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Introduction�

In this paper a systematic study is made of various notions of 	proper map
 in the
context of toposes�

Modulo some separation conditions� a proper map Y � X of spaces is generally
understood to be a continuous function which preserves compactness of subspaces under
inverse image� and which therefore in particular has compact �bers� In this spirit� a �rst
de�nition of proper map between toposes was put forward by Johnstone in �
� There� a
map of toposes f �F � E was called proper if f���F � is a compact lattice object in the
topos E� This is probably the most direct way of expressing that F is compact when
viewed as a topos over the base E� �In fact� Johnstone used the term 	perfect
 rather
than 
proper
� and developed the theory mostly in the context of localic maps between
toposes� see �
��

A related � indeed more restrictive � de�nition was proposed by M� Tierney
and subsequently investigated by T� Lindgren �
� They called a map f �F � E of
toposes proper if the direct image functor f� commutes with directed colimits �in a
su�ciently strong� 	indexed
 sense�� This notion had earlier been considered for the
canonical morphism E � Set associated with a topos E by K� Edwards in her thesis
�
� where it had been shown to be equivalent to a �niteness condition �a strong kind of
	compactness
� for E�

In this paper� both senses of 	propriety
 will play a fundamental role� To distin�
guish the two concepts� we shall reserve the term 	proper
 for the Johnstone version�
and refer to Tierney�Lindgren proper maps as 	tidy
� Our exposition will contain most
of the basic results about proper and tidy maps proved by these authors� although our
proofs are generally quite di�erent and� we believe� easier� �There is moreover a qualita�
tive di�erence� in that our proofs are completely constructive and therefore apply over
an arbitrary base topos��

Besides these known results with new proofs� we also present many new results�
On the one hand� these new results are partly motivated by our attempt to complete
the parallel between proper and tidy maps� For example� parallel to the 	classical

Bourbaki characterization of proper maps as stably closed maps� we develop a natural
notion of 	�rmly closed map
 and show that the tidy maps are exactly the stably �rmly
closed ones� On the other hand� we also present new results of a more speci�c nature�
For example� in the context of proper maps we prove a Reeb stability theorem for the

�

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Utrecht University Repository

https://core.ac.uk/display/39699346?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


�

compact �ber of a map between toposes� which generalises the classical Reeb stability
theorem for foliations� We also characterise the classifying toposes of pro�nite groups as
exactly those hyperconnected pointed toposes with proper diagonal� and prove a similar
characterization for classifying toposes of pro�nite groupoids� In order to deal with
descent problems in the context of coherent toposes� we examine a relative notion of
tidiness�

Let us describe the contents of the paper�

In Chapter I we study proper maps� We give several examples� and prove the main
closure properties of the class of proper maps� Some of these properties are stated in
their full generality in �
� whereas others were only known for special cases �e�g� under
extra separation conditions �
�� In particular� we show that the pullback of any proper
map is again proper� thus providing the full solution of a problem raised by Johnstone
in �
 and partially answered there� This pullback stability of proper maps is in fact
an immediate consequence of an appropriate characterization of such maps in terms of
�internal� sites� which will be one of our basic technical tools�

For any pullback square

H

��

g

��b
F

��

f

G ��a
E �

���

there is a canonical transformation

a�f� �� g�b
��

The map f is said to satisfy the �weak� Beck�Chevalley condition if for any morphism
a this transformation is an isomorphism �a monomorphism�� We shall prove that f
is proper precisely when f and any pullback of f satis�es the weak Beck�Chevalley
condition�

After introducing a natural notion of closedness for topos morphisms� we obtain the
familiar Bourbaki�style characterization of a proper map as one for which all pullbacks
are closed� We end Chapter I by developing some of the theory from �
 for open maps
in the context of proper maps� showing that proper maps are of e�ective descent� for
sheaves as well as for internal locales�

Any notion of propriety is accompanied by a separation condition� In particular� it
is natural to de�ne a topos E to be separated �or Hausdor�� if its diagonal E � E �E is
proper� Similarly� a map f �F � E is said to be separated if the diagonal F � F �E F
is proper� Separated maps are introduced in Chapter II� We establish the elementary
closure properties of separated maps� and prove various new results� In particular� we
give a characterization of hyperconnected Hausdor� toposes in a surprisingly simple
way� they are exactly the classifying toposes of compact groups�

As a more elaborate application� we formulate and prove a topos version of the well
known Reeb stability theorem for foliations� It states that� under suitable conditions�
a separated map of toposes f �F � E has the property that in the neighbourhood of
any given compact �ber� all the �bers must be compact� Our proof was to some extent



�

inspired by the treatment of Reeb stability in Hae�iger�s thesis �
� The classical Reeb
result for foliations is a consequence of our topos theoretic version� as we shall show
explicitly� It also has other applications in foliation theory� as discussed in �
�

In Chapter III� we study the basic properties of tidy maps� Two �related� funda�
mental results were proved in �
� Firstly� the class of tidy maps is stable under pullback�
and secondly� a map is tidy i� it as well as any of its pullbacks satis�es the Beck�
Chevalley condition� The change�of�base formula a�f� �� g�b

� in ��� above is of course
familiar for proper maps between paracompact Hausdor� spaces �
� which are special
instances of tidy maps�

We shall use a relative form of a criterion due to K� Edwards to derive a description
of tidy maps in terms of sites which is appropriately 	geometric
� hence stable� Lind�
gren�s results follow more or less directly from this description� as does the stability of
tidy maps under �ltered inverse limits� The �nal part of Chapter III is devoted to a
description of tidy maps as those for which all pullbacks are 	�rmly
 closed� En route�
we shall extend to arbitrary tidy maps variuous results obtained in �
 for the special
case of proper separated maps�

We shall call a topos E strongly Hausdor� if the diagonal E � E �E is a tidy map�
Chapter IV contains a discussion of some properties of such strongly Hausdor� toposes�
In particular� we present a basepoint�free version of Grothendieck�s Galois theory� More
precisely� we prove that a coherent topos is strongly Hausdor� i� it is the classifying
topos of a pro�nite groupoid� i� every coherent object in that topos is locally constant�
This result of course has as an immediate corollary that a pointed connected coherent
topos is strongly Hausdor� i� it is the classifying topos of a pro�nite group� which is
the result underlying Grothendieck�s treatment of the fundamental group�

In the �nal chapter� we introduce relatively tidy maps� We shall say a map f �F � E
over a base topos B is tidy relative to S when its direct image functor commutes with
colimits indexed by directed categories in S� Thus� as an extreme case� a map f �F � E
is tidy relative to E i� it is tidy in the ordinary sense� At the other extreme� such a map
is tidy relative to the 	universal
 base topos of sets i� f� preserves directed colimits
in the ordinary naive sense� For example� any coherent map between coherent toposes
is tidy relative to Set� The main result of Chapter V states that� in a lax pullback of
toposes over a given base topos C�

�G �E F�

�
�

��

d�

��d�
F

��

f

G ��g
E �

the map d� will be tidy even if f is only relatively so� and moreover� in this case the lax
pullback square will satisfy the Beck�Chevalley condition

g�f� �� d��d�
��

This result was conjectured by A� Pitts for coherent toposes and maps� By standard
tripleability theory� it will follow that relatively tidy maps are lax descent maps for
sheaves� We therefore obtain the so�called lax descent theorem for pretoposes as a
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special case� The �rst proof of this theorem� due to Zawadowski �
� relied heavily on
Makkai�s theory of ultracategories and Stone duality ���
�
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CHAPTER I� PROPER MAPS

We begin with an account of the formal properties of proper maps between toposes�
Our exposition will proceed along lines which generalise naturally to the treatment of
tidy maps in Chapter III� with a pivotal role being played by Beck�Chevalley�type
conditions �see section ���

Our starting point is Johnstone�s Louvain�la�Neuve notes �
� where a number of the
basic examples and results of sections � and � already appear� Proper maps of locales
were extensively studied in �
� Although we extend many results of �
 to toposes� our
approach is rather di�erent in style� and for the most part independent� The exception
is the �nal section� where we shall use standard tools to 	lift
 the descent properties of
localic proper maps obtained in �
 to the general case �Theorem �����

The central results are contained in section �� the stability of proper maps under
pullback �Theorem ���� and �ltered inverse limits �Theorem ������ Our proofs of these
use a 	geometric
 site description of compactness �Lemma ����� based on a careful
analysis of the interplay between �nite and directed covers in a site with 	enough

�nite covers �section ��� We also give a Bourbaki�style characterization of proper maps
as those closed maps which remain so upon pullback �section ���

x� Definition and examples

Let X be a topological space� and consider the topos Sh�X� of sheaves on X� Since open
subsets of X correspond to subobjects of the terminal object � in Sh�X�� compactness of
X can be expressed as a property of Sh�X�� every cover of � by subobjects has a �nite
subcover� or equivalently� the global sections functor  � �X�� Set maps directed covers
of � to covers of the one�point set� Generalising� one says a topos E is compact if right
direct image along the �unique� geometric morphism �� E � Set� namely the functor
��� E � Set which which assigns to an object of E its 	global
 elements� preserves
directed suprema of subobjects of ��

���
W
Ui� �

W
���Ui� ���

for any directed family fUig� Ui � ��

���� Remark� An object E of a topos E is said to be compact if any epimorphic family
fEi � Eg contains a �nite subfamily �or equivalently� is re�ned by a �nite family� which
is still epimorphic �� ����
� That is� E is compact precisely when the localization E�E
of E at E is compact as a topos�

���� Examples� ��� For a set I� the topos of I�indexed families of sets is compact i�
I is �nite�

��� A topos of G�sets for any group G is compact� More generally� a topos of presheaves
!C for a small category C is compact if C has a �nite set of objects F which is �nal in
the sense that every object c of C admits an arrow c� f into some f � F �

�
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��� For any locale X �like a spatial locale as above�� the sheaf topos Sh�X� is compact
i� X is� A general notion of compact site for a topos will be introduced in x��

��� Any coherent topos is compact�

The fundamental notion of proper map between toposes is that of a morphism
which is 	relatively
 compact� Recall that a topos E can be viewed as a 	universe of
sets�
 and that any topos morphism f �F � E can be regarded as a single topos 	inside

this universe E� i�e� as an E�topos�

���� De�nition �
� A map f �F � E is proper if it renders F compact as an E�topos�

Later� in x�� we shall characterise a proper map in the style of Bourbaki �
� as a
morphism for which all pullbacks are closed maps�

���� Examples� Each example in ����� can be interpreted in an arbitrary topos E
in place of Set� with �nite meaning 	enumerated by �n
 � f�� �� �� � � � � n� �g for some
natural number n�
 or Kuratowski��nite �� ����
� Thus� relativised� ������� states that
for an object I � E� the canonical morphism E�I � E is proper i� I is Kuratowski��nite
in E� The relativised form of ������� says that for a locale X in E� the induced morphism
ShE �X�� E� from the topos of internal sheaves onX� is proper i�X is a compact locale
in E�

We shall often use De�nition ��� as it stands� treating E as if it were the category
of �naive� sets while taking care to argue 	constructively
 in the sense required for a
valid interpretation in any topos� It will nevertheless be useful to give an 	external

version �as prescribed by the standard interpretation in a topos of statements made in
the language of set theory� of at least one of the equivalent de�nitions of compactness�

Before doing so� let us remark that it is implicit in the form of a de�nition like
������ and easily provable from the explicit version ����� below� that propriety is a local
property� To state this explictly� consider the morphism f�E�F�f�E � E�E induced
by an object E in E� which is the pullback of f along the canonical morphism E�E � E�

���� Proposition� If f is proper� then so is f�E� Conversely� if E � � is an
epimorphism and f�E is proper� then so is f �

���� Example� For a group�homomorphism p�H � G� the induced morphism !p� !H �
!G between the corresponding toposes of respectively �right� H�sets and G�sets �where
!p� restricts the action of G along p� is proper i� G�p�H� is �nite� Indeed� there is a
pullback square

!C

��

�

�� !H

��

�p

Set �� !G�

of �presheaf� toposes� where C is the groupoid whose objects are the elements g � G�
and whose arrows g � g� are h � H with g � p�h� � g�� By letting G act on itself from
the right by multiplication� one has !G�G �� Set� and the bottom map in the pullback
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square is equivalent to the canonical morphism !G�G� !G� It follows from ����� that !p
is proper i� � is� By �������� the latter is the case precisely when the groupoid C has a
�nite set of components� i�e� when G�p�H� is �nite�

Returning to De�nition ���� consider an internal category

I 	 � I� I�
��d�

��
d�

�

in E� An I�indexed family of objects of E is an object in the topos EI of internal
diagrams on I �� ����
� that is� of covariant �or 	left
� actions of I on objects of E� An
I�indexed family of subobjects of � in E then corresponds to a subobject of � in EI �
which is to say� a subobject R � I� such that d��R � d��R� Of course� via the classifying
map of R� we could also view such a family as a functor I � �E in E� where �E is the
subobject�classifyer of E equipped with its usual order� A directed family of subobjects
of � is one indexed by a directed �or �ltered� see �� ����
� category I�

The canonical morphism ���I � EI � E has inverse image �� sending an object E
to the corresponding 	constant
 diagram �E with trivial I�action�� �� has� apart from
a right adjoint �� � lim

�
I � also a left adjoint �� � lim

�
I � Now� if I is a directed category�

the functor �� is exact �� ����
� and the pair �� a �� de�nes a canonical section of ��
which we denote 
I or 
 �as representing a virtual object of I 	at in�nity
��

E
�
�� EI � 
� � ��� 
� � ���

In this case the colimit of an I�indexed family of subobjects of � coincides with its
supremum� It follows that direct image for f �F � E preserves suprema of I�indexed
families of subobjects of � precisely when the square

F

��

f

���
Ff�I

��

fI

E ���
EI

has the property that

��fI ���V � � f�


��V ��

for any subobject V � � in Ff�I � We shall have more to say about the form of this
property� a so�called Beck�Chevalley condition for the square� in x��

��	� Examples� ��� If I is a constant directed category in E� say I � ��J where
�� E � Set is the canonical map and J an ordinary small category� then f� preserves
I�indexed suprema of subobjects of � i� it preserves J�indexed suprema of subobjects
of � in the usual sense�

��� Let U and V be subobjects of � in� respectively� E and F � Let I �� � be the ideal
of � � f� � �g in E which contains � over U �and � globally�� Then the inclusion
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V " f�U � f�I de�nes an I�indexed family of subobjects of � in F � of which the
supremum is preserved by f� i� f�V � U � f��V � f�U��

��
� De�nition �of proper map� 	indexed
 version�� A map f �F � E is said to be
proper if� for any object E � E and any directed category I in E�E� the associated
square

F�f�E

��

f�E

���
�F�f�E�f

�I

��

�f�E�I

E�E ���
�E�E�I

has the property that

��f�E�I��V � � �f�E��


��V � ���

for any V � � in �F�f�E�f
�I �

���� Example� Let f �Y � X be a continuous function between topological spaces�
The induced morphism Sh�f�� Sh�Y �� Sh�X� between the associated sheaf�toposes is
proper when f is a proper map of topological spaces� that is� a closed map with compact
�bers� the converse holds if the points of X are locally closed� Indeed� Sh�f� satis�es
����� for constant I as in ������� when f has compact �bers� and for I as in ������� when
f is closed �here the mild separation is needed for the converse�� These two special
instances su�ce �see �
��

����� Remarks� ��� Given a surjective family fEi � Eg in E� it is readily seen that
����� is satis�ed at E as soon as it holds at each Ei� Thus the second �less immediate�
part of Proposition ��� follows� and also that it is enough to check the de�nition at
those E in any given set of generators for E�

��� Subobjects of � in �F�f�E�f
�I correspond to functors �f�E��I �� �F�f�E ��

f�E � �F in F�f�E� or by the adjunction �f�E�� a �f�E��� to functors

I �� �f�E���F�f�E �� E � f��F ���

in E�E� Since the supremum of such a family coincides with that of its image� it
su�ces to take for ��� the generic directed subobject of f��F � which lives over the
object E 	 If��F of directed subobjects of f��F � Chasing this family through ���
gives an alternative rendering of De�nition ���� namely commutativity of the square

If��F

��

W
��If�
I�E

��

W

f��F ��f�
�E �



�

which is the obvious equivalent of ��� in E �here the bottom map f� classi�es

� �� f��
f��true�
�� f��F �

the top map is 	image along f�
 and the side maps internalize the supremumoperation��

��� The 	indexed
 version in E of compactness of F as 	every cover of � by objects is
re�ned by a �nite cover
 runs as follows� Any factorization of an epimorphism S � f�E
of F in the form

S
�
�� f�I

f��
�� f�E

can locally be re�ned by another such factored epimorphism

T
�
�� f�K

f��
�� f�E�

where K � E� is �nite in E� Here 	locally re�ned
 means there are maps ��E� � E
epi� 	�K � I and ��T � S such that the diagrams

K

��

�

���
I

��

�

E� ���
E

and

T

��

�

���
S

��

�

f�K ��f��
f�I

commute� �Intuitively� one should think of the �rst� given factorization as a cover fSi �
� j i � Ig in E�E and the second factorization as a �nite re�nement fTk � � j k � Kg
of fSi � � j i � Ig in a further localization E�E���

����� Example �generalising ������� For a functor p�D � C between small categories�
the induced morphism !p� !D � !C is proper i� for any object c in C and any �nal �������
family of the form

fp�di�
	i�� ci

�i
�� cg

in the comma category p�c� there exists a �nite �nal family fp�fk�
�k
�� cg with the

property that� for each index k� there is some index i and a commutative diagram of
the form

p�fk�

��

�k

��p���
p�di�

��

	i

c ��� ci

in C such that � splits �i� i�e� �i � � � id�
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x� First properties

In this section we collect those �closure� properties of the class of proper maps which
follow from the de�nition in a more or less formal fashion� Not treated here are sta�
bility under pullback and �ltered inverse limits� for which will shall depend on a site
description of propriety �x���

A straightforward calculation with ����� yields�

���� Proposition� �i� Any equivalence F �� E of toposes is proper� �ii� If G � F and
F � E are proper� so is their composite G � E�

���� Proposition� In a commutative diagram

G ��g

��
h

��
��

��
��

� F

��
f

� �
� �
� �
� �
� �

E �

if g is a surjection and h is proper� then so is f �

Proof� We use ������ Consider for an internal category I in E the diagram

G

��

h
��

g

��
��

��
� ���G

GI

�h

��

��
�g

���
���

F

�� f� � �
� � �
� �

���F

FI

�� �f� � �
� � �

E ���E

EI

�where we write I also for the category f�I in F and for g�f�I � h�I in G�� For any
subobject V � � in FI � propriety of h gives

h�

�#g�V �
�#h�#g

�V� ���

Since g is a surjection� so is #g� Hence #g�#g�V � V � and thus #h�#g�V � #f�#g�#g�V � #f�V �
So ��� yields h�
�#g�V �
� #f�V � But

h�

�#g�V � h�g

�
�V

� f�g�g
�
�V

� f�

�V�

again because g is surjective� Thus f�
�V �
�f�V � as desired� The same argument
applied to any slice E�E proves the proposition�

���� Proposition� In a commutative diagram as in ������ if h is proper and f is an
embedding� then g is proper�



��

Proof� We use the notation as in the previous proof� For a subobject W � � in GI �
we want to show

g�

�W �
�#g�W� ���

Since f is an embedding� and the inequality 
 in ��� always holds �by adjunction�� it
su�ces to show that f�g�
�W � f�


�#g�W � But

f�g�

�W � h�


�W

�
�#h�W �h proper �

�
� #f�#g�W

� f�

�#g�W �adjunction��

The same argument applied to any slice E�E proves the proposition�

Recall that a map f �F � E is hyperconnected if f induces an isomorphism

SubE �E�
�
�� SubF�f

�E�

for any E� or equivalently� the canonical map f��F � �E is an isomorphism�

���� Proposition� Any hyperconnected map is proper�

Proof� Suppose f �F � E is hyperconnected� and consider a diagram of the form

F

��

f

���
FI

��

�f

E ���
EI

for directed I� Since #f is a pullback of f � it is hyperconnected too� which means any
given V � � in FI is of the form V � #f�U for a unique U � � in EI � It follows that

f�

�V � f�


� #f�U

� f�f
�
�U

�
�U�

the latter since f is �in particular� connected� But U � #f� #f�U � #f�V � so f�

�V �


� #f�V � as desired�
The same argument applied to any slice proves the proposition�

Next� recall that any map f �F � E can be factored as f � l � h where h is
hyperconnected �hence surjective� and l is localic� thus l is of the form ShE �X�� E for
a locale X in E�

���� Corollary� A map f �F � E is proper i� its localic re�ection ShE �X� � E is�
that is� i� X is a compact locale in E�

Proof� Immediate from ������ ������ ����� �and using �������



��

���� Remark� By Corollary ���� showing properties of proper maps of toposes reduces
to adding the 	hyperconnected part
 to corresponding properties of proper maps of
locales �
� a strategy which we shall employ in x� for establishing descent properties� In
the meantime however� we continue our independent build�up of the basic properties
along lines which are designed to generalise to the treatment of tidy maps in Chapter
III�

��	� Proposition� Consider a pullback square

H

��

q

��m
F

��

p

G ��l
E �

where l is open and surjective� If q is proper� then so is p�

Proof� Suppose that q is proper� Let I be a directed category in E �and write I also
for the induced categories p�I� etc��� The square in the proposition induces a similar
square

HI

��

�q

���m
FI

��

�p

GI ���l
EI �

with #l again an open surjection� Form the cube

F
p

��

��d
FI

��

�p

H

��

q

��c

��
m �����

HI

��

�q

���m ����

E
b �� EI

G ��a

��
l �����

GI

���l ����

in which a� b� c and d denote 	points at in�nity�
 Since l is open� l�p�V � q�m
�V

for any V � � in F � similarly� by openness of #l� the identity #l�#p� � #q� #m� holds on
subobjects of � in the pullback on the right�



��

Given now any W � � in FI � we claim that b�#p�W � p�d
�W � since l is surjective�

it su�ces to show l�b� #p�W � l�p�d
�W � But

l�b�#p�W � a�#l�#p�W

� a�#q� #m
�W since #l is open

� q�c
� #m�W since q is proper

� q�m
�d�W

� l�p�d
�W since l is open�

The same argument applied in an arbitrary slice of E proves that p is proper�

x� Beck�Chevalley conditions

Consider a pullback square of toposes

H

��

g

��b
F

��

f

G ��a
E �

���

Just by commutativity of this square �up to a given natural isomorphism�� one obtains
a natural transformation

a�f� �� g�b
�� ���

The square ��� is commonly said to satisfy the Beck�Chevalley condition �BCC� if this
natural transformation is invertible� that is� for any object F in F � ��� is an isomorphism

a�f�F
�
�� g�b

�F�

We shall study this property in Chapter III� For the moment� the following weakening
is more relevant�

���� De�nition� The square ��� is said to satisfy the weak Beck�Chevalley condition
if� for any object F in F � the canonical map ��� is a mono

a�f�F ��� g�b
�F�

We observe that this condition is stable under localization at an object of E� More
precisely� if a square ��� satis�es the weak BCC� then so does the localized square

H�g�a�E �� H�b�f�E

��

�g

���b
F�f�E

��

�f

G�a�E ���a
E�E �

���



��

for any object E in E� Indeed� this follows easily from the description of the direct
image functor of the morphism #f � f�E in ���� for an object F � f�E in F�f�E� the
object #f��F � f�E� is the pullback of f�F � f�f

�E along the unit 
�E � f�f
�E�

���� Proposition� For a pullback square ���� the following are equivalent�

�i� The square satis�es the weak BCC�
�ii� For any mono V �� F in F � the square

a�f�V� �

��

�� b�g�V� �

��
a�f�F �� b�g�F

���

is a pullback�
�iii� The square satis�es the BCC for subobjects of � �i�e� a�f�V

�
�� b�g

�V for V � �
in F	� and the same is true for any localized square ����

Proof� �i� � �ii�� Consider for the subobject classi�er �F of F the square

a�f��F
� � �� b�g��F

a�f�� ���

��

a�f��true�

b�g
�� �

��

g�b
��true� ���

Here the upper arrow is mono� by assumption �i�� so the square is a pullback� For any
mono V �� F in F � its classifying map cV �F � �F �ts into a pullback square

F ��cV
�F

V ��

��

� �

��

of which the images under a�f� and g�f
� span a cube with ���� The side of this cube

opposite to ����

a�f�F �� b�g�F

a�f�V ��
��

��

b�g
�V �
��

��

must then also be a pullback� proving �ii��

�ii� � �iii�� Again� the explicit description of #f� and a carefully drawn cubical diagram
will show that property �ii� is stable under localization at an object E of E� Therefore
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it su�ces to prove �iii� for the case E � �� But� if a square of the form ��� with F � �
is a pullback� then a�f�V � b�g

�V must be an iso�

�iii� � �ii�� For an object V
m
��� f�E in F�f�E� write #f�V �� E for #f�m� so that the

de�nition of #f� gives a pullback

#f�V� �

��

�� f�V� �

��
E ��


f�f
�E �

Then condition �iii� can be rephrased by stating that the rectangle

a� #f�V� �

��

�� a�f�V� �

��

�� g�b�V� �

��
a�E ��a�


a�f�f
�E �� g�b�f�E

���

is a pullback �because� modulo the isomorphism g�b�f�E �� g�g
�a�E� the lower com�

posite is the unit a�E � g�g
�a�E� the pullback along which is� by de�nition� #g�#a��V �

f�E���
Now consider any mono W �� F in F � and putting E � f�F � form the pullback

V � �

��

�� W� �

��
f�E ���

F

���

of W along the counit of the adjuction� Notice that in this special case� #f�V � E is
f�W �� f�F � by the triangular identities for an adjunction� Composing the image of
��� under g�b� with the pullback ��� yields that a� #f�V � a�f�W as the pullback of W
along the composite

a�E
a�

�� a�f�f

�E �� g�b
�f�E

g�b
��

�� g�b
�F�

By the naturality of � and the triangular identities� this composite is the canonical map
a�E � a�f�F � g�b

�F � Thus the square

a�f�W� �

��

�� b�g�W� �

��
a�f�F �� g�b�F



��

is a pullback� as required for �ii��

�ii� � �i�� Consider for any object F in F the equalizer

F �� F � F � F

formed by the projections and the diagonal� This gives a diagram with similar equalizer
rows�

a�f�F

��

� � �� a�f��F � F �

��

��
��
a�f�F

��
g�b

�F
� � �� g�b��F � F � ��

��
g�b

�F �

By assumption �ii�� the lefthand square is a pullback� The exactness properties of this
diagram together now imply that the right�hand map must be mono�

Next� we shall say that a map f �F � E satis�es the weak BCC if� for any morphism
a�G � E� the pullback square ��� satis�es the weak BCC� Say f satis�es the stable weak
BCC if any pullback of f satis�es the weak BCC�

���� Proposition� If f �F � E satis�es the stable weak BCC� then f is proper�

�In the next section� we shall show that the converse is also true��

Proof� Consider a directed category I in E� and the diagram

F

��

f

���
Ff�I

��

fI

�� F

��

f

E ���
EI �� E �

Since the �total� rectangle and the right�hand squares are pullbacks� so is the left�
hand square� By assumption� the weak BCC holds for the left�hand square� which� by
Proposition ���� implies that for any U � � in Ff�I �


��fI ���U� � f�

��U��

The same argument applies to any slice F�f�E � E�E� since these slices are pullbacks
of f �F � E� This shows that f is proper in terms of De�nition ����

���� Remark� The morphism E
�
�� EI is a subtopos inclusion� Thus it is su�cient

to require the weak BCC stably for pullbacks to subtoposes in Proposition ����



��

x� Pretopos sites

In this section we introduce a special kind of site which will turn out to be useful when
dealing with compactness properties of toposes�

Since we shall work with internal sites in toposes� we need to be precise about
the basic de�nitions� For many purposes� a convenient notion of site is that of a pair
�C � J� consisting of a small category C � together with a Grothendieck topology J on C
�
 �called a 	pre�topology
 in �
�� an operation assigning to each object C � C a family
J�C� of 	covers
 fCi � Cg of C� such that the following three conditions are satis�ed�

�i� �identities� The singleton family fC
id
�� Cg is a cover of C�

�ii� �stability� If fCi � Cg is a cover of C and D
f
�� C is any arrow in C � then there

exists a cover fDj � Dg such that each composite Dj � D � C factors through
some Ci � C �the family fDj � Cg 	re�nes
 fCi � Cg��

�iii� �transitivity� If fCi � Cg is a cover� and for each index i the family fDij � Cig
is a cover� then the family of composites fDij � Cg is a cover�

���� Remark� If C has pullbacks� it is sometimes convenient to ask for 	strict

stability in �ii��

�ii�� If fCi � Cg is a cover of C and D
f
�� C is any arrow in C � then fCi�CD � Dg

is a cover of D�

For every topos E there exists a site �C � J� such that E �� Sh�C � J�� the topos of
sheaves on �C � J� �� ����
� More generally� for any morphism p� E � S� there exists a
site �C � J� in the base S for p �or� by abuse of language� for E as S�topos�� giving an
equivalence of toposes over S�

E ���

		
p

��
��

��
��

��
ShS�C � J�




�

	 	
	 	
	 	
	 	
	 	

S �

where ShS�C � J� is the topos of S�internal sheaves on �C � J� and � the canonical map
�� ����
�

The notion of site as above unfortunately becomes awkward to work with in sit�
uations where a change of base topos is involved� if �C � J� is a site in a topos S� its
inverse image ���C � J� 	 ���C � ��J� along a morphism ��S � � S generally fails to
satisfy �iii� �unless all covers in J are �nite�� hence is not a site in S �� It then becomes
necessary to deal with a Grothendieck topology in terms of a 	basis
 for it� a system
of covering families which is only required to satisfy the stability condition �ii�� such
a system generates a Grothendieck topology J under �i� and �iii� and de�nes the same
sheaves on C as J �

���� Convention� A site �in an arbitrary topos� is a pair �C � J� where C is a small
category and J is a system of covers satisfying the stability condition �ii�� We refer to



��

the covers in J as the basic covers of the site� and to the covers in the full Grothendieck
topology obtained by adding the singleton covers �i� and closing under composition of
covers �iii�� as the generated covers of the site� The term 	cover
 � unquali�ed � will
refer to any family re�ned by a generated cover� We say an arrow D � C in the site
	covers
 if the singleton family fD � Cg is a cover� We shall mostly abuse notation�
and just write C for the site �C � J��

In this terminology now� if C � �C � J� is a site in S� then its inverse image ��C �
���C � ��J� along any morphism ��S � � S remains a site in S �� Moreover� given a
pullback square of toposes

E �

��

p�

��

E

��

p

S � ���
S �

���

if C is a site for E in S� so is ��C for E � in S ��
If C is a site for E� the canonical map h� C � E is �at �see �
�� hence preserves

all �nite limits which exist in C � The covers of C are exactly those families mapped
to epimorphic families in E under h� Moreover� any epimorphic family of the form
fEi � h�C�g in E is re�ned by the image of some �generated� cover of C � These facts
forn part of the statement that h is universal �in the obvious appropriate sense� amongst
�at� cover�preserving functors from C into a topos�

By a morphism of sites F � C � D we mean a functor which is �at �expressed in
terms of the covers of D � and which maps basic covers to covers� A morphism of sites
induces a map of toposes Sh�D � � Sh�C �� as the unique such �up to ismomorphism�
which makes the square

D ��h
F

C ��h

��

F

E

��

f�

commute� Any map of toposes is equivalent to a morphism induced by sites �more
generally� any small diagram of toposes is induced by a corresponding diagram of sites�
see below��

���� De�nition� A pretopos site �C � J� is a site for which the underlying category C is
a pretopos �see e�g� ��
� and the system J of basic covers is the union of two subsystems
P and S� where P is the topology of �nite epimorphic families in C and S is a system
of directed families of monomorphisms in C which is stable �ii� and moreover satis�es

�iv� �compatibility� If fSi � Cg is a basic S�cover� then so is the family of sums
fSi "D � C "Dg for any D� and the family of images ff�Si� � f�C�g for any
arrow f �C � D in C �



��

We refer to the covers in P and S as� respectively� the P �covers and basic S�covers of
the pretopos site� the latter covers give rise to a sub�topology of that generated by J �
the topology of generated S�covers�

The canonical functor h� C � E into a topos E from a pretopos site C for it�
is characterized by being universal amongst pretopos morphisms from C into a topos
which transform S�covers into epimorphic families�

We can construct a 	subcanonical
 pretopos site �C � J� for any given topos E as
follows� Take any full subcategory of E spanned by a set of generators for E� and close
this category under 	canonical
 �nite limits� �nite sums and coequalizers of equivalence
relations �if necessary�� The result is a sub�pretopos C of E� which will become a site
for E provided its covers are exactly the epimorphic families in C � But any such cover
is clearly decomposable into a family of �nite covers followed by a directed cover of
monomorphisms� Thus� if we let S consist of the latter covers �and let the basic covers
J be the union of these with the �nite covers�� we obtain a pretopos site for E�

The additional data associated with a pretopos site can be interpreted in any topos�
and� being evidently 	geometric
 �� ���
� is preserved under change of base� Thus� given
a map p� E � S� there exists a pretopos site C for E in S� and this situation is stable
under pullback as in ����

The decomposition property of covers in the subcanonical site described above has
a generalization to arbitrary pretopos sites� as we now go on to show� First� we need�

���� Lemma� Let C be a pretopos site�

�i� All generated S�covers of C consist of monomorphisms and satisfy the compatibility
condition �iv��

�ii� If fSi � Cg and fTj � Dg are generated S�covers of C � then so is their sum
fSi " Tj � C "Dg�

Proof� �i� Both properties are clearly possessed by trivial covers and preserved
under composition of covers� hence are properties of generated S�covers by induction�

�ii� The sum can be written as the composition of the families fSi"D� C "Dg and�
for each i� fSi " Tj � Si "Dg� each of these is a generated S�cover by �i��

���� Lemma� Any cover in a pretopos site C is re�ned by the composition of a P �cover
followed by a generated S�cover�

Proof� It is enough to show that each composition of a generated S�cover followed
by a P �cover is re�ned by the composition of a P �cover followed by a generated S�cover�
For then the property of covers as stated is �trivially� satis�ed by all basic covers� and
preserved at each generating step� hence �by induction� inherited by all generated covers�
Since any cover is re�ned by a generated cover� the lemma will follow�

Consider such a composition of a P �cover ffi�Di � C j � � �� � � � � ng and a family
of generated S�covers fEi� � Di j 
 � $ig� Write D � D� " � � � " Dn� and E� �
E��� " � � �En�n for each 
 � �
�� � � � � 
n� � $ � $�� � � ��$n� Then by Lemma ����ii��
each individual sum fE� � D j 
 � $g of generated S�covers is again a generated
S�cover� as is� by Lemma ����i�� the image ff�E�� �j 
 � $g along the induced
epimorphism f �D � C� But for each 
 � $� the family fEi�i � f�E�� j i � �� � � � � ng
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is a P �cover� and the composition fEi�i � f�E�� � C j 
 � $� i � �� � � � � ng clearly
re�nes the given composition fEi� � Di � C j 
 � $i� i � �� � � � � ng we started out
with�

���� Corollary� In a pretopos site C � a directed cover of monomorphisms is an
S�cover�

��	� Remark� Let C be a category with pullbacks and universal �that is� stable under
pullback� coproducts and coequalizers of equivalence relations� Call a �nite epimorphic
family fCi � Cg in C regular if the induced map

�
i Ci � C is a coequalizer� Then

the last three results remain true for any site of the form �C � P � S�� where P is the
topology of �nite regular epimorphic families and S is a stable �ii� system of directed
covers which is compatible in the sense of ����� �iv� with sums and �regular� images�
For want of a descriptive name� we shall refer to this situation as a 	site with stable
compatible system of directed covers�


A morphism between pretopos sites F � C � D preserves the pretopos structure
�equivalently� is �at and preserves P �covers� and maps basic S�covers to �directed�
covers� Any morphism between toposes is induced by a morphism between pretopos
sites� Indeed� suppose� more generally� that we are given a diagram fEig of toposes
indexed by a small category I �here we tacitly assume that this entails giving explicitly�
for each indexing object i� a set Gi of generators for Ei�� For each i� let C i be the
subcanonical pretopos site for Ei constructed� in the way described before� from the set
of generators

S
� t�

��Gj
 where �� i � j varies over all arrows out of i� Then for each
arrow �� i� j in I� inverse image for the corresponding transition map t�� Ei � Ej has
a restriction to a map of pretopos sites T�� C j � C i � and T� induces t��

We end this section with a description of �ltered inverse limits of toposes in terms
of pretopos sites� Consider any �pseudo��limit

Ei

��

t�

i

��

�E

��
pi












��pj ���
���

���

Ej j

���

of a diagram fEig of toposes� indexed by an inversely �ltered small category I� and
induced by a corresponding diagram fC ig of pretopos sites �e�g� as constructed above��

��
� Lemma� The �ltered inverse limit of toposes ��� is induced by a diagram of
pretopos sites

C i





Pi


 
 


 
 



 
 

i

��

�C

C j

��

T���

Pj

� � � � � � � � �
j

���
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such that each �nite commutative diagram �resp� basic S�cover	 in C lifts up to isomor�
phism through some Pi� to a �nite commutative diagram �resp� S�cover	 in C i �

Proof� We construct the site C for the limit E in the standard way �see �
�� Let
C be the category with as objects the disjoint union of those of the categories C i � and
with arrows between C � C i and D � C j given by the �ltered colimit of sets

C �C�D� � lim
������

C k �T��C�� T��D���

where ��� 	� varies over pairs of maps i
�
�� k

�
�� j with common domain k� For each

i � I� let Pi� C i � C be the functor which takes an object to itself �or more accurately�
its representative� in the disjoint union and maps arrows between C�D � C i by the
colimit function

C i �C�D�� C �C�D�

at �id� id��
It is then a straightforward matter to check that each arrow �� i � j in I gives

a �pseudo��commutative diagram as in ���� and that C is the �pseudo��colimit of the
diagram of categories fC ig� It is also clear from the construction that �nite commutative
diagrams in C can be lifted as stated� This� together with the �lteredness of I and the
fact that the transition functors in ��� are pretopos morphisms� in turn implies that C
inherits the ��nitary� pretopos structure from its components so as to make the functors
Pi� C i � C pretopos morphisms� Thus� ��� is in fact a �pseudo��colimit in the category
of pretoposes�

Now let the S�covers of C be those families which �up to isomorphism� lift through
some Pi to an S�cover in C i � Then the P �covers and S covers are compatible� since
the data involved in the compatibility condition ����� �iv� can always be lifted to some
single C i � where compatibility is assured by Lemma ���� Thus� C becomes a pretopos
site and the Pi morphisms of pretopos sites having the stated lifting property of basic
S�covers by construction� Finally� C is indeed a pretopos site for E� since the pretopos
morphism h� C � E induced by the canonical functors hi� C i � Ei is easily seen to be
universal in mapping S�covers in C to epimorphic families�

���� Remark� It is clear from the proof of Lemma ��� that it can be extended to a
corresponding result for a limit f �F � E of a diagram of maps ffi�Fi � Eig� That
is� if fFi� C i � D ig is a diagram of pretopos site morphisms inducing ffi�Fi � Eig�
there is a morphism F � C � D between the pretopos sites for E and F as in Lemma ����
which induces f �

x� Preservation under pullback and filtered inverse limits

Our main purpose in this section is to show that proper maps are stable under pullback�
We shall do this by encoding propriety of a map f �F � E in terms of an inductive
property of a pretopos site for F in E �see Lemma ��� below� which is preserved under
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change of base� The same property will be involved in the proofs of various other facts�
like the converse of Proposition ���� and stability of propriety under �ltered inverse
limits�

First we need a site version of compactness�

���� De�nition� A pretopos site C ����� is compact if any directed cover of � by
monomorphisms in C has a single member which already covers�

���� Remark� De�nition ��� makes sense for any 	site with stable compatible system
of directed covers
 ������ We make the blanket observation that all results in this section
remain true �and most proofs unaltered� upon substitution of this notion for 	pretopos
site�


We have�

���� Proposition� A pretopos site C for a topos E is compact i� E is compact�

Proof� Immediate from the fact that the canonical functor h� C � E preserves ��
preserves and re�ects covers� and that any directed cover of � in E is re�ned by the
image under h of a directed cover of � in C �

The stability properties of compactness that concern us in this secton� are unlocked
by the following lemma�

���� Lemma� Let C be a pretopos site equipped with a system M of distinguished
covering monomorphisms U � � such that

�i� The trivial cover �� � �M �
�ii� If V � U � �� then U � � �M whenever V � � �M �
�iii� For any basic S�cover fUi� Ug� if U � � �M then Ui� � �M for some i�

Then M contains all monomorphic covers U � � of C � and C is compact�

Proof� It will be enough to prove that any generated S�cover of � contains a member
ofM � For then any directed cover of � contains a member ofM by ����� and �ii�� To this
end� consider the property of families fUi � Ug stating that� if U � � �M � then there
is some i for which Ui � � �M � Since this property is given to hold for basic S�covers
�iii�� trivially holds for the family f� � �g and is preserved by composition� it must
hold for generated S�covers by induction� But then any generated S�cover contains a
member of M � since �� � �M �

���� Example� Suppose C is a pretopos site in which the basic S�covers of � are
trivial �i�e� contain an isomorphism�� Then� by letting the isomorphisms U �� � be the
distinguished covers� it follows that C is a compact site in which all directed covers of
� are trivial �as in the case when C is compact and subcanonical��

���� Corollary� A pretopos site C is compact i� the system of all covering subobjects
of � in C satis�es the conditions of ������
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Proof� Basic S�covers consist of monomorphisms and are directed� a property in�
herited under �post��composition with a monomorphism� The statement is therefore an
immediate consequence of Lemma ����

��	� Lemma� Let �� E � � E be a morphism of toposes and suppose C is a compact
pretopos site in E� Then the pretopos site ��C is compact in E �� Moreover� if M denotes
the object of subobjects of � which cover in C � then ��M is the corresponding object for
��C �

Proof� By Corollary ���� M is a system of covers of � satisfying the conditions of
Lemma ��� internally in E� But these conditions are 	geometric
 and hence preserved
under change of base� This means that ��M is a system of 	distinguished
monomorphic
covers of � for ��C in E �� Since �the proof of� Lemma ��� is constructive� it can be
interpreted in E � to yield the result�

��
� Theorem� In a pullback square

F �

��

f �

��

F

��

f

E � ���
E �

suppose that f is proper� Then f � is proper and the weak BCC is satis�ed�

Proof� We write as if E 	 Set and argue constructively�
Let C be a pretopos site for F � Then C is compact by Proposition ���� and it

follows that ��C is a compact site for F � in E � by Lemma ���� Thus� f � is proper� by
applying Proposition ��� in E ��

To deduce the weak BCC� consider any subobject V � � of F � represented by a
closed sieve R on � � C � It will be enough to deduce� in the internal language of E ��
that �� � is in ��R whenever ��R contains a cover of � in ��C � But � arguing in E �

� ��R remains closed under all �nite covers of ��C in the image of ��� in particular
under P �covers and the singleton covers ��M of Lemma ���� Therefore� if ��R contains
a cover of � at all� it must also contain a directed cover of � and consequently� by Lemma
���� an element of ��M � Since the latter is only possible if � � � � ��R already� we
are done�

���� Corollary� A map f �F � E is proper i� it satis�es the stable weak BCC�

Proof� One direction is Proposition ���� the other is immediate from Theorem
����



��

����� Theorem� Suppose f �F � E is the limit of a diagram

F ��pi

��
f

��
��

��
��

��
Fi

��
fi


 


 


 


 


 


E

���

of proper maps ffi�Fi � Eg indexed by a �ltered category I� Then f is proper� More�
over� for any i � I and V � � in Fi� the natural inclusion

W
ffj�t�

�V j �� j � ig � f�pi
�V� ���

where t��Fj � Fi denotes the transition map induced by �� is an isomorphism�

Proof� We can regard I as an internal category in E� so it will be enough to treat
the case E 	 Set constructively�

Let fC ig be a diagram of pretopos sites inducing fFig� and let C be a pretopos
site for the limit F as given by Lemma ���� For each i� let Mi be the set of covering
subobjects of � in C i � and let M be the set of covering subobjects of � in C which are
�up to isomorphism� in the joint image of the Mi under the morphisms Pi� C i � C

which induce the projections pi�F � Fi�
By Proposition ���� each C i is compact� so thatMi satis�es the conditions of Lemma

���� Using the directedness of I and the lifting property of commutative diagrams and
basic S�covers in C � the system M is readily seen to inherit these conditions from the
Mi� It follows that any covering subobject U � � in C lifts to some C i � and that C is
compact� Thus F is compact�

For the second part� consider i � I and V � � in Fi� Represent V by a closed
sieve R of � � C i � It will be enough to show that the family Pi�R� in C covers � only if
there is some �� j � i and U � � � R such that T�U � T���� �� � covers in C i �where
T�� C j � C i induces the transition map t��Fi � Fj�� But R is closed under P �covers�
hence is generated as a sieve by a directed family of subobjects of �� Thus� if Pi�R� covers
�� there exists� by compactness of C � some U � � in R such that Pi�U� � Pi��� �� �
covers� Thus� by the lifting property of subobject covers of � in C and the directedness
of I� we can �nd an arrow �� j � i � I such that T��U�� T���� �� � already covers in
C j � as required�

����� Corollary� Suppose in ��� that for each �� j � i in I and V � � in Fi� the
natural inclusion fi�V � fj�t�

�V induced by the transition morphism t��Fj � Fi is
an isomorphism� Then the natural inclusion fi�V � f�pi

�V is an isomorphism for each
i � I�

����� Remark� The natural inclusion ��� is the component at V � � � Fi of a
canonical natural transormation

lim
��

fj�t�
� � f�pi

�� ���



��

where �� j � i varies over the category I�i� Since the data in ��� localizes� we could
have stated equivalently in Theorem ���� that the transormation ���� and similarly in
Corollary ���� the canonical natural transormation fi� � f�pi

�� are monomorphisms
�see the proof of Proposition �����

x� Propriety and closed maps

This section is devoted to proving the following result�

���� Theorem� A map f �F � E between toposes is proper i� f is stably closed�

Here f is said to be stably �or 	universally
� closed if the pullback of f along an arbitrary
map is closed� Before proving the theorem� we de�ne the notion of closed map between
toposes and deduce some elementary properties�

���� De�nition� A map f �F � E is said to be closed if� for any E � E and any closed
subtopos C � F�E� the image of C along f�E�F�f�E � E�E is a closed subtopos of
E�E�

In order to deal with the de�nition in more detail� we need to recall some notation
related to subtoposes of a given topos�

Subtoposes of F correspond to closure operators on F �see ��
�� Any subobject
U � � in F uniquely determines an open subtopos denoted U � F � with closure operator
�for any object F of F�

Sub�F �� Sub�F �� S �� ��U � F �� S��

U has a complement F � U in the lattice of subtoposes of F � given by the closure
operator

Sub�F �� Sub�F �� S �� ��U � F � � S��

By de�nition� a closed subtopos is such a complement of an open subtopos�
Any subtoposD � F is contained in a smallest closed subtopos� its closure Cl�D� �

F � It is explicitly described as
Cl�D� � F � #�� ���

�where #� � Sub��� is obtained by applying the closure operator Sub��� � Sub���
associated with D to the initial �sub��object ���

For a map f �F � E and a subtopos D � F � the closure of a subobject S � E in E�
for the closure operator corresponding to the image f�D� � E� is given by the pullback

S� �

��

�� f��f�S�� �

��
E ��


f�f
�E�

���



��

where f�S is the closure of f�S � f�E for the closure operator corresponding to D and

 is the unit of the adjunction �see �
��

���� Lemma� A map f �F � E is closed i� the identity

�f�E����f�E�
�U �W � � U � �f�E��W ���

holds for E � E and subobjects U � E� W � f�E�

Proof� For a subobject V � � in F � consider the closed subtopos F � V and its
image f�F � V �� By ���� the closure of the latter subtopos is F � f��V ��

If f is closed� comparing the closure operators for f�F �V � and F�f�V on Sub���
shows that

f��f
�U � V � � U � f�V

for any U � �� Applied to slices of E� this argument shows that ��� follows if f is closed�
Conversely� the closure operators corresponding to the image f�F � V � and its

closure F � f�V are at E � E and for U � E given by

U �� �f�U���f�U�
��U� � �V �E��

and
U �� U � �f�E���V �E�

respectively� If ��� holds� then these are equal by substituting V �E � E for W � Thus
f is closed�

The next lemma is essentially a reformulation of ������ Note already that� by ������
it furnishes the forward implication in Theorem ����

���� Lemma� A map f �F � E is closed i� for any E � E and closed subtopos
C � E�E� the pullback square

D

��

g

� � �� F�f�E

��

f�E

C
� � �� E�E

satis�es the weak BCC�

Proof� Suppose f is closed� It is enough� for each E� to show the weak BCC
restricted to subobjects of � in F�E� replacing f by f�E� it then su�ces to consider
the case E � �� Write C � E �U and let c� C �� E be the inclusion� Then the pullback
is D � F � f�U � say with inclusion d�D �� F �

D

��

g

� � ��d
F

��

f

C
� � ��c

E �



��

For W � � in F � the Beck�Chevalley identity c�f�W � g�d
�W holds i� c�c

�f�W �
c�g�d

�W � since c is an embedding� But c�c�f�W � f�W � U � whereas c�g�d�W �
f�d�d

�W � f��W � f�U�� and since f is closed these are identical by Lemma ����
The converse is proved by an obvious inversion of the argument� applying the weak

BCC 	globally
 in an arbitrary slice�

For the reverse implication in Theorem ���� we shall make use of the idea of a
	splitting topos
� To explain this notion and its basic properties� �x a topos E� and
let % be any family of subtoposes of E� A morphism f �F � E is said to split % if for
any subtopos A � E in the family %� the pullback f���A� is a closed subtopos of F �
A splitting topos for % is an E�topos s� E� � E which universally splits %� This means
that if f �F � E as above also splits %� then f will factor through s by an essentially
unique map F � E� over E�

Observe that� by the universal property� if s� E� � E is a splitting topos for % then
for any morphism g�G � E the pullback E��E G � G is a splitting topos for the family
g���%� � fg���A� j A � %g of subtoposes of G� Thus� the notion of splitting topos is
stable under change of base�

We shall also have to apply this notion to the slightly more involved case of an
	internal
 family of subtoposes of E� Such a family % is generated by a collection %�E�
of subtoposes of the slice E�E� where E ranges over the objects of E� The terminology
extends in the obvious way� f �F � E splits such a % if for each object E the map
f�E�F�f�E � E�E splits %�E� in the sense above� The universal such F is called the
splitting topos for % and again denoted E��

If % is the internal family of all subtoposes �of E�E for all E� then the splitting
topos for % will be called the full splitting topos of E� and will be denoted s� Spl�E� � E�

���� Proposition� Let E be a topos� For any �internal	 family % of subtoposes of E�
the splitting topos s� E� � E for E exists� Moreover� it has the following properties�

�i� s� E� � E is a localic �stable	 surjection�
�ii� Any closed subtopos D � E� is of the form s���A� for a unique subtopos A of E

�which must then be the image f�D�� by �i���

Proof� We give a sketch� Since subtoposes of E correspond to internal sublocales of
the terminal locale � in E� it su�ces to prove the properties for locales instead of toposes
while working constructively �in fact� we only need splitting locales of the terminal locale
���

If X is any locale� the lattices of closed sublocales and all sublocales of X are both
dual to frames� and the inclusion of the �rst into the second preserves meets and �nite
joins �see �
 or �
 for the details�� This gives a map of locales s�X � � X� where the
frame of opens of X � is isomorphic to the dual of the lattice of sublocales of X and
s���U� for U � X open given by �the dual to� the closed complement of U � The map s
clearly splits all open sublocales of X and satis�es properties �i� and �ii� by de�nition�
But pulling back sublocales preserves meets and �nite joins� and any sublocale of X is
the intersection of sublocales of the form U � �X � V � for U� V � X open� These facts
imply that splitting all open sublocales is equivalent to splitting all sublocales� and that
s�X � � X does so universally�



��

It is now immediate that for a general family % of sublocales of X� the localic
splitting X� is the quotient of X � for which the frame of opens is generated by �the
duals of� members of %� and that the induced map t�X� � X inherits properties �i�
and �ii� from s�

���� Remark� For a family % of open sublocales of the locale X in the last proof�
the splitting locale t�X� � X has has as basis opens of the form t���U� � t���V �
for U� V open sublocales of X� with V a �nite �possibly empty� join of members of %�
Thus� a splitting topos s� E � � E for an internal family of open subtoposes of E is a
localic E�topos with �internal� basis of open subtoposes of the form s���A� for which
the inclusion A � E is locally closed�

��	� Lemma� Let f �F � E be any map� Let D � F � U be a closed subtopos of F �
and let s� E � � E be any E�topos which splits the image f�D� � E� Then f�D� is closed
i� for the pullback

F �

��

f �

��t
F

��

f

E � ��s
E �

the identity s�f�U � f ��t
�U holds�

Proof� Let us write C � f�D�� Since E � splits C� the subtopos C� � s��C of E � is
closed� We observe �rst that C� is in fact the closure of f ��t��D�� in other words

C� � E � � f ��t
�U ���

Indeed� by Proposition ��� �ii�� this closure Cl�f �t��D� is of the form s���A� for a
uniquely determined subtopos A � E� This A is the image of E of the composite

t��D �� F �
f �

�� E �
s
�� E

or equivalently� since t� t��D � D is surjective� the image of

D �� F
f
�� E�

It follows that A coincides with f�D� � C�
Now C � f�F �U� is closed i� C � E � f�U � and by the surjectivity of s this holds

i� s��C � s���E � f�U�� that is� i� C
� � E � � s�f�U � By ���� this is equivalent to the

identity
s�f�U � f ��t

�U�

which is what we needed to show�

��
� Proposition� A map f �F � E is closed i� the weak BCC holds for the pullback
of f with the full splitting topos Spl�E�� E of E�



��

Proof� Clear from Proposition ��� and Lemma ����

Proof of Theorem ���� As already remarked� the forward implication follows since
any proper map f satis�es the weak BCC for a pullback square as in Lemma ���� by
Theorem ���� For the converse� it will by Remark ��� be enough to show that the weak
BCC holds for a pullback

f��A

��

� � �� F

��

f

A
� � �� E �

of f along an arbitrary embedding A �� E� given that f is stably closed� Let s� E � � E
be a splitting topos for A� so that A� � s��A is closed in E �� Then in the pullback
diagram

f �
��
A�

��

� � �� F �

��

f �

�� F

��

f

A�
� � �� E � �� E

f � is closed� so the left�hand square satis�es the weak BCC by Lemma ���� Furthermore�
the right�hand square satis�es the weak BCC by Lemma ���� Thus� the composed
rectangle satis�es the weak BCC� Now write this rectangle as another composite of
pullbacks

f �
��
A�

��

�� �� f��A

��

�� F

��

f

A� �� �� A �� E �

As indicated� the left horizontal maps are surjections� being pullbacks of the splitting
cover E � � E� Using the surjectivity of A� � A� one sees that the required weak
BCC for the right�hand square follows from that for the composite rectangle �already
established� and left�hand square �which holds by Lemma ����� This completes the
proof�

Having established Theorem ���� we can reformulate the weak BCC for proper
maps �Theorem ���� as follows�

���� Corollary� In a pullback square

F �

��

f �

��

F

��

f

E � ���
E �

���



��

with f �and hence f �	 proper� the identity ���f�C� � f �����C� holds for closed subto�
poses C � F �

����� Corollary� In the pullback square ���� suppose f is a proper surjection� Then

�i� The proper map f � is also surjective�
�ii� If � is proper� then so is ��

Proof� �i� follows immediately from ������ and �ii� then follows using Proposition
��� and Proposition ����

����� Corollary� Suppose a proper map f �F � E is given as the limit of a diagram

F ��pi

��
f

��
��

��
��

��
Fi

��
fi


 


 


 


 


 


E

of proper surjections ffi�Fi � Eg� indexed by a �ltered category I� Then f is surjective�

Proof� Let i� � I� Then by ������ the identity

f�p��i� C� �
V
ffi�t

��
� C� j �� i� i�g

�where t��Fi � Fi� denotes the transition map induced by �� holds for closed subto�
poses C � Fi�� The statement follows by taking C � Fi� �

x� Descent along proper maps

In this section� we shall use the descent theorem for proper maps between locales �
 to
deduce some of the properties of descent along proper maps between toposes� We begin
by recalling the basic de�nitions�

Consider for each topos E the ����category �E�locales� of internal locales in E� This
category is equivalent to that of localic toposes over E� A map f �F � E of toposes
induces a functor

f	� �E�locales� � �F�locales� ���

by pullback� The map f �F � E gives a diagram of pullbacks

F �E F �E F

�����

�����

�����
F �E F

����

��
��

F ��f
E �

F

��

	
���



��

Descent data �relative to f� on a locale X in F consists of a map ���	� X � �	
 X such
that the following two identities hold�

�	��� � �

�	
���� � �
	
�
 � �	����� cocycle condition

�these identities should of course be expressed more carefully by taking the ��isomorph�

isms �	�	�
�� id� �	�
�

	


�� �	
��

	
� � etc� into account�� If �X� �� and �T� � � are locales in F

equipped with descent data� a morphism �X� �� � �T� � � is a map of locales ��X � Y

in F which is compatible with the descent data� i�e� �	
 ��� � � � � ��	� ���� In this way�
one obtains a category

Des�f�

of locales in F equipped with descent data�
If Z is a locale in E� the natural isomorphism of functors in ���� �	� � f

	 �� �	
 � f �
provides the pullback f	Z with canonical descent data� This construction de�nes a
functor

f	� �E�locales�� Des�f�� ���

	��� De�nition ��
�� The map f �F � E is said to be of e�ective descent for locales if
the functor ��� is an equivalence of categories�

�One should really speak of equivalence of ��categories� but we shall not mention
straightforward ��categorical details explicitly��

One also expresses De�nition ��� informally by saying 
locales descend along f ��
The de�nition applies of course to any ���categorical� �bration of toposes� In particular�
it applies to subcategories of locales which are stable under pullback along topos mor�
phisms� such as compact locales� discrete locales �i�e� sheaves�� etc� Thus� if f �F � E
is of e�ective descent for sheaves� we say that 
sheaves descend along f ��

We shall prove the following�

	��� Theorem� Let f �F � E be a proper surjection of toposes� Then locales and
sheaves descend along f �

We prove Theorem ��� by reduction to localic descent� by means of the next two
lemmas�

	��� Lemma� Consider a commutative diagram of toposes

G ��g

��
h

��
��

��
��

��
F

��
f

� �
� �
� �
� �
� �

E �

If f is of e�ective descent for locales and g is hyperconnected� then h is of e�ective
descent for locales�



��

Proof� The proof is by elementary category theory� using the fact that for a hyper�
connected map g�G � F � the functor g	�F�locales � G�locales is fully faithful� The
argument is otherwise analogous to �� p� ��
� and we only give a sketch�

Suppose �X� �� is a locale in G with descent data � for h� To see that X descends
to F � �rst observe that by pullback along the map

G �F G � G �E G�

X also has descent data for g� Since g is open� hence of e�ective descent �
� we have
X �� g	�Y � for a locale Y in F � Now� the map

g �E g�G �E G � F �E F

is hyperconnected� inherited from g� Thus �g �E g�	 is fully faithful� and the descent
data � for h must therefore be of the form �g �E g�	�� � where � is descent data for f
on Y � Since f is assumed to be of e�ective descent� we conclude that Y �� f	�Z� for a
locale Z in E� that is� X descends to E�

We leave the remaining details to the reader�

	��� Lemma� Let f �F � E be a proper surjection between toposes� Suppose ��X � Y
is a map between locales in E� If f	� is open� then so is ��

Proof� Factor f as h � l where F
h
�� L is hyperconnected and l�L � E is localic�

Thus� L is equivalent �as an E�topos� to the topos ShE �L� of sheaves on an internal
locale L in E� By Corollary ���� l is proper� or equivalently� L is a compact locale in E�
Consider now �rst the pullback squares of toposes

ShF�f	X�

��

h��

��f��
ShF �f	Y �

��

h�

�� F

��

h

ShL�l	X� ��l��
ShL�l	Y � �� L �

Since h is hyperconnected� so are h� and h��� Since any hyperconnected map is an open
surjection� our assumption that f	� is open implies �see ��
� that l	� is open�

Next� consider the similar diagram

ShL�l	X�

��

l��

��l��
ShL�l	Y �

��

l�

�� L

��

l

ShE �X� ���
ShE�Y � �� E �

���



��

As a diagram of localic toposes over E� ��� corresponds to the diagram of locales in E

L�X

��

l��

��l��
L� Y

��

l�

�� L

��

l

X ���
Y �� � �

where the projections l� and l�� are proper surjections by pullback�stability� Since l	�
is open� it follows from �� ����
 that � is open�

Proof of Theorem 	��� As in the proof of the last lemma� we factor the proper
surjection f �F � E as a hyperconnected map h�F � L followed by a localic proper
surjection l�L � E� where L � ShE �L� for an internal compact locale in E� Then locales
in L correspond to locales over L in E� By applying �� ���
 to the proper surjection L� �
of locales in E� it follows that locales descend along l� Also� since h is an open surjection�
locales descend along h �� Ch VIII� Thm �
� By Lemma ���� we conclude that f � l � h
is of e�ective descent for locales�

To show that sheaves descend� one �rst identi�es a sheaf S with a discrete locale�
i�e� a locale S with the property that S � � and the diagonal S �� S � S are open
maps� Since open maps are preserved by pullback� and descend down proper surjections
by Lemma ���� descent of sheaves now follows formally from that of locales�

This proves Theorem ����

A useful application of Theorem ��� concerns the representation of toposes by localic
groupoids� For a groupoid G in the category of locales� we write G�� G� for the locales
of objects and arrows respectively� and denote the structure maps by

G� �G� G� ���
G�

��s

��
t

G�
��u
G�

��i
G�

�u for units� i for inverse� s and t for source and target�� The associated topos of �right�
G�sheaves is denoted BG� It is extensively discussed in ��
� We recall in particular the
following invariance property from �
� A homomorphism ��G � H between localic
groups is called a weak �or essential� equivalence if

�i� The map G� �H� H�
t���� H� is an open surjection�

�ii� The square

G�

��

�� H�

��
G� �G�

�� H� �H�

is a pullback�



��

Here G� �H� H� in �i� is the pullback along s�H� � H�� It is shown that such a weak
equivalence induces an equivalence of toposes

��BG � BH�

We shall also refer to a weak equivalence � of this kind as open� and contrast it with
the notion of proper weak equivalence� de�ned by replacing 	open
 by 	proper
 in �i��

	��� Proposition� Any proper weak equivalence ��G� H induces an equivalence of
toposes ��BG � BH�

Proof� As in �� ����
� with the use of descent of sheaves along an open map replaced
by an application of Theorem ����

We shall see some particular applications of this result in the next chapter�



CHAPTER II� SEPARATED MAPS

In this chapter we consider the separation property which accompanies propriety
of a map� namely that of having a proper diagonal� As a typical illustration of the r!ole
played by this property� we show that the classifying toposes of compact localic groups
are precisely the hyperconnected pointed toposes which are separated or 	Hausdor�

in this sense �section ��� We also use it to formulate and prove a topos�version of the
so�called Reeb stability theorem for foliations �sections � and ���

The de�nition and elementary formal properties of separated maps are dealt with in
the �rst two sections� For Reeb stability� we shall also need to recall various properties
of locally connected and locally compact internal locales in a topos �section ���

x� Definition and examples

Recall that a topological space X is Hausdor� precisely when the diagonal embedding
&�X �� X �X is closed� that is� a proper map of topological spaces� Based on this
idea� we say a topos E is Hausdor� if the diagonal map &� E � E � E is a proper map
of toposes�

���� Examples� ��� Let X be a locale� Since the construction of Sh�X� from X
preserves �nite limits� Sh�X� is a Hausdor� topos i� X is a �strongly� Hausdor� locale
��
� A Hausdor� topological space need not be Hausdor� as locale �since the localic
product is in general bigger than the topological one�� those which are include the
locally compact Hausdor� spaces�

��� Let G be a discrete group� Then the topos !G of G�sets is Hausdor� i� G is �nite�
Indeed� let p�Set � !G be the unique point� Then p is an open surjection �in fact� a
slice�� So �I ���� applied to the pullback

Set�G

��

�� !G

��
Set ��p	p

!G� !G

implies that !G is Hausdor� i� Set�G� Set is proper� that is� i� G is �nite �I �����

The Hausdor� property extends to maps of toposes in the obvious way� to give the
following general notion of separated map�

���� De�nition� A map f �F � E between toposes is said to be separated if F is
Hausdor� as an E�topos� that is� if its diagonal &f �F � F �E F is a proper map�

��



��

���� Examples� ��� Let E be any object in a topos E� The canonical morphism
E�E � E is separated i� the map E�E � E�E�E induced by the diagonal E � E�E
is proper� Since this map is an embedding� �I ���� tells us this is the case i� E �� E�E
de�nes a closed subtopos of E�E �E� This means that the diagonal is a complemented
subobject of E �E� Thus� E�E � E is separated i� E is decidable�

Recall from �I ���� that E�E � E is proper i� E is Kuratowski��nite� It follows
that E�E is proper and separated i� E is a �nite locally constant object in E� i�e� i�
E�E � E is a �nite covering projection of toposes�

��� Let Y � X be a map of locales� Then the associated map Sh�Y � � Sh�X� is
separated i� Y � Y�XY is closed�

Example ��� ��� of a Hausdor� topos is 	typical
 in a sense which we now explain�
Recall that for a localic groupoid G� its topos of G�equivariant sheaves is denoted BG�
We say the localic groupoid G is open �resp� proper� if its source and target maps

G� G�

��s

��
t

���

are open �resp� proper�� Following �
� we say a �not necessarily open� groupoid G is
�etale complete if the diagram

Sh�G��

��

s

��t
Sh�G��

��
Sh�G�� �� BG

���

is a pullback� We recall that any topos can be represented as BG for some open 'etale
complete G �
� Moreover� the notion of 'etale completeness is invariant both under
open weak equivalence �see �� ���
� and �by a similar formal argument� proper weak
equivalence�

���� Proposition� For an open or proper �etale complete groupoid G� its classifying
topos BG is separated i� �s� t��G� � G� �G� is proper�

Proof� The pullback ��� can be rewritten as the pullback

Sh�G��

��

�s�t�

�� BG

��

�

Sh�G�� � Sh�G�� �� BG� BG �

Since the bottom map is an open or a proper surjection� the diagonal & of BG is proper
i� �s� t�� Sh�G��� Sh�G��� Sh�G�� �� Sh�G� �G�� is by �I ����� �I ���� and �I ����� i�
�s� t��G� � G� �G� is proper by �I �����



��

���� Example� Let G be a discrete group acting on a space X� The topos ShG�X�
of G�equivariant sheaves on X is separated i� the action by G on X is proper� The
canonical map Sh�X� � ShG�X� �with the forgetful functor as its inverse image� is
proper i� G is �nite�

���� Example� Recall that a localic groupoid G is called 'etale if its source and
target maps ��� are local homeomorphisms� Any 'etale groupoid is 'etale complete �
�
The toposes of the form BG for 'etale G are exactly the �localic� 'etendues ��� VIII �
��
Separated 'etendues are closely related to orbifolds� see �
 for details�

x� Formal properties

Separated maps have the following elementary closure properties�

���� Proposition� �i� Any embedding F �� E is separated�

�ii� In a commutative triangle

G ��g

��
h

��
��

��
��

� F

��
f

� �
� �
� �
� �
� �

E �

���

if f and g are separated� then so is h

�iii� if g is a proper surjection and h is separated� then so is f 
 and
�iv� if h is proper and f is separated then g is proper�

Proof� These all follow from properties of proper maps by elementary diagram
arguments of a well�known kind�

�i� The diagonal of an embedding is an equivalence� hence proper �I ����i���

�ii� Consider the diagram

G

��

�g

��

g

���
���

���
���

���

G �F G

��

p

�� F

��

�f

G �E G ��g	g
F �E F

���

where the �bottom� square is a pullback� Then p is proper since &f is �I ����� Hence
&h�G � G �E G� as the composite of &g and p� is proper by �I ����ii���



��

�iii� The diagram ��� contains a triangle

G ��g

��
�h��g	g� ��

��
��

��
��

� F

��
�f

� �
� �
� �
� �
� �
�

F �E F �

If h is separated and g is a proper surjection� then �g � g� �&h is proper� and hence by
�I ���� so is &f �

�iv� The map g is the composition g � �
 � �id� g� in the following diagram where both
squares are pullbacks�

G

��

�id�g�

��g
F

��

�f

G

��

h

G �E F��

��

��

��g	id
F �E F

E F��

Since h and &f are proper by assumption� so are �
 and �id� g�� and hence g�

���� Proposition� In a pullback square

H

��

�f

���g
F

��

f

G ��g
E �

�i� if f is separated� then so is #f 

�ii� the converse holds if g is a proper �or open	 surjection�

Proof� By the equivalence � in the diagram

H

��
� �f

���
���

���
���

���
��� �f��f �
G �E �F �E F�

��

�

H�G H �



��

the diagonal & �f is a pullback of the diagonal &f � Thus the proposition follows from
�I ���� �����

���� Corollary� In the triangle ���� if h is separated and the diagonal &f �F � F�EF
is separated �for example� if f is localic	� then g is separated�

Proof� Form the diagram

G

��
�h

���
���

���
���

��
���g

G �F G

��

�� F

��

�f

G �E G ��g	g
F �E F �

If &f is separated� then so is its pullback G �F G � G �E G by ������ But then &g is
proper� by Proposition ��� �iv��

���� Proposition� Suppose f �F � E is the limit

F ��pi

��
f

��
��

��
��

��
Fi

��
fi


 


 


 


 


 


E

���

of a diagram of separated maps ffi�Fi � Eg indexed by a �ltered category I� Then f
is separated�

Proof� The diagonal &f �F � F�E F is the limit of the diagram fgi�Gi � F�E Fg
obtained by pulling back each diagonal &fi �Fi � Fi �E Fi along F �E F � Fi �E Fi
�and the obvious induced transition maps�� The statement therefore follows from the
stability of proper maps under pullback and �ltered inverse limits �I ���� ������

���� Proposition� A map f �F � E is separated i� both parts of its hyperconnected�
localic factorization are�

Proof� Let X be the localic re�ection of f in E� Then� writing L � ShE �X� for the
E�topos of internal sheaves on the locale X� the map f factors as a hyperconnected map
h�F � L followed by a localic map l�L � E� If h and l are separated� so is f � l � h
by ����i�� Conversely� suppose f is separated� Then� �rst of all� since h is a proper
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surjection �I ����� l must be separated by ����iii�� To prove that h is also separated� we
use a diagram as in the proof of ����iv�� in this case

F

��

�id�h�

��h
L

��

�l

F

��

f

F �E L��

��

��

��h	id
L �E L

E L ���

Note that since l is localic� &l� and therefore its pullback �id� h�� is an embedding� hence
separated� Furthermore� by ����i�� the pullback �
 of f is separated� By ����ii�� the
composition h � �
 � �id� h� must be separated�

x� Hyperconnected Hausdorff toposes

In this section we characterize hyperconnected Hausdor� toposes with a base point� Fix
an arbitrary base topos S� For a localic group G in S� there is a topos BG � BSG of
internal G�sets in S with a canonical point q�S � BG� Clearly BG is hyperconnected�
and separated if G is compact and 'etale complete� by Proposition ��� �applied to the
case where G� is the one�point space�� Our �rst theorem states that every pointed
hyperconnected Hausdor� topos is of this form�

���� Theorem� Let f � E � S be a topos over S with a base point �section	 s�S � E�
Then E is hyperconnected and Hausdor� over S i� there exists a compact �etale complete
localic group G such that E �� BG �as pointed S�toposes	�

Proof� ��� This implication is proved before the statement of the theorem�

��� Let

H � H� H�

��d�

��
d�

be an open 'etale complete localic groupoid in S so that E �� BH as S�toposes� We can
choose H so large that p lifts to a point �again denoted� p� �� H�� Since E is separated
and hyperconnected� the map �d�� d���H� � H� �H� is proper while

H�
��d�

��
d�

H�
�� �

is a coequaliser of locales in S� Let R be the image of �d�� d�� in H� �H�� Then R is
a closed sublocale of H� �H� while the projections R� H� are open� Thus by �
� R is
the kernel pair of its coequaliser� that is� R � H� �H� and H� � H� �H� is a proper
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surjection� But this means that for the vertex group G � Hp at the point p � H�� the
full inclusion G �� H is a proper weak equivalence of localic groupoids� By �I ����� it
induces an equivalence of S�toposes

BG
�
�� BH �� E�

and it is clear that under this equivalence the point p�S � BH corresponds to the
canonical point of E�

This proves the theorem�

In the case where the base topos is Set �or any other Boolean topos� this can be
sharpened�

���� Theorem� Let E be a pointed topos over Set� Then E is hyperconnected and
Hausdor� i� E is the topos BG of continuous G�sets for some pro�nite group G�

Note in particular that this implies that every pointed hyperconnected Hausdor� topos
is coherent�

For the proof of this second theorem� we recall the construction of the 'etale com�
pletion of a localic group from �
� Let G be a localic group� and consider the topos BG of
continuousG�sets with its canonical point q�Set� BG� The monoid of endomorphisms
of q can be explicitly described in terms of G� as

End�q� � lim
�U

G�U �M�G��

Here U ranges over all open subgroups of G �ordered by inclusion�� and G�U is the
discrete space of right cosets� So a point in M�G� can be denoted

t � fU � tUgU �

and multiplication is then described as

U � �t � s�U � U � tU � st��
U

UtU
� G�U�

Let A�G� � lim
�U

G�U denote the localic group of invertible elements of this monoid�
There are canonical maps

G

��
proj

����
����

����
����

����
���

���
A�G� � � �� M�G�

��

�U

G�U �

Here ��G � M�G� is de�ned by ��g� � fU � ggU � This is a homomorphism of localic
monoids� Note that it follows from this diagram that each projection A�G� � G�U is
open�

Proof of Theorem ���� We only need to establish the forward implication� By
Theorem ���� there is a compact localic group G so that E �� BG� If G is 'etale complete�
then the map ��G � A�G� is an isomorphism� If G is compact� then each G�U is a
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�nite set� so M�G� is a compact Hausdor� monoid� Since G �� A�G� is compact� it is
closed inM�G�� Since A�G� maps surjectively onto each G�U � it is also dense inM�G��
Thus G � A�G� ��M�G�� In particular� the compact group G is Hausdor� and totally
disconnected� hence pro�nite �� ����
�

x� Locally connected and locally compact maps of locales

In this section� we review some de�nitions and facts involving locally connected and
locally compact locales in a topos� These locales will play a r!ole in our treatment of the
Reeb stability theorem� Most of the material presented here is well�known� although our
approach to the stability of local compactness in the spirit of �I x�� is to some extent
novel� Our arguments� presented in the language of set theory� will be constructive
throughout to ensure a valid interpetation in an arbitrary base topos S ��xed for the
duration of the present section��

Our review of local connectedness is primarily based on the Appendix of �
� Let X
be a locale� Recall that X has 	global support
 �the map X � � is surjective� if and
only if any covering family of opens of X has an element �in other words� is non�empty
in a strong sense�� An open U � X which �considered as locale� has global support is
said to be positive� A cover fUig of X by positive opens Ui is said to be connected if�
for any Ui and Ui� � there is a chain�

Ui � Ui� � Ui� � � � � � Uin � Ui�

with Uik � Uik�� positive for each k � �� � � � � n � �� The locale X is connected if it
has global support� and every cover of X by positive opens is connected� X is locally
connected if it has a basis consisting of connected opens� if X is also connected �clc��
this basis can of course be chosen to contain X itself� A locally connected locale is in
particular open� by �� V ���
�

Like compactness� any constructively de�ned property of locales can be made to
apply to a map between locales by 	relativising
 to a sheaf topos� that is� by using the
well�known equivalence �see e�g� �
 or �
� between localic maps f �Y � X and internal
locales in Sh�X�� Thus� we say a map f �Y � X is �locally	 connected if f is �locally�
connected when viewed as locale in Sh�X�� Interpreting the de�nitions given above in
the topos Sh�X� yields�

���� Lemma� A map f �Y � X is locally connected i� f is an open map� and Y
has a basis B with the following property� If B �

W
iBi in Y where B� Bi belong to B�

then for any pair of indices i and i�� f�Bi� � f�Bi� � is covered by those open U � X
for which there is a chain Bi � Bi�� Bi� � � � � � Bin � Bi� with U � f�Bik � Bik��� for
k � �� � � � � n � �� The map f is in addition connected i� f is surjective and B can be
chosen to contain Y �

As can be shown directly from this description�

���� Lemma� The class of �connected and	 locally connected maps is closed under
composition and pullback�
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Our review of local compactness draws upon �
 �but see also �
�� Recall that for two
opens U� V � X� one says that U is 	way below
 V � denoted U �� V � if every cover of
V contains a �nite cover of U � Thus� X is compact precisely when X �� X� The locale
X is said to be locally compact if� for every open V � X� one has V �

W
fU j U �� V g�

In a locally compact locale� the way below relation interpolates� U �� V only if there
exists W � X open such that U �� W �� V �

We �rst extend the notions of compactness and local compactness to a suitable
presentation for a locale� namely a site �P� C� as de�ned in �I ���� where the underlying
category P is a preordered set� Thus� for x � P� the members of C�x� �the basic covers
of x� are families fxig of elements of ��x�� The stability condition states that for any
basic cover fxig of x and y � x in P� there is a basic cover fyjg of y with members in
�fxig �thus� C is a covering system in the sense of �
��

The data �P� C� presents the locale X if the frame of opens of X can be recon�
structed as the downsets D of Pwhich are closed in the sense that C�x� � D� x � D�
This can also be formulated by saying that there is an association x �� Bx � X of
elements of Pwith opens of X such that

�i� The family fBxg constitutes a basis for X� in the strong sense that each Bx � By

is covered by fBz j z � x and z � yg�
�ii� For a family fxig � P� the corresponding family of opens fBxig covers Bx in X i�

�fxig contains a generated cover of x�

If ��S � � S is a topos over �our chosen base topos� S� then ���P�C� remains a presen�
tation for the locale �	X in S ��

���� De�nition� Let �P�C� be a presentation with a 	stable compatible system of
directed covers
 �I ����� or directed presentation for short� Explicitly� P has �nite meets
and joins satisfying the distributive law� and C � P � S where P is the topology given
by �nite joins and S is a system of stable directed covers which are compatible with
binary joins� if fxig is a basic S�cover� then so is fxi � yg� Say y is 	way below
 x in
P� �P� C�� and write y �� x� if any directed cover xi of x has an element xi such that
y � xi is a cover of y� P is compact if the terminal element � � P satis�es � �� � �as
anticipated in �I ����� and locally compact if the �directed� family fy j y � x and y �� xg
is a cover for each x � P�

Note that any locale X has a directed presentation� namely its own frame of opens�
which is compact �resp� locally compact� in the sense just de�ned precisly when X is
compact �resp� locally compact�� More generally� we have�

���� Proposition� A directed presentation P for a locale X is compact �resp� locally
compact	 i� X is compact �resp� locally compact	�

Proof� The assignment x �� Bx preserves and re�ects the waybelow relation �since
it preserves binary meets� preserves and re�ects covers� and any directed cover of a basis
element Bx in the frame of opens of X is re�ned by a directed cover of basis elements��

Since B� � X� the equivalence for the case of compactness is now clear �by �I �����
we could also have referred to �I ������
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If P is locally compact� then for each x � P� the basis element Bx is covered by the
family fBy j y �� xg� Thus� for any open U of X� U �

W
fBx j Bx � Ug �

W
fBy j

By �� Ug� which shows that X is locally compact� Conversely� suppose X is locally
compact� Then for any x � P�

Bx �
W
fU j U �� Bxg

�
W
fBy j By � U �� Bx and y � xg

�
W
fBy j y � x and y �� xg�

which says that fy j y � x and y �� xg is a cover of x�

���� Lemma� Let P be a directed presentation equipped with a binary relation � �
or 
strong inclusion� � with the following properties�

�i� If z � y � x� then z � x�
�ii� If y � x and fxig is a basic S�cover of x� then y � xi for some i�
�iii� The family fy j y � xg is a cover of x�

Then y � x� y �� x and P is locally compact�

Proof� The system of families fxig � ��x� for x � P with the property that y �
x � y � xi for some i is easily seen to be a full �i�e� upclosed under re�nement� using
�i�� topology on P� Since it contains the basic S�covers by �ii�� it contains all S�covers�
and in particular the directed ones �here we may apply �I ���� in view of �I ������ This
shows that y � x� y �� x� But then local compactness follows by �iii��

���� Lemma� Let ��S � � S be a S�topos and let P be the presentation of a locale X
by its frame of opens�

�i� If X is compact� then the �directed	 presentation ��P is compact in S �� with f�g
the only directed cover of � � ��P�

�ii� If X is locally compact� then ��P is locally compact and �����P � is contained in
����P �

Proof� �i� If X is compact� then P is compact by Proposition ���� Since a compact
directed presentation is a special instance of a compact site with stable compatible
directed covers �I ����� the may apply �I ���� �after substituting 	directed presentation

for 	pretopos site
� to obtain the result�

�ii� If P is locally compact� then the way below relation �� on P is a strong inclusion
������ Since the de�ning properties of a strong inclusion are 	geometric
 it follows that
�� �� is a strong inclusion on ��P� So the result follows by an application of Lemma
����

Using ����� we conclude�

��	� Corollary� Local compactness of a locale is preserved under change of base�

A locale with a basis of compact neighbourhoods is evidently locally compact� The
converse is not true in general� but does hold for �strongly� Hausdor� locales� as we
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shall now show� Recall that a locale X is said to be regular if every open U � X can
be written as U �

W
fV j V � Ug� where V denotes the closure of V �

��
� Proposition� A compact or locally compact Hausdor� locale is regular�

Proof� Let X be a Hausdor� locale� with P the presentation of X by its lattice of
opens� Since X is Hausdor�� we have for any open U � X�

X �U � �U �X� � �X �X �&�

�
W
fP �Q j P � U or P �Q � �g

�
W
fP �Q j P � �Q � Ug

� ���

where �Q denotes X �Q� the largest open of X disjoint from Q�
Suppose �rst that X is compact� Given an open sublocale i�U �� X� let R �

P� P be the set of pairs f�P�Q� j P � �Q � Ug� Consider the topos Sh�U�� with
�� Sh�U� � Set the canonical map� Identify the projection �
�X � U � U with the
locale �	X in Sh�U�� so that the embedding �id� i��U �� X � U becomes a point p of
�	X� Any P � ��P gives internally an open BP of �	X in Sh�U�� In particular� any
P � P gives for the corresponding 	constant
 element !P � ���P� an internal open B �P

of �	X� corresponding to the external open P �U � X �U � Now ��� is easily seen to
imply the internal truth of the statement

B �X �
W
fBP j For some Q � ��P� �P�Q� � ��R and p � BQg

in Sh�U�� But this then says that the �internally� directed family fP j For some Q �
��P� �P�Q� � ��R and p � BQg is a cover of the terminal element !X of ��P � By

Lemma ��� �i�� it therefore contains !X � it is true in Sh�U� that there is some Q � ��P
such that p � Q while � !X�Q� � ��R� Externally�

U �
W
fV � U j X � �Q � U and V � Qg �

W
fV j V � Ug�

Since U was arbitrary� this shows that X is regular�
Next� suppose that X is locally compact� Consider any U� V � X open such that

V �� U � We show that V � U � which will prove regularity of X� To this end� we
regard the projection ���X � X � X as the locale �	X in the topos Sh�X�� where
�� Sh�X�� Set again denotes the canonical map� Let q be the 	generic
 point of ��X�
de�ned by the diagonal &�X �� X �X� With notation as before �but now applying to
Sh�X��� ��� implies the internal statement

B �X �
W
fBQ j Q � ��P� q �� BQ or q � B �Ug

in Sh�X�� in other words� the internal ideal fQ j q �� BQ or q � B �Ug is a cover of
!U � But

by Lemma ��� �ii�� !V �� !U in the site ��P� We conclude that it is true in Sh�X� that
q �� B �V or q � B �U � Externally� X � �V � U � or V � U � as required� This completes
the proof�

���� Corollary� A compact Hausdor� locale has a basis of compact neighbourhoods�
hence is locally compact�
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Proof� Immediate from Proposition ��� and the fact that a compact regular locale
has a basis of closed� hence compact neighbourhoods�

����� Lemma� For any open U of a locally compact Hausdor� locale X� its closure
U is compact whenever U �� X�

Proof� First note that for U� V � X open in any locale X� U � V and U �� X
together imply U �� V �

Suppose X is locally compact Hausdor�� hence regular by Proposition ���� Let
U �� X� U � X open� If U is covered by a directed family fUig of opens� then
U ��

W
fUig by our starting comment� and we can choose W � X open such that

U �� W ��
W
fUig� it follows that U �� Ui for some i� and then that U � Ui by

regularity of X�

����� Proposition� The following conditions are equivalent to local compactness for
a Hausdor� locale X�

�i� X is covered by the interiors of a family of compact sublocales�
�ii� X has a basis of compact neighbourhoods�

Proof� If X is locally compact� then X �
W
fU j U �� Xg� and �i� follows from

������� In turn� �i� implies �ii� by ������ That X is locally compact if �ii� holds is
clear�

As usual� a map f �Y � X of locales is said to be locally compact if Y is locally
compact as a locale in Sh�X�� By Corollary ����

����� Proposition� Locally compact maps are stable under pullback�

Like local connectedness� local compactness for a map f �Y � X can be translated
into a property directly expressed in terms of f � In particular� if f is separated� i�e� Y
is Hausdor� as a locale in Sh�X�� we have the following�

����� Lemma� Let f �Y � X be a separated map� Then f is locally compact i� Y has
an open cover V such that for each V � V� f can be restricted to a proper map V � U
into some open U � X�

Proof� If Y has a cover V as described� then the family of maps

fg�V �V � U j V � V and V
g
�� U a proper restriction of fg

de�nes an internal cover of f �Y � X as a locale in Sh�X�� by open sublocales each
contained in a compact sublocale� So f is locally compact by Proposition ���� �i��

Conversely� if f is locally compact as locale in Sh�X�� then Proposition ���� �i�
gives a cover V of Y such that for each V � V� there exists a sublocale C of Y with
V � C � Y and some open U � X such that f restricts to a proper map C � U � But
then such C is closed by Proposition ��� �iv�� Hence� V � C and the further restriction
of f to V remains proper� Thus� the cover V has the property required by the lemma�



��

x� A topos version of the Reeb stability theorem

In this section we shall present a topos�theoretic generalisation of the 	Reeb stability
theorem�
 Its relation to the classical Ehresman�Reeb stability theorem for foliations
will be explained in x��

Before stating the result� we recall from �
 that for a point x�Set� E of a topos E�
an �
�etale�� neighbourhood of x is a pair �U� (x�� where U is an object in E and (x � x��U��
This element (x may be identi�ed with a lifting of x to a point of E�U �

E�U

��
Set

��


x

�
�

�
�

�
�

��x
E

For a map f �F � E between toposes� we denote by Fx the �ber over x� and by FU the
pullback over E�U � as in the diagram

Fx

��

�� FU

��

�� F

��

f

Set ��
x
E�U �� E �

���

where both squares are pullbacks� Thus FU � F�f�U �
If L is a locale in the topos E� we write Lx for the locale in Set obtained by

pullback along x�Set � E� and call it the �ber of L over x� We shall also write LU
for the pullback of L along E�U � E� Thus� taking toposes of internal sheaves� in the
diagram ��� for F � ShE�L�� the topos Fx � ShE �L�x is Sh�Lx�� while FU � ShE �L�U
is ShE�U �LU ��

���� Theorem� Let E be a topos� Let L be a connected� locally connected� locally
compact Hausdor� locale in E� and let x be a point of E� If Lx is compact� then there
is an �etale neighbourhood �V� (x� of x such that LV is a compact locale in E�V �

We shall reduce the proof of Theorem ��� to the following lemma for locales�

���� Lemma� Let ��Y � X be a map of locales� Assume � is connected� locally
connected� locally compact and separated� Let x be a point of X for which the �ber
����x� � Y is compact� Then there exists an open neighbourhood U � X of x such that
the restriction ����U�� U of � is proper�

Proof� Using Lemma ���� and Proposition ��� �iv�� the set

fV � X j V open and V
�
�� U proper for some open neighbourhood U of xg

is easily seen to be a directed cover of the compact �ber ����x�� Thus� we can �nd opens
U� V of X with x � U � X and ����x� � V � Y � and such that the restriction V � U



��

is proper� It follows that ��V � V � is closed in U � Since ����x� � V � there is an open
neighbourhood W of x such that ��V � V � �W � �� giving �V � V � � ����W � � ��
since � is open� we can assume that W � ��V �� It folows that V � ����W � � V
and �Y � V � � ����W � form an open disjoint cover of ����W �� But ��Y � X is
stably connected� which means its restriction ����W � � W remains connected� since
W � ��V � this implies ����W � � V � Thus� the square

����W �

��

� � �� V

��
W

� � �� X

is a pullback� Since ��V � U is proper� so is ����W ��W �

Proof of Theorem ���� Let X be a locale for which there exists an open surjection
�� Sh�X�� E �see �
�� We may choose X so large that that the point x can be lifted to
a point #x of X with ��#x� � x� The �bered product Sh�X� �E ShE �L� � ShSh�X���

	L�
is the topos of sheaves on a locale LX with the projection Sh�X� �E ShE �L� � Sh�X�
corresponding to a map ��LX � X� The �ber ����#x� is the locale Lx� which we
assumed to be compact� Moreover� since ShE �L� � E is clc� locally compact and
separated� so is the map ��LX � X� by ������ ������ and ������ Thus� Lemma ���
applies� to give an open neighbourhood U � X of #x for which � restricts to a proper
map ����U�� U � Now let E�V � ��U� be the corresponding open subtopos of E� and
consider the diagram �where we write X for the topos Sh�X�� and similarly for LX �
etc��

ShE�V �LV �

��

�� ShE �L�

��

����U�

��

��

�� ��������
LX

��

���������

E�V
� � �� E

U
� � ��

�� ��������
X �

����������

In this diagram� the front� back� left and right squares are pullbacks� Since U � E�V
is an open surjection� the propriety of ����U�� U implies that of ShE�V �LV �� E�V
�I ����� Thus� LV is a compact locale in E�V

There is a version of Theorem ���� purely in terms of toposes� We say a map
f �F � E between toposes is locally compact if the localic re�ection ShE �L�� E of f is
given by a locally compact locale L in E�

���� Corollary� Let E be a Hausdor� topos� Let f �F � E be a connected� locally
connected� locally compact and separated map of toposes� and let x be a point of E� If



��

the �ber Fx is compact� then there is a neighbourhood �U� (x� of x so that f restricts to
a proper map FU � E�U �

Proof� By �I ����� it su�ces to prove the conclusion for the localic re�ection of f in
E� The result then follows from ������

For some applications� it is useful to state explicitly a version of Theorem ���
where the map f �F � E is not necessarily connected� Let f �F � E be a locally
connected map� and let C be a connected component of the �ber Fx� Let U be an 'etale
neighbourhood of x� so that F restricts to a map FU � E�U � An 'etale neighbourhood
of C over U is an object V of FU together with a lifting of C �� FU to FU�V �

Fx�Vx

��

�� FU�V

��
C
� � ��

���
�

�
�

�
�

�
Fx

��

�� FU

��

�� F

��

f

Set �� E�U �� E �

We say that V has compact �connected� �bers if the map FU�V � E�U is proper
�connected�� Now ����� has the following generalization�

���� Corollary� Let f �F � E be a locally connected� locally compact and separated
map� Let x�Set � E be a point of E� and let C be a compact connected component of
the �ber Fx� Then there exists ��etale	 neighbourhoods U of x in E and V of x in FU so
that V has connected and compact �bers�

Proof� This follows formally from ������ Let ���f� be the object in E of connected
components of f � so that f factors as

F
�f

�� E����f�� E�

where #f is connected �and otherwise retains all the E�local properties of f�� The pair
x� C together de�ne a point #x � �x� C� of E����f�� with �ber F�x � C�

C

��

�� F

��
Set ���x

E����f� �



��

By ����� there is a map U � ���f� with a lifting y of #x so that the pullback V over
E����f� maps properly into E�U �

C

��

�� V

��

�� F

��

�f

Set� � � �
�x

��
��y
E�U �� E����f� �

The map V � E�U is also connected� as a pullback of #f �F � E����f�� We claim
that V is the required 'etale neighbourhood of C� Indeed� it only remains to be veri�ed
that there is an object V of F so that V � F�V � and this is indeed the case� for
V � f��U � ���f��� by the righthand pullback above�

x� The classical Reeb stability theorem

In this section we shall explain the relation between Theorem ��� and the well�known
Reeb stability theorem for foliations �see e�g� �
�� We �rst recall various notions from
foliation theory �holonomy� leaves� etc�� in topos�theoretic terms�

Let G be a localic �or topological� groupoid� and assume that G is 'etale� i�e� the
source and target maps s� r�G� � G� are local homeomorphisms� Let BG be the
classifying topos of G� Recall �
 that for any locale X� topos morphisms Sh�X� � BG
can be described in terms of groupoid homomorphisms

��UX � G ���

where UX is the obvious groupoid U �X U � U de�ned from an open cover X �
S
Ui

with associated 'etale surjection U �
�
Ui � X� Note that BUX � Sh�X� �because

there is an open weak equivalence UX � X �I x��� if we view the locale X as a groupoid
with identity arrows only��

Such a groupoid homomorphism ��� can equivalently be described by maps gi�Ui �
G� and cij �Uij � Ui�Uj � G� satisfying the evident conditions �s�cij � gj � t�cij � gi�
cij � cjk � cik on Uijk�� The system �gi� cij� is called a cocycle on X with values in G�
If � ��� �� is a continuous natural transformation between two homomorphisms as in
���� the two corresponding cocycles are conjugate �via mappings �i�Ui � G��

We remark that a topos map Sh�X�� BG is locally connected i� it can be repre�
sented by a cocycle for which the maps gi�Ui � G� are all locally connected� A Hae�iger
G�structure on X� or a G�foliation on X� is by de�nition an isomorphism class of locally
connected topos morphimsX � BG� It is represented by a 	locally connected
 cocycle�
unique up to conjugacy and up to re�nement of the cover U � X�

���� Remark� Later� in Theorem ���� we shall require the map Sh�X� � BG to be
separated� We note that this is the case if X is Hausdor� while the locale G� of objects
is locally Hausdor� �that is� has an open cover of Hausdor� locales��
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���� Example� Let G �  q be the 	Hae�iger groupoid�
 with Rq as space of
objects and germs of di�eomorphisms as arrows� For a C��manifold� a C��foliation of
codimension q is by de�nition a topos morphism Sh�X�� B q� which is represented by
a cocycle for which all the gi�Ui � Rq are C��submersions �hence are locally connected
maps��

If y� � G� is a point in the space of objects of G� we write Gy� for the vertex group
at y�� It is a discrete group because G is assumed to be 'etale� There are obvious topos
maps

Set

y�
�� BGy�

i
�� BG�

where (y� is the canonical point of the topos BG� of G��sets� and i is induced by the
inclusion Gy� �� G �but i need not be an embedding of toposes�� If X is any locale�
and �� Sh�X�� BG is any topos morphism� we obtain by pullback a diagram

Sh�(L�

��

���
Sh�L�

��

�� Sh�X�

��

�

Set ��
y�
BGy�

��i
BG �

���

Here � is automatically a covering projection of locales with group Gy� � because Set�
BGy� is one of toposes�

Now suppose �� Sh�X� � BG is locally connected� One can then factor � as a
connected and locally connected morphism followed by a local homeomorphism �i�e� a
slice�� say

Sh�X�


�� �BG��E

�
�� BG�

There is an 'etale groupoid H� up to weak equivalence uniquely determined� for which
�BG��E �� BH and 
 is induced by an 'etale groupoid homomorphism H � G�

���� De�nition� For a G�foliation �� Sh�X� � BG on a locale X� its holonomy
groupoid is an 'etale localic groupoid H for which � can be factored as a connected�
locally connected morphism �� Sh�X� � BH followed by a slice 
�BH � BG� �This
groupoid H is uniquely determined up to weak equivalence��

���� Example� If �� Sh�X� � B q is an ordinary foliation on a smooth manifold
X �see Example ����� this de�nes �an 'etale groupoid weakly equivalent to� the usual
holonomy groupoid �cf� �
��

Now let x� be a point of X� Its image ��x�� is a point of the topos BH� Since
the canonical morphism Sh�H�� � BH is an 'etale surjection� we can choose a point
y� � H� such that the corresponding point of the topos BH is isomorphic to ��x��� We
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shall abuse notation and also write ��x�� for such a chosen point y� of H�� Let us form
a pullback diagram analogous to ����

Sh�(Lx��

��

���
Sh�Lx��

��

�� Sh�X�

��




��

�

��
���

���
���

���

Set ��
�x��
BH
�x��

��i
BH ���

BG �

���

We can now de�ne the following notions� which specialize to the usual ones in the case
of an ordinary foliation �� Sh�X�� B q on a manifold X�

���� De�nition� �cf� diagram ����� The vertex group H
�x�� is called the holonomy
group at x� of the G�foliation on X given by �� �In view of the implicit choice of
y� � ��x��� it is uniquely de�ned up to conjugation�� The locale Lx� is called the leaf
of x�� and the map �� (Lx� � Lx� the holonomy covering of this leaf�

The following theorem for a G�foliation on a locale X is now an immediate conse�
quence of Theorem ���� For ordinary foliations� it is exactly the Reeb stability theorem�

���� Theorem� Let G be an �etale localic groupoid� Let �� Sh�X� � BG be a G�
foliation on a locale X� and let x� be a point of X� Suppose the map � is separated �see
�����	� while the leaf Lx� is compact and the holonomy group at x� is �nite� Then the
same is true for all points in an open neighbourhood of x��

Proof� Since (Lx� � Lx� is a covering with group Hol�x��� which is assumed to be
�nite� the locale (Lx� is compact since Lx� is� Thus� the �ber of �� Sh�X� � BH at
��x�� is compact �cf� diagram ����� Since 
�BH � BG is a slice� H� is again locally
Hausdor�� so we can apply Theorem ��� to �nd an 'etale neighbourhood V of ��x�� such
that � restricts to a proper map over V � This neighbourhood V is an object of BH� i�e�
V is an 'etale H�space� We may assume V is of the form

t���V��
s
�� H�

for an open neighbourhood V� of ��x�� in H�� since such 'etale H�spaces generate the
topos BH �see �
�� Thus� if x � X is any point in X with ��x� ��� the point ��x��Set �
BH factors through �BH��V � Therefore Sh�(Lx� is compact� because Sh�Lx� � Set is
the pullback of the proper map ��V � hence is itself proper�

Sh�(Lx�

��

���
�

��

�� Sh�X�

��




Set ��
�x�
�BH��V ��i

BH �

���

Since (Lx � Lx is a covering projection with groups Hol�x�� it follows that Lx is compact
and Hol�x� is �nite�



CHAPTER III� TIDY MAPS

In Chapter III we study the fundamental properties of tidy maps between toposes�
maps which are proper in the strong sense considered by K�E� Edwards �
 and T� Lind�
gren �
� We shall build upon the methods and results of Chapter I� as before� our strategy
for showing the non�trivial closure properties of the class of tidy maps will rest on a
good site�description of tidiness�

After giving the de�nition and basic examples �section ��� we deduce various el�
ementary formal properties of tidy maps �sectons ��� We also show that tidiness is
implied by the stable BCC �section ��� In section �� which is the most technical� we
�rst introduce� and establish needed properties of� a covenient type of 	strongly com�
pact
 site� We then show tidy maps are stable under pullback with BCC �Theorem ����
and �ltered inverse limits �Theorem ������

The pro�nite re�ection of a map between toposes was considered by P�T� Johnstone
in �
� where it was called the 	pure�entire
 factorization� After compiling a number of
relevant properties of this factorization �section ��� we show that tidy maps are exactly
those for which the pure part is connected� and stably so in an appropriate sense� The
result is a Bourbaki�style characterization of tidiness �section ���

x� Definition and examples

Let E be a topos� and let �� E � Set be its canonical morphism into the 	terminal

topos of sets� We shall call E strongly compact if the global sections functor commutes
with all directed colimits� i�e� if

lim
�I

���Ei� �� ���lim�I
Ei�

is an isomorphism for every diagram fEig of objects of E indexed by a small directed
�	 �ltered� category I�

Comparing this de�nition with the one at the beginning of x� of Chapter I� one sees
that 	strongly compact
 is indeed a strengthening of 	compact�
 Following are various
elementary examples� which also serve to illustrate the di�erence between the ordinary
and strong versions of compactness for toposes�

���� Examples� ��� For a group G� the topos BG of G�sets has for its global sections
functor ���BG� Set the �xed point functor� ��S � SG � fs j s � g � s for all g � Gg�
So� clearly� BG is strongly compact if G is �nite� �In fact it is not di�cult to show that
BG is strongly compact i� G is �nitely generated��

��� Any coherent topos is strongly compact� To see this� recall ��� ����
� that a topos
E is coherent if it has a site �C � J� with �nite limits� all of whose covers are �nite� For

such a site� the inclusion Sh�C � J� �� !C � of sheaves into presheaves� preserves �ltered
colimits� From this property it follows that the global sections functor ��� E � Set�
given by evaluation at the terminal object of C � commutes with �ltered colimits�

��



��

��� For any compact Hausdor� space X� the sheaf topos Sh�X� is strongly compact� To
see this� consider for any diagram fSig of sheaves indexed by a directed category I its
colimit S � lim

�
Si� Just by compactness of X� the canonical mapping

c� lim
�

 Si �  �lim
�

Si� �  S

is injective �I ���� ����� To see it is also surjective� write ci�Si � S for the evident
map� and take any s �  S� Then there is an open cover X � U� � � � � � Un such that
s�Uk � cik�sk� for some sk � Sik�Uk�� And by directedness of I� we may assume that
Sik � Si does not depend on k� Let X � V� � � � � � Vn be a re�nement with #Vk � Uk�
and write #Vkl for #Vk � #Vl� Then sk� #Vkl and sl�#Vkl are both mapped to s�#Vkl� So� by
directedness of I and compactness of #Vkl� we can �nd a transition Si � Sj in the colimit
such that the images of s�� � � � sk in Sj form a compatible family for the closed cover
f #V�� � � � #Vng� Thus� they glue to an element s� �  Sj � mapped to the given s �  S�
This shows that c is surjective�

The de�nition of strong compactness can be relativised in the evident way� to give
the notion of a tidy map between toposes� Thus f �F � E is tidy if� internally in E� F
is strongly compact as an E�topos� An 	external
 form of this de�nition� in the style of
�and using the notation from� the earlier de�nition �I ���� is as follows�

���� De�nition �
� A map f �F � E is said to be tidy if� for any object E � E and any
directed category I in E�E� the associated square

F�f�E

��

f�E

���
�F�f�E�f

�I

��

�f�E�I

E�E ���
�E�E�I

has the property that the canonical map


��f�E�I��V �� �f�E��

��V �

is an isomorphism for any object V in �F�f�E�f
�I �

Like propriety� tidiness is of 	local nature
�

���� Proposition� If f is tidy� then so is f�E for any E � E� Conversely� if E � �
is an epimorphism in E and f�E is tidy� then so is f �

���� Examples� ��� Consider� for an object E in a topos E� the slice E�E and the
canonical map E�E � E� Internally in E� the object E can be written �i� as a directed
colimit of its Kuratowski��nite subobjects� or� using the natural numbers object of E�
�ii� as a directed colimit of �nite cardinals

E �� lim
� n�N

��n�E

n
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where n � f�� �� � � � � n � �g� We have already seen that E�E � E is proper i� E
is Kuratowski��nite� and this can be proved using �i�� From �ii�� it follows that that
E�E � E is tidy i� E is Kuratowski��nite and decidable� i�e� E is a locally constant
�nite object of E� or in other words� E�E � E is a �nite covering projection�

We can easily 	relativise
 the examples and the proof of ������ to obtain�

��� For a Kuratowski��nite group G in a topos E� the map BEG� E is tidy�

��� For any coherent site �C � J� in E� the map ShE �C � J� � E is tidy�

��� If X is any compact Hausdor� �hence compact regular� �II ����� locale in a topos E�
the map ShE �X�� E is tidy�

As a �nal example� we mention the following generalization of ��� above�

���� Proposition� For any compact localic group G in a topos E� the map BE �G�� E
is tidy� �BE �G� is the topos of continuous G�objects in E�	

Proof� We reduce to E � Set by arguing constructively� For a G�set X� write XG

for the subset of �xed points for the action� We have to show� for any �ltered system
fXig of G�sets� that the canonical map

lim
�

XG
i � �lim

�
Xi�

G ���

is a bijection�
Since BG has a surjective point Set � BG� BG is compact� which means ��� is

injective� To show that ��� is surjective� consider any element of the right�hand side�
say 
�x� where 
�Xi� � lim

�
Xi is a colimit map and x � Xi� � For each �� i� � j in I�

let U� � G be the stabiliser of � � x � Xj � that is �applying set�theoretic notation to
locales�

U� � fg � G j g � �� � x� � � � xg�

Since 
�x� is �xed� these U� form an open cover of G� Explicitly� consider the two maps
of locales �� ��G � Xi� � ��g� � g � x and ��g� � x� Then 
� � 
�� so that ������
factors through the kernel pair R of 
�

R � f�y� z� � Xi� �Xi� j ��� i� � j such that � � y � � � zg�

But for �y� z� � R�

��������y� z� �fg j g � x � y and x � zg

� fg j ��� i� � j such that g � x � y and � � y � � � xg

�
W
�U��

Now� since G is compact� there are �k� i� � jk �k � �� � � � � n� so that G is covered
by U�� � � � � � U�n � Since I is �ltered� there is a map 	� i� � l dominating all the �k� as



��

in the commutative diagram

jk

���
��

��
��

��

i� ���

��
�k

���������
l �

�k � �� � � � � n�

Thus 	 � x � Xl is �xed by G� so that 
�x� is in the image of XG
l � �lim

�
Xi�

G� This

proves that ��� is surjective�

x� First properties

In this section we catalogue some of the immediate properties of the class of tidy maps�
The fact that tidy maps are stable under pullback will be established in x��

���� Proposition� Any tidy map is proper�

���� Proposition� �i� Any equivalence F �� E of toposes is tidy� �ii� If G � F and
F � E are tidy� so is their composite G � E�

Proof� Obvious from De�nition ����

���� Proposition� In a commutative diagram

G ��g

��
h

��
��

��
��

� F

��
f

� �
� �
� �
� �
� �

E �

if g is connected and h is tidy� then so is f �

Proof� The proof is almost verbally the same as that for �I ����� now using the fact
that for a connected map g�G � F � the induced map #g�GI � FI is again connected�
so that the unit V � #g�#g�V is an isomorphism for each object V of FI�

���� Corollary� If f �F � E is tidy� then so is its localic re�ection�

���� Remark� There is no reason for the hyperconnected part of a tidy map to be
tidy in general� but as we shall see later� a tidy map does indeed factor as a connected
map followed by a localic map in such a way that both factors are tidy� in analogy with
the image factorization of a proper map� see ����� below�

���� Proposition� In a commutative diagram as in ������ if h is tidy and f is an
embedding� then g is tidy�



��

Proof� The proof is analogous to that of �I ����� and we use the same notation� Let
W be any object in GI � We have to show that the canonical map


�#g�W � g�

�W ���

is an isomorphism� Since g is proper by ����� and �I ����� we already know �by �I �����
that this map ��� is mono� To show that it is also epi� it su�ces to prove that its
image under f� is� because f is assumed to be an embedding� Consider for this the
commutative diagram

f�

�#g�W �� f�g�
�W


� #f�#g�W

��


�#h�W ���
h�


�W �

Here the lower arrow is an isomorphism because h is assumed proper� Hence the upper
horizontal arrow must be epi�

��	� Remark� The analogue of �I ���� for tidy maps is false� as is clear from Example
������

The following proposition generalises Example ������

��
� Proposition� Any proper and separated map of toposes is tidy�

Proof� Our argument needs the fact that tidiness descents down open surjections�
the proof of which is postponed until x� �Proposition ������

Since every map f �F � E factors as a hyperconnected map followed by a localic
map� and since these two maps are both proper and separated whenever f is� it su�ces to
prove the theorem for the two special cases where f is either localic or hyperconnected�
The �rst case is taken care of by Proposition ����

For the second case� suppose f �F � E is hyperconnected �hence proper� and
separated� Consider the pullback

F �E F

��

��

�� F

��
F ��f

E �

The map �� is again hyperconnected and separated and has the diagonal &f as a section�
Thus� up to equivalence� this map is of the form ShF �G�� F for some compact localic
group in F � by �II Theorem ����� By ������ �� is tidy� Since f is an open surjection� we
conclude by ������ that f is itself tidy�



��

x� The Beck�Chevalley condition

Recall from �I x�� that a commutative square

H

��

g

��b
F

��

f

G ��a
E �

���

is said to satisfy the Beck�Chevalley condition �BCC� if the canonical natural transfor�
mation

a�f�
�
�� g�b

��

is an isomorphism� The map f is said to satisfy the BCC if for any map a�G � E� the
pullback square of f along a satis�es the BCC� If any pullback of f satis�es the BCC�
we say f satis�es the stable BCC� This terminology is analogous to that introduced for
the weak Beck�Chevalley condition in �I x���

���� Proposition� If f �F � E satis�es the stable BCC then f is tidy�

Proof� Consider a directed category I in E� and the diagram

F

��

f

���
Ff�I

��

fI

�� F

��

f

E ���
EI �� E �

Since the �total� rectangle and the right�hand squares are pullbacks� so is the left�hand
square� By assumption� the BCC holds for the left�hand square� which says that for
any object U of Ff�I� the canonical map


��fI ��U � f�

�U�

is an isomorphism� The same argument applies to any slice F�f�E � E�E� since these
slices are pullbacks of f �F � E� But this is tidiness of f � according to De�nition ����

���� Remark� As in �I ���� we observe that the morphism E
�
�� EI is a subtopos

inclusion� Thus it is enough to require the BCC stably for pullbacks to subtoposes in
Proposition ����

One of the main results of this chapter is the converse of Proposition ���� to be
proved in the next section�



��

x� Stability under change of base

In this section we give a description of tidy maps in terms of sites� based on a result
of K� Edwards �
� As a �rst application� we obtain new proofs of two theorems of
T� Lindgren �
� namely a characterisation of strongly proper maps in terms of the Beck�
Chevalley condition �the converse of ������� as well as the preservation of strong propriety
under pullback� Our proofs are simpler than those of �
� and also constructive �avoiding
the trans�nite iteration involved in the original arguments�� hence are valid over an
arbitrary base topos�

We begin with a formulation of the Edwards criterion for a topos E to be strongly
compact� Although we state it in the informal language of sets� it applies over an
arbitrary base topos�

���� Proposition �
� A topos E is strongly compact i� E is compact and� moreover� for
any object E in E with global support �i�e� E � � epi	 the following condition holds� for
any directed epimorphic family fRi � E�Eg of equivalence relations on E there exists
a subobject U � E with global support such that U � U � Ri for some i�

Proof� ��� Suppose E is strongly compact� and let fRi � E � Eg be as in the
statement of the proposition� Then the directed diagram of quotients E�Ri has colimit
lim
�

E�Ri � E�
W
Ri � �� Since E is assumed tidy� it follows that lim

�
 �E�Ri� � �� In

particular� we �nd for some i a global section s� � � E�Ri� The pullback of s along
E � E�Ri is a subobject U � E with the required properties�

��� To show that E is strongly compact� consider any directed diagram fDig of
objects of E� and write D � lim

�
Di� Since E is compact� the canonical map

lim
�

 Di �  �lim
�

Di� �  D

is injective �I ����� To see that it is also surjective� take x �  �D�� and write Ei � Di

for the pullback of Di � D along x� � � D� Then lim
�

Ei � �� So by compactness of
E� there exists an index i� such that Ei� � � is epi� Each transition map Di� � Di in
the diagram restricts to a map Ei� � Ei� with kernel pair Ri � Ei� � Ei� � say� Since
lim
�

Ei � �� the family fRig covers Ei��Ei�� By the assumption� there exists a U � Ei�

such that U � � and U �U � Ri for some i� Then the composite map U � Ei� � Ei

factors through U � �� providing the required section �� Ei � Di mapping to x�

Before proceeding to the next de�nition� we need to introduce some notation
concerning equivalence relations in a pretopos site �I ����� Given a subobject U �
C � C in a pretopos site C � one can de�ne a sequence of subobjects U �n� � C � C
which jointly form the equivalence relation generated by U in the usual way� let
U ��� � &C �the diagonal�� U ��� � U ��� � U � Uop� and let U �n��� be the image of
���� ����U �n��C U

���� C�C�C � C�C� We shall call a family of monomorphisms
of the form fUi � C �C j i � Ig e�ective if there exists a subobject D� C such that
both D � � and the induced family f�D � D� � U �n� � D � D j i � I� n � Ng are
covers of C � A subobject U � C � C is e�ective if it is so as a singleton family�

The de�nition of strong compactness for a pretopos site is an appropriate reformu�
lation of the Edwards criterion�
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���� De�nition� A pretopos site C is strongly compact if C is compact �I ���� and�
moreover� for any C � � which covers� any directed cover of C�C by monomorphisms
in C has an e�ective member�

���� Remark� Like the de�nition of compactness �I ����� De�nition ��� makes sense
for any 	site with stable compatible system of directed covers
 �I ����� The results
of this section remain true �and most proofs unaltered� if we work with such a site C
instead of a pretopos site� provided we add the requirement that the coproducts in C are
disjoint �see �
�� to ensure that 	preservation of covers
 entails 	preservation of sums�


We have�

���� Proposition� A pretopos site C for a topos E is strongly compact i� E is strongly
compact�

Proof� We need to add to the proof of �I ���� the veri�cation that a compact C
satis�es the additional condition for strong compactness precisely when the �compact�
topos E satis�es the Edwards criterion�

Suppose C is indeed strongly compact� and let E � � and fRi �� E � Eg be
as assumed in ������ By compactness and the existence of �nite sums and images in
C � preserved by the canonical functor h� C � E� we �nd an object C of C such that
C � � covers and h�C� � h��� �� � re�nes E � �� say by a map e�h�C� � E� Let
fSj � C � Cg be a cover by monomorphisms in C such that the family fh�Sj� ��
h�C � C� �� h�C� � h�C�g re�nes f�e � e����Ri� �� h�C� � h�C�g� Since the family
fRi �� E � Eg is directed� we can assume that fSj � C � Cg is directed too� By
strong compactness of C � some Sj � C �C is e�ective� Thus� we can �nd a subobject

D� C with D� � a cover such that the family fD �D � S
�n�
j � D �Dg is a cover�

By construction h�Sj� �� h�C�C�� E�E factors through some equivalence relation

Ri �� E �E� But then h�S
�n�
j � �� h�C �C�� E�E factors through Ri for all n� and

this is easily seen to imply that the map h�D��h�D� � E�E factors through Ri� Let
V � E be the image of h�D� � E� Then V � � is epi and V � V � Ri� as required in
������

Conversely� suppose E satis�es the Edwards criterion� For a suboject V �� E �E
in E� let bV �

W
nV

�n� �� E � E denote the equivalence relation on E generated by
V � Consider any directed cover fSj � C � Cg in C � where C � � covers� Since the

family f�h�S�i �� h�C��h�C�g of equivalence relations in E is directed� ����� gives some

U � h�C� with global support in E and some j such that U � U � �h�Si�� that is� such

that the family fU �U �h�S
�n�
i � �� U �U j n � Ng is epimorphic� But by compactness

and the existence of �nite sums and images in C � we can assume that the inclusion
U � h�C� lies in the image of h� say U �� h�D� where D� C is a subobject in C such
that D � � covers� But this says that Si � C � C is an e�ective subobject of C � C�
Thus� we have shown that C is strongly compact�

The next 	induction
 lemma is the counterpart of �I ���� for dealing with strong
compactness�
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���� Lemma� Let C be a compact pretopos site equipped with a system N of distin�
guished e�ective subobjects �of products C �C	 such that

�i� The trivial e�ective subobject C � C
id
�� C � C � N whenever C � � covers�

�ii� In V � U � D � D � C � C �where D � C	� if V � D � D � N then
U � C � C � N �

�iii� U �n�� C �C � N only if U � C � C � N �
�iv� For any basic S�cover fUi � Ug� if U � C � C � N then Ui � C � C � N for

some i�

Then N contains all e�ective subobjects U � C � C of C � and C is strongly compact�

Proof� Consider the following property of families fUi � Ug� for any U � C�C �
N � there is some i for which Ui � U is a monomorphismandUi � C�C � N � Since this
property is given to hold for basic S�covers �iv�� trivially holds for the family f�� �g
and is preserved by composition� it must hold for generated S�covers by induction� But
then� if C � � is a cover� any generated S�cover fSi � C � Cg contains a member of
N � since the identity C � C � C � C � N � By �I ���� and condition �ii�� the same is
true for any directed cover of C �C� This shows that C is strongly compact�

To prove thatN contains all e�ective subobjects� consider any such� say U � C�C�
and let D� C be a monomorphism such that D� � and the family f�D�D��U �n� �

D�D j n � Ng are covers� Then� by what we have just shown� some �D�D��U �n��

D �D is in N � whence U � C � C � N by conditions �ii� and �iii��

���� Corollary� A compact pretopos site C is strongly compact i� the system of all
e�ective subobjects satis�es the conditions of ������

��	� Lemma� Let �� E � � E be a morphism of toposes and suppose C is a strongly
compact pretopos site in E� Then the pretopos site ��C is strongly compact in E ��
Moreover� if L denotes the object of objects which cover �� and N the object of e�ective
subobjects in C � then ��L and ��N are the corresponding objects� respectively� for ��C �

Proof� By �I ����� �� preserves both the compactness and the object of covering
subobjects of � of C � It therefore also preserves the object of objects with covering
support� It follows that the conditions of Lemma ���� which are satis�ed byN �Corollary
����� are 	geometric
 and hence inherited by ��N � Thus� the lemma follows by an
application of ����� in E ��

��
� Theorem �
� In a pullback square

F �

��

f �

��

F

��

f

E � ���
E �

���

suppose that f is tidy� Then f � is tidy and the BCC is satis�ed�



��

Proof� We reduce to the case E 	 Set and argue constructively�
Let C be a pretopos site for F � Then C is strongly compact by Proposition ��� and

it follows that ��C is a strongly compact site for F � in E � by Lemma ���� Thus� f � is
tidy� by applying Proposition ��� in E ��

To deduce the BCC� consider any object F of F � represented by a sheaf P on C �
The corresponding sheaf for ��F made in the topos E �� is given by the shea��cationQ 	
���P ��� in E � of the presheaf ��P � and the map ��f�F � f ���

�F by the component
at the terminal object � � C of the canonical natural transformation 
���P � Q� We
need to show that this map is epi �we already know it is mono by the weak BCC which
holds since f is proper �I ������

The sheaf P has the following property� for any e�ective subobject U � C � C
and element p � P �C� such that the restrictions of p along the projections U � C
agree� there is a subobject D� C where D � � covers� and a unique 	global
 element
s � P ��� such that s�D � p�D in P �D�� For� choose this D � C to be any subobject
for which D � � covers and for which the family fD � D � U �n� � D � Dg covers
�U � C � C is e�ective�� Then the restrictions of p along each pair of projections
U �n� � C agree� which implies that p�D is locally compatible� that is to say� compatible
over a cover of D � D� By the sheaf condition� it has a global element s of the form
claimed� Since the notions of 	object with covering support
 and 	e�ective subobject

for a strongly compact C are preserved under change of base by Lemma ���� this property
is inherited by ��P �despite not being a sheaf in general� in E ��

We now argue internally in E �� An element q � Q��� is given by a cover fCj � �g
in ��C and a family of elements pj � ��P �Cj� which are locally compatible in the
sense that pj and pj� agree on a cover of Cj � Cj� � By compactness and the existence
of sums in ��C � we can take this cover of � to consist of a single arrow C � �� with
q given by some p � ��P �C�� Local compatibility of p means that there is a cover
fSi � C�Cg such that for each i� the restrictions of p along the induced maps Si � C
agree� since ��P still satis�es the sheaf property for P �covers� we can assume that each
Si � C � C is a monomorphism and that the family fSi � C � Cg is directed� By
strong compactness� some Si � C � C is e�ective� As shown above� we can �nd some
s � ��P ��� and a subobject D� C such that D� � covers and such that s�D � p�D�
Since such s is mapped to �the equivalence class of� p by 
����P ���� Q���� this shows
that the map �f�F � f ���

�F is epi�
We have therefore established the BCC�

���� Corollary �
� A map f �F � E is tidy i� it satis�es the stable BCC�

Proof� One direction is Proposition ���� the other is immediate from Theorem ����

����� Proposition� In the pullback square ���� suppose � is an open or a proper
surjection� If f � is tidy� then so is f �

Proof� We write as if E 	 Set and argue constructively� Suppose f � is tidy and
let C be a pretopos site for F � Tidiness of f � implies that the pretopos site ��C is
strongly compact� We want to conclude that F is strongly compact by showing that C
is strongly compact�
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Since F is compact by �I ���� and �I ����� we already know that C is compact�
Consider any C � C such that C � � covers and any directed cover fSi� C�C j i � Ig
of monomorphisms in C � Let

K � f�i�D� j i � I� D� C � C such that D � � and

fS
�n�
i � �D �D�� D �D j n � Ng are covers in C g�

We need to show that K has an element� Since ��C is strongly compact� the corre�
sponding object in E ��

K � � f�i�D� j i � ��I� D� ��C � ��C such that D� � and

f���Si�
�n� � �D �D�� D �D j n � Ng are covers in ��C g

is inhabited� in other words� K � � � is epi�
Suppose �rst that � is open� Then �� preserves �rst�order logic �see �
�� hence in

particular the notion of 	closed sieve�
 This implies that� for a �xed family fCk � Cg
in C � the set fD� C j fD�C Ck � Dg coversg is mapped by �� to the object de�ned
by the expression fD � ��C j fD ���C ��Ck � Dg coversg in E �� It follows that the
de�nition of K is preserved� that is� K � � ��K� Since �� is faithful� we conclude that
K has an element�

On the other hand� suppose � is proper� that is� E � is compact� Then � is a
surjection by �I ����� Let kU � for U � � � in E � denote the functor C � F � F � � F ��U ��
We can express the image of K � � � as a directed join

supp�K �� �
W
fU � � � j For some i � I and D� C � C � kU � maps D� � and

fS
�n�
i � �D �D�� D �D j n � Ng to covers in F�U �g�

Since supp�K �� �� �� compactness of E � gives some i � I and D � C in C such that

D � � is mapped to an epimorphism� and fS
�n�
i � �D �D� � D �D j n � Ng to an

epimorphic family in F � by the functor C � F � F �� But �� is faithful� which implies

that D � � and fS
�n�
i � �D �D� � D �D j n � Ng are covers in C � that is� �i�D� is

an element of K�
This completes the proof�

����� Theorem� Suppose f �F � E is the limit

F ��pi

��
f

��
��

��
��

��
Fi

��
fi


 


 


 


 


 


E

���

of a diagram of tidy maps ffi�Fi � Eg indexed by a �ltered category I� Then f is tidy�
Moreover� for any i � I� the canonical natural transformation

lim
��

fj�t�
� � f�pi

��



��

where �� j � i varies over the category I�i and t��Fj � Fi denotes the transition map
induced by �� is an isomorphism�

Proof� By regarding I as an internal category in E� it will su�ce to treat the case
E 	 Set constructively�

Let fC ig be a diagram of pretopos sites inducing fFig� and let C be a pretopos
site for the limit F as given by �I ����� Denote the canonical functors associated with
an arrow �� j � i � I as indicated in the commutative diagram

C

��

h

C j

��

hj

�� Pj
C i

��

hi

�� T�
� �� �

Pi

��

F Fj�� pj
�

Fi ��� t�
�

� �� �
pi
�

��

For each i� let Ni be the set of e�ective subobjects subobjects in C i � and let N be the
set of e�ective subobjects in C which are �up to isomorphism� in the joint image of the
Ni under the morphisms Pi� C i � C which induce the projections pi�F � Fi�

Since each C i is strongly compact� we can show� as in the proof of �I ������ that C is
compact� and also that each covering subobjects of � in C is �up to isomorphism� in the
image of some Pi� Since epimorphisms of C lift similarly� it follows that the same can
be said for any cover C � � in C � Using this fact� the lifting property of commutative
diagrams and basic S�covers in C � and the directedness of I� it is not hard to check that
the system N inherits the conditions of Lemma ��� from the Ni� It follows that any
e�ective suobject U � C � C in C lifts to some C i � and that C is strongly compact�
Thus F is strongly compact�

To show the second part� �x i � I and consider any F � Fi� We need to show that
any global element s� � � pi

�F in F is of the form pj
�x� � �� pj

�� � pi
�F for some

�� j � i � I and a global element x� � � t�
�F in Fj� and further that if x

�� �� t��
�F

with ��� j� � i is another such lifting of s� then there is a commutative diagram

k

��

�

����

j�

��

��

j ���
i

���

in I such that t��x � t��
�x� in Fk�

Now� if each Fj were the presheaf topos on C j � then F would be the presheaf topos
on C and the global element s would indeed have this lifting property� For then f�pi

�

would be calculated explicitly as 	left Kan�extension
 along Pi at � � C � which can
be expressed as the ��ltered� colimit of extensions along T� for �� j � i� evaluated at
� � C j � as is readily veri�ed using the directedness of I and the lifting property of �nite
commutative diagrams in C �



��

This implies� �rstly� that we can 	locally lift s� in a locally compatible way�
 More
precisely� using strong compactness and the existence of sums and images in C � we
can �nd �� j � i� C and U � C � C in C j � and y�hj�C� � t�

�F in Fj such that
Pj�C� � Pj��� �� � covers and Pj�U� � Pj�C� � Pj�C� is e�ective in C � while s
restricts to pj

�y� and the restrictions of y along the projections hj�U� � hj�C� are
equal in Fj � But since singleton covers of � and e�ective subobjects in C lift� we can
�using directedness of I� further arrange that C � � covers and that U � C � C is
e�ective in C j � It follows that y is the restriction to hj�C� of a unique global element
x� �� t�

�F � and then that pj�x � s� This proves the existence of a lifting for s�
Secondly� if x�� �� t���F � Fj� also satis�es pj�

�x� � s� then x and x� can 	locally

be forced to become equal in the way required� Explicitly� incorporating compactness
and the existence of �nite images in C � we can �nd a commutative diagram ��� in I and
V � � in C k such that Pk�V �� Pk��� �� � covers in C and the restrictions of t��x and
t��

�x� to hk�V �� hk��� �� � agree� Again� since singleton covers of � in C lift� we can
�using directedness of I� arrange that V � � covers already in C k � Thus� t�

�x � t��
�x�

in Fk� which proves the 	uniqueness
 part of the lifting for s�

����� Corollary� Suppose in ��� that for each �� j � i in I� the canonical natural
transformation fi� � fj�t�

� induced by the transition morphism t��Fj � Fi is an
isomorphism� Then the canonical natural transformation fi� � f�pi

� is an isomorphism
for each i � I�

x� Entire maps

In this section we catalogue various results involving pro�nite localic maps� needed for
an alternative description of tidy maps to be given in x�� In particular� we recall the
pure�entire factorization of a map f �F � E introduced by P�T� Johnstone �
�

We start with some well�known facts concerning pro�nite sets and locales �see ��
Chapters II and VI
�� interpreted in an arbitrary topos S ��xed for the moment as base��
As usual we write as if S is the category of sets�

Let F � FS denote the full �internal� subcategory of S of �nite cardinals as in
Example ��� ���� We recall that the category of formal inverse limits of �nite objects�
or pro�nite objects in S is de�ned to be the dual of the category of �ltered �i�e� �nite
limit�preserving or 	left exact
� internal diagrams on F� Any pro�nite object P can be
turned into a locale jP j by constructing the �obvious� limit

jP j � lim
� n�F

x�P	n


n ���

The functor j � j has a left adjoint� which assigns to a locale X the diagram P�X� of
partitions of X� or equivalently� the diagram 	under
 X spanned by F in the category
of locales� whose value at n is the set of maps from X into the discrete locale n�

The next proposition says that pro�nite objects of S are the 	same
 as pro�nite
internal locales� that is� inverse limits of �nite discrete locales�
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���� Proposition� The realization ��� of a pro�nite object as a locale embeds the
category of pro�nite objects of S as the �full	 re�ective subcategory of the category of
locales in S� consisting of those locales X �called 
Stone locales� in �
	 satisfying any of
the following equivalent conditions�

�i� X is coherent and regular�
�ii� X is coherent with complemented compact opens �that is� the basis of compact opens

of X form a boolean algebra	�
�iii� X is compact and has a clopen basis�

Proof� The usual lattice�theoretic proofs of these facts �see �
� are essentially con�
structive� hence interpretable in the topos S�

���� Remarks� ��� The functor

X �� jP�X�j � lim
� n�F

��X�n

n

assigns to a locale X its pro�nite re�ection� and the re�ection map X � jP�X�j is an
isomorphism i� X satis�es any of the equivalent conditions above� In terms of condition
�ii�� the compact opens of jP�X�j correspond to the complemented opens of X� which
in turn correspond to the maps X � � " � �� ��

��� By �� III ���
 and �II ������ condition �i� equivalently states that X is coherent and
Hausdor��

��� Any map between coherent locales satisfying condition �ii� is clearly coherent� hence
it follows that the category of pro�nite objects in S is dual to the category of boolean
algebras in S� �More directly� the category of pro�nite objects is a 	pro�completion
 of
F� and the category of boolean algebras an 	ind�completion
 of the category of �nite
�	 �nitely presentable� boolean algebras� which is dual to F��

Combining the localic re�ection of a topos with the pro�nite re�ection of a locale
gives�

���� Corollary� Any S�topos p� E � S has a pro�nite localic re�ection

E ��g

��

p

��
��

��
��

��
�� ShS��

pf
� �E��

��� �
� �
� �
� �
� �
� �

S �

a universal map into an S�topos of sheaves on a pro�nite locale� More precisely� �pf� �E�
is the �internal	 limit of locales

�pf� �E�
�� lim
��n�	�

n

where n varies over N and � over n�fold partitions E � E� " � � � En�� of E into open
subtoposes �with an arrow �n� �� � �n�� ��� being a function ��n � n

� such that Ek �



��

E��k� for k � n	� The locale �pf� �E� has for its basis of compact opens the boolean algebra
p��E � where �E � � " � � E�

Proof� Clear from the existence of the localic re�ection� ����� and ������

���� Remark� The notation �pf� �E� is meant to convey the idea of the pro�nite
re�ection as 	pro�nite object of connected components
 in analogy with the pro�nite
fundamental group �pf� �E�� see �
� If E is connected� then clearly �

pf
� �E�

�� �� but �unless
S is the category of classical sets� the converse need not be true� More generally� the

re�ection map E � ShS ��
pf
� �E�� need not be connected�

We are now ready to pursue various formal aspects of pro�nite localic maps�

���� De�nition �
� A morphism f �F � E is said to be entire if it is localic for a
pro�nite or 	Stone
 locale� Thus� in terms of Corollary ���� f is entire i� it coincides
with its pro�nite re�ection�

F � ShE ��
pf
� �F�� � ShE �f��F�

as E�toposes �where the boolean algebra f��F is regarded as a coherent internal site��
Entirety is clearly a 	local
 property�

���� Examples� ��� In any topos E� amongst the discrete locales� the pro�nite ones
are precisely the �nite cardinals� Thus� for an object E � E� the map E�E � E is entire
i� it is a �nite covering projection�

��� An inclusion of toposes is entire i� it is closed� For� the terminal locale is pro�nite�
and clearly by condition �iii� in Proposition ���� pro�niteness is inherited by closed
sublocales� Conversely� an entire embedding is proper� hence closed� More generally�

��	� Proposition� Any entire map is tidy� in fact proper and separated�

Proof� Clear from ����� ��� and Remark ��� ����

Applied to the second example above� this gives�

��
� Corollary� Any closed inclusion of toposes is tidy�

���� Proposition� In a commutative diagram

G ��g

��
h

��
��

��
��

� F

��
f

� �
� �
� �
� �
� �

E �

�i� if f and g are entire� so is h

�ii� if f is separated and h is entire� then g is entire�
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Proof� We use the third characterization of pro�nite locales in Proposition ����
Then by �I ���� and �II ����iv��� it will be enough to show for �i� that the property of a
map of being localic with clopen basis is preserved under composition and for �ii� that
this property is always inherited by g from h �for any f��

We argue in E as if it were the category of sets� Since localic maps are preserved
under composition� we can assume that G � Sh�Z� for a locale Z� with opens given by
the subobjects of � in G� Let C be any site for F with a terminal object� and e� C � F
the canonical functor� The map g is induced by a locale Y in F � with frame of opens
represented by the sheaf A on C which has subobjects of g�e�C� as sections at C � C �
and with restriction along D� C de�ned by pullback along g�e�D�� g�e�C��

A basis for Y is a subsheaf B � A such that for any C � C � the images of maps of
the form

W ��� g�e�D�
g�e���
�� g�e�C�

for ��D � C � C and W � B�D� together form a basis for the frame A�C� in the
ordinary sense� In particular the subsheaf generated by elements of A��� is a basis� and
if Z has a clopen basis� the complemented elements of A��� will su�ce� resulting in an
internal basis of clopens B � A for Y � This establishes �ii��

On the other hand� if F � E is localic with clopen basis� we can choose e� C � F
to be the inclusion of complemented subobjects of � in F � Then� given any internal base
B � A� the generating elements of A��� �which is the frame of opens of Z� coming from
B�V � for complemented V � � are complemented� and it follows that Z has a clopen
basis� This proves �i��

����� Proposition� In a pullback square

H

��

g

��b
F

��

f

G ��a
E�

���

suppose f is a localic map� Then

�i� If f is entire� so is g�
�ii� If g is entire and a is a proper or open surjection� then f is entire�

Proof� �i� If f is entire� then H is the category of sheaves on the boolean algebra
�site� a�f��F as G�topos� whence g is entire�

�ii� If g is entire� then g is tidy ������ Thus� by Proposition ����� f is tidy and the BCC
is satis�ed in ���� It follows that

g��H �� g�b
��F �� a�f��F �

But this means that pullback along a�G � E preserves the entire re�ection of f � in other
words� forces the re�ection unit to be an isomorphism� Since a is of e�ective descent
for locales� it follows that f is entire�
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����� De�nition �
� A morphism f �F � E is said to be pure if its entire re�ection is
trivial� Thus� by Corollary ���� f is pure precisely when the canonical map �E � f��F
is an isomorphism� Any connected map is clearly pure� Note again that purity is a
	local
 property of a map�

����� Lemma� Any morphism f �F � E factors as a pure morphism followed by an
entire morphism�

Proof� Factor f as F
p
�� P

g
�� E where g is the entire re�ection of f � and then

factor p as F
q
�� Q

h
�� P where h is the entire re�ection of p� It will be enough to

show that h is an equivalence� since this will show that p is pure� By Proposition ����
the composite Q � P is entire� whence it follows by the universal property of p that
there exists a morphism k�P � Q over E such that h � k �� idP and k � p �� q� But then
k � h �� idQ by the universal property of q� and we are done�

����� Lemma� The following are equivalent for a morphism f �F � E�

�i� f is pure�
�ii� Any commutative square of the form below in which the map g is entire has a unique

�up to isomorphism	 commuting diagonal �ll�in d�

F

��

f

�� H

��

g

E ��a

��

d

�
�

�
�

�
�

G �

�iii� For any E � E� the morphism f�E�F�f�E � E�E satis�es the property in �ii� for
the special case where g is the ��etale	 map G " G � G��G � G�

Proof� First note that by the pullback�stability of entire maps ������� condition �ii�
is equivalent to its restriction to the case where the map a� E � G in the diagram above
is the identity� It is then clear that �ii� as a property of f is preserved under pullback
along 'etale maps� since for any E�topos H� any E � E and any pro�nite locale X in
E�E� there is a correspondence �or more precisely� an equivalence� between maps

H�f�E � ShE�E�X� � H � Sh�
Y
E

X�

over E�E and E respectively� Here
Q

E X denotes the internal localic product of the
	E�indexed family X of pro�nite locales
� which is pro�nite�

The implication from �i� to �ii� now follows from the universal property of a pure
map� as unit for an entire re�ection� Further� by its just�mentioned stability under 'etale
change of base� property �ii� implies �iii� as a special case� Finally� to complete the circle
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of implications� assume f has property �iii� and consider the composite of commutative
rectangles and canonical maps

F��F

��

�� F�f�f��F

��

�� F��F �� E��E

��
E��E ��E�c

E�f��F ��

��

E�s

���������������
E �

By the existence clause of �iii� applied in the left�hand rectangle� there is a commuting
diagonal as indicated� induced by a map s� f��F � �E � But then the arrows in the top
triangle are the sides of a pullback square� which says that f�s� f�f��F � �F coincides
with the counit of the adjunction f� a f�� It follows that s is a right inverse for the
unit c��E � f��F � But s is also a left inverse for c� by the uniqueness clause of �iii�
applied in the total rectangle� Thus� f is pure�

����� Remark� Lemma ����� together with the orthogonality relationship �ii� between
pure and entire maps in Lemma ����� say that the classes of pure and entire maps form
a so�called factorization system in the category of �Grothendieck� toposes� a result �rst
obtained in �
�

����� Corollary� The pure�entire factorization of a map f �F � E is essentially
unique�

Recall that a morphism f �F � E is connected precisely when it satis�es property �iii�
of the last lemma with �G replaced by an arbitrary object G � G� The next technical
lemma will enable us to give a simple description of connected maps as �certain� pure
maps�

����� Lemma� Any object E in a topos E can be presented as an equalizer

E
� � �� B� ��

��
B�

where B� and B� are the underlying objects of boolean algebras�

Proof� The functor which assigns to E the free boolean algebra object F �E� on E
re�ects isomorphisms� This follows from a few facts which may be read o� from any
standard construction of F �E� valid in a topos� Writing as if E is the category of sets�
any element x � F �E� can be written as a �nite join

x� � x� � � � � � xn��� ���

where each xi is a �nite meet of elements or complements of elements� in the image of
the canonical map iE �E � F �E�� Also� the map iE is an inclusion� and for x as in in
���� x � iE�e� for e � E only if iE�e� � xk for some k� while each xk is either of this
form or zero� Using this� one checks that a bijection of the form F �s��F �E� � F �E��
restricts to a bijection s�E � E��
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Now� being left adjoint to the forgetful functor� F maps the canonical diagram

E
� � ��iE

F �E� ��
F �iE�

��
iF 	E


F �F �E�� ���

to a split equalizer of boolean algebras� It follows by a standard argument that ��� is
an equalizer in E�

���	� Remark� The free boolean algebra functor is in fact comonadic �in any topos��
since it also preserves equalizers of re�exive pairs� However� a bare�hands constructive
prove of this fact �which will not be needed� is just a little too technical to be replicated
here�

���
� Proposition� A morphism f �F � E is connected i� the pullback of f along
any entire map is pure�

Proof� Consider a pullback square

H

��

g

��b
F

��

f

G ��a
E

in which the horizontal maps are entire� say G � ShE �B� and H � ShF�f�B� for a
boolean algebra �coherent site� B in E� In particular� f�B � b��H� Saying now that g
is pure is equivalent to saying that g followed by a is the pure�entire factorization of the
composite H � F � E� that is� that the canonical map B � f�f

�B is an isomorphism�
Thus� the lemma states that the unit of the adjunction f� a f� is an isomorphism i� it
is an isomorphism on underlying objects of boolean algebras� One direction is trivial�
and the other is immediate from Lemma �����

����� Lemma� The BCC is satis�ed in a pullback square

H

��

g

��b
F

��

f

G ��a
E

i� the pure�entire factorization of any composite P � F � E of f with an entire map
is preserved under change of base along a�G � E�

Proof� Arguing as in the last proof� we see that the lemma claims that the canonical
natural transformation a�f� � g�b

� is an isomorphism i� its components on underlying
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objects of boolean algebras in F are isomorphisms� But using Lemma ����� this is
clear�

����� Remark� By de�nition� a morphism f �F � E is connected i� pulling back
internal locales along f restricts to a fully faithful functor on discrete� or 	ind��nite

locales� By �the proof of� Proposition ����� connectedness of f is equivalent to the same
condition on pro�nite locales� Similarly� Lemma ���� essentially states that the Beck�
Chevalley condition can equivalently be formulated with reference to either discrete or
pro�nite locales�

x� Tidiness and closed maps

In this section we complete the analogy between proper and tidy maps by introducing
�rmly closed maps and proving the following counterpart of �I �����

���� Theorem� A map f �F � E between toposes is tidy i� all pullbacks of f are
�rmly closed�

To de�ne the notion of �rmly closed map� we use the pure�entire factorization F �
ShE ��

pf
� �F��� E of a map f �F � E� discussed in the previous section�

���� De�nition� A map f �F � E is �rmly closed if� for any E � E and any entire
map P � F�E� the pure part of the composite P � F�f�E � E�E is connected �see
also Remark �����

We observe straightaway that 	�rmly closed
 is indeed a strengthening of 	closed
�

���� Proposition� Any �rmly closed map f �F � E is closed�

Proof� Given E � E� any closed inclusion C � F�f�E is an entire map� Example
��� ���� Since f is �rmly closed and a connected map is surjective� the image f�C� of
C � E�E is the same as the image of its entire part� But any entire map is proper�
hence closed by �I �����

���� Lemma� A map f �F � E is �rmly closed i� for arbitrary E � E� the BCC is
satis�ed in the left of any pair of pullback squares

L

��

�� H

��

g

��b
F�f�E

��

f�E

K ��c
G ��a

E�E

in which the bottom maps are entire�

Proof� Suppose f is �rmly closed� Given E � E� consider successive pullbacks of
f�E along entire maps as above� For any entire map P � H� the pure part p�P �



��

ShG��
pf
� �P�� of the composite P � G is also the pure part of the composite P � E�E�

by entirety of the map a�G � E�E and preservation of entire maps under composition�

P

��

p

�� H

��

g

��b
F�f�E

��

f�E

ShG��
pf
� �P��

�� G ��a
E�E �

It follows that p is connected� hence pure� and stably so for pullbacks along entire maps
������� By Lemma ����� this demonstrates that the BCC holds for the pullback of g
along any entire map c�K � G�

To show� conversely� that f is �rmly closed if it satis�es the stated condition� let
E � E be given� and consider an arbitrary entire map h�P � F � Factor h as b � a� as
indicated in the diagram

P

��
p

��
��

��
��

��
��

��a
H

��

g

��b
F�f�E

��

f�E

ShE�E ��
pf
� �P��

�� E�E

where p is the pure part of P � E�E and g is the pullback of f�E along the entire part
of p� Note that the map P � H is entire by Proposition ��� and the fact that b �as the
pullback of an entire map� is entire� By assumption� the BCC holds in any pullback
square

L

��

h

��d
H

��

g

K ��c
ShE�E ��

pf
� �P��

in which the map c is entire� In terms of Lemma ����� this says that the purity of p
is preserved under pullback along entire maps� that is� that p is connected ������� We
may therefore conclude that f is �rmly closed�

For the next lemma� we recall the notion of splitting topos from �I x���

���� Lemma� The BCC holds in any pullback square

F �

��

f �

��t
F

��

f

E � ��s
E



��

in which the map f is proper and �rmly closed� and s� E � � E is a splitting topos for a
family of open subtoposes in E�

Proof� The pure �hence connected� part of any composite P �� F
f
�� E of f with

an entire map remains �rmly closed and proper� the latter by �II ����� �II ���� and the
fact that an entire map is proper and separated ������ Using ������� it will therefore be
enough to show that the map f ��F � � E � is pure given that f is also connected� Thus�
assuming that f is connected� we shall be be done if we can verify the existence part
of property �iii� in Lemma ���� �since f � is surjection �I ������ the uniqueness part is
assured�� Since the assumptions on f localize� we can work internally in E�

To this end� consider any decomposition F � � F ��"F
�

 into two clopen subtoposes�

We need to show that� locally in E �� F � � F �� or F � � F �
� Observe now that by
�I ����� any cover of E � by open subtoposes is re�ned by a cover which is the inverse
image� along the map s� E � � E� of a cover of E by locally closed subtoposes� Since we
only need to reach our conclusion locally in E �� while the restriction of f to a locally
closed subtopos of E remains proper �I ���� and connected ������� we can assume any
simplifaction e�ected by 	passing to a cover in E �
� Now� if the given partition of F �

is the inverse image along t�F � � F of a partition F � F� " F
 of F � then F � � F ��
or F � � F �� directly by the purity of f � We show that this is indeed the situation on a
cover of E �� thus completing the proof�

First� since f � is proper �I ����� each of F �� and F
�
� is compact as an E

��topos� Thus�
by �I ���� we can� after passing to a cover of E � if necessary� write

F �i � t���f��Ai� � Vi�� � t
���f��Ai
 � Vi
� � � � � � t

���f��Aini � Vini� ���

where each Aik � E is closed and each Vik � F is open� Then the subtoposes of E of
the form

P�� � P�
 � � � � � P�n� � P
� � P

 � � � � � P
n� ���

where Pik is either Aik or its complement� collectively pull back to an open cover of
E � over which the expressions ��� become 	constant
 in the sense that Aik is forced to
coincide with E �if Aik appears in ���� or � � E �if the complement of Aik appears in
����� This shows that� after passing to a cover of E � twice if necessary� we can reduce to
the case where the given partition of F � comes from F � as required�

This completes the proof of the lemma�

Proof of Theorem ���� If f is tidy� it satis�es the stable BCC ������ hence is �rmly
closed by Lemma ���� For the converse� assume that all pullbacks of f are �rmly closed�
It will by Remark ��� be enough to show that the BCC holds for a pullback

f��A

��

� � �� F

��

f

A
� � �� E �



��

of f along an arbitrary embeddingA �� E� Let s� E � � E be any splitting topos for open
subtoposes of E which also splits A �e�g� the full splitting topos�� Then the inclusion
A� 	 s��A �� E � is closed� hence entire� Now� in the pullback diagram

f �
��
A�

��

� � �� F �

��

f �

�� F

��

f

A�
� � �� E � �� E

f � is �rmly closed� so the left�hand square satis�es the BCC by Lemma ���� Since f
is stably closed� it is proper by �I ���� so that the right�hand square satis�es the BCC
by Lemma ���� It follows that the composed rectangle satis�es the BCC� Write this
rectangle as another composite of pullbacks

f �
��
A�

��

�� �� f��A

��

�� F

��

f

A� �� �� A �� E �

The left horizontal maps are surjections� being pullbacks of the splitting cover E � � E�
By the surjectivity of A� �A� the required BCC for the right�hand square follows from
that for the composite rectangle �already established� and left�hand square �which holds
again by Lemma ����� This completes the proof�

���� Corollary� Any tidy map f �F � E factors via a connected map

F � ShE ��
fp
� �F��

through the entire map ShE ��
fp
� �F�� � E induced by the pro�nite locale of connected

components of F in E� Moreover� for any pullback square

H

��

g

��b
F

��

f

G ��a
E �

there is an isomorphism
�fp� �H�

�� a	�fp� �F�

in G� In particular� tidy connected maps are preserved under change of base�
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��	� Corollary� Suppose a tidy map f �F � E is obtained as the �ltered limit of a
diagram

F ��pi

��
f

��
��

��
��

��
Fi

��
fi


 


 


 


 


 


E

of tidy maps ffi�Fi � Eg� each of which is connected� Then f is connected�

Proof� Let i� � I� Then by ������� the canonical map

lim
��

fi��Fi
�� lim
��

fi�t�
��Fi� � f�pi�

��Fi�
�� f��F

�where �� i � i� varies over the category I�i� and t��Fi � Fi� denotes the transition
map induced by �� is an isomorphism� But� since each fi is pure� lim��

fi�t�
��Fi�

�� �E �
which implies that f is pure� As f is tidy� hence �rmly closed� it follows that f is
connected�

Following �
� let us call a map f �F � E 	light
 if it is orthogonal to connected
morphisms� in other words� if in any commutative square of the form below in which
the map g is connected� there exists an essentially unique commuting diagonal d as
indicated

H

��

g

�� F

��

f

G ��a

��

d

�
�

�
�

�
�

E �

The standard formal arguments show that lightness is a local property� preserved under
composition� pullback and taking limits indexed in the base� Since the hyperconnected
part of any map is in particular connected� light maps are always localic� call the
corresponding locales 	totally disconnected
� Any discrete locale is totally disconnected
by de�nition� and consequently so is any iterated limit of discrete locales� By Corollary
���� we have�

��
� Corollary� A morphism f �F � E is entire i� f is both tidy and light�



CHAPTER IV� STRONGLY SEPARATED MAPS

In this chapter we study the properties of strongly separated �or 	strongly Haus�
dor�
� toposes� i�e� those toposes with tidy diagonal� After dealing with the de�nition
and general facts �sections � and ��� we specialize to coherent strongly Hausdor� toposes�
showing that these are coherent toposes in which the coherent objects coincide with the
locally �nite ones �section ��� We then go on to characterize these as pro�nite toposes�
which entails a basepoint�free version of Grothendieck�s Galois theory �section ���

x� Definition of strong separation

Naturally associated to the notion of tidy map is the following separation condition�

���� De�nition� A map f �F � E between toposes is said to be strongly separated
if its diagonal &f �F � F �E F is a tidy map� Recall �III ���� that this means that
the direct image functor �&f �� commutes with directed colimits indexed in F �E F � If
f �F � E is strongly separated� we also say that F is strongly Hausdor� as E�topos�

���� Examples� ��� For a group G� the topos BG of G�sets is strongly separated i�
G is �nite �II �������� More generally� using �III ����� one �nds that for a group G in a
topos E� the associated map BEG � E is strongly separated i� G is Kuratowski��nite
and decidable� or equivalently� G is a locally constant �nite group in E�

��� Consider a localeX in a topos E� and the associated topos ShE �X� of internal sheaves
on X� The map ShE �X� � E is strongly separated i� X is �strongly� Hausdor�� by
�II ������� and the following proposition�

���� Proposition� Any localic and separated map is strongly separated� In particular�
any embedding is strongly separated�

Proof� A map is localic i� its diagonal is an embedding� But an embedding is proper
i� it is closed� and any closed embedding is tidy �III ����� The second statement follows
by �II ����i���

Recall now that any diagonal map &f �F � F �E F is already of a very special
nature� namely localic and orthogonal to connected maps or 	light
� see �III ����� More
explicitly� there exists a locale Y in F �E F which is a limit of prodiscrete locales �
and hence 	totally disconnected
 � such that there is an equivalence

F ���

��
�f

��
��

��
��

��
��

ShF	EF �Y �

��� � �
� � �

� � �
� � �

F �E F

��



��

of toposes over F �E F � To see this� write f �F � E as the classifying topos of a
geometric theory T in E� with universal model M � Let ��� �
�F �E F � F be the
projections� so that there are models M� � ���M and M
 � ��
M of T in F �E F � Let
Y be the locale of isomorphisms of T �models fromM� toM
� Then Y can be written as
a limit involving the locales of T �model homomorphisms Hom�M��M��� Hom�M��M
��
etc� which in turn are limits of discrete locales� The topos ShF	EF �Y � classi�es �as an E�
topos� the theory of a pair of T �models with an isomorphism between them� This theory
is evidently equivalent to T � so that ShF	EF �Y � is equivalent to F � by an equivalence
over F �E F �

���� Proposition� A map f �F � E is strongly separated i� its diagonal F � F �E F
is entire�

Proof� By the above remarks� the statement follows directly from the fact that a
morphism is entire i� it is tidy and 	light
 �III �����

���� Example� Let G be an open or proper 'etale complete localic groupoid with
classifying topos BG� Recall �II ���� that there is a pullback diagram

Sh�G��

��

�s�t�

�� BG

��

�

Sh�G�� � Sh�G�� �� BG� BG �

where the lower arrow is an open or proper surjection� Thus BG is strongly separated
i� �s� t� is� i� �s� t� is an entire map of locales� This holds� for example� if �s� t��G� �
G� �G� is proper while G� is a Hausdor� locale �II �����

x� Elementary properties

In this section we record some elementary closure properties of the class of strongly
proper maps� We omit proofs which are analogous to those in �II x���

���� Proposition� �i� Any embedding F �� E is strongly separated�

�ii� In a commutative triangle

G ��g

��
h

��
��

��
��

� F

��
f

� �
� �
� �
� �
� �

E �

���

if f and g are strongly separated� then so is h

�iii� if g is a tidy surjection and h is strongly separated� then so is f 
 and
�iv� if h is tidy and f is strongly separated then g is tidy�



��

���� Proposition� In a pullback square

H

��

�f

���g
F

��

f

G ��g
E �

�i� if f is strongly separated� then so is #f 

�ii� the converse holds if g is a proper �or open	 surjection�

���� Proposition� A map f �F � E is strongly separated i� both parts of its
hyperconnected�localic factorization are�

Proof� The proof uses Proposition ��� and is otherwise analogous to that of �II �����

���� Proposition� Suppose f �F � E is the limit

F ��pi

��
f

��
��

��
��

��
Fi

��
fi


 


 


 


 


 


E

���

of a diagram of separated maps ffi�Fi � Eg indexed by a category I� Then f is strongly
separated�

Proof� The diagonal &f �F � F�E F is the limit of the diagram fgi�Gi � F�E Fg
obtained by pulling back each diagonal &fi �Fi � Fi �E Fi along F �E F � Fi �E Fi
�and the obvious induced transition maps�� The statement therefore follows from
����� and the stability of entire maps under pullback �III ����� and inverse limits �by
III �����

x� Strongly separated coherent toposes

In this section� we wish to examine coherent toposes which are strongly Hausdor�� We
show that these are precisely the coherent toposes in which the coherent objects coincide
with the locally �nite objects� This will lead to a characterization of the class of strongly
Hausdor� coherent toposes as 	pro�nite
 toposes in Section �� But �rst� we recall some
terminology�

Recall �
 that an object C in a topos E is said to be compact �or 	quasi�coherent

�
� when the topos E�C is compact� that is� when every epimorphic family fEi � Cg
in E has a �nite epimorphic subfamily� A compact object is said to be coherent if for
any diagram D � C � E in E with D and E compact� the pullback D �C E is again
compact� A topos E is said to be coherent if its full subcategory Coh�E� of coherent



��

objects is closed under �nite limits and generates E� This is equivalent to the condition
that E is de�ned by a site with �nite limits and �nite covering families� The category
Coh�E� is then �essentially small and� a pretopos� It de�nes a pretopos site without
S�covers for E� in the terminology of �I x����

Next recall that an object E in a topos E is said to be locally constant if there
exists an epimorphic family fCi � �g in E� and for each i a set Si and an isomorphism
E�Ci

�
�� ���Si��Ci over Ci �where �� E � Set is the canonical map�� If each set Si

can be chosen to be �nite� E is said to be locally �nite� Extending the terminology for
sheaves on a space� one says the 'etale map E�E � E is a covering projection �resp� a
�nite covering projection� if E is locally constant �resp� locally �nite�� We denote the
full subcategory of locally �nite objects of E by LF�E��

���� Lemma� An object E in a compact strongly Hausdor� topos E is locally �nite i�
the localization E�E is a compact Hausdor� topos�

Proof� Recall �rst �see �II ������� or �III �������� that E is locally �nite i� the
canonical map E�E � E is proper and separated� Thus� if E is locally �nite� E�E is a
compact Hausdor� topos by the preservation of proper separated maps under compo�
sition� �I ���� and �II ����ii��� Conversely� if E�E is compact Hausdor�� then E�E � E
is proper by �II ����iv��� But also� since the diagonal of E is entire ������ and therefore
separated itself� �II ���� applies� showing that E�E � E is separated� Thus E is locally
�nite�

���� Lemma� In a compact topos E� LF�E� � Coh�E�� The reverse inclusion holds if
E is coherent and strongly Hausdor��

Proof� Suppose E � E is locally �nite� Then� using Lemma ����i�� E�E is compact
by the preservation of propriety under composition �I ����� Thus E is a compact object�
Next� since E�E � E is separated� the diagonal E�E �� E�E�E is closed� i�e�E � E�E
is complemented� But then C �E D is complemented in C �D� from which coherence
of E follows�

Suppose next that E is coherent and strongly Hausdor�� Then if E � E is coher�
ent� E�E is a coherent topos� hence strongly compact �III �������� Since E is strongly
Hausdor�� we can apply Proposition ����iv� to conclude that E�E � E is a tidy map�
whence E is locally �nite �III �������� Thus� Coh�E� � LF�E��

���� Corollary� Let E be a coherent strongly Hausdor� topos� For any object E of E�
the following properties are equivalent�

�i� E is locally �nite

�ii� The canonical map E�E � E is proper and separated

�iii� The localization E�E is a compact Hausdor� topos

�iv� E is coherent�

Proof� Clear from Lemma ��� and Lemma ����

���� Proposition� The following conditions on a topos E are equivalent�
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�i� E is coherent and strongly Hausdor�

�ii� E is coherent� and Coh�E� � LF�E�

�iii� E is strongly compact and generated by LF�E��

Proof� The implication �i���ii� follows from Lemma ���� and since a coherent topos
is strongly compact� �ii� clearly implies �iii��

To show that �iii� implies �i�� �rst observe that if LF�E� generates� so that E has
a site consisting of locally �nite objects� then models of the theory T classi�ed by E
are functors with values in the category of �nite cardinals� It follows that the diagonal
of E� constructed as sheaves on an iterated internal limit of discrete locales in E � E
as in section �� is in fact entire� since the discrete locales involved are �nite cardinals�
Thus� if E is generated by its locally �nite objects� it is strongly Hausdor�� and then
also coherent� by Lemma ����

This completes the proof�

���� Examples� ��� The common properties of coherent sheaves on a Stone space
hold in any topos� More explicitly� a topos Sh�X� of sheaves on a pro�nite locale is
coherent and strongly Hausdor�� with Coh�Sh�X�� � LF�Sh�X�� the subcategory of
sheaves S for which there is a �nite partition X � U� � � � � � Un such that S�Ui is the
constant sheaf with �nite �ber Fi� We shall use this in x��

��� The classifying topos B�G� for a �nite discrete groupoid G is coherent and strongly
Hausdor�� with Coh�B�G�� � LF�B�G�� � Gal�B�G��� the full subcategory of �right�
actions of G on G��indexed families of �nite sets�

x� Galois theory for profinite groupoids

In this section we give a characterization of strongly Hausdor� coherent toposes as
	pro�nite
 toposes� More precisely� we shall prove the following�

���� Theorem� A coherent topos E is strongly Hausdor� i� E is the classifying topos
of a pro�nite groupoid�

Recall that a localic �or topological� groupoid is said to be pro�nite if it can be
obtained as an inverse limit

lim
�i

F i ���

of �nite �discrete� groupoids F i� By decomposing such an inverse limit into the �ltered
limit of its �nite sublimits� we see that a pro�nite groupoid can also be written as a
�ltered inverse limit of �nite groupoids�

���� Remark� If G is a pro�nite groupoid� then its locales of objects and arrows are
pro�nite� i�e� Stone locales� However� it is not the case that any groupoid in the category
of pro�nite locales is pro�nite as a groupoid� �For example� let K be any compact
Hausdor� locale� Then there exists a pro�nite locale X and a continuous surjection
p�X � K� The locale R � X �K X is again pro�nite� so that the equivalence relation
G � �R� X� is a groupoid in the category of pro�nite locales� In general� however� G



��

cannot be a pro�nite groupoid� because when it is� its classifying topos BG � Sh�K� is
coherent �Proposition ��� below��

���� Proposition� Let G � lim
�i

F i be a pro�nite groupoid� Then the canonical map

BG� lim
�i

BF i

is an equivalence of toposes�

Proof� Since any �nite groupoid is evidently 'etale complete� there is for each index
i a pullback of toposes

Sh�F i
��

��

s

��t
Sh�F i

��

��
Sh�F i

��
�� BF i �

���

Since inverse limits commute with pullbacks as well as with the functor sending a locale
to its topos of sheaves� we obtain a pullback

Sh�Gi
��

��

s

��t
Sh�Gi

��

��

p

Sh�Gi
��

��p
lim
�i

BF i �

���

as the inverse limit of the pullbacks ���� It now su�ces to show that the map p in ���
is a proper surjection� For then� by �I ����� p is of e�ective descent for sheaves� so that
the canonical map BG� lim

�i
BF i is an equivalence� exactly as required�

To prove that p is a proper surjection� consider for each index j the projection
lim
�i

BF i � BF j and form the pullback

Pj

����

��t
Sh�F j

� �

����
lim
�i

BF i �� BF j �

The map Sh�F j
� �� BF j is a �nite �surjective� covering projection �i�e� is equivalent to a

slice BF j�A� BF j for a locally �nite object A in BF j with global support�� Therefore�
the same is true for the map Pj � lim

�i
BF i� In particular� this map is an entire

surjection� By �I ����� it follows that that the �relative� inverse limit lim
�j

Pj � lim
�i

BF i

is again a proper �in fact� entire� surjection� But straightforward manipulation of ���
categorical� limits shows that this map is equivalent to p� Sh�G�� � lim

�i
BF i� hence

proves that the map p is a proper surjection as well�



��

���� Corollary� Any pro�nite groupoid is �etale complete�

Proof� The statement means that for any pro�nite groupoidG the canonical diagram
of toposes

Sh�G��

��

s

��t
Sh�G��

��
Sh�G�� �� BG �

is a pullback� But by the equivalence of Proposition ���� this diagram is equivalent to
the pullback ��� above�

���� Remark� Let E � lim
�i

Ei be a �ltered inverse limit of coherent toposes Ei and

coherent maps Ej � Ei between them� Then the topos E is again coherent� Indeed� the
bonding mappings Ej � Ei induce morphisms

Coh�Ej �� Coh�Ei�

between the pretoposes of coherent objects� The inverse limit E can be constructed as
the topos of sheaves on the �pseudo��colimit C � lim

�i
Coh�Ei� of pretoposes� constructed

as the colimit of the underlying categories� see the proof of �I ����� This shows that E
is coherent� It also shows �I ���� that any coherent object of E is of the form ��i �C�
for some coherent object C in some Ei� where �i� E � Ei is the projection� From this
remark and Proposition ��� it is evident that�

���� Proposition� The classifying topos of a pro�nite groupoid is coherent and
strongly Hausdor��

Proposition ��� furnishes the reverse implication in Theorem ���� To show the
forward implication� we use the following �weaker� see Remark ��� above� result�

��	� Lemma� Any coherent Hausdor� topos E is of the form B�G� for a groupoid in
the category of pro�nite locales�

Proof� Recall from �
 that any coherent topos E has a �stable� cover of the form
�� Sh�X� � E� where the locale X is pro�nite �although the formulation and proof of
this result in �
 refers to Stone topological spaces� each ingredient� in particular the Barr
cover construction� is evidently constructive once one sticks to working with pro�nite
locales�� Since E is Hausdor�� the cover � is entire by �III ����ii��� Let G be the groupoid
such that X � G� and such that the diagram

Sh�G��

��

s

��t
Sh�G��

��

�

Sh�G�� ���
E



��

is a pullback� Then E � BG by the descent theorem for proper maps �I ����� Also�
the projections s� t are entire by �III ������ It follows� using �III ����i��� that G� is
again a pro�nite locale� so that G is a groupoid in the category of pro�nite locales� as
required�

Any localic groupoid G has a pro�nite re�ection P �G�� which can be constructed
as the limit

P �G� � lim
� D�G�

K

where D�G� is the directed inverse system of functors G� K into �nite groupoids and
commuting �transition� functors 
�

G

��

�

� �
� �
� �
� �
�

��

�

��
��

��
��

�

L ��
�

K �

���

To complete the proof of Theorem ���� we consider a groupoid G as in Lemma ���� By
Remark ���� the 	Galois
 category Gal�P �G�� � LF�B�P �G�� is the �pseudo��colimit
of the categories Gal�K�� We would therefore be done if we can prove that this colimit
coincides with Gal�G�� Inspection of the construction of a directed colimit of categories
�see the proof of �I ����� shows that we need to verify the following�

��� Any locally �nite object of B�G� results up to isomorphism as ��S for some ���K�
in D�G� and S � Gal�K��

��� Given any ���K� � D�G�� S� T � Gal�K� and a map h���S � ��T in Gal�G�� there
is an arrow 
� ���L�� �	�L� in D�G� �as in the diagram ���� and a map g�
�S � 
�T
in Gal�L� such that h � 	�g�

��� Any two choices of g in ��� are 	eventually equal
 in D�G��

Now� since G� is pro�nite� any object C of Gal�G� is of the form C � C�" � � �"Cn�
where each Ci is a G�sheaf with constant �nite �ber Fi� Since the support Ui � G�

of Ci is G�invariant� we can write G � G� " � � � " Gn� where Gi is the restriction of
G to Ui� Let K be the groupoid Aut�F�� " � � � " Aut�Fn�� Then the action of G on
the Ci gives for each i a functor Gi � Aut�Fi�� and these combine to give a functor
��G� K� Moreover� C �� ��S where S is the disjoint sum F�" � � �"Fn equipped with
its canonical K�action� This veri�es ����

To show ���� let h���S � ��T be a map in Gal�G� as stated� By replacing K
with an equivalent �nite groupoid with more objects� if necessary� we can assume that
h decomposes �as a map of 'etale spaces in Sh�G��� into a sum of trivial maps of the
form id� gk�Vk � S�k� � Vk � T �k� over Vk � ��

�fkg� for k � K�� Let 
�L � K be
the subgroupoid of K with the same objects� but with

L�k� k�� � f� � K�k� k�� j gk� � S��� � T ��� � gkg�

Then 
�G� K factors through L� and the maps gk�S�k�� T �k� become the compo�
nents of a natural transformation g�
�S � 
�T which pulls back to h� as required�



��

Finally� for ���� if there are two choices for g� simply restrict the objects of L to
those for which the components of the two choices agree�

This completes the proof of Theorem ����

Grothendieck�s classical Galois theorem is of course a special case� and takes the
following form�

��
� Corollary ��
� Let E be a pointed topos� The following are equivalent�

�i� E is hyperconnected and �strongly	 Hausdor�

�ii� E is connected� coherent and strongly Hausdor�

�iii� E � B�G� for a pro�nite group

�iv� E is coherent� with locally �nite coherent objects�

Proof� Clear from �II ����� Proposition ��� and Theorem ����



CHAPTER V� RELATIVELY TIDY MAPS AND LAX DESCENT

In this chapter� we consider the following weakening of the notion of tidy map�
A morphism f �F � E between toposes is said to be relatively tidy if its direct image
functor f� commutes with ordinary �small� external� �ltered colimits �the reason for
this terminology will become clear below�� We shall develop as much of the theory of
relatively tidy maps as is needed to prove that in a lax pullback square

�G �E F�

�
�

��

d�

��d�
F

��

f

G ��g
E �

where f is relatively tidy� the map d� is tidy and the induced natural transformation
g�f� � d��d�

� is an isomorphism �Theorem ����� This result has immediate applications
to lax descent of sheaves �section ��� Indeed� it has to a large extent been motivated by
the desire to exhibit a proof of Zawadowski�s descent theorem for pretoposes �
 which is
both conceptual and constructive� using standard methods of topos theory� It is thus
relevant to point out that the ingredients to the above theorem are mostly well�known
�or at least straightforward to prove� when specialised to the special instance of coherent
morphisms between coherent toposes �see �
��

We start with two preparatory sections� the �rst on path toposes and localizations
and the second on lax pullbacks� After dealing with the formal de�nition and some
elementary facts about relative tidiness �section ��� we introduce relative tidy morphisms
between convenient types of sites �section �� as a vehicle for showing that relatively tidy
maps are stable under change of base �Theorem ���� and �ltered inverse limits �Theorem
������ With these properties in place� our main results follow rather straightforwardly
in a formal way �section ���

x� Path toposes

Most of the material in this preliminary section is based on �
� We shall discuss the
construction� for any topos E� of a path topos P �E�� where the 	paths
 are parametrised
by the Sierpinski space� We work over a �xed base topos S as if S is 	the
 category of
sets�

Consider the topos Sof sheaves on the Sierpinski space� It is �equivalent to� the
category Set�� whose objects are given by functions ��S� � S� and whose arrows are
commutative squares� We start with a well�known lemma�

���� Lemma� S is an exponentiable topos� that is� for any topos E� the exponential
topos ES exists�

��



��

Proof� Although exponentiability of Sfalls out immediately from the general theory
of such toposes developed in �
� we describe two easy ways of seeing this directly�

One is based on the formalism of classifying toposes of geometric theories� Let E
be any topos� and let T be a geometric theory classi�ed by E� Let T � be the geometric
theory of which the models are homomorphisms of T �models� Then the classifying topos
of T � clearly has the universal property required for the exponential ES �

Alternatively� we use sites� For a given topos E� let �C � J� be any site for E with
pullbacks� Let Ar�C � be the arrow category of C � and let J � be the stable system of covers
on Ar�C � which at the object �C � � C� consists of the following two types of families�
�rst� for each J�cover fCi � Cg of C� the family f�C ��C Ci � Ci�� �C � � C�g� and�
secondly� for each J�cover f�j �C

�
j � C �g of C �� the family of arrows

C �j

��

���j
C �

��
C ��id

C�

Then �Ar�C �� J � � is a site for ES �see �
 for a proof��

���� De�nition� The path topos of a topos E is the exponential ES � denoted P �E��
We shall write

��� ���P �E�� E

for the evident 	evaluation
 morphisms� and �� E � P �E� for the 	diagonal
 section�
The universal transformation ��� � ��� will be denoted by �� Note that the natural
transformation ���� ����� � ��d�� is the identity� modulo the canonical isomorphisms
��� �� idE �� ����

The construction of path toposes is related to the theory of local toposes and
of localizations developed in �
 and �
� Recall from the latter source that a morphism
f �F � E is said to be local if the direct image functor f� has an E�indexed right adjoint�
denoted f� �respectively f�E � E�E � F�f�E for its indexed part at E�� It follows of
course that for a local map f � the direct image preserves all E�internal colimits� A
fortiori� we obtain�

���� Proposition� Any local morphism of toposes is tidy�

If p�S � E is a point of an S�topos E� one can 	localize
 E at p� that is construct
a local S�topos

Locp�E�

with certain universal properties �see �
�� This construction depends on the base topos
S� For our present purposes� it is important to observe that Locp�E� can be obtained
as a �ltered inverse limit of slices of E�

Locp�E� �� lim
�U

E�U ���



��

indexed by the directed category of neighbourhoods of the point p �� Theorem ���
�
The path topos is P �E� is in some sense the universal localization of E� More

explicitly� the S�topos E pulls back to an E�topos ��� E � E � E� of which the diagonal
&� E � E �E is a 	generic point�
 Now� working over E as base� one can construct the
localization Loc��E � E � E�� which is a local E�topos� This localization is precisely
the path topos P �E�� viewed as an E�topos via the map ���P �E� � E� In particular�
�� is a local morphism� hence is tidy by ������ The right adjoint to ��� is the inverse
image �� of the diagonal section� In particular� since ����� �� id� we �nd by taking right
adjoints that �����

� �� id also �see �
��
The next proposition summarizes the above properties of the path topos to be used

in this chapter�

���� Proposition �
� Let E be any topos and let P �E� be its path topos� with canonical
maps ��� ���P �E�� E�

�i� The map ���P �E�� E is local� hence strongly proper�

�ii� The canonical transformation � � ��
� � ��

� induces an isomorphism �����
� �� id�

�iii� P �E� is the localization of ��� E � E � E at the diagonal point &� E � E � E� In
particular� there is an equivalence of E�toposes

P �E�

��
�������

���
���

���
���

�
��� lim
�i

�E � E��Ui

��� �
� �
� �
� �
� �
� �

E � E �

where the inverse limit is indexed by by an internal directed category in E �cf� ��	
above	�

x� Lax pullbacks of toposes

The sole purpose of this section is to review the de�nition and construction of lax
pullbacks of toposes� also known as 	comma�squares�
 Again� we �x a base topos S�
and assume all toposes to be S�toposes�

Given two morphisms f �F � E and g�G � E� the lax pullback �over S	 of f and
g is a square

H

��

b

��a
F

��

f

G ��g
E

together with a ��cell � � gb � fa �i�e� a natural transformation ��� b�g� � a�f��� and
universal with this property� This means roughly that� given any pair of morphisms



��

u�K � F and v�K � G� together with a ��cell �� gv� fa� there is a morphism �unique
up to natural isomorphism� c�K � H for which there are isomorphisms �� ac� u and
	� bc� v such that the square of ��cells

gbc

��

�c

��g�
gv

��

�

fac ��f�
fu

commutes� The precise formulation of the universal property refers in the usual way
to an equivalence of categories between Hom�K�H� and the category of such triples
�u� v� ��� natural in K� Note that the de�nition is not symmetric in f and g� We shall
denote a square with this universal property by

�G �E F�

�
�

��

d�

��d�
F

��

f

G ��g
E �

���

The use of the notation is justi�ed by the existence and uniqueness of lax pullbacks
expressed in Proposition ��� below�

���� Remark� Unlike pullbacks� lax pullbacks of toposes depend on the base S�
Indeed� the ��cell � � gb � fa is required to be a transformation over S� This means
that� if we denote the structure maps to the base by �E � E � S� etc� then �E� � id� Or
more precisely� the diagram of ��cells�

�E �gb�

���
��

��
��

��
�

���E�
�E �fa�

��
 


 


 


 


 


�H�

in which the sloping arrows are �the obvious� isomorphisms� commutes� In particular�
in the extreme case where E is the base topos S� the lax pullback coincides with the
ordinary pullback� This is of course not the case in general� as is evident from the
following instance of a lax pullback�



��

���� Lemma� For any topos E� the square

P �E�

�
�

��

��

����
E

��

id

E ��id
E

naturally associated to the path topos of E is a lax pullback over S�

Proof� Clear from the universal property of the exponential P �E��

���� Proposition� For any pair of morphisms f �F � E and g�G � E� the lax pullback
��� exists� and is unique up to equivalence�

Proof� Constructing the lax pullback ��� amounts to constructing the pullback

�G �E F�

��

�d��d��

��h
P �E�

��

�������

G �F ��g	f
E � E �

with � � gd� � fd� obtained from the 	universal path
 ��� d� � d���P �E� � E in the
obvious way�

���� Remark� We shall make use below of the following equivalent 	stepwise
 con�
struction of the lax pullback ��� from the path topos�

�G �E F�

��

d�
pb
��

�� �E �E F�

��

pb
��

�� F

��

f

P �E�

��

��
�
�

����
E

��

id

G ��g
E ��id

E �

x� Relatively tidy maps

Recall from chapter III that a morphism f �F � E is said to be tidy if f� preserves
all E�internal directed colimits� In this section we shall be interested in morphisms



��

f �F � E for which f� is only required to preserve ordinary directed colimits� that is�
such that for any diagram fFig of objects of F indexed by a �ltered category I in Set�
the canonical map

�� lim
�I

f��Fi�� f��lim�I
Fi� ���

is an isomorphism� As usual� this notion makes sense over any base topos S in place of
Set� and leads to the following�

���� De�nition� A morphism f �F � E of S�toposes is said to be tidy relative to S if
f� commutes with all S�internal �ltered colimits�

Note that this de�nition takes care of 	pure
 tidiness as the case where S coincides
with E� If S is� or plays the role of the topos of sets as �xed base topos� we shall for
brevity refer to f simply as relatively tidy�

���� Example� Clearly� any coherent map f �F � E between coherent toposes is
relatively tidy �
�

As an aid to our exposition� we also introduce the corresponding relative notion of
propriety �so that� in particular� a relatively tidy map is a relatively proper map with
additional properties��

���� De�nition� A morphism f �F � E of S�toposes is said to be proper relative to
S if for each E � E� direct image for the induced morphism f�E�F�f�E � E�E of
S�toposes preserves suprema of S�internal directed families of subobjects of ��

���� Remark� De�nitions ��� and ��� can be made more explicit in the usual way�
Write �E � E � S and �F �F � S for the structure maps into the base topos�

��� The map f �F � E is tidy relative to S i�� for any object S � S and any directed
category I in S�S� the associated square �with notation as in �I ���� but writing E�S
for E���ES� f�S for f���ES� I for ��E�S�

�I� etc��

F�S

��

f�S

���
�F�S�I

��

�f�S�I

E�S ���
�E�S�I

���

has the property that the canonical natural transformation


��f�S�I� � �f�S��

� ���

is an isomorphism�



��

��� The map f �F � E is proper relative to S i�� for any object E in E� any object
S � S and any directed category I in S�S� the square

�F�E��S

��

�f�E��S

���
��F�E��S�I

��

��f�E��S�I

�E�E��S ���
��E�E��S�I

has the property that the canonical map


���f�E��S�I��V �� ��f�E��S��

��V �

is an isomorphism for any V � � in ��F�E��S�I � By �I ���� this is equivalent to the
requirement for the square ��� that the natural transformation ��� is mono�

���� Proposition� If f �F � E is tidy �resp� proper	 relative to S� then so is the
induced morphism f�E�F�f�E � E�E for any object E in E�

Proof� Clear from Remark ����

The elementary closure properties of proper and tidy maps have evident relative
versions� Thus� propriety and tidiness relative to S are both 	local
 properties with
respect to S� Also�

���� Proposition� �i� Any equivalence of S�toposes is tidy relative to S�

�ii� The composition of two morphisms which are proper �resp� tidy	 relative to S is
again proper �resp� tidy	�

Relatively tidy morphisms can be characterised by an 	Edwards criterion
 anal�
ogous to �III ����� We note� as before� that the next proposition can be formulated
and proved in the internal logic of an arbitrary base topos S� substituting 	proper)tidy
relative to S
 for 	relatively proper)tidy
�

��	� Proposition� A morphism f �F � E is

�i� relatively proper i� for any directed epimorphic family fFi �� f�Eg of subobjects
in F there exists an epimorphic family fEj � Eg in E such that each f�Ej � f�E
factors through some Fi �� f�E


�ii� relatively tidy i� f is relatively proper and for any epimorphism F � f�E and any
directed epimorphic family fRi �� F �f�E Fg of equivalence relations in F � there
exists an epimorphic family fEj � Eg in E and for each index j an epi Aj � f�Ej

and an index i such that there is a commutative diagram in F �

Ri ��
��
F ���

f�E

Aj �f�Ej Aj ��
��

��

Aj ��

��

f�Ej �

��



��

Proof� �i� Given a family fFi � f�Eg of subobjects in F � its image under the
functor �f�E���F�f�E � E�E is re�ned by a family fEj � Eg in E precisely when
each f�Ej � f�E factors through some Fi �� f�E� Thus� the statement is just a
reformulation of De�nition ����

�ii� Suppose f �F � E is relatively proper� so that that for any directed system fFig in
F � the canonical map

�� lim
� I

f��Fi�� f��lim
� I

Fi� ���

is a monomorphism �Remark ��� ����� We need to show that the additional condition
on f is necessary and su�cient for � to be epi� and hence an isomorphism�

Suppose �rst the condition is satis�ed as stated� It is su�cient to show that � is
	locally surjective�
 in the sense that any map

E
�
�� f��lim�I

Fi�

factors through � on a cover of E� So �x such � and consider the transposed !�� f�E �
lim
�I

Fi� Construct for each index j the pullback along the colimit map �j�Fj � lim
�I

Fi

Pj

��

�� Fj

��

�j

f�E ���� lim
�I

Fi �

Then� since the images of the maps Pj � f�E form a directed epimorphic family
of subobjects� we can by relative propriety of f and �i� �nd a cover of E by arrows
e�E� � E for which there is a commutative square of the form

B�

����

�� Fj

��

�j

f�E� �� f�E ���� lim
�I

Fi �

with the vertical arrow on the left epi as indicated� By replacing E by E�� we may
thus assume that !�� f�E � lim

�I
Fi can be composed with an epimorphism to give a

factorisation

B

����

��� ���� Fj�

��

�j�

f�E ���� lim
�I

Fi

���



��

for some index j�� Now construct for each transition map � �Fj� � Fj in the system
fFjg the equalizer of �	�� and �	���

R�
�� B �f�E B ��

��

����

B ����
Fj �

Since the composite B � Fj� � lim
�I

Fi factors through f�E as in ���� the equivalence
relations R� cover B�f�E B� Thus� the assumed property of f gives� after replacing E
by a family of objects covering E� a 	re�nement


A

�� ���
��

��
��

��
�������� B

����� �
� �
� �
� �
�

f�E

such that A �f�E A � B �f�E B factors through some R� � Thus� for this � � the two
composites

A�f�E A ��
��
A �� B �� Fj� ��� Fj

are equal� Since the epi A � f�E is the coequaliser of its kernel pair� it follows that
!�� f�E � lim

�I
Fi factors through Fj � lim

�I
Fi� Thus� after having passed to a cover of

E twice� we have shown that ��E � f��lim�I
Fi� factors through f�Fj for some j� hence

factors through � as desired�
Conversely� assume that f is relatively tidy� Take any epi ��F � f�E and any

directed union
S
iRi � F �f�E F by equivalence relations Ri� Form the coequalizers

Qi

Ri ��
��
F

����

�

�� �� Qi

����
�i

�
�
�
�
�
�

f�E

so that f�E � lim
�i

Qi because the Ri cover the kernel pair of 
� Since f is relatively

tidy� f�f�E � lim
�i

f��Qi�� so that by pullback along the unit 
�E � f�f
�E we obtain

a colimit E � lim
�i

Ei�

Ei

��

�� f��Qi�

��
E ��


f�f
�E �



��

By transposition we get a commutative diagram

f��Ei�

���
��

��
��

��
�� Qi

��� �
� �
� �
� �
� �

f�E

for each i� Now form the pullback

Bi

����

�� F

����
f��Ei� �� Qi �

Then Bi �f��Ei� Bi factors through Ri� since Ri is the kernel pair of F � Qi� This
veri�es the stated property of f � and completes the proof of the proposition�

x� Relatively tidy morphisms of sites

In this section� we give a description of relative tidiness of a map f �F � E between
toposes in terms of a morphism of sites inducing f � and use it to prove the non�trivial
stability properties of relatively tidy maps� More precisely� we prove the following two
theorems�

���� Theorem �	change of base
�� In a diagram of pullback squares

F � ���

��

f �

F

��

f

E � ��


��

E

��
S � ���

S �

suppose f is proper �resp� tidy	 relative to S� Then f � is proper �resp� tidy	 relative to
S �� and the weak BCC �resp� BBC	 is satis�ed in the top square
 that is� the induced
natural transformation

��f� � f ���
�

is a monomorphism �resp� an isomorphism	�



��

���� Theorem �	�ltered inverse limits
�� Suppose f �F � E is the limit of a diagram
of maps ffi�Fi � Eig over a base topos S� indexed by a �ltered category I�

F ��qi

��

f

Fi

��

fi

E

���
��

��
��

��
�

��pi
Ei

��
 


 


 


 


 


S

���

If each fi is proper �resp� tidy	 relative to S� then so is f � Moreover� for any i � I� the
natural transformation

lim
��

pj
�fj�u�

� � f�qi
�� ���

where �� j � i varies over the category I�i and u��Fj � Fi is the transition map
induced by �� is then a monomorphism �resp� an isomorphism	�

Before embarking on the technicalities of proof� we straightaway draw a needed
conclusion from Theorem ���� First� note that it gives�

���� Corollary� Suppose in ��� that for each �� j � i in I� the canonical natural trans�
formation t�

�fi� � fj�u�
� induced by the transition maps t�� Ej � Ei and u��Fj � Fi

is a monomorphism �resp� an isomorphism	� Then if the maps fi are proper �resp� tidy	
relative to S� the canonical natural transformation pi

�fi� � f�qi
� is a monomorphism

�resp� an isomorphism	 for each i � I�

���� Proposition �	localization lemma
�� Let f �F � E be a tidy morphism relative
to �a base topos	 S� and let p�S � E be a point of E� Then in the pullback square

G

��

g

��v
F

��

f

Locp�E� ��u
E

the map g is again tidy relative to S� and the Beck�Chevalley condition g�v
� �� u�f�

holds�

Proof� As explained in x�� the localization Locp�E� can be constructed as a �ltered
inverse limit

Locp�E� � lim
�U

E�E

where U ranges over the �'etale� neighbourhoods of p� It follows that

G � lim
�U

F�f�U�



��

For any transition map e�U � V between 'etale neighbourhoods of p� we have a pullback

F�f�U

��

f�U

�� F�f�V

��

f�V

�� F

��

f

E�U ��e
E�V �� E

where the morphisms f�U and f�V are again tidy while the square satis�es the Beck�
Chevalley condition �by the explicit construction of �f�U�� and �f�V �� from f��� Thus
g is tidy by Theorem ���� while the conditions of Corollary ��� are satis�ed to yield the
Beck�Chevalley condition g�v

� �� u�f��

The remainder of this section is devoted to proving Theorems ��� and ���� The
material to follow generalizes that of �I x�� and �III x�� in an evident way� The proofs
will therefore be appropriately terse where arguments are analogous�

First� we de�ne relatively tidy morphism between pretopos sites� We shall need
the following addition to the notation and terminology introduced in �I x�� for sites and
morphisms between sites� Consider any morphism of sites F � C � D such that D has
pullbacks� The morphisms F can be 	sliced
 at any C � C to produce a morphism
of sites F�C� C �C � D �F �C�� and any arrow C � � C � C induces a 	localization

morphism D �F �C� � D �F �C �� by pullback along the arrow F �C �� � F �C�� We shall
say that a condition which refers to an object C � C and data in the site D �F �C�
holds locally �at C� if there is a cover fCj � C j j � Jg in C such that for each j � J
the condition holds for the 	localized
 data in D �F �Cj �� For example� given an arrow
��D � F �C�� a family fDi � D j i � Ig in D locally has a member which covers at C
if we can �nd a cover of C as above such that� for each j � J � the pulled back family
fF �Cj��F �C� Di � F �Cj��F �C� D j i � Ig has a single element which covers�

Given C � C and ��D � F �C� � D � we extend the terminology of �III x�� by
calling a family of monomorphisms of the form fVk � D �F �C� D j k � Kg e�ective
�at C	 if there exists a subobject E � D such that both E � F �C� and the induced

family f�E�F �C�E��Vk
�n�� E�F �C�E j k � K� n � Ng are covers of D � A subobject

V � D �F �C� D is e�ective at C if it is so as a singleton family�

���� De�nition� A morphism F � C � D between pretopos sites is said to be

�i� relatively proper if for any C � C � any directed cover fDi� F �C�g in D locally has
a member which covers�

�ii� relatively tidy if F is relatively proper and� moreover� for any C � C and covering
map ��D � F �C�� any directed cover fRi �� D �F �C� Dg of monomorphisms in D
locally has a member which is e�ective at C�

���� Proposition� Let f �F � E be a map of toposes and suppose f is induced by
a morphism F � C � D where C and D are pretopos sites� Then f is relatively proper
�resp� relatively tidy	 precisely when F is�



��

Proof� We have a commutative square

D ��h
F

C ��h

��

F

E

��

f�

of pretopos morphisms� in which the canonical functors denoted h preserve and re�ect
covers� and moreover� any �directed� cover of an object in the image of h is re�ned by the
image under h of a �directed� cover in the site� Combining these facts with Proposition
��� gives the result �compare the proofs of �I ���� and �III ������

The next 	induction
 lemma adapts �I ���� to the context of relative propriety�

��	� Lemma� Let F � C � D be a morphism between pretopos sites� and suppose F
comes equipped with a stable �under 
localization� in C 	 system fM�C�gC
C of distin�
guished covering monomorphisms of D the form U � F �C� at C � C such that

�i� The trivial cover F �C�
id
�� F �C� � M�C��

�ii� If W � V � F �C�� then V � F �C� �M�C� whenever W � F �C� �M�C��
�iii� For any basic S�cover fVi � V g in D � if V � F �C� � M�C� then the family

fVi� F �C�g locally has a member in M�C��

Then for C � C � any cover of the form U � F �C� in D is locally in M�C�� and the
morphism F � C � D is relatively proper�

Proof� By induction on covers� property �iii� extends to any generated S�cover
fUi � Ug in D � and then by �I ���� and �ii� to any directed cover� Since M contains
identity covers of the form F �C�� F �C�� the result clearly follows�

��
� Corollary� A morphism F � C � D between pretopos sites is relatively proper i�
the conditions of ����� are satis�ed by the sheaf M on C of 
covering subobjects of ��
in D �in other words� the sheaf having covers of the form U � F �C� in D as sections
at C � C 	�

���� Lemma� Let ��S � � S be a morphism of toposes� and suppose F � C � D is a
relatively proper morphism between pretopos sites in S� Then the morphism ��F ���C �
��D is relatively proper in S �� Moreover� if M � C op � S is the internal sheaf on C of
covering subobjects of � in D as in ������ then the corresponding sheaf on ��C in S � is
the shea��cation of ��M �

Proof� The conditions of ����� satis�ed byM are 	geometric
 and hence also hold for
��M � Thus� applying Lemma ��� in S �� we deduce that ��F ���C � ��D is relatively
proper� and that the de�nition of M is preserved 	up to shea��cation�


Next� we formulate an appropriate version of �III ���� for dealing with relative
tidiness�



��

����� Lemma� Let F � C � D be a morphism between pretopos sites� and suppose D
comes equipped with a stable system fN�C�gC
C of distinguished e�ective subobjects of
D at C � C � such that for ��D � F �C��

�i� If the arrow � is a cover� then the trivial e�ective subobject D�F �C�D
id
�� D�F �C�D

is locally in N�C��
�ii� For monomorphisms E � D and W � V � E �F �C� E � D �F �C� D� if

W � E �F �C� E � N�C� then V � D �F �C� D � N�C��

�iii� V �n�� D �F �C� D � N�C� only if V � D �F �C� D � N�C��
�iv� For any basic S�cover fVi� V g in D � if V � D �F �C�D � N�C� then the family

fVi� D �F �C� Dg locally has a member in N�C��

Then any e�ective subobject at C � C in D is locally in N�C�� and the morphism
F � C � D is relatively tidy�

Proof� By induction on covers� property �iv� extends to any generated S�cover
fUi � Ug in D � and then by �I ���� and �ii� to any directed cover� But then� if
��D � F �C� is a cover� any directed cover fSi � D �F �C� Dg locally has a member
in N�C�� since locally the identity D �F �C� D � D �F �C� D � N�C�� This shows that
F � C � D is relatively tidy�

To prove that all e�ective subobjects are locally in N � consider any such subobject
at C � C � say V � D �F �C� D for ��D � F �C�� and let E � D be a monomorphism

such that E � F �C� and the family f�E �F �C� E� � V �n� � E �F �C� E j n � Ng are

covers in D � Then� by what we have just shown� some �E�F �C�E��V
�n�� E�F �C�E

is locally in N�C�� whence V � D �F �C� D is locally in N�C� by conditions �ii� and
�iii��

����� Corollary� A relatively proper morphism F � C � D of sites is relatively tidy
i� the conditions of ������ are satis�ed by the sheaf N on C of e�ective subobjects in D
�that is� the sheaf having all e�ective subobjects of D at C as sections at C � C 	�

����� Lemma� Let ��S � � S be a morphism of toposes� and suppose F � C � D is a
relatively tidy morphism between pretopos sites in S� Then the morphism ��F ���C �
��D is relatively tidy in S �� Moreover� if L� C op � S is the internal sheaf having covers
D � F �C� in D as sections at C � C �using set�notation in S	 and N is the sheaf on
C of e�ective subobjects in D as in ������� then the corresponding sheaves on ��C in S �

are the shea��cations of ��L and ��N respectively�

Proof� We know by Lemma ��� that ��F ���C � ��D is relatively proper and
�writing as if S � were the category of sets� that for C � ��C � the image of any cover
��D � ���F ��C� is locally in ��M�C� for M as in ������ It follows that ��D �
���F ��C� is locally in ��L�C�� which shows that the shea��cation of ��L gives the
sheaf of all such � in S �� This implies in particular that the presheaf ��N on ��C
as a system of 	distinguished
 e�ective subobjects satis�es condition �i� of Lemma
����� Since the remaining conditions �ii�� �iii� and �iv� are evidently 	geometric�
 hence
inherited by ��N from N as they stand� we can apply Lemma ���� in S � to conclude
that the sheaf on ��C of all e�ective subjects of ��D is given by the shea��cation of
��N � and that ��F ���C � ��D is relatively tidy�



���

Proof of Theorem ���� We reduce to the case S 	 Set by arguing constructively�
Let F � C � D be a morphism of pretopos sites inducing f �F � E� If f is relatively

proper �resp� relatively tidy�� then F is relatively proper �resp� relatively tidy� as a
morphism of pretopos sites� and so is ��F ���C � ��D in S � by Lemma ���� It follows
that f � is proper �resp� tidy� relative to S �� being induced by ��F �

For the BCC� consider any object V of F � represented by a sheaf B on D � The
corresponding sheaf for ��V made in the topos S �� is given by the shea��cation B� 	
���B��� in S � of the presheaf ��A on ��D � Thus� writing in the internal language of
S �� an element y � B��D� for D � ��D is given by a cover fDj � Dg in ��D and
a 	locally compatible
 family of elements yj � ���B��Dj �� Two such families give the
same y if they agree on a common re�nement�

In similar fashion� the sheaf A on C representing f�V � viz� the restriction of B
along the functor F op� C op � D op � produces a presheaf ��A on ��C � the shea��cation
A� of which represents ��f�V � For C � ��C � an element x � A��C�� given by a cover
fCi � Cg in ��C and a locally compatible family xi � ���A��Ci� � can be turned into
a member 
C�x� of B�����F ��C�� via the isomorphism ���A��Ci� �� ���B����F �Ci���
This de�nes a morphism of sheaves 
�A� � B�����F �op� which represents the canonical
map ��f�V � f ���

�V � We are asked to prove that 
 is mono if f is relatively proper�
and furthermore epi if f is relatively tidy�

Suppose f is proper� To deduce that 
 is mono� it is clearly enough to show for any
C � ��C and sections y� y� � ���B�����F ��C�� that if y and y� agree on a cover in ��D �
then this cover can be chosen to lie in the image of ��F � Since ��B remains a sheaf
for P �covers of ��D � we can assume that the cover fDj � ���F ��C�g on which y and
y� agree is directed� By propriety of F and Lemma ���� there exists a cover fCi � Cg
of ��C and for each i some j such that� writing Dji � �����Ci� for the pullback of
Dj � ���F ��C� along ���F ��Ci� � ���F ��C�� we have Dji � �����Ci� � M�Ci�
while y�Dji � y��Dji� Here M is the sheaf on C as de�ned in ������ Since ��B still
satis�es the sheaf property for the covers in ��M � y and y� then agree on the cover
f�����Ci�� �����C�g� which is of the required form�

Suppose now that f is in fact tidy� To show that 
 is epi� consider C � ��C �
a cover fDj � ���F ��C�g in ��D and a 	locally compatible
 family of elements
yj � ���B��Dj �� We need to prove that we can replace this family by an equivalent
one for which the corresponding covers involved lie in the image of ��F � Using propri�
ety of ��F � we can reduce to the case of a singleton family y � ���B��D� for a single
covering arrow ��D � ���F ��C�� and further assume that the restrictions of y along
the projections D����F ��C�D � D agree on a directed cover of monomorphisms �here
we used again the fact that ��B satis�es the sheaf property for P �covers�� By tidiness
of F and Lemma ����� we �nd a cover fCi � Cg in C such that for each i� writing
�i�Di � ���F ��Ci� for the pullback of � across ���F ��Ci�� ���F ��C� and yi for y�Di�
�i lies in ���L��Ci� while the restriction of yi along the projectionsDi����F ��Ci�Di � Di

agree on some e�ective subobject Vi � Di ����F ��Ci� Di � ��N�Ci�� Here L and N
are the sheaves on C de�ned in ������ and ������ respectively� But then� in terms of a
	geometric
 property of ��B inherited from B as in �III ����� we can �nd for each i a
unique zi � B����F ��Ci�� such that zi�Di � yi� This new family fzig is easily seen to
be compatible� hence is a family equivalent to y in the image of 
C �

This completes the proof of the theorem�



���

Proof of Theorem ���� We can assume that S 	 Set and argue constructively� Let
fFi� C i � D ig be a diagram of pretopos site morphisms inducing ffi�Fi � Eig� and let
F � C � D be a morphism inducing the limit f �F � E as in �I ����� Denote the canonical
functors associated with an arrow �� j � i � I as indicated in the commutative diagram

D

k

��

D j

kj

��

�� Qj

D i

��

ki

��U�

C

��
F �����

��

h

C j

��Fj ����

��

hj

�� Pj C i

��Fj ����

��

hi

��T�

F Fj�� qj
�

Fi��u�
�

E

��f� �����
Ej�� pj

�

��fj
� ����

Ei ���t�
�

��fi
� ����

For each i � I� let Mi and Ni be the sheaves on C i which has for sections at Ci � C i �
respectively� covers of the form Ui � Fi�Ci� in D i �as in Corollary ���� and e�ective
subobjects at Ci in D i �as in Corollary ������ Let M and N be the sheaves on C
of corresponding data for F which �up to isomorphism� lifts to some Fi� Then it is
straightforward to check that M inherits the conditions of Lemma ��� from the Mi if
each fi is relatively proper� and that N inherits the conditions of Lemma ���� from
the Ni if� furthermore� each fi is relatively tidy� It therefore follows by applying these
lemmas that f is relatively proper �resp� relatively tidy� if the fi are�

To show the second part for given i � I� consider �rst any E � Ei� C � C and
a 	C�element
 x�h�C� � p�iE� A 	lifting
 of x is given by the data ���C �� x�� where
�� j � i � I� C � � C j such that Pj�C

�� � C and x� is a C ��element hj�C
�� � t�

�E in
Ej such that x � pj

�x�� Two such liftings ���� C ��� x
�
�� and ���� C

�
�� x

�
�� are 	eventually

equal
 if there exists a commutative diagram

k

��

��

����
j�

��

��

j� ����
i

���

in I such that P���C
�
�� � P���C

�
�� in C k and t��

�x�� � t��
�x�� in Ek�

Any generating element x�h�C�� p�iE as above can be lifted 	locally and locally
compatibly�
 that is to say� on a cover of C and compatibly so �in the sense of 	eventual
equality
� up to covers� To see this� let A� C opi � Set be the canonical sheaf representing
E� A�C �� 	 the family of C ��elements hi�C ��� E for C � � C i � The corresponding sheaf
for pi�E is the shea��cation of the left Kan�extension �Pi � A�� C op � Set of A along
Pi� C i � C � By directedness of I and the lifting property of �nite commutative diagrams
in C � there exists ��� j� � i � I and C� � C j� such that Pj� �C�� �� C� Rearranging the
explicit construction then gives �Pi � A��C� �� lim

��
�T� �A��C�� �where 	� j � j� runs

over the category I�j��� thus proving our claim�



���

Consider now any V � Fi� Any commutative triangle of the form

j�

��
��

��
��

��
��

�
���
j

��

�

� �
� �
� �
� �
�

i

���

in I induces a commutative triangle of canonical maps

Pj�
�fj��u��

�

		
s��

��
��

��
��

��
Pj
�fj�u�

��� c�

��
s�

� �
� �
� �
� �
� �

f�qi
�

���

in E� When the maps fi�Fi � Ei are relatively proper� we need to show for any arrow
�� j � i in I and pair of generating elements x�� x��h�C� � pi

�fj�u�
�V for which

s� � x� � s� � x�� that there exists� locally in C� a commutative triangle ��� such that
c� � x� � c� � x�� When the maps fi�Fi � Ei are relatively tidy� we need to show�
furthermore� that any generating element y�h�C�� f�qi

�V is locally of the form s� �x
for some �� j � i and x�h�C�� pi

�fj�u�
�V �

For the �rst� it is clearly enough to treat the case where the C�elements x�� x�
have liftings to Ej � say x��� x

�
��hj�C

�� � fj�u�
�V respectively� where Pj�C �� � C� Let

y��� y
�
�� fj

�hj�C �� � u�
�V be the respective adjoints of these under fj

� a fj�� Then
qj
�y��� qj

�y�� are the respective adjoints of s� � x�� s� � x�� so that qj �y�� � qj
�y�� � y

say� It follows that there is a cover of F �C� in D over which the two liftings y��� y
�
� of y

are eventually equal� and by relative propriety �via Lemma ����� we may assume that
locally in C� this cover consists of a single monomorphism �an element of the sheaf M�
which lifts� It follows that� after passing to a cover of C in C � we can �nd a commutative
triangle ��� such that u�

�y� � u�
�y�� or equivalently� such that c� � x� � c� � x� as

required�
For the second� let z� f�h�C� � qi

�V be the adjoint of y�h�C� � f�qi
�V � If z

has a lifting of the form z�� kj�Fj �C ��� �� fj
�hj�C �� � u�

�V to Fj � then we would
be done� for then the adjoint x��hj�C �� � fj�u�

�V would produce the required x by
letting x � pj

�x�� But we know that z lifts over a cover in D � we therefore need to
modify this to a cover in the image of F � C � D � that is� we need to lift z locally in
C� Using relative propriety� we may reduce to the case where there exists a singleton
cover ��D � F �C� which lifts to D j � say ���D� � Fj�C �� such that Qj���� � �� and a
D��element s�� kj�D�� � u�

�V such that z�D � qj
�s�� Then� by passing to a �further�

cover in C if necessary� we may use relative tidiness �via Lemma ����� to reduce to
having an e�ective subobject U � D �F �C� D of D at C in N�C�� one which lifts all
the way to D j as U � � D� �F �C�� D

�� and for which the restrictions of s� along the
projections U � � D� agree� This data is easily seen to produce z�� fj

�hj�C �� � u�
�V

satisfying qj�z� � z� as required�
This �nishes the proof of the theorem�



���

x� The main theorem

We are now ready to deduce our main result� Theorem ��� below� as a straighforward
consequence of the formal properties of relatively tidy maps derived in the previous
sections�

���� Theorem� Let

�G �E F�

�
�

��

d�

��d�
F

��

f

G ��g
E

���

be a lax pullback of toposes over a base topos S� If the morphism f is tidy relative to
S� then d� is tidy� Moreover� in this case the Beck�Chevalley condition holds� i�e� the
canonical natural transformation

g�f� � d��d�
�

induced by � is an isomorphism�

Proof� Recall ����� that the lax pullback can be built up in stages� as indicated by
the diagram

�G �E F�

��

d� ���

��d
�E �E F�

��

a ���

��b
F

��

f

P �E�

��

�� ���

����
E

��

id

G ��g
E ��id

E �

By Proposition ��� the map �� in the 	universal
 lax pullback square ��� is tidy �that
is� relative to E�� Also� the Beck�Chevalley condition holds for this square� that is� the
��cell �����

� � id is an isomorphism�
We shall prove separately� in Lemma ��� below� that the map a is also tidy relative

to E� where P �E� is viewed as an E�topos via ���P �E�� E� and that the square ��� also
saitis�es the Beck�Chevalley condition� i�e� a�b� �� ��

�f�� It then follows by Proposition
��� that the composition �� � a is tidy� Moreover� the Beck�Chevalley condition for the
squares ��� and ��� compose to give the Beck�Chevalley condition ���a��b� �� f��

But now we can apply pullback�stability of tidy maps �III ����� and conclude that c
is tidy since ��a is� while the left�hand square ��� again satis�es the Beck�Chevalley
condition g����a�� �� c�d

�� By composing this Beck�Chevalley condition with the
one ���a��b� �� f� already obtained� we �nd that the outer square satis�es the Beck�
Chevalley condition g�f� �� c��bd��� which is the one stated in the theorem�

Thus� the following lemma completes the proof Theorem ����



���

���� Lemma� Suppose f �F � E is tidy relative to S� Then in the pullback square

�E �E F�

��

a

��b
F

��

f

P �E� ����
E

the map a is tidy relative to E via ���P �E� � E and the Beck�Chevalley condition
a�b

� �� ��
�f� holds�

Proof� We decompose the above square into two smaller squares� the left�hand one
of which can be viewed as a square over the topos E as base� as indicated below

�E �E F�

��

a

��e
E � F

��

id	f

����
F

��

f

P �E�

		
��

��
��

��
��

��
���������
E � E




��

	 	
	 	
	 	
	 	
	 	

����
E

E �

where e � ���a� b��
First� consider the right�hand square� since f is tidy relative to S� stability under

change of base ����� yields that id � f is tidy relative to E� together with the Beck�
Chevalley condition �id� f���
� �� �


�f� for this square�

Next� since ���P �E� � E is the localization of �E �E
���� E� at the 	generic point


&� E � E � E �see x��� the 	localization lemma
 ����� yields that a is tidy over E
together with the Beck�Chevalley condition ���� �����id � f�� �� a�e

�� Composing the
Beck�Chevalley conditions for these two squares yields the condition ��

�f� �� a�b
�� and

proves the lemma�

x� Applications to lax descent

For a morphism f �F � E over a base topos S� one obtains by iterated lax pullbacks a
diagram

F �E F �E F

��d�

��d�

��d�
F �E F

��d�

��
d�

F ��f
E �

F �

��

	



���

and one can extend the de�nitions concerning descent for sheaves �specializing those
given for locales in �I x��� to the 	lax
 case in the evident way� Thus� lax descent
data on an object F of F is a morphism �� d�

�F � d�
�F satisfying the evident cocycle

condition in F �E F �E F and unit condition in F � The category of such pairs �F� ��
is denoted LDes�f�� For any object E � E� the natural transformation � � d�

�f� � d�
�f�

that comes with the lax pullback F �E F provides f�E with lax descent data �E� This
construction de�nes a functor

T � E � LDes�f�� E �� �E� �E��

The morphism f �F � E is said to be of e�ective lax descent �for sheaves� if this functor
T is an equivalence of categories�

The notion of e�ective lax descent is a weakening of that of e�ective descent� any
morphism which is of e�ective descent �for sheaves� is also of e�ective lax descent� Some
important classes of morphisms are only of e�ective lax descent� for example essential
surjections of toposes �
�

The following result is a direct application of Theorem ����

���� Theorem� Any relatively tidy surjection f �F � E is of e�ective lax descent for
sheaves�

Proof� To begin with� let us recall that by a well�known application of the 	tripleabil�
ity theorem
 �see �� 
�� the codomain E of any surjection f �F � E betrween toposes is
equivalent to the category of coalgebras for the comonad Cf � f�f� on F �

E �� Coalg�Cf �� ���

If the lax pullback square

�G �E F�

�
�

��

d�

��d�
F

��

f

G ��g
E

satis�es the Beck�Chevalley condition f�f� �� d��d�
�� arrows c�E � f�f�E are in bi�

jective correspondence to arrows E � d��d�
�E� or by adjunction� to arrows �� d�

�E �
d�
�E� A well�known theorem �
 asserts that� in this way� coalgebra structures c corre�

spond precisely to lax descent data �� so that we obtain an equivalence of categories

Coalg�Cf � �� LDes�f�� ���

The equivalence T � E � LDes�f� of the theorem is obtained by composing the two
equivalences ��� and ����

By Example ���� we obtain as a special case�

���� Corollary� Any coherent surjection between coherent toposes is of e�ective lax
descent for sheaves�



���

This corollary implies Zawadowski�s theorem �
 for pretoposes� Indeed� if f �F � E
is a surjection between coherent toposes� an object E of E is coherent i� f�E is coherent�
Thus� the equivalence E �� LDes�f� restricts in this case to an equivalence between the
corresponding pretoposes of coherent objects� We should point out� however� that for
the special case of Corollary ��� the results in this chapter on relatively tidy maps are
either not necessary or can be proved in a much easier fashion for coherent toposes� In
this way� one obtains a direct proof of Corollary ��� and hence of Zawadowski�s result�
which is more straightforward than the proof of our general descent theorem ������ and
much easier than Zawadowski�s original treatment� which was based on Makkai�s Stone
duality ���
� The interested reader is referred to �
�
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