfu F' — flp*F is epi.

We have therefore established the BCC. =

4.9. Corollary [|. A map f:F — & s tidy iff it satisfies the stable BCC.

PRrROOF. One direction is Proposition 3.1, the other is immediate from Theorem 4.8. =

4.10. Proposition.  In the pullback square (1), suppose p is an open or a proper
surjection. If ' is tidy, then so is f.

PrROOF.  We write as if & = Set and argue constructively. Suppose f’ is tidy and
let C be a pretopos site for F. Tidiness of f’ implies that the pretopos site ©*C is
strongly compact. We want to conclude that F is strongly compact by showing that C
is strongly compact.
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Since F is compact by (I 2.7) and (I 6.9), we already know that C is compact.
Consider any C € C such that C' — 1 covers and any directed cover {S; — CxC | € I}
of monomorphisms in C. Let

K={(,D)|iel, D C € Csuchthat D — 1 and
{Sgn)ﬂ(D x D) »— D x D | n € N} are covers in C}.

We need to show that K has an element. Since ¢*C is strongly compact, the corre-
sponding object in &',

K'={(i,D)]|i€¢*I, D— ¢*C € ¢*C such that D — 1 and
{o*(S)"™ N (D x D) = D x D | n € N} are covers in p*C}

is inhabited, in other words, K’ — 1 is epi.

Suppose first that ¢ is open. Then ¢* preserves first-order logic (see []), hence in
particular the notion of “closed sieve.” This implies that, for a fixed family {C} — C'}
in C, the set {D — C |{D x¢ Cy — D} covers} is mapped by ¢* to the object defined
by the expression {D — ¢*C' | {D X xc ¢*Cyp — D} covers} in €. It follows that the
definition of K is preserved, that is, K" = ¢*K. Since ¢* is faithful, we conclude that
K has an element.

On the other hand, suppose ¢ is proper, that is, £ is compact. Then ¢ is a
surjection by (16.9). Let ky for U’ C 1 in £’ denote the functor C — F — F' — F'/U".
We can express the image of K’ — 1 as a directed join

supp(K') = \/{U' C 1| For some i € [ and D ~— C € C, ky» maps D — 1 and
{Sl(n) N(D x D)» D x D | n €N} to covers in F/U'}.

Since supp(K’) = 1, compactness of £ gives some ¢ € [ and D ~— C in C such that
D — 1 is mapped to an epimorphism, and {Sgn) N(D x D) D xD|né&N} toan
epimorphic family in F’ by the functor C — F — F'. But ¢* is faithful, which implies
that D — 1 and {Sgn) N (D x D) — D x D | n € N} are covers in C; that is, (¢, D) is
an element of K.

This completes the proof. =

4.11. Theorem. Suppose f:F — & 1s the limat

F = F;
N/ :
£

of a diagram of tidy maps {fi: Fi — E} indexed by a filtered category I. Then f 1s tidy.
Moreover, for any 1 € I, the canonical natural transformation

lim fj ta" = fupi”,
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where a:j — 1 varies over the category I/t and to: F; — F; denotes the transition map
induced by «, 1s an 1somorphism.

PrOOF. By regarding I as an internal category in &, it will suffice to treat the case
& = Set constructively.

Let {C;} be a diagram of pretopos sites inducing {F;}, and let C be a pretopos
site for the limit F as given by (I 4.8). Denote the canonical functors associated with
an arrow «a:j — 1 € I as indicated in the commutative diagram

Py
C/ SEREY (R \(jz
h b b
Fl— R

For each 1, let N; be the set of effective subobjects subobjects in C;, and let N be the
set of effective subobjects in C which are (up to isomorphism) in the joint image of the
N; under the morphisms P;: C; — C which induce the projections p;: F — F;.

Since each C; is strongly compact, we can show, as in the proof of (I 5.10), that C is
compact, and also that each covering subobjects of 1 in C is (up to isomorphism) in the
image of some P;. Since epimorphisms of C lift similarly, it follows that the same can
be said for any cover C' — 1 in C. Using this fact, the lifting property of commutative
diagrams and basic S-covers in C, and the directedness of I, it is not hard to check that
the system N inherits the conditions of Lemma 4.5 from the N;. It follows that any
effective suobject U — C x C in C lifts to some C;, and that C is strongly compact.
Thus F is strongly compact.

To show the second part, fix ¢« € I and consider any F' € F;. We need to show that
any global element s:1 — p;*F in F is of the form p;*z:1 = p;*1 — p;*F for some
a:j — 1 € I and a global element z:1 — ¢,*F in F;, and further that if ":1 — t/*F
with a’: 3/ — ¢ is another such lifting of s, then there is a commutative diagram

in I such that tg*2x =tg*2' in Fy.

Now, if each F; were the presheaf topos on C;, then F would be the presheaf topos
on C and the global element s would indeed have this lifting property. For then f.p;*
would be calculated explicitly as “left Kan-extension” along P; at 1 € C, which can
be expressed as the (filtered) colimit of extensions along T, for a:j — i, evaluated at
1 € C;, as is readily verified using the directedness of I and the lifting property of finite
commutative diagrams in C.
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This implies, firstly, that we can “locally lift s, in a locally compatible way.” More
precisely, using strong compactness and the existence of sums and images in C, we
can find a:j — ¢, C and U — C x C in C;, and y: h;(C) — t,*F in F; such that
P;(C) — Pj(1) 2 1 covers and Pj(U) — P;(C) x P;(C) is effective in C, while s
restricts to p;*y, and the restrictions of y along the projections h;(U) =2 h;(C) are
equal in F;. But since singleton covers of 1 and effective subobjects in C lift, we can
(using directedness of I) further arrange that C' — 1 covers and that U »— C x C is
effective in C;. It follows that y is the restriction to h;(C) of a unique global element
r:1 — t,*F, and then that p;*x = s. This proves the existence of a lifting for s.

Secondly, if #’:1 — ¢}, F € F} also satisfies pjs*z’ = s, then x and 2’ can “locally”
be forced to become equal in the way required. Explicitly, incorporating compactness
and the existence of finite images in C, we can find a commutative diagram (3) in I and
V »— 1in C; such that Pr(V) — Px(1) 2 1 covers in C and the restrictions of ¢3*z and
tg*a’ to hp(V) — hi(l) = 1 agree. Again, since singleton covers of 1 in C lift, we can
(using directedness of ) arrange that V' ~— 1 covers already in C,. Thus, tg*z = tg*a’
in Fj, which proves the “uniqueness” part of the lifting for s. m

4.12. Corollary.  Suppose in (2) that for each o:j — 1 in I, the canonical natural
transformation f;, — f; ta" induced by the transition morphism to:F; — F; is an
wsomorphism. Then the canonical natural transformation f;, — fepi* is an isomorphism
for eachi1€1. m

85 ENTIRE MAPS

In this section we catalogue various results involving profinite localic maps, needed for
an alternative description of tidy maps to be given in §6. In particular, we recall the
pure-entire factorization of a map f: F — £ introduced by P.T. Johnstone [].

We start with some well-known facts concerning profinite sets and locales (see |,
Chapters II and V1)), interpreted in an arbitrary topos S (fixed for the moment as base).
As usual we write as if S is the category of sets.

Let F = Fs denote the full (internal) subcategory of S of finite cardinals as in
Example 1.4 (1). We recall that the category of formal inverse limits of finite objects,
or profinite objects in S is defined to be the dual of the category of filtered (i.e. finite
limit-preserving or “left exact”) internal diagrams on F. Any profinite object P can be
turned into a locale |P| by constructing the (obvious) limit

|P| = lim n (1)
< nelF
zEP(n)
The functor | — | has a left adjoint, which assigns to a locale X the diagram P(X) of

partitions of X, or equivalently, the diagram “under” X spanned by F in the category
of locales, whose value at n is the set of maps from X into the discrete locale n.

The next proposition says that profinite objects of § are the “same” as profinite
internal locales, that is, inverse limits of finite discrete locales.
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5.1. Proposition. The realization (1) of a profinite object as a locale embeds the
category of profinite objects of S as the (full) reflective subcategory of the category of
locales in' S, consisting of those locales X (called “Stone locales”™ in []) satisfying any of
the following equivalent conditions:

(i) X s coherent and regular.
(i1) X s coherent with complemented compact opens (that is, the basis of compact opens
of X form a boolean algebra).
(iii) X 4s compact and has a clopen basis.

PROOF.  The usual lattice-theoretic proofs of these facts (see []) are essentially con-
structive, hence interpretable in the topos S. =

5.2. Remarks. (1) The functor

X [PX)=lm __ n
¢ ner

§5: X on

assigns to a locale X its profinite reflection, and the reflection map X — |P(X)]| is an
isomorphism iff X satisfies any of the equivalent conditions above. In terms of condition
(ii), the compact opens of |P(X)| correspond to the complemented opens of X, which
in turn correspond to the maps X — 1412 2.

(2) By [, IIT 1.3] and (II 4.8)), condition (i) equivalently states that X is coherent and
Hausdorff.

(3) Any map between coherent locales satisfying condition (ii) is clearly coherent, hence
it follows that the category of profinite objects in § is dual to the category of boolean
algebras in S. (More directly, the category of profinite objects is a “pro-completion” of
F, and the category of boolean algebras an “ind-completion” of the category of finite
(= finitely presentable) boolean algebras, which is dual to F.)

Combining the localic reflection of a topos with the profinite reflection of a locale
gives:
5.3. Corollary. Any S-topos p: £ — S has a profinite localic reflection

g

€ Shs(m§'(€))

S,

a unwersal map into an S-topos of sheaves on a profinite locale. More precisely, ﬂ'gf(g)
is the (internal) limit of locales

w5 (€) =lm . n

where n varies over N and § over n-fold partitions € = E + -+ Ep—1 of € into open
subtoposes (with an arrow (n,d0) — (n',d") being a function a:m — n' such that & C
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Ea(ry for k < n). The locale ﬂ'gf(g) has for its basis of compact opens the boolean algebra
pe2¢, where 2¢ =1+ 1€ €.

PROOF.  Clear from the existence of the localic reflection, (5.1) and (5.2). =

5.4. Remark. The notation ﬂ'gf(g) is meant to convey the idea of the profinite
reflection as “profinite object of connected components” in analogy with the profinite
fundamental group ﬂ'ff(g), see [|. If € is connected, then clearly ng(g) =~ 1, but (unless
S is the category of classical sets) the converse need not be true. More generally, the
reflection map € — Shs(ﬂ'gf(g)) need not be connected.

We are now ready to pursue various formal aspects of profinite localic maps:
5.5. Definition [|. A morphism f:F — £ is said to be entire if it is localic for a

profinite or “Stone” locale. Thus, in terms of Corollary 5.3, f is entire iff it coincides
with its profinite reflection,

F ~ She(7P(F)) ~ She(f.27)

as E-toposes (where the boolean algebra f.2r is regarded as a coherent internal site).
Entirety is clearly a “local” property.

5.6. Examples. (1) In any topos £, amongst the discrete locales, the profinite ones
are precisely the finite cardinals. Thus, for an object E € £, the map £/FE — £ is entire
iff it is a finite covering projection.

(2) An inclusion of toposes is entire iff it is closed. For, the terminal locale is profinite,
and clearly by condition (iii) in Proposition 5.1, profiniteness is inherited by closed
sublocales. Conversely, an entire embedding is proper, hence closed. More generally:

5.7. Proposition. Any entire map 1s tidy, in fact proper and separated.
PrROOF.  Clear from (1.4) (3) and Remark 5.2 (2). =
Applied to the second example above, this gives:

5.8. Corollary. Any closed inclusion of toposes is tidy. m

5.9. Proposition. In a commutative diagram

g
g F
&,
(1) of f and g are entire, so is h;
1) 1 18 separated and h 1s entire, then g 1s entire.
P ) g
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PROOF. We use the third characterization of profinite locales in Proposition 5.1.
Then by (I 2.1) and (II 2.1(iv)), it will be enough to show for (i) that the property of a
map of being localic with clopen basis is preserved under composition and for (ii) that
this property is always inherited by ¢ from h (for any f).

We argue in £ as if it were the category of sets. Since localic maps are preserved
under composition, we can assume that G ~ Sh(Z) for a locale Z, with opens given by
the subobjects of 1 in G. Let C be any site for F with a terminal object, and e:C — F
the canonical functor. The map ¢ is induced by a locale Y in F, with frame of opens
represented by the sheaf A on C which has subobjects of g*e(C') as sections at C € C,
and with restriction along D — C' defined by pullback along g*e(D) — g*e(C).

A basis for YV is a subsheaf B C A such that for any C' € C, the images of maps of
the form

W —— g*e(D) o) g e(C)
for a:D — C € C and W € B(D) together form a basis for the frame A(C) in the

ordinary sense. In particular the subsheaf generated by elements of A(1) is a basis, and
if Z has a clopen basis, the complemented elements of A(1) will suffice, resulting in an
internal basis of clopens B C A for Y. This establishes (ii).

On the other hand, if 7 — & is localic with clopen basis, we can choose e:C — F
to be the inclusion of complemented subobjects of 1 in F. Then, given any internal base
B C A, the generating elements of A(1) (which is the frame of opens of Z) coming from
B(V) for complemented V' C 1 are complemented, and it follows that Z has a clopen
basis. This proves (i). =

5.10. Proposition. In a pullback square

suppose f 1s a localic map. Then
(1) If f is entire, so is g.

(i1) If g is entire and a is a proper or open surjection, then f is entire.

PrROOF. (i) If f is entire, then H is the category of sheaves on the boolean algebra
(site) a* f«2F as G-topos, whence ¢ is entire.

(ii) If ¢ is entire, then ¢ is tidy (5.7). Thus, by Proposition 4.10, f is tidy and the BCC
is satisfied in (2). It follows that

924 = g, 0" 27 2 a” £, 25,

But this means that pullback along a: G — & preserves the entire reflection of f, in other
words, forces the reflection unit to be an isomorphism. Since a is of effective descent
for locales, it follows that f is entire. m
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5.11. Definition []. A morphism f:F — & is said to be pure if its entire reflection is
trivial. Thus, by Corollary 5.3, f is pure precisely when the canonical map 2¢ — .27
is an isomorphism. Any connected map is clearly pure. Note again that purity is a
“local” property of a map.

5.12. Lemma. Any morphism f:F — & factors as a pure morphism followed by an
entire morphism.

PROOF.  Factor f as F - P —Ls £ where g is the entire reflection of f, and then

factor p as F — Q "y P where h is the entire reflection of p. It will be enough to
show that h is an equivalence, since this will show that p is pure. By Proposition 5.9,
the composite @ — P is entire, whence it follows by the universal property of p that
there exists a morphism k: P — Q over & such that hok = idp and kop = ¢g. But then
ko h =2 idg by the universal property of ¢, and we are done. =

5.13. Lemma. The following are equivalent for a morphism f:F — &E:

(i) f is pure.
(ii) Any commutative square of the form below in which the map g is entire has a unique
(up to tsomorphism) commuting diagonal fill-in d:

f’

g .

(iii) For any E € &, the morphism f/E:F[f*E — £/ E satisfies the property in (ii) for
the special case where g is the (étale) map G+ G ~G/26 — G.

PrROOF.  First note that by the pullback-stability of entire maps (5.10), condition (ii)
is equivalent to its restriction to the case where the map a: &€ — G in the diagram above
is the identity. It is then clear that (ii) as a property of f is preserved under pullback
along étale maps, since for any &£-topos H, any E € £ and any profinite locale X in
E/E, there is a correspondence (or more precisely, an equivalence) between maps

H/f*E — She/p(X) = H—Sh(]][X)
E

over £/E and £ respectively. Here [[; X denotes the internal localic product of the
“F-indexed family X of profinite locales”, which is profinite.

The implication from (i) to (ii) now follows from the universal property of a pure
map, as unit for an entire reflection. Further, by its just-mentioned stability under étale
change of base, property (ii) implies (iii) as a special case. Finally, to complete the circle
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of implications, assume f has property (iii) and consider the composite of commutative
rectangles and canonical maps

f/f*f*27-'

f/2]: f/2]: >5/2g

—

Els _ —

E/c - -
£/2e —° L gip2, £

By the existence clause of (iii) applied in the left-hand rectangle, there is a commuting
diagonal as indicated, induced by a map s: f, 27 — 2¢. But then the arrows in the top
triangle are the sides of a pullback square, which says that f*s: f* f,27 — 2 coincides
with the counit of the adjunction f* - f.. It follows that s is a right inverse for the
unit ¢:2¢ — fi27. But s is also a left inverse for ¢, by the uniqueness clause of (iii)
applied in the total rectangle. Thus, f is pure. =

5.14. Remark. Lemma 5.12, together with the orthogonality relationship (ii) between
pure and entire maps in Lemma 5.13, say that the classes of pure and entire maps form
a so-called factorization system in the category of (Grothendieck) toposes, a result first
obtained in [].

5.15. Corollary. The pure-entire factorization of a map f:F — & is essentially
unique. =

Recall that a morphism f: F — £ is connected precisely when it satisfies property (iii)
of the last lemma with 2g replaced by an arbitrary object G € G. The next technical
lemma will enable us to give a simple description of connected maps as (certain) pure
maps.

5.16. Lemma. Any object E in a topos &£ can be presented as an equalizer

E~—— By B,

where By and By are the underlying objects of boolean algebras.

PrROOF.  The functor which assigns to E the free boolean algebra object F(E) on E
reflects isomorphisms. This follows from a few facts which may be read off from any
standard construction of F(E) valid in a topos. Writing as if £ is the category of sets,
any element « € F(FE) can be written as a finite join

1’0\/1’1\/"'\/1'”_1, (3)

where each z; is a finite meet of elements or complements of elements, in the image of
the canonical map ip: E — F(E). Also, the map ¢ is an inclusion, and for = as in in
(3), x = ig(e) for e € E only if ig(e) = xy for some k, while each xy is either of this
form or zero. Using this, one checks that a bijection of the form F(s): F(E) — F(E')
restricts to a bijection s: E — E'.
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Now, being left adjoint to the forgetful functor, F' maps the canonical diagram

LR (B)

B2~ F(E) F(F(E)) (4)

F(ig)

to a split equalizer of boolean algebras. It follows by a standard argument that (4) is
an equalizer in &, =

5.17. Remark. The free boolean algebra functor is in fact comonadic (in any topos),
since it also preserves equalizers of reflexive pairs. However, a bare-hands constructive
prove of this fact (which will not be needed) is just a little too technical to be replicated
here.

5.18. Proposition. A morphism f:F — &£ us connected iff the pullback of f along
any entire map 1S pure.

Proor. Consider a pullback square

H

N

G——¢
in which the horizontal maps are entire, say G ~ She(B) and H ~ Shx(f*B) for a
boolean algebra (coherent site) B in €. In particular, f*B = b,2. Saying now that g
is pure is equivalent to saying that g followed by a is the pure-entire factorization of the
composite H — F — &, that is, that the canonical map B — f, f* B is an isomorphism.
Thus, the lemma states that the unit of the adjunction f* 4 f, is an isomorphism iff it
is an isomorphism on underlying objects of boolean algebras. One direction is trivial,
and the other is immediate from Lemma 5.16. m

5.19. Lemma. The BCC s satisfied in a pullback square

b

H F

G———¢

iff the pure-entire factorization of any composite P — F — &€ of [ with an entire map
18 preserved under change of base along a:G — £.

PROOF.  Arguing as in the last proof, we see that the lemma claims that the canonical
natural transformation a* f, — ¢.b* is an isomorphism iff its components on underlying
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objects of boolean algebras in F are isomorphisms. But using Lemma 5.16, this is
clear. =m

5.20. Remark. By definition, a morphism f:F — & is connected iff pulling back
internal locales along f restricts to a fully faithful functor on discrete, or “ind-finite”
locales. By (the proof of ) Proposition 5.18, connectedness of f is equivalent to the same
condition on profinite locales. Similarly, Lemma 5.19 essentially states that the Beck-
Chevalley condition can equivalently be formulated with reference to either discrete or
profinite locales.

§6 TIDINESS AND CLOSED MAPS

In this section we complete the analogy between proper and tidy maps by introducing
firmly closed maps and proving the following counterpart of (I 6.1):

6.1. Theorem. A map f:F — & between toposes s tudy off all pullbacks of f are
firmly closed.
To define the notion of firmly closed map, we use the pure-entire factorization F —

Shg(ﬂ'gf (F)) — € of amap f: F — &, discussed in the previous section.

6.2. Definition. A map f:F — & is firmly closed if, for any E € £ and any entire
map P — F/E, the pure part of the composite P — F/f*E — £/E is connected (see
also Remark 5.4).

We observe straightaway that “firmly closed” is indeed a strengthening of “closed”.

6.3. Proposition. Any firmly closed map f: F — & s closed.

PrOOF.  Given E € &, any closed inclusion C C F/f*E is an entire map, Example
5.6 (2). Since f is firmly closed and a connected map is surjective, the image f(C) of
C — E/E is the same as the image of its entire part. But any entire map is proper,

hence closed by (16.1). =

6.4. Lemma. A map f:F — & 1s firmly closed iff for arbitrary E € &, the BCC 1s
satisfied in the left of any pair of pullback squares

b

L H F/f*E
g f/E
IC c g a E/E

in which the bottom maps are entire.

PrROOF.  Suppose f is firmly closed. Given E € &, consider successive pullbacks of
f/E along entire maps as above. For any entire map P — H, the pure part p: P —
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Shg(ﬂ'gf (P)) of the composite P — G is also the pure part of the composite P — E/E,
by entirety of the map a:G — £/& and preservation of entire maps under composition:

b

P H FlfE
2 g flE
Shg(xb' (P)) G “ ~¢/E.

It follows that p is connected, hence pure, and stably so for pullbacks along entire maps
(5.18). By Lemma 5.19, this demonstrates that the BCC holds for the pullback of ¢
along any entire map ¢: K — G.

To show, conversely, that f is firmly closed if it satisfies the stated condition, let
E € & be given, and consider an arbitrary entire map h: P — F. Factor h as bo a, as
indicated in the diagram

a b

P H F|f*E

) g f/E

She, (w8 (P)) = €/E

where p is the pure part of P — £/E and g is the pullback of f/E along the entire part
of p. Note that the map P — H is entire by Proposition 5.9 and the fact that b (as the
pullback of an entire map) is entire. By assumption, the BCC holds in any pullback

square

c i H

c

K She g (x5 (P))

in which the map ¢ is entire, In terms of Lemma 5.19, this says that the purity of p
is preserved under pullback along entire maps, that is, that p is connected (5.18). We
may therefore conclude that f is firmly closed. =

For the next lemma, we recall the notion of splitting topos from (I §6).

6.5. Lemma. The BCC holds in any pullback square

t

F F
f f

g/;g
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in which the map f is proper and firmly closed, and s:E" — £ 1is a splitting topos for a
famaly of open subtoposes in &.

PrROOF.  The pure (hence connected) part of any composite P — F e of f with
an entire map remains firmly closed and proper, the latter by (II 2.1), (II 2.2) and the
fact that an entire map is proper and separated (5.7). Using (5.19), it will therefore be
enough to show that the map f: F' — £’ is pure given that f is also connected. Thus,
assuming that f is connected, we shall be be done if we can verify the existence part
of property (iii) in Lemma 5.13 (since f’ is surjection (I 6.10), the uniqueness part is
assured). Since the assumptions on f localize, we can work internally in &.

To this end, consider any decomposition F' = F| + F} into two clopen subtoposes.
We need to show that, locally in &, F' = F| or F' = F,. Observe now that by
(I 6.6), any cover of & by open subtoposes is refined by a cover which is the inverse
image, along the map s:&" — &, of a cover of € by locally closed subtoposes. Since we
only need to reach our conclusion locally in £, while the restriction of f to a locally
closed subtopos of € remains proper (I 5.8) and connected (5.18), we can assume any
simplifaction effected by “passing to a cover in £'”. Now, if the given partition of F’
is the inverse image along t: F' — F of a partition F = F; + F, of F, then F' = Fj
or F' = F] directly by the purity of f. We show that this is indeed the situation on a
cover of &', thus completing the proof.

First, since f' is proper (I 5.8), each of F} and Fj is compact as an £'-topos. Thus,
by (I 6.6) we can, after passing to a cover of £ if necessary, write

Fl=t"(fTAa nVa) Ut (fT A N Vi) U Ut (7 Ay N Vi) (1)

where each A;; C & is closed and each V;; C F is open. Then the subtoposes of £ of
the form
Pllﬂplzﬂ---ﬂplnlﬂpglﬂpggﬂ---ﬂpgw (2)

where Py is either A;; or its complement, collectively pull back to an open cover of
E" over which the expressions (1) become “constant” in the sense that A is forced to
coincide with &€ (if A;; appears in (2)) or 0 C € (if the complement of A;; appears in
(2)). This shows that, after passing to a cover of £ twice if necessary, we can reduce to
the case where the given partition of ' comes from F, as required.

This completes the proof of the lemma. m

Proof of Theorem 6.1. If f is tidy, it satisfies the stable BCC (4.8), hence is firmly
closed by Lemma 6.4. For the converse, assume that all pullbacks of f are firmly closed.

It will by Remark 3.2 be enough to show that the BCC holds for a pullback

frlAC——F

A———¢.
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of f along an arbitrary embedding A < £. Let s: " — £ be any splitting topos for open
subtoposes of € which also splits A (e.g. the full splitting topos). Then the inclusion
A" =571 A — & is closed, hence entire. Now, in the pullback diagram

f/—lA/( F! F
I !

A’ € & £

/" is firmly closed, so the left-hand square satisfies the BCC by Lemma 6.4. Since f
is stably closed, it is proper by (I 6.1) so that the right-hand square satisfies the BCC
by Lemma 6.5. It follows that the composed rectangle satisfies the BCC. Write this
rectangle as another composite of pullbacks

f/_l.A/ NS f_l.A F

A A £ .

The left horizontal maps are surjections, being pullbacks of the splitting cover £ — &.
By the surjectivity of A" — A, the required BCC for the right-hand square follows from
that for the composite rectangle (already established) and left-hand square (which holds
again by Lemma 6.5). This completes the proof.

6.6. Corollary. Any tidy map f: F — & factors via a connected map
F — She(mP(F))

through the entire map Shg(ﬂ'(f)p(}—)) — & nduced by the profinite locale of connected
components of F in £. Moreover, for any pullback square

H

N

there 1s an 1somorphism

n (M) = a*rlP (F)

mn G. In particular, tidy connected maps are preserved under change of base. m
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6.7. Corollary. Suppose a tidy map f:F — & s obtained as the filtered limit of a

diagram
F = F;
&

of tidy maps {fi: F; — £}, each of which s connected. Then [ is connected.

PROOF.  Let ig € I. Then by (4.11), the canonical map
lim fi.27, = lim fite 27, = fepis” 27, = fo27

(where a:i — ig varies over the category I/ip and to: F; — F;, denotes the transition
map induced by «) is an isomorphism. But, since each f; is pure, lima Jista™ 27, = 2¢,
which implies that f is pure. As f is tidy, hence firmly closed, 1t follows that f is
connected. m

Following [], let us call a map f:F — & “light” if it is orthogonal to connected
morphisms, in other words, if in any commutative square of the form below in which
the map ¢ is connected, there exists an essentially unique commuting diagonal d as
indicated

H F

The standard formal arguments show that lightness is a local property, preserved under
composition, pullback and taking limits indexed in the base. Since the hyperconnected
part of any map is in particular connected, light maps are always localic: call the
corresponding locales “totally disconnected”. Any discrete locale is totally disconnected
by definition, and consequently so is any iterated limit of discrete locales. By Corollary
6.6, we have:

6.8. Corollary. A morphism f:F — &£ s entire iff f 15 both tidy and light.



CHAPTER IV. STRONGLY SEPARATED MAPS

In this chapter we study the properties of strongly separated (or “strongly Haus-
dorfl”) toposes, i.e. those toposes with tidy diagonal. After dealing with the definition
and general facts (sections 1 and 2), we specialize to coherent strongly Hausdorff toposes,
showing that these are coherent toposes in which the coherent objects coincide with the
locally finite ones (section 3). We then go on to characterize these as profinite toposes,
which entails a basepoint-free version of Grothendieck’s Galois theory (section 4).

§1 DEFINITION OF STRONG SEPARATION
Naturally associated to the notion of tidy map is the following separation condition.

1.1. Definition. A map f:F — & between toposes is said to be strongly separated
if its diagonal Ap: F — F x¢ F is a tidy map. Recall (IIT 1.2) that this means that
the direct image functor (Ay), commutes with directed colimits indexed in F xg¢ F. If
f:F — & is strongly separated, we also say that F is strongly Hausdorff as E-topos.

1.2. Examples. (1) For a group G, the topos BG of G-sets is strongly separated iff
G is finite (II 1.1(4)). More generally, using (III 1.4), one finds that for a group G in a
topos &, the associated map BeG — & is strongly separated iff G is Kuratowski-finite
and decidable; or equivalently, G is a locally constant finite group in £.

(2) Consider a locale X in a topos £, and the associated topos She(X) of internal sheaves
on X. The map She(X) — & is strongly separated iff X is (strongly) Hausdorff, by
(IT 1.3(2)) and the following proposition.

1.3. Proposition. Any localic and separated map is strongly separated. In particular,
any embedding s strongly separated.

PrROOF. A map is localic iff its diagonal is an embedding. But an embedding is proper
iff it is closed, and any closed embedding is tidy (III 5.8). The second statement follows
by (II 2.1(1)). =

Recall now that any diagonal map Ay F — F x¢ F is already of a very special
nature, namely localic and orthogonal to connected maps or “light”, see (III 6.7). More
explicitly, there exists a locale Y in F x¢ F which is a limit of prodiscrete locales —
and hence “totally disconnected” — such that there is an equivalence

~

F Shry,7(Y)

fng
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of toposes over F xg¢ F. To see this, write f:F — & as the classifying topos of a
geometric theory T in &, with universal model M. Let my,m:F xe¢ F — F be the
projections, so that there are models My = 7fM and My = 7 M of T in F x¢ F. Let
Y be the locale of isomorphisms of T-models from M; to M. Then Y can be written as
a limit involving the locales of T-model homomorphisms Hom (M, My ), Hom (M, M>),
etc. which in turn are limits of discrete locales. The topos Shry, #(Y) classifies (as an E-
topos) the theory of a pair of T-models with an isomorphism between them. This theory
is evidently equivalent to T', so that Shr, #(Y) is equivalent to F, by an equivalence
over F xg F.

1.4. Proposition. A map f:F — & is strongly separated iff its diagonal F — F x¢ F
18 entire.

PROOF. By the above remarks, the statement follows directly from the fact that a
morphism is entire iff it is tidy and “light” (III 6.7). =

1.5. Example. Let G be an open or proper étale complete localic groupoid with
classifying topos BG. Recall (II 1.4) that there is a pullback diagram

Sh(G1) BG

(s;1) A

Sh(Gy) x Sh(Go) — BG x BG
where the lower arrow is an open or proper surjection. Thus BG is strongly separated
iff (s,t) is, iff (s,¢) is an entire map of locales. This holds, for example, if (s,t): Gy —
Go x Gy is proper while Gy is a Hausdorff locale (II 2.2).

§2 ELEMENTARY PROPERTIES

In this section we record some elementary closure properties of the class of strongly
proper maps. We omit proofs which are analogous to those in (II §2).

2.1. Proposition. (i) Any embedding F — £ is strongly separated.

(ii) In a commutative triangle

if f and g are strongly separated, then so is h;
(iii) 4f ¢ is a tidy surjection and h is strongly separated, then so is f; and
(iv) of h s tidy and f is strongly separated then g is tidy. m
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2.2. Proposition. In a pullback square

QI

H

N

i
“~

9
G——¢,
(i) if f is strongly separated, then so is f;

(ii) the converse holds if g is a proper (or open) surjection. m

2.3. Proposition. A map f:F — & s strongly separated iff both parts of its
hyperconnected-localic factorization are.

PROOF. The proof uses Proposition 1.3 and is otherwise analogous to that of (I12.4). =

2.4. Proposition. Suppose f:F — & is the limit

F = F;
N :
£

of a diagram of separated maps { fi: F; — E} indexed by a category I. Then f is strongly
separated.

PrOOF.  The diagonal Ag: F — F x¢ F is the limit of the diagram {g;: G; — F x¢ F}
obtained by pulling back each diagonal Ay,: F; — F; x¢ F; along F xe¢ F = F; xe¢ F;
(and the obvious induced transition maps). The statement therefore follows from
(1.4) and the stability of entire maps under pullback (III 5.10) and inverse limits (by
II153). =

§3 STRONGLY SEPARATED COHERENT TOPOSES

In this section, we wish to examine coherent toposes which are strongly Hausdorff. We
show that these are precisely the coherent toposes in which the coherent objects coincide
with the locally finite objects. This will lead to a characterization of the class of strongly
Hausdorff coherent toposes as “profinite” toposes in Section 4. But first, we recall some
terminology.

Recall [] that an object C in a topos £ is said to be compact (or “quasi-coherent”
[]) when the topos £/C is compact, that is, when every epimorphic family {E; — C}
in & has a finite epimorphic subfamily. A compact object is said to be coherent if for
any diagram D — C' + F in £ with D and F compact, the pullback D x¢ E is again
compact. A topos & is said to be coherent if its full subcategory Coh(&) of coherent
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objects is closed under finite limits and generates £. This is equivalent to the condition
that & 1s defined by a site with finite limits and finite covering families. The category
Coh(€) is then (essentially small and) a pretopos. It defines a pretopos site without
S-covers for £, in the terminology of (I §4)).

Next recall that an object E in a topos & is said to be locally constant if there
exists an epimorphic family {C; — 1} in £, and for each ¢ a set S; and an isomorphism
E x C; = ~*(S;) x C; over C; (where v: £ — Set is the canonical map). If each set S;
can be chosen to be finite, F is said to be locally finite. Extending the terminology for
sheaves on a space, one says the étale map £/E — £ is a covering projection (resp. a
finite covering projection) if E is locally constant (resp. locally finite). We denote the
full subcategory of locally finite objects of € by LF(E).

3.1. Lemma. An object E in a compact strongly Hausdorff topos & s locally finite off
the localization E/E is a compact Hausdorff topos.

PROOF.  Recall first (see (II 1.3(1)) or (III 1.4(1))) that E is locally finite iff the
canonical map £/E — & is proper and separated. Thus, if E is locally finite, £/FE is a
compact Hausdorff topos by the preservation of proper separated maps under compo-
sition, (I 2.1) and (II 2.1(ii)). Conversely, if £/F is compact Hausdorfl, then £/E — £
is proper by (II 2.1(iv)). But also, since the diagonal of £ is entire (1.4), and therefore
separated itself, (II 2.3) applies, showing that £/E — £ is separated. Thus E is locally
finite. m

3.2. Lemma. In a compact topos £, LF(E) C Coh(&). The reverse inclusion holds if
E 15 coherent and strongly Hausdorff.

PROOF.  Suppose E € € is locally finite. Then, using Lemma 3.1(i), £/E is compact
by the preservation of propriety under composition (I 2.1). Thus E is a compact object.
Next, since £/E — £ is separated, the diagonal £/E — £/E X E is closed, i.e. E C EXE
is complemented. But then C' x g D is complemented in C' x D, from which coherence
of E follows.

Suppose next that £ is coherent and strongly Hausdorff. Then if E € & is coher-
ent, £/E is a coherent topos, hence strongly compact (III 1.1(2)). Since & is strongly
Hausdorff, we can apply Proposition 2.1(iv) to conclude that £/E — £ is a tidy map,
whence E is locally finite (III 1.4(1)). Thus, Coh(€) CLF(E). m

3.3. Corollary. Let £ be a coherent strongly Hausdorff topos. For any object E of &,
the following properties are equivalent.
(1) E is locally finite;
(i1) The canonical map E/E — £ is proper and separated;
(iii) The localization E/E is a compact Hausdorff topos;
(iv) E s coherent.

Proor. Clear from Lemma 3.1 and Lemma 3.2. =

3.4. Proposition. The following conditions on a topos € are equivalent:
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(i) &€ is coherent and strongly Hausdorff;
(ii) & is coherent, and Coh(&) ~ LF(E);
(iii) & is strongly compact and generated by LF(E).

PrROOF.  The implication (i)=-(ii) follows from Lemma 3.2, and since a coherent topos
is strongly compact, (ii) clearly implies (iii).

To show that (iii) implies (i), first observe that if LF(E) generates, so that £ has
a site consisting of locally finite objects, then models of the theory T classified by &
are functors with values in the category of finite cardinals. It follows that the diagonal
of £, constructed as sheaves on an iterated internal limit of discrete locales in & x &€
as in section 1, is in fact entire, since the discrete locales involved are finite cardinals.
Thus, if € is generated by its locally finite objects, it is strongly Hausdorff, and then
also coherent, by Lemma 3.2.

This completes the proof. =

3.5. Examples. (1) The common properties of coherent sheaves on a Stone space
hold in any topos. More explicitly, a topos Sh(X) of sheaves on a profinite locale is
coherent and strongly Hausdorfl, with Coh(Sh(X)) ~ LF(Sh(X)) the subcategory of
sheaves S for which there is a finite partition X = U; U --- U U,, such that S1U; is the
constant sheaf with finite fiber F;. We shall use this in §4.

(2) The classifying topos B(G) for a finite discrete groupoid G is coherent and strongly
Hausdorff, with Coh(B(G)) ~ LF(B(G)) ~ Gal(B(G)), the full subcategory of (right)

actions of G on Go-indexed families of finite sets.

§4 (GALOIS THEORY FOR PROFINITE GROUPOIDS

In this section we give a characterization of strongly Hausdorff coherent toposes as
“profinite” toposes. More precisely, we shall prove the following.

4.1. Theorem. A coherent topos & is strongly Hausdorff iff € is the classifying topos
of a profinite groupoid.

Recall that a localic (or topological) groupoid is said to be profinite if it can be
obtained as an inverse limit

lim, F' (1)

of finite (discrete) groupoids F'. By decomposing such an inverse limit into the filtered
limit of its finite sublimits, we see that a profinite groupoid can also be written as a
filtered inverse limit of finite groupoids.

4.2. Remark. If (G is a profinite groupoid, then its locales of objects and arrows are
profinite, i.e. Stone locales. However, it is not the case that any groupoid in the category
of profinite locales is profinite as a groupoid. (For example, let K be any compact
Hausdorff locale. Then there exists a profinite locale X and a continuous surjection
p: X — K. The locale R = X xj X is again profinite, so that the equivalence relation
G = (R = X) is a groupoid in the category of profinite locales. In general, however, G
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cannot be a profinite groupoid, because when it is, its classifying topos BG ~ Sh(K) is
coherent (Proposition 4.6 below).

4.3. Proposition. Let G = lién‘ F' be a profinite groupoid. Then the canonical map
(3
BG — lim BF"
1
18 an equivalence of toposes.

PROOF.  Since any finite groupoid is evidently étale complete, there is for each index

1 a pullback of toposes
t

Sh(FY) Sh(Fy)

s (2)

Sh(F¢) BF' .

Since inverse limits commute with pullbacks as well as with the functor sending a locale
to its topos of sheaves, we obtain a pullback

t

Sh(G4) Sh(Gy)

Sh(G§) ——Lim. BF" .

as the inverse limit of the pullbacks (2). It now suffices to show that the map p in (3)
is a proper surjection. For then, by (I 7.2), p is of effective descent for sheaves, so that
the canonical map BG — limiBFi is an equivalence, exactly as required.

To prove that p is a proper surjection, consider for each index j the projection

liéniBFi — BFJ and form the pullback

P Sh(F))

liéniBFi BFJ

The map Sh(Fg) — BF7 is a finite (surjective) covering projection (i.e. is equivalent to a
slice BF7/A — BFV for alocally finite object A in BF’ with global support). Therefore,
the same is true for the map P’ — liéniBF’. In particular, this map is an entire

surjection. By (I 6.11) it follows that that the (relative) inverse limit 1£nj PI— liéniBFi

is again a proper (in fact, entire) surjection. But straightforward manipulation of (2-

categorical) limits shows that this map is equivalent to p: Sh(Gy) — lién‘BF’, hence
(3

proves that the map p is a proper surjection as well. =
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4.4. Corollary. Any profinite groupoid s étale complete.

ProOOF. The statement means that for any profinite groupoid G the canonical diagram

of toposes
t

Sh(G1) Sh(Gy)

Sh(Go) BG .

is a pullback. But by the equivalence of Proposition 4.3, this diagram is equivalent to

the pullback (3) above. =

4.5. Remark. Let & = liéni £ be a filtered inverse limit of coherent toposes £ and

coherent maps & — £ between them. Then the topos £ is again coherent. Indeed, the
bonding mappings £/ — &' induce morphisms

Coh(£7) — Coh(€7)

between the pretoposes of coherent objects. The inverse limit £ can be constructed as
the topos of sheaves on the (pseudo-)colimit C = liéni Coh(&?) of pretoposes, constructed
as the colimit of the underlying categories, see the proof of (I 4.8). This shows that &
is coherent. It also shows (I 4.8) that any coherent object of £ is of the form 7} (C)
for some coherent object C' in some &, where 7;: & — £ is the projection. From this
remark and Proposition 3.4 it is evident that:

4.6. Proposition. The classifying topos of a profinite groupoid is coherent and
strongly Hausdorff. m

Proposition 4.6 furnishes the reverse implication in Theorem 4.1. To show the
forward implication, we use the following (weaker, see Remark 4.2 above) result:

4.7. Lemma. Any coherent Hausdorff topos £ is of the form B(G) for a groupoid in
the category of profinite locales.

PrROOF.  Recall from [| that any coherent topos £ has a (stable) cover of the form
©:Sh(X) — &, where the locale X is profinite (although the formulation and proof of
this result in [] refers to Stone topological spaces, each ingredient, in particular the Barr
cover construction, is evidently constructive once one sticks to working with profinite
locales). Since & is Hausdorfl, the cover ¢ is entire by (III 5.9(ii)). Let G be the groupoid
such that X = G and such that the diagram

t

Sh(G1) Sh(Go)
Sh(Go) —— €
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is a pullback. Then &€ = BG by the descent theorem for proper maps (I 7.2). Also,
the projections s, t are entire by (III 5.10). It follows, using (III 5.9(i)), that Gy is
again a profinite locale, so that GG is a groupoid in the category of profinite locales, as
required. m

Any localic groupoid G has a profinite reflection P(G), which can be constructed
as the limit

P(G) = lim K
< D(G)
where D(G) is the directed inverse system of functors G — K into finite groupoids and
commuting (transition) functors A:

G
/ \ (4)
X K.

To complete the proof of Theorem 4.1, we consider a groupoid G as in Lemma 4.7. By
Remark 4.5, the “Galois” category Gal(P(G)) = LE(B(P(G)) is the (pseudo-)colimit
of the categories Gal(I{). We would therefore be done if we can prove that this colimit
coincides with Gal(G). Inspection of the construction of a directed colimit of categories
(see the proof of (I 4.8)) shows that we need to verify the following:

L

(1) Any locally finite object of B(G) results up to isomorphism as a*S for some (a, K)
in D(G) and S € Gal(K);

(2) Given any (o, K) € D(G), S,T € Gal(K) and a map h: o*S — o*T in Gal(G), there
is an arrow A: (o, L) — (3, L) in D(G) (as in the diagram (4)) and a map ¢g: \*S — \*T
in Gal(L) such that h = 3*g;

(3) Any two choices of g in (2) are “eventually equal” in D(G).

Now, since Gy is profinite, any object C of Gal(G) is of the form C = Cy1+---+C,,
where each C; is a G-sheaf with constant finite fiber F;. Since the support U; C Gog
of C; is G-invariant, we can write G = Gy + --- + G, where G; is the restriction of
G to U;. Let K be the groupoid Aut(Fy) + --- + Aut(F,). Then the action of G on
the C; gives for each i a functor G; — Aut(F;), and these combine to give a functor
a: G — K. Moreover, C' = o* S where S is the disjoint sum F} + - - - + F}, equipped with
its canonical K -action. This verifies (1).

To show (2), let h:a*S — o*T be a map in Gal(G) as stated. By replacing K
with an equivalent finite groupoid with more objects, if necessary, we can assume that
h decomposes (as a map of étale spaces in Sh(Go)) into a sum of trivial maps of the
form id x gx: Vi x S(k) = Vi x T'(k) over Vi = ao*{k}, for k € K. Let \: L — K be
the subgroupoid of K with the same objects, but with

L(k, k") = {p € K(k,k") [ gi 0 S(p) = T(p) o gi}-

Then \: G — K factors through L, and the maps gz: S(k) — T'(k) become the compo-
nents of a natural transformation g: A*S — A*T which pulls back to h, as required.
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Finally, for (3), if there are two choices for ¢, simply restrict the objects of L to
those for which the components of the two choices agree.
This completes the proof of Theorem 4.1.

Grothendieck’s classical Galois theorem is of course a special case, and takes the

following form:

4.8. Corollary [,]. Let € be a pointed topos. The following are equivalent:

(i) &€ s hyperconnected and (strongly) Hausdorff;
(ii) & is connected, coherent and strongly Hausdorff;
(iii) € ~ B(G) for a profinite group;

(iv) & is coherent, with locally finite coherent objects.

ProOOF.  Clear from (II 3.2), Proposition 3.4 and Theorem 4.1. =



CHAPTER V. RELATIVELY TIDY MAPS AND LAX DESCENT

In this chapter, we consider the following weakening of the notion of tidy map.
A morphism f: F — & between toposes is said to be relatively tidy if its direct image
functor f, commutes with ordinary (small, external) filtered colimits (the reason for
this terminology will become clear below). We shall develop as much of the theory of
relatively tidy maps as is needed to prove that in a lax pullback square

G=eF) L 7

where f is relatively tidy, the map dy is tidy and the induced natural transformation
g*fr — do,dy ™ is an isomorphism (Theorem 5.1). This result has immediate applications
to lax descent of sheaves (section 6). Indeed, it has to a large extent been motivated by
the desire to exhibit a proof of Zawadowski’s descent theorem for pretoposes [| which is
both conceptual and constructive, using standard methods of topos theory. It is thus
relevant to point out that the ingredients to the above theorem are mostly well-known
(or at least straightforward to prove) when specialised to the special instance of coherent
morphisms between coherent toposes (see []).

We start with two preparatory sections, the first on path toposes and localizations
and the second on lax pullbacks. After dealing with the formal definition and some
elementary facts about relative tidiness (section 3), we introduce relative tidy morphisms
between convenient types of sites (section 4) as a vehicle for showing that relatively tidy
maps are stable under change of base (Theorem 4.9) and filtered inverse limits (Theorem
4.10). With these properties in place, our main results follow rather straightforwardly
in a formal way (section 5).

§1 PATH TOPOSES

Most of the material in this preliminary section is based on []. We shall discuss the
construction, for any topos £, of a path topos P(£), where the “paths” are parametrised
by the Sierpinski space. We work over a fixed base topos S as if § is “the” category of
sets.

Consider the topos S of sheaves on the Sierpinski space. It is (equivalent to) the
category Set?, whose objects are given by functions a: Sy — S; and whose arrows are
commutative squares. We start with a well-known lemma.

1.1. Lemma. S s an exponentiable topos, that is, for any topos &, the exponential
topos E° ezists.

86
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Proor.  Although exponentiability of S falls out immediately from the general theory
of such toposes developed in [], we describe two easy ways of seeing this directly.

One is based on the formalism of classifying toposes of geometric theories: Let &
be any topos, and let T' be a geometric theory classified by €. Let T” be the geometric
theory of which the models are homomorphisms of T-models. Then the classifying topos
of T' clearly has the universal property required for the exponential £°.

Alternatively, we use sites: For a given topos &, let (C,.J) be any site for £ with
pullbacks. Let Ar(C) be the arrow category of C, and let .J’ be the stable system of covers
on Ar(C) which at the object (C' — C') consists of the following two types of families:
first, for each J-cover {C; — C'} of C, the family {(C' x¢ C; — C;) — (C’" — C)}, and,
secondly, for each J-cover {o;: C’} — C'} of €, the family of arrows

aj

C; '

id

C C.

Then (Ar(C),.J') is a site for £ (see [] for a proof). =

1.2. Definition. The path topos of a topos € is the exponential £, denoted P(€).
We shall write
80, 81P(E) = g

for the evident “evaluation” morphisms, and «:€ — P(E) for the “diagonal” section.
The universal transformation 9 — 97 will be denoted by p. Note that the natural
transformation ¢*p:c*95 — ¢*d is the identity, modulo the canonical isomorphisms
aob =~ 1dg = 81L.

The construction of path toposes is related to the theory of local toposes and
of localizations developed in [] and []. Recall from the latter source that a morphism
f:F — & is said to be local if the direct image functor f, has an £-indexed right adjoint,
denoted fT (respectively f;; E/E — F/f*E for its indexed part at E). It follows of
course that for a local map f, the direct image preserves all £-internal colimits. A
fortiori, we obtain:

1.3. Proposition. Any local morphism of toposes is tidy. m

If ppS — & is a point of an S-topos &, one can “localize” £ at p, that is construct
a local S-topos
Loc,(€)

with certain universal properties (see []). This construction depends on the base topos
S. For our present purposes, it is important to observe that Loc,(€) can be obtained
as a filtered inverse limit of slices of &,

Loc,(€) %liénUE/U (1)
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indexed by the directed category of neighbourhoods of the point p [, Theorem 3.7].

The path topos is P(£) is in some sense the universal localization of €. More
explicitly, the S-topos &€ pulls back to an £-topos m1: € x & — &, of which the diagonal
A:E — £ x & 1s a “generic point.” Now, working over £ as base, one can construct the
localization Loca (€ x € — &), which is a local £-topos. This localization is precisely
the path topos P(E), viewed as an E-topos via the map 0y: P(€) — €. In particular,
Jo is a local morphism, hence is tidy by (1.3). The right adjoint to 9y, is the inverse
image ¢* of the diagonal section. In particular, since 0y ,¢, = id, we find by taking right
adjoints that Jp, 01" = id also (see []).

The next proposition summarizes the above properties of the path topos to be used
in this chapter.

1.4. Proposition []. Let £ be any topos and let P(E) be its path topos, with canonical
maps Oy, O1: P(E) = £.

(i) The map Op: P(E) — & is local, hence strongly proper.
i1) The canonical transformation 7: 0y — 01" induces an isomorphism 0y,01" = id.
14

(iii) P(E) s the localization of 71:E x € — & at the diagonal point A:E — € x E. In
particular, there 1s an equivalence of E-toposes

P(&) ~ lim. (€ x £)/U;

ExXE,

where the inverse limit is indexzed by by an internal directed category in £ (cf. (1)
above). m

§2 LAX PULLBACKS OF TOPOSES

The sole purpose of this section is to review the definition and construction of lax
pullbacks of toposes, also known as “comma-squares.” Again, we fix a base topos S,
and assume all toposes to be S-toposes.

Given two morphisms f: F — & and ¢:G — &, the laz pullback (over §) of f and

g 18 a square
a

H F

g

g———¢

together with a 2-cell 7:gb = fa (i.e. a natural transformation 7*:0*¢* — o* f*), and
universal with this property. This means roughly that, given any pair of morphisms
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u: K — Fand v: K — G, together with a 2-cell o: gv = fa, there is a morphism (unique
up to natural isomorphism) ¢: K — H for which there are isomorphisms a: ac = « and
(:be = v such that the square of 2-cells

gbc L qgu

commutes. The precise formulation of the universal property refers in the usual way
to an equivalence of categories between Hom(K, H) and the category of such triples
(u,v,0), natural in K. Note that the definition is not symmetric in f and g. We shall
denote a square with this universal property by

G=eF) L 7

do LY f (1)

The use of the notation is justified by the existence and uniqueness of lax pullbacks
expressed in Proposition 2.3 below.

2.1. Remark. Unlike pullbacks, lax pullbacks of toposes depend on the base S.
Indeed, the 2-cell 7:gb = fa is required to be a transformation over §. This means
that, if we denote the structure maps to the base by v¢: & — &, ete. then ver =1d. Or
more precisely, the diagram of 2-cells,

YET

Ye(gb) —————¢e(fa)

YH

in which the sloping arrows are (the obvious) isomorphisms, commutes. In particular,
in the extreme case where & is the base topos §, the lax pullback coincides with the
ordinary pullback. This is of course not the case in general, as is evident from the
following instance of a lax pullback.
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2.2. Lemma. For any topos &, the square

pE) 2 ¢
do :N> id
id

naturally associated to the path topos of € is a lax pullback over S.

PROOF.  Clear from the universal property of the exponential P(£). m

2.3. Proposition. For any pair of morphisms f: F — &€ and g:G — &, the lax pullback
(1) emists, and is unique up to equivalence.

PrOOF.  Constructing the lax pullback (1) amounts to constructing the pullback

h

(G =¢e F) P(€)
(do,dl) (80781)
GrxF—2 Leve.

with 7:gdo = fd; obtained from the “universal path” (u:do = dq): P(€) = £ in the
obvious way. m

2.4. Remark. We shall make use below of the following equivalent “stepwise” con-
struction of the lax pullback (1) from the path topos:

(G=eF)—(E=cF) F
2 s

" B pE) — g
do £ id

G - £ L 3

§3 RELATIVELY TIDY MAPS

Recall from chapter III that a morphism f:F — &£ is said to be tidy if f. preserves
all E-internal directed colimits. In this section we shall be interested in morphisms
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f:F — & for which f, is only required to preserve ordinary directed colimits, that is,
such that for any diagram {F;} of objects of F indexed by a filtered category I in Set,
the canonical map

6:lig, £.(F,) = f.(limp, F.) 1)
is an isomorphism. As usual, this notion makes sense over any base topos S in place of
Set, and leads to the following.

3.1. Definition. A morphism f: F — &£ of S-toposes is said to be tidy relative to S if
f+ commutes with all S-internal filtered colimits.

Note that this definition takes care of “pure” tidiness as the case where S coincides
with €. If § is, or plays the role of the topos of sets as fixed base topos, we shall for
brevity refer to f simply as relatively tidy.

3.2. Example. Clearly, any coherent map f:F — & between coherent toposes is
relatively tidy [].

As an aid to our exposition, we also introduce the corresponding relative notion of
propriety (so that, in particular, a relatively tidy map is a relatively proper map with
additional properties).

3.3. Definition. A morphism f: F — £ of S-toposes is said to be proper relative to
S if for each E € &, direct image for the induced morphism f/E:F/f*E — E/E of

S-toposes preserves suprema of S-internal directed families of subobjects of 1.

3.4. Remark. Definitions 3.1 and 3.3 can be made more explicit in the usual way.
Write v¢: & — S and v£: F — S for the structure maps into the base topos.

(1) The map f: F — £ is tidy relative to S iff, for any object S € § and any directed
category I in §/S, the associated square (with notation as in (I 1.8) but writing £/
for £/4%S, /S for f/~v:S, I for (ye/S)* I, ete.)
F|S == (F/S)!
1/s s/ (2)
£/S ——(€/8)"
has the property that the canonical natural transformation

o™ (f/S)s = (f/S)s00” (3)

is an isomorphism.
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(2) The map f:F — & is proper relative to S iff, for any object E in &, any object
S € § and any directed category I in §/S, the square

(F/BE)S = ((F/E)/S)!
(/B)/S ((S/B)/5)"

(E/E)/S ——((¢/E)/S)
has the property that the canonical map

" ((f/E)/S).(V) = ((f/B)/S)ec0™(V)

is an isomorphism for any V C 1 in ((F/E)/S)!. By (I 3.2) this is equivalent to the
requirement for the square (2) that the natural transformation (3) is mono.

3.5. Proposition. If f:F — &£ s tidy (resp. proper) relative to S, then so is the
induced morphism f/E:F|f*E — EJE for any object E in E.

Proor. Clear from Remark 3.4. =

The elementary closure properties of proper and tidy maps have evident relative
versions. Thus, propriety and tidiness relative to § are both “local” properties with
respect to §. Also:

3.6. Proposition. (i) Any equivalence of S-toposes is tidy relative to S.

(i1) The composition of two morphisms which are proper (resp. tidy) relative to S is
again proper (resp. tidy).

Relatively tidy morphisms can be characterised by an “Edwards criterion” anal-
ogous to (III 4.1). We note, as before, that the next proposition can be formulated
and proved in the internal logic of an arbitrary base topos S, substituting “proper/tidy
relative to §” for “relatively proper/tidy”.

3.7. Proposition. A morphism f:F — & 1is

(1) relatively proper iff for any directed epimorphic family {F; — f*E} of subobjects
in F there exists an epimorphic family {E; — E} in € such that each f*E; — f*E
factors through some F; — f*E;

(i) relatively tidy iff f is relatively proper and for any epimorphism F — f*E and any
directed epimorphic family {R; — F X g«p F'} of equivalence relations in F, there
exists an epimorphic family {E; — E} in € and for each index j an ept A; — f*E;
and an index 1 such that there 1s a commutative diagram in F:

R, F - fE

AJ‘ Xf*Ej AJ‘
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PROOF. (i) Given a family {F; — f*E} of subobjects in F, its image under the
functor (f/E).:F/f*E — E/E is refined by a family {E; — E} in £ precisely when
each f*E; — f*FE factors through some F; — f*E. Thus, the statement is just a
reformulation of Definition 3.1.

(ii) Suppose f: F — £ is relatively proper, so that that for any directed system {F;} in
F, the canonical map

O:lim fo(F;) — fo(lim F;) (1)
— T - T

is a monomorphism (Remark 3.4 (2)). We need to show that the additional condition
on f is necessary and sufficient for € to be epi, and hence an isomorphism.

Suppose first the condition is satisfied as stated. It is sufficient to show that € is
“locally surjective,” in the sense that any map

E % f.(lim F)

lim
—1
factors through 6 on a cover of E. So fix such « and consider the transposed &: f*E —
1i_r>nI F;. Construct for each index j the pullback along the colimit map v;: F; — 1i_r>nI E;

P;

£
vj
f*E _& 1i_r>nI F; .
Then, since the images of the maps P; — f*FE form a directed epimorphic family

of subobjects, we can by relative propriety of f and (i) find a cover of E by arrows
e: B/ — E for which there is a commutative square of the form

B’ F;

Vi

f*E/ f*E & 1i_I>IlIFZ‘,

with the vertical arrow on the left epi as indicated. By replacing F by E’, we may
thus assume that a: f*E — 1i_r>nI F; can be composed with an epimorphism to give a

factorisation

B--"- ~F,

Vjo (4)

f*E Lli_rgl[Fi
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for some index j9. Now construct for each transition map 7: Fj;, — Fj in the system
{F};} the equalizer of 73m and 73m:
™

RTéB Xf*EB

NG
T2

Since the composite B — Fj, — li_r>n F; factors through f*E as in (4), the equivalence
relations R, cover B X g« B. Thus, the assumed property of f gives, after replacing F
by a family of objects covering E, a “refinement”

such that A X p«p A — B Xy« g B factors through some R.. Thus, for this 7, the two
composites

AXf*EA A B F]‘ T F]‘

are equal. Since the epi A - f*FE is the coequaliser of its kernel pair, it follows that
& f*E — 1i_r>nI F; factors through F; — 1i_r>nI F;. Thus, after having passed to a cover of
E twice, we have shown that a: E — f, (1i_r>nI F;) factors through f,F; for some j, hence
factors through 6 as desired.

Conversely, assume that f is relatively tidy. Take any epi v: F — f*E and any
directed union | J; R; = F x y«g F by equivalence relations R;. Form the coequalizers

Qi

R; F Qi

Ve

so that f*E = lim @); because the R; cover the kernel pair of A\. Since f is relatively

—t
tidy, fo f*E = 1i_r>ni «(Qi), so that by pullback along the unit n: E — f,f*E we obtain
a colimit F = 1i_r>ni E;,

E; —— f.(Q:)

Eé”f*f*E‘
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By transposition we get a commutative diagram

f(E)

I*E

for each 7. Now form the pullback

f(E) ——Qi.

Then B; X y«(g,) B; factors through R;, since R; is the kernel pair of ' — ;. This
verifies the stated property of f, and completes the proof of the proposition. m

§4 RELATIVELY TIDY MORPHISMS OF SITES

In this section, we give a description of relative tidiness of a map f:F — & between
toposes in terms of a morphism of sites inducing f, and use it to prove the non-trivial
stability properties of relatively tidy maps. More precisely, we prove the following two
theorems.

4.1. Theorem (“change of base”). In a diagram of pullback squares

0

f/

S/

suppose [ is proper (resp. tidy) relative to S. Then f' is proper (resp. tidy) relative to
S', and the weak BCC (resp. BBC) is satisfied in the top square; that is, the induced

natural transformation
Ve = f1,07

is @ monomorphism (resp. an isomorphism).
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4.2. Theorem (“filtered inverse limits”). Suppose f:F — € is the limit of a diagram
of maps {fi: Fi — &} over a base topos S, indexed by a filtered category I:

q:

F Fi

! fi

¢ P ¢,
S

If each f; is proper (resp. tidy) relative to S, then so is f. Moreover, for any i € I, the
natural transformation

lim p;*fj,ua® = feai”, (2)

where a:j — 1 varies over the category I/i and wo:F; — F; is the transition map
induced by «, is then a monomorphism (resp. an isomorphism).

Before embarking on the technicalities of proof, we straightaway draw a needed
conclusion from Theorem 4.2. First, note that it gives:

4.3. Corollary. Suppose in (1) that for each a:j — i in I, the canonical natural trans-
formation to* fi, — f; ua™ induced by the transition maps to:&; — & and uq: Fj — F;
is a monomorphism (resp. an isomorphism). Then if the maps f; are proper (resp. tidy)
relative to S, the canonical natural transformation p;* fi, — f«q;* 1s @ monomorphism
(resp. an isomorphism) for each 1 € I. =

4.4. Proposition (“localization lemma”). Let f: F — & be a tidy morphism relative
to (a base topos) S, and let p:S — & be a point of £. Then in the pullback square

g F

Loc,(€) bt

the map g 1s again tidy relative to S, and the Beck-Chevalley condition g,v* = u*f,
holds.

PROOF.  As explained in §1, the localization Loc, (&) can be constructed as a filtered
inverse limit

Loc, (&) = liénUE/E
where U ranges over the (étale) neighbourhoods of p. It follows that
g = 1£I1U F/fU.
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For any transition map e: U — V between étale neighbourhoods of p, we have a pullback

F/f*U —~F/FV Ka
U v s
gJ/U A% g

where the morphisms f/U and f/V are again tidy while the square satisfies the Beck-
Chevalley condition (by the explicit construction of (f/U), and (f/V), from f.). Thus
g is tidy by Theorem 4.2, while the conditions of Corollary 4.3 are satisfied to yield the
Beck-Chevalley condition g,v* Z u*f,. =

The remainder of this section is devoted to proving Theorems 4.1 and 4.2. The
material to follow generalizes that of (I §5) and (III §4) in an evident way. The proofs
will therefore be appropriately terse where arguments are analogous.

First, we define relatively tidy morphism between pretopos sites. We shall need
the following addition to the notation and terminology introduced in (I §4) for sites and
morphisms between sites. Consider any morphism of sites F:C — D such that D has
pullbacks. The morphisms F' can be “sliced” at any C' € C to produce a morphism
of sites F/C:C/C — D/F(C), and any arrow C' — C € C induces a “localization”
morphism D/F(C) — D/F(C") by pullback along the arrow F(C’) — F(C'). We shall
say that a condition which refers to an object C € C and data in the site D/F(C)
holds locally (at C') if there is a cover {C; — C' | j € J} in C such that for each j € J
the condition holds for the “localized” data in D/F(C}). For example, given an arrow
0:D — F(C), afamily {D; — D | i € I} in D locally has a member which covers at C
if we can find a cover of C' as above such that, for each j € .J, the pulled back family
{F(C}) xp(cy Di = F(C}) Xp(cy D |t € I} has a single element which covers.

Given C € C and 6: D — F(C) € D, we extend the terminology of (III §4) by
calling a family of monomorphisms of the form {Vi = D xpc) D | k € K} effective
(at C) if there exists a subobject E ~— D such that both £ — F(C) and the induced
family {(E X p(cy E) NV B Xp(cyE | k € K, n € N} are covers of D. A subobject
Vs= D xXpcy D is effective at C if it is so as a singleton family.

4.5. Definition. A morphism F: C — D between pretopos sites is said to be

(1) relatively proper if for any C € C, any directed cover {D; — F(C)} in D locally has
a member which covers;

(ii) relatively tidy if F is relatively proper and, moreover, for any C' € C and covering
map 6: D — F(C), any directed cover {R; — D Xp(cy D} of monomorphisms in D
locally has a member which is effective at C'.

4.6. Proposition. Let f:F — & be a map of toposes and suppose f 1s induced by
a morphism F:C — D where C and D are pretopos sites. Then f is relatively proper
(resp. relatively tidy) precisely when F is.
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Proor. We have a commutative square
D—"—F
r I
c——¢

of pretopos morphisms, in which the canonical functors denoted h preserve and reflect
covers, and moreover, any (directed) cover of an object in the image of h is refined by the
image under h of a (directed) cover in the site. Combining these facts with Proposition
3.7 gives the result (compare the proofs of (I 5.3) and (III 4.4)). =

The next “induction” lemma adapts (I 5.4) to the context of relative propriety:

4.7. Lemma. Let F:C — D be a morphism between pretopos sites, and suppose F
comes equipped with a stable (under “localization” in C) system {M(C)}cec of distin-
guished covering monomorphisms of D the form U — F(C) at C € C such that

(i) The trivial cover F(C) BN F(C)e M(C).
(ii) If W=V — F(C), then V — F(C) € M(C) whenever W — F(C) € M(C).
(iii) For any basic S-cover {V; = V} in D, of V — F(C) € M(C) then the family
{Vi — F(C)} locally has a member in M(C).
Then for C € C, any cover of the form U »— F(C) in D is locally in M(C), and the
morphism F:C — D is relatively proper.

PROOF. By induction on covers, property (iii) extends to any generated S-cover
{U; — U} in D, and then by (I 4.6) and (ii) to any directed cover. Since M contains
identity covers of the form F(C) — F(C), the result clearly follows. m

4.8. Corollary. A morphism F:C — D between pretopos sites is relatively proper iff
the conditions of (4.7) are satisfied by the sheaf M on C of “covering subobjects of 17
in D (in other words, the sheaf having covers of the form U — F(C) in D as sections
atCeC). n

4.9. Lemma. Let ¢:S" — S be a morphism of toposes, and suppose F:C — D is a
relatively proper morphism between pretopos sites in S. Then the morphism o*F: p*C —
©*D s relatively proper in S'. Moreover, if M:C°? — S is the internal sheaf on C of
covering subobjects of 1 in D as in (4.8), then the corresponding sheaf on ©*C in S’ is
the sheafification of ©*M.

PROOF.  The conditions of (4.7) satisfied by M are “geometric” and hence also hold for
@*M. Thus, applying Lemma 4.7 in ', we deduce that ¢*F:¢*C — ¢©*D is relatively
proper, and that the definition of M is preserved “up to sheafification.” m

Next, we formulate an appropriate version of (III 4.5) for dealing with relative
tidiness:



99

4.10. Lemma. Let F:C — D be a morphism between pretopos sites, and suppose D

comes equipped with a stable system {N(C)}cec of distinguished effective subobjects of
D at C € C, such that for 6: D — F(C):

(i) If the arrow d is a cover, then the trivial effective subobject D x p(cyD d, DxpcyD
is locally in N(C).

(ii) For monomorphisms E »— D and W »— V »— E xpcy E — D xXpey D, if
Wi— FE XF(C)E € N(C) then V. — D XF(C)D S N(C)

(iii) V™) »» D xpcy D € N(C) only if V — D xp(cy D € N(C).

(iv) For any basic S-cover {V;— V} inD, if V= D Xpcy D € N(C) then the family
{Vi = D X p(cy D} locally has a member in N(C).

Then any effective subobject at C € C in D s locally in N(C), and the morphism

F:C — D s relatively tidy.

PROOF. By induction on covers, property (iv) extends to any generated S-cover
{U; — U} in D, and then by (I 4.6) and (ii) to any directed cover. But then, if
6:D — F(C) is a cover, any directed cover {S; — D Xp(cy D} locally has a member
in N(C), since locally the identity D X p(cy D — D X p(cy D € N(C). This shows that
F:C — D is relatively tidy.

To prove that all effective subobjects are locally in N, consider any such subobject
at C € C, say V »= D xp(c)y D for 6: D — F(C'), and let E ~— D be a monomorphism
such that E — F(C) and the family {(E xp(c) E) N v . B Xp(cy E | n € N} are
covers in D. Then, by what we have just shown, some (E X p(cy E) N v E Xy B
is locally in N(C'), whence V »— D X p(cy D is locally in N(C') by conditions (ii) and

(iii). m

4.11. Corollary. A relatively proper morphism F:C — D of sites s relatwvely tidy
iff the conditions of (4.10) are satisfied by the sheaf N on C of effective subobjects in D
(that is, the sheaf having all effective subobjects of D at C as sections at C € C). =

4.12. Lemma. Let ¢:S" — S be a morphism of toposes, and suppose F:C — D s a
relatively tidy morphism between pretopos sites in §. Then the morphism ¢*F:o*C —
©*D 1s relatwvely tidy in S'. Moreover, if L: C°P — § 1is the internal sheaf having covers
D — F(C) in D as sections at C € C (using set-notation in S) and N is the sheaf on
C of effective subobjects in D as in (4.11), then the corresponding sheaves on ©*C in S’
are the sheafifications of ¢*L and p*N respectively.

PROOF. We know by Lemma 4.9 that ¢*F: ¢*C — ¢*D is relatively proper and
(writing as if S were the category of sets) that for C' € p*C, the image of any cover
:D — (¢*F)(C) is locally in p*M(C) for M as in (4.8). It follows that §: D —
(p*F)(C) is locally in ¢*L(C'), which shows that the sheafification of ¢*L gives the
sheaf of all such ¢ in §’. This implies in particular that the presheaf ¢*N on p*C
as a system of “distinguished” effective subobjects satisfies condition (i) of Lemma
4.10. Since the remaining conditions (ii), (iii) and (iv) are evidently “geometric,” hence
inherited by ¢*N from N as they stand, we can apply Lemma 4.10 in S’ to conclude
that the sheaf on *C of all effective subjects of p*D i1s given by the sheafification of
@*N, and that *F:¢*C — ¢©*D is relatively tidy. =
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Proof of Theorem 4.1. We reduce to the case & = Set by arguing constructively.

Let F:C — D be a morphism of pretopos sites inducing f: F — &. If f is relatively
proper (resp. relatively tidy), then F is relatively proper (resp. relatively tidy) as a
morphism of pretopos sites, and so is @*F: o*C — p*D in S’ by Lemma 4.9. It follows
that f’ is proper (resp. tidy) relative to §’, being induced by ¢*F.

For the BCC, consider any object V' of F, represented by a sheaf B on D. The
corresponding sheaf for #*V made in the topos §’, is given by the sheafification B’ =
(p*B)TT in S’ of the presheaf ¢*A on p*D. Thus, writing in the internal language of
S', an element y € B'(D) for D € ¢*D is given by a cover {D; — D} in ¢*D and
a “locally compatible” family of elements y; € (¢*B)(D;). Two such families give the
same y if they agree on a common refinement.

In similar fashion, the sheaf A on C representing f.V, viz. the restriction of B
along the functor F°P:C°? — DFP. produces a presheaf ¢* A on ¢*C, the sheafification
A" of which represents ¢* f,V. For C € ¢*C, an element « € A'(C), given by a cover
{Ci — C} in ¢*C and a locally compatible family z; € (¢*A)(C;) , can be turned into
a member nc(x) of B'((¢*F)(C)) via the isomorphism (¢*A)(C;) = (¢*B)(p* F(C))).
This defines a morphism of sheaves n: A" — B’o(¢* F')°P, which represents the canonical
map @*f.V — fl*V. We are asked to prove that 1 is mono if f is relatively proper,
and furthermore epi if f is relatively tidy.

Suppose f is proper. To deduce that 7 is mono, it is clearly enough to show for any
C € p*C and sections y,y" € (¢*B)((¢*F)(C)) that if y and y' agree on a cover in ¢*D,
then this cover can be chosen to lie in the image of *F. Since ¢*B remains a sheaf
for P-covers of ¢*D, we can assume that the cover {D; — (¢*F)(C)} on which y and
y" agree is directed. By propriety of F' and Lemma 4.9, there exists a cover {C; — C'}
of ¢*C and for each 1 some j such that, writing Dj; — (¢*)(C;) for the pullback of
D, (¢*F)(C) along (¢*F)(C;) — (¢*F)(C), we have Dy; o (¢)(Ci) € M(C;)
while y1Dji = y’1Dji. Here M is the sheaf on C as defined in (4.8). Since ¢*B still
satisfies the sheaf property for the covers in ¢*M, y and y’ then agree on the cover
{(*)(Cy) = (¢*)(C)}, which is of the required form.

Suppose now that f is in fact tidy. To show that n is epi, consider C' € ¢*C,
a cover {D; — (¢*F)(C)} in ¢*D and a “locally compatible” family of elements
y; € (¢*B)(Dj). We need to prove that we can replace this family by an equivalent
one for which the corresponding covers involved lie in the image of ¢*F. Using propri-
ety of o*F, we can reduce to the case of a singleton family y € (¢*B)(D) for a single
covering arrow 6: D — (¢*F)(C), and further assume that the restrictions of y along
the projections D X« py(cy D = D agree on a directed cover of monomorphisms (here
we used again the fact that ¢* B satisfies the sheaf property for P-covers). By tidiness
of F and Lemma 4.12, we find a cover {C; — C} in C such that for each ¢, writing
§;: Dy — (@*F)(C};) for the pullback of § across (¢*F)(C;) — (*F)(C) and y; for y1 D,
d; lies in (¢* L)(C;) while the restriction of y; along the projections D; X (,» pyc;y Di = D;
agree on some effective subobject Vi — D; X, ry(c;) Di € ¢*N(C;). Here L and N
are the sheaves on C defined in (4.12) and (4.11) respectively. But then, in terms of a
“geometric” property of ¢*B inherited from B as in (III 4.8), we can find for each ¢ a
unique z; € B((¢*F)(C;)) such that z;1D; = y;. This new family {z;} is easily seen to
be compatible, hence is a family equivalent to y in the image of n¢.

This completes the proof of the theorem. =
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Proof of Theorem 4.2. We can assume that S = Set and argue constructively. Let
{F;:C; — D;} be a diagram of pretopos site morphisms inducing {f;: F; — &;}, and let
F:C — D be a morphism inducing the limit f: F — £ asin (1 4.9). Denote the canonical
functors associated with an arrow a: 7 — ¢ € I as indicated in the commutative diagram

Qj
D
F ‘k F;
A
h L . hj L . h;

45

For each ¢ € I, let M; and N; be the sheaves on C; which has for sections at C; € C;,
respectively, covers of the form U; — F;(C;) in D; (as in Corollary 4.8) and effective
subobjects at C; in D; (as in Corollary 4.11). Let M and N be the sheaves on C
of corresponding data for F which (up to isomorphism) lifts to some F;. Then it is
straightforward to check that M inherits the conditions of Lemma 4.7 from the M; if
each f; is relatively proper, and that N inherits the conditions of Lemma 4.10 from
the N; if, furthermore, each f; is relatively tidy. It therefore follows by applying these
lemmas that f is relatively proper (resp. relatively tidy) if the f; are.

To show the second part for given ¢ € I, consider first any E € &;, C € C and
a “C-element” x: h(C) — pfE. A “lifting” of x is given by the data (a,C’, ") where
arj =i €1, C" € Cj such that Pj(C’) = C and 2’ is a C'-element h;(C') — t,*E in
&, such that « = p;*2’. Two such liftings (ag, C§, ) and (aq,Cy, 2] ) are “eventually
equal” if there exists a commutative diagram

k——m7

1

Bo o (3)

in I such that P, (C{) = Pa,(C]) in Cy and to,*x) = to, "2} in .

Any generating element x: h(C) — pfE as above can be lifted “locally and locally
compatibly,” that is to say, on a cover of C' and compatibly so (in the sense of “eventual
equality”) up to covers. To see this, let A: C'* — Set be the canonical sheaf representing
E, A(C') = the family of C'-elements h;(C') — E for C’ € C;. The corresponding sheaf
for p;*E is the sheafification of the left Kan-extension (P; * A): C°P — Set of A along
P;:C; — C. By directedness of I and the lifting property of finite commutative diagrams
in C, there exists ag: jo — ¢ € I and Cy € Cj, such that P; (Cy) = C. Rearranging the
explicit construction then gives (P; * A)(C) = 1i_r>nﬁ (T A)(Co) (where 3:j — jg runs
over the category I/jo), thus proving our claim.
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Consider now any V € F;. Any commutative triangle of the form

8

J

i
in I induces a commutative triangle of canonical maps

s
Pj™ fjr war Pi™fj ua

e (3)

in £ When the maps f;: F; — &; are relatively proper, we need to show for any arrow
a:j — ¢ in I and pair of generating elements zg,z1:h(C) — pi*f;j ua*V for which
Sq 0 Lo = Sq 0 x1, that there exists, locally in C, a commutative triangle (4) such that
cg0xg = cgoxy. When the maps f;: F; — & are relatively tidy, we need to show,
furthermore, that any generating element y: h(C') — f.q;*V is locally of the form s, 0x
for some a:j — 1 and 2: h(C') — p;* fj ua*V.

For the first, it is clearly enough to treat the case where the C-elements xg,
have liftings to &;, say xg,z1:h;(C') = f; ua*V respectively, where P;(C') = C. Let
Yo, y1: [ hi(C') — uo™V be the respective adjoints of these under f;* 4 f; . Then
q;*yl, q;*yy are the respective adjoints of s, 0 xg,34 0 21, so that ¢;*yl = ¢;*y] =y
say. It follows that there is a cover of F(C) in D over which the two liftings y{, y; of y
are eventually equal, and by relative propriety (via Lemma 4.7), we may assume that
locally in C, this cover consists of a single monomorphism (an element of the sheaf M)
which lifts. It follows that, after passing to a cover of C' in C, we can find a commutative
triangle (4) such that ug*yg = ug*y1, or equivalently, such that cg o g = cg oy as
required.

For the second, let z: f*h(C) — ¢;*V be the adjoint of y: h(C) — f.q;*V. If z
has a lifting of the form z':k;(F;(C")) = f;"h;j(C') — us*V to Fj, then we would
be done, for then the adjoint z’: h;(C') — f; uo*V would produce the required z by
letting * = p;*2’. But we know that z lifts over a cover in I; we therefore need to
modify this to a cover in the image of F:C — D, that is, we need to lift z locally in
C'. Using relative propriety, we may reduce to the case where there exists a singleton
cover 0: D — F(C') which lifts to D, say ¢': D’ — F;(C’) such that Q;(¢') =4, and a
D'-element s':k;(D') — u,*V such that 21D = ¢;*s’. Then, by passing to a (further)
cover in C if necessary, we may use relative tidiness (via Lemma 4.10) to reduce to
having an effective subobject U = D Xp(cy D of D at C' in N(C'), one which lifts all
the way to D; as U’ = D’ Xp(cry D', and for which the restrictions of s’ along the
projections U’ = D' agree. This data is easily seen to produce z': f;"h;j(C") — us*V
satisfying ¢;*z’ = z, as required.

This finishes the proof of the theorem. m
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§5 THE MAIN THEOREM

We are now ready to deduce our main result, Theorem 5.1 below, as a straighforward
consequence of the formal properties of relatively tidy maps derived in the previous
sections.

5.1. Theorem. Let
dy
(G =e F) " F
=
g

f (1)

do

g £

be a lax pullback of toposes over a base topos S. If the morphism f s tudy relative to
S, then dy 1s tidy. Moreover, in this case the Beck-Chevalley condition holds, i.e. the
canonical natural transformation

9" fe = doydq”

induced by T 18 an isomorphism.

PROOF.  Recall (2.4) that the lax pullback can be built up in stages, as indicated by

the diagram
b

(G =e F) = (€ = F) F
‘ 2) /

do 3) PE)—2 ¢
0 (1) i
G - £ < £

By Proposition 1.3 the map Jp in the “universal” lax pullback square (1) is tidy (that
is, relative to £). Also, the Beck-Chevalley condition holds for this square, that is, the
2-cell Jy,0;" = id is an isomorphism.

We shall prove separately, in Lemma 5.2 below, that the map a is also tidy relative
to £, where P(€) is viewed as an E-topos via dp: P(€) — &, and that the square (2) also
saitisfies the Beck-Chevalley condition, i.e. a,b* = 9" f,. It then follows by Proposition
3.6 that the composition dy o a is tidy. Moreover, the Beck-Chevalley condition for the
squares (1) and (2) compose to give the Beck-Chevalley condition (Jpa).b* = f,.

But now we can apply pullback-stability of tidy maps (III 4.6), and conclude that ¢
is tidy since Opa is, while the left-hand square (3) again satisfies the Beck-Chevalley
condition ¢*(dpa)s = cid*. By composing this Beck-Chevalley condition with the
one (§pa).b* = f, already obtained, we find that the outer square satisfies the Beck-
Chevalley condition g* fi = ¢,(bd)*, which is the one stated in the theorem.

Thus, the following lemma completes the proof Theorem 5.1.
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5.2. Lemma. Suppose f:F — & s tidy relative to S. Then in the pullback square

(€= F)——F

the map a is tidy relative to € via 0y: P(€) — & and the Beck-Chevalley condition
ab* = 0" f, holds.

Proor. We decompose the above square into two smaller squares, the left-hand one
of which can be viewed as a square over the topos £ as base, as indicated below

(E=eF)— Ex F—= F
a id x f f
ple) P Lo ™ £

do T
&,

where e = (0pa, b).

First, consider the right-hand square: since f is tidy relative to &, stability under
change of base (4.1) yields that id x f is tidy relative to &, together with the Beck-
Chevalley condition (id x f).me* = my* f, for this square.

Next, since dp: P(£) — & is the localization of (€ x &€ =% &) at the “generic point”
A:E — € x & (see §1), the “localization lemma” (4.4) yields that « is tidy over &
together with the Beck-Chevalley condition (9o, d1)*(id x f)« = ase*. Composing the
Beck-Chevalley conditions for these two squares yields the condition 0, " f, = a,b*, and
proves the lemma. =

6 APPLICATIONS TO LAX DESCENT

For a morphism f: F — &£ over a base topos &, one obtains by iterated lax pullbacks a
diagram
do

- - 0~ do
Foe Foe Fop—>F e F F—Tt—c.
R N d;
&
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and one can extend the definitions concerning descent for sheaves (specializing those
given for locales in (I §7)) to the “lax” case in the evident way. Thus, laz descent
data on an object F of F is a morphism 0: do*F — d;* F satisfying the evident cocycle
condition in F =¢ F =¢ F and unit condition in F. The category of such pairs (F, 6)
is denoted LDes(f). For any object E € &, the natural transformation 7: do* f* — dy* f*
that comes with the lax pullback F =¢ F provides f*E with lax descent data 75. This
construction defines a functor

T:& — LDes(f), E— (E, ).

The morphism f: F — £ is said to be of effective lax descent (for sheaves) if this functor
T is an equivalence of categories.

The notion of effective lax descent is a weakening of that of effective descent: any
morphism which is of effective descent (for sheaves) is also of effective lax descent. Some
important classes of morphisms are only of effective lax descent, for example essential
surjections of toposes [].

The following result is a direct application of Theorem 5.1.

6.1. Theorem. Any relatively tidy surjection f:F — & s of effective lax descent for
sheaves.

ProoF. To begin with, let us recall that by a well-known application of the “tripleabil-
ity theorem” (see [, ]), the codomain £ of any surjection f: F — &£ betrween toposes is
equivalent to the category of coalgebras for the comonad C'y = f* f, on F:

€ = Coalg(Cy). (1)

If the lax pullback square

(G=e F) s F

£

satisfies the Beck-Chevalley condition f*f, = do,d,", arrows ¢: E — f* f,E are in bi-
jective correspondence to arrows E — do,d;* E, or by adjunction, to arrows #:dg*E —
di*E. A well-known theorem [] asserts that, in this way, coalgebra structures ¢ corre-
spond precisely to lax descent data 6, so that we obtain an equivalence of categories

Coalg(Cy) = LDes(f). (2)

The equivalence T:& — LDes(f) of the theorem is obtained by composing the two
equivalences (1) and (2). =

By Example 3.2, we obtain as a special case:

6.2. Corollary. Any coherent surjection between coherent toposes is of effective lax
descent for sheaves. m
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This corollary implies Zawadowski’s theorem [] for pretoposes. Indeed, if f: F — £
is a surjection between coherent toposes, an object E of £ is coherent iff f*F is coherent.
Thus, the equivalence €& = LDes(f) restricts in this case to an equivalence between the
corresponding pretoposes of coherent objects. We should point out, however, that for
the special case of Corollary 6.2 the results in this chapter on relatively tidy maps are
either not necessary or can be proved in a much easier fashion for coherent toposes. In
this way, one obtains a direct proof of Corollary 6.2 and hence of Zawadowski’s result,
which is more straightforward than the proof of our general descent theorem (6.1), and
much easier than Zawadowski’s original treatment, which was based on Makkai’s Stone
duality [,,]. The interested reader is referred to [|.
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