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Abstract

We describe infinite clusters which arise in nearest-neighbour per-
colation for so-called cocycle measures on the square lattice. These
measures arise very naturally in the study of random transformations.
We show that potential infinite clusters have a very specific form and
direction. In concrete situations, this leads to a quick decision whether

or not a certain cocycle measure percolates or not.

1 Introduction

This note is devoted to the percolation properties of a particular class of
random colourings of the nearest neighbour edges of the square lattice Z2.
The class of measures arises very naturally in the study of random transfor-
mation, and we shall call it the class of cocycle measures.

We consider colourings of the edges of Z? with two colours, red and blue,
with the cocycle property. This property is defined as follows. Consider four
edges forming a square and denote the lower edges by eq4, the right edge by

e,, the left edges by e; and the top edge by e;. The colour of an edge e is
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denoted by c(e). We require that

{elea),eler)) = {e(er), e(ed) (1)

as a set equality. This property can be reformulated as follows: when you
travel in two steps from south-west to north-east along this square, the
number of blue and red edges you see along the way does not depend on the
route you take.

A third way of defining this class of colourings is the following. Take
any two vertices » and y € Z?, and consider a vertex-self-avoiding path =
between z and y, i.e. a sequence of distinct edges e; = (u;,v;) i =1,...,k
such that wqy = @, vy =y, v; = wgq for e = 1,...,k — 1. When travelling
along © from z to y, we travel edges horizontally to the right, vertically
upwards, horizontally to the left or vertically downwards. We collect the
first two types of edges in a set 7+, and the last two in a set #~. Now
consider the number of red edges in 7+, minus the number of red edges in
7~ and call this number fi(7). Similarly, fo(7) is defined as the number of

T minus the number of blue edges in #~. The requirement we

blue edges in 7
impose on the configurations is that (fi(7), fa(7)) is the same for all paths
7 from z to y.

Motivation for this type of measures can be found in Burton, Dajani and
Meester (1998) and Dajani and Meester (1997). Indeed, the last character-
isation above is in fact a formulation of the so called cocycle-identity, but
this will play no role in the present note. In the references just mentioned,
the edge labels are two-dimensional. For percolation purposes it is more

natural to deal with one-dimensional labels instead, by just projecting on

one of the coordinates. We give some examples of cocycle measures in the



last section of this note.

Let p be a stationary, ergodic (with respect to the group of all trans-
lations of Z?) probability measure concentrated on colourings which satisfy
(1). We are interested in percolation properties of y, i.e. we are interested
in the question whether or not infinite red or blue clusters exist, and if so,
how many. It is easy to come up with examples in which both blue and red
edges percolate; for instance take the measure p which makes all horizontal
edges blue and all vertical edges red. On the other hand, it is just as easy
to find an example where neither the blue nor the red edges percolate; just
colour the four edges of every second square blue and the remaining edges
red, and choose the origin randomly as to get something stationary. We
leave it to the reader to find an easy example of a measure for which exactly
one colour percolates.

The goal of the present note is to prove some general percolation prop-
erties for this type of measures, which in concrete examples lead to a quick
decision whether or not a given measure actually percolates. For reasons
that will become clear soon, we will no longer speak about red or blue
edges, but about edges labelled 0 or 1. The label of an edge is still denoted
by ¢(-) though, and from now on this refers to a number, not a colour. We
shall concentrate on percolation of edges labelled 0. Of course, this is in
some sense arbitrary, but 0’s really seem to have advantages over 1’s, as we
shall see.

The next section gives some general background on cocycle measures,
borrowed mostly from Dajani and Meester (1997). Section 3 deals with
general facts about percolation in cocycle measures, and the last section is

devoted to a number of examples. The first example in the last section was



the motivation to study percolation properties of cocycle measures; in this

example we answer a question which was asked by T. Hamachi.

2 General background

We start with some notation. The expected label of a horizontal edge is
denoted by h, the expected label of a vertical edges by ». To avoid trivial
situations, we assume that 0 < h,v < 1. We write f(z) = f(z1, 23) for the
sum of the labels in 77 minus the sum of the labels in 7=, where 7 is an
arbitrary self-avoiding path from 0 to z = (z1,22). L1 distance is denoted
by [ -]

Note that our weak assumption on ergodicity of p does not imply that
the right or up shift are individually ergodic. However, since by the defining

property of cocycle measures we have that

(f(n,m) = f(0,m)) = (f(n,m+ 1) = f(0,m+ 1)) <2,

the limits lim,, oo ( f(m,n) — f(0,n))/n, which exist by stationarity, are in-

variant under both horizontal and vertical shifts and therefore a.s. constant.

This constant has to be h then. A similar remark is valid for vertical limits.
The cone

{(w,y)EZz:a—gggga—l—G}

is denoted by C'(«a, €). The following result is taken from Dajani and Meester

(1997). Throughout, p denotes a cocycle measure.

Lemma 2.1 Let {(k,,m,)} be a sequence of vectors in Z*.



(i) Suppose that (k,, m,) — (c1-00,¢3-00) for some c1,¢5 € {1,—1} and

in addition that 5> — o € [~oc0,00]. Then

f(knvmn) 4] 02|Oé|
— v
k| + [ma] 1+ ]af 1+ ]al

in p-probability as n — oco. (The quotient H_LOO s to be interpreted as

0 and 1355 as 1.)

(ii) Suppose that {k,} is bounded and m, — c3-00 for some c3 € {1,—1}.
Then

i p-probability as n — oo.

(1ii) Suppose that {m,} is bounded and k,, — c4- 00 for some ¢y € {1,—1}.

Then
J(kn,my)

—>C4h
|Bn| + ]

i p-probability as n — oo.

Sketch of proof: A full proof appears in Dajani and Meester (1997), but
the idea is quite straightforward. To reach a point (k,,m,) in the cone
C(a,€), one can first travel |k,| steps horizontally and then |m,| steps ver-
tically. The average of the horizontal part converges to h in probability (in
fact a.s.), the average of the vertical part converges in probability to v. At
the same time, the fraction of horizontal steps converges to 1/(1 + |a|), and
the fraction of vertical steps to |&|/(1 + |a|. This explains the expressions
mentioned at the right hand sides in the statement of the lemma. The ¢;’s

are included to make the sign right. a



For ag := —%, the limit in Lemma 2.1(i) is equal to 0. We write Co(e)
for C(ag, €). The following result is again due to Dajani and Meester (1997).
We shall again only sketch the proof here.

Lemma 2.2 Let a € (—o0,0). Then for any € > 0, there a.s. exist N, > 0

and 6. > 0 such that whenever |m,|, |k, > Ne and (k,,m,) € C(a,é.), then

f(hn, mn) . a _ calal v
[fn] + ] 14lal™ 1+ o

< e, (2)

for appropriate ¢; and ¢co. When a = £00, 6, should be replaced by a constant
M, and the condition (k,,m,) € C(a,d.) should be replaced by |m, k.| >
M.. Moreover, similar statements are valid for all other cases of Lemma

2.1.

Sketch of proof: Assume a < oo. Draw a uniform (0,1) distributed
random variable U and consider the line y = aX + U. Let y, be the
(random) point on the vertical line {(z,y) : @ = n} closest to this line. It is
not hard to see that (f(yo), f(y1),...) forms a random walk with (dependent)
stationary increments. We write x,, = (k,, m,) and write y;(,) for the (or
a) vertex among (Yo, ¥1,...) which is closest to z,,. We then have

flan) _ (f(@/j(n)) N flag) — f(yj(n))) H@/j(n)\"
llnll 195l 1Y)l llnll

Since (f(yo), f(y1),...) has stationary increments, the ergodic theorem tells
us that f(y,)/||y.|| converges a.s., and it then follows from the corresponding
convergence in probability in Lemma 2.1 that this a.s. limit must be the
same limit as in Lemma 2.1. Therefore, if k,, and m,, are large enough and
|/ kn—af is small enough, then j(n) is large and therefore f(y;())/[|Y;(ml

is close to the correct limit in Lemma 2.1. At the same time, the term



ly;)|l/[|2x|| is close to 1 by construction. Finally, the norm of the vector
(F(@n) = F(9i))/9in) || is bounded above by
%0 = Yjeml
19l
This last expression is close to 0 when k,, and m,, are large and |m,,/k, — «|

is small. O

Lemma 2.3 Let ¢ > 0. With p-probability one, only finitely many points z
outside Co(¢) have f(z) = 0.

Proof: The proofis by contradiction. Suppose infinitely many such z exist.
Look at the set B of directions 3 outside Cy(€) such that for every § > 0, the
cone C'(3,6) contains infinitely many z with f(z) = 0. The set B is closed
and invariant under translations and therefore 3 := sup{3 : 3 € B} is well
defined and an a.s. constant. According to Lemma 2.2, for every v > 0, we

now have infinitely many z with f(z) = 0 for which

f(Z) Cl(ﬁ) h 02(5)|B|v

L — < 7.
=l 1+ 18 1+ 18|

But since f(z) = 0 and v is arbitrary, this implies that

alB) ,  adlbl
T+15 T

0,

which implies that 8 = ag, a contradiction. a

3 Percolation

As mentioned in the introduction, we will concentrate on percolation of

edges labelled with 0. The cluster C'(z) of the vertex z is the set of vertices



that can be reached from z by travelling over 0-labelled edges only. We are
interested in the question whether or not infinite clusters exist and if so,
how many. A subset S of Z? is said to have density r if for each sequence

Ry C Ry C --- of rectangles in Z% with U, R, = Z?, it is the case that

L #NR)
R AR

where #(-) denotes cardinality. Burton and Keane (1991) showed that for
every stationary percolation process Z?, a.s. all clusters have density. In
addition, they showed that either all clusters have positive density a.s., or

all clusters have zero density a.s.

Lemma 3.1 For any cocycle measure i, all clusters have zero density a.s.

Proof: If infinite clusters exist with positive probability, then the probabil-
ity that the cluster of the origin is infinite must be positive. All elements
z in this cluster have f(z) = 0. But according to Lemma 2.3, this implies
that for all € > 0, up to a finite number of vertices, the whole cluster is
contained in Cy(¢€). Since the density of Cy(€) goes to zero with ¢ tending to
zero, we find that the cluster of the origin has density zero a.s. The result

now follows from the result of Burton and Keane just mentioned. O

Lemma 3.2 [f infinite clusters exist with positive p-probability (and hence
with probability one according to the ergodicity of i), then there are infinitely

many infinite clusters p-a.s.

Proof: There are at least two quick proofs of this fact. (1): If infinite

clusters exists, then the set of vertices z for which C'(#) is infinite has positive



density a.s. Since each single cluster has zero density, the only conclusion is
that there are infinitely many clusters. (Note that density is not countably
additive!) (2): If there are infinite clusters a.s., then there are infinitely many
points z on the z-axis for which C'(2) is infinite. It is clear that f(z) takes
infinitely many values among these points z. However, when f(z) # f(2),
then C'(z)N C(2") = 0, since f(z) is obviously constant on a cluster. Hence

infinitely many infinite clusters must exist. a

The following result could be stated in higher generality. Strictly speak-
ing, it follows from a general result like Lemma 2.3 in H&ggstrom and
Meester (1996), but for this particular situation an independent simple proof

is possible.

Lemma 3.3 For any cocycle measure i, with probability one every infinite

cluster C' satisfies
sup{y : (z,y) € ('} = oo,

and

inf{y : (z,y) € C} = —o0.

Similar statements are true for the horizontal direction.

Proof: Since C is contained (up to finitely many points) in every Cy(e),
the assumption that ' is infinite implies that C' is unbounded in at least
one of the two vertical directions. We now assume (wlog) that with positive
probability (and therefore with probability 1) a cluster C' exists for which
sup{y : (z,y) € C} = oo and inf{y : (2,y) € C} > —oc0. According to
Lemma 2.3, the intersecion of €' with a horizontal line contains at most

finitely many points, and therefore there is a leftmost point Cy(n) at every



level y = n, for n large enough. The collection {Cy(n)}, where C ranges over
all upwards unbounded clusters of the halfspace {y > n}, has a well defined
(one-dimensional horizontal) density d,. It is clear from the construction
that d,11 > d,, since the restriction to {y > n + 1} of every upwards
unbounded cluster of {y > n} contains at least one upwards unbounded
cluster in {y > n+ 1}. At the same time, (d,,) forms a stationary sequence.
We conclude that d,, is constant a.s. On the other hand, note that our
assumption implies that any given vertex z is the left-lowest point of an
upwards unbounded cluster with positive probability. Therefore the line
y = n + 1 contains a positive density of such points. Clearly, these points
are ‘new’ in the sense that they are not in previous clusters. From this we

see that d,4q1 > d,,, the required contradiction. a

Next, we show that percolation occurs in a directed sense:

Lemma 3.4 FEvery infinite cluster C' contains a strictly northwest-southeast
directed bi-infinite path. More precisely, the left boundary of C' forms such
a path.

Proof: Define, for every n, the leftmost vertical edge in C' between {y = n}
and {y = n+ 1} by e,. Connect, for all n, the upper endpoint of e, with
the lower endpoint of e, 11 through the horizontal edges in between them (if
necessary). I claim that the union of these vertical and horizontal edges is the
required path. To see this, note that the upper endpoint of e, is connected
by a path of 0-edges to the upper endpoint of e,y; since they belong to
the same cluster C'. Since we can also travel from the upper endpoint of e,
to the upper endpoint of e,1q by first travelling horizontally to the lower

endpoint of e, 1 and the last step via e, 11, all these last travelled horizontal

10



edges must have zero labels. Finally, e,,11 cannot be strictly at the right of
€n, since then the path constructed by traveling vertically from the upper
endpoint of e,, and then horizontally to the upper endpoint of e, would

consist of zero labels only, which contradicts the definition of €,41. a.

Finally, we show that ‘dead ends’ are impossible:

Lemma 3.5 Consider the following event: there is a directed path from the
origin going down-right, which is completely labelled 0, and the two edges
((=1,0),(0,0)) and ((0,1),(0,0)) are both labelled 1. This event has proba-
bility 0.

Proof: According to the previous lemma, the left boundary of the 0-cluster
of the origin forms a bi-infinite directed path . This bi-infinite path crosses
the z-axis to the left of the origin. The cluster of the origin must contain
a connection between 7 and the directed path going down from the origin.
Now label all edges which are forced to be zero, given this connection. It is
easy to see that these 0’s run into conflict with one of the two designated

edges having label 1. a

By now we have a fairly precise and specific description of the geome-
try of infinite clusters in cocycle measures, if they exist: there are in that
case infinitely many such clusters, essentially contained in a cone in the
agp-direction, and bounded at the left by a bi-infinite directed path. This
description is so specific that it makes it easy in many case to rule out perco-
lation almost immediately. On the other hand, one might suspect that this
specific description makes it almost impossible for ‘natural’ cocycle mea-

sures to percolate, and that a percolating cocycle measure must be more

11



or less constructed for that purpose. It seems hard to formulate a general
property which excludes percolation. One is tempted to try to connect cer-
tain ergodic-theoretical mixing properties with percolation here, since the
above description of percolation clusters seems highly non-mixing. We will
see though that mixing cocycle measures that percolate can be constructed;

they can even have trivial full tail.

Before we discuss some examples, we spend the last lines of this section
to the dual percolation process. The dual process played a very important
role in the study of independent percolation on Z2. It is defined as follows.

Construct the dual lattice Z2" by shifting Z? over the vector (3.3)- Each
edge in Z*" now crosses exactly one edge in Z? and vice versa. Define the
label of an edge in Z2" to be the label of the crossing edge in Z2. The restric-
tion on the labels in Z? induces a restriction on the configurations in Z2".
For a given vertex z* in the dual lattice, the four edges incident to it are de-
noted (starting with the edge going to the right and going counterclockwise)
e1,€,¢e3 and eq. It is easy to check that the possibel label-combinations
are (ordered) (0,0,0,0), (0,0,1,1), (1,1,0,0,), (1,1,1,1), (0,1,0,1) and
(1,0,1,0). It is easy to see from this, that O-clusters in the dual process
can not be finite: just observe that each such finite cluster must contain
a vertex z for which edges 2 and 3 (say) are both labelled 1. From the
possibilities which we have just written down, it follows that in that case

all edges incident to z are labelled 1, which implies that z can not be in a

0-cluster.

12



4 Examples

There are many natural cocycle measures p and we shall study some of them

in detail.

4.1 Example 1

The following example is discussed to some extent in Burton, Dajani and
Meester (1998). Choose 0 < p < 1 and let ¢ = 1 — p. Label all edges of the
xz-axis 0 with probability ¢ and 1 with probability p, independently of each
other. For the y-axis we do the same with interchanged probabilities. Now
denote the square [n,n + 1] x [0, 1] by W,,, and denote the lower and upper
edge of W, by e, and f, respectively. The labelling procedure is at follows:
first label the remaining edges of W7y; if there are two possibilities for doing
this we choose one of them with equal probabilities. At this point, the lower
and left edge of W5 are labelled, and we next complete the labelling of W5,
noting again that if there are two ways to do this, we choose one of them
with equal probabilities. This procedure is continued and gives all labels in
the strip [0, 00) X [0,1]. Then we move one unit upwards, and complete in a
similar fashion the labels in the strip [0,00) X [1,2]. (Of course, if you want
to carry out this labelling, you never actually finish any strip. Instead, you
start at some moment with the second strip which can be labelled as far as
the current labelling of the first strip allows, etc.)

This procedure yields a random labelling of all edges in the first quadrant.
Using for instance Kolmogorov’s consistency condition, we can extend this

to a cocycle measure on the labels in the whole plane.
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Lemma 4.1 The procedure described above yields a stationary and mizing

measure . In particular, the labelling is ergodic.

Proof: If we can show that the labelling of the edges f, has the same
distribution as the labelling of the edges e,, then we have shown that the
labelling in the quadrant [0,00) X [1,00) has the same distribution as the
labelling in [0, 00) x [0,00) and we can use a similar argument for vertical
lines plus induction to finish the argument. Therefore we only need to show
that the labelling of the edges f, is i.i.d. with the correct marginals. To do
this properly, consider the labels of the edges of W,,. There are six possible
labellings of the edges of W,,. Four of these are such that e,, and f,, have the
same label. The exceptional labellings are (starting at the lower left vertex
and moving clockwise) 0110 and 1001. Denote the labelling of the edges
of W,, by L,. Then it is not hard to see that L, is a Markov chain on the
state space {0110, 1001, 1010, 0101, 1111, 0000}. Take the transition matrix
P of L,, interchange the rows and the columns corresponding to 0110 and
1001 to obtain P’, and consider the backward Markov chain corresponding
to P’, denoted by M,. An easy calculation then shows that L, and M, have
the same transition matrix and that they are both in stationarity. But now
note that M, represents the right-to-left labelling of the strip [0, 00) x [0, 1].
This means that the distribution of the random vector (fx,, fiys---» fin)
is the same as the distribution of (eg,,€eg,_,,..., €k ). The last vector has
independent marginals, hence so has the first, and we are done.

Next we show that p is mixing. For this, consider finite-dimensional
cylinder events A and B, i.e. A and B only depend on edges in the box B, =
[0,n]%. Denote by M), the labelling of all the edges in the box B, + (k,0).

14



It is easy to check that My is a mixing Markov chain. This implies that for

the events A and B, we have

p(AN T@,lo)(B)) — w(A)pu(B),

where T, denotes translation over the vector z. This shows that p is mix-
ing in the horizontal direction. For the vertical direction, we consider
the Markov chain associated with the labellings of the boxes B, + (0,k),

k=20,1,... and repeat the argument. a

Theorem 4.2 The measure p described in this subsection does not percolate

a.s.

Before we give a proof, we need to look at the construction of p. The
above definition of p is simple, but has the disadvantage that we need to
appeal to Kolmogorov’s consistency theorem to define it on the whole plane.
In this sense, the definition is not constructive. There is an alternative way
of defining p that is really constructive, and that will be quite useful. The

first step towards this construction is the following lemma.

Lemma 4.3 Let © be a bi-infinite path (...,z_1,20,%1,...), where z =
(2iy, 2iy), and with the property that zy, is non-decreasing in k, and z,
is non-increasing in k. Denote the edge (z;,z41) by e;. Then the labels

(...,cle—1),c(e0),cler),...) form an independent sequence.

Proof: Independence is defined in terms of finite collection of edges, so
by stationarity we need only look at finite paths with these monotonicity
properties which travel from the y-axis to the z-axis. That is, we only work

in the first quadrant for now.

15



Denote such a path by (2o, ..., zx), where zg is on the y-axis, and zj is on
the z-axis. We may assume that zp and zj are the only points of the path on
the coordinate axes. Again denoting the edge (z;, z;41) by €;, We claim that
the last edge ¢(eg—1) is independent of the collection {c(ep),. .., c(ex—2)}. To
see this, first assume that e;_5 is a horizontal edge. (Note that ey, is always
vertical by assumption.) Then by considering the reversed Markov chain in
the proof of Lemma 4.1, it follows immediately that ¢(e;_1) is independent
of ¢(ex—2) and is also independent of the labels of all horizontal edges to the
left of ex_o. But all labels {c(e1),...,c(ex—2)} are measurable with respect
to these last labels together with some independent labels on the y-axis
and some independent choices when appropriate. This proves the claim. If
ex—2 is vertical, we walk back along the path until the first horizontal edge,
and repeat the argument with the Markov chain corresponding to the strip
with the appropriate width. The lemma now follows with induction in the

obvious way. a

The last lemma tells us how to construct a labelling of the whole plane
in a constructive manner. We first take a bi-infinite northwest-southest
directed path = that is unbounded in all directions. Label the edges of this
path in an independent fashion, with the correct one-dimensional marginals.
Next start ‘filling the plane’ in a way similar to the original construction.
Above the path, we can do what we did before, and label strips from left
to right; below the path we use the backwards Markov chain mentioned in
the proof of Lemma 4.1, and we label strips from right to left. It is clear
that the labelling obtained this way has the correct distribution: just note
that all finite-dimensional distributions are correct. Here we need Lemma

4.3 of course, to make sure we start off with the correct distribution on

16



our path m. Note that the labellings above and below 7 are conditionally
independent, given the labelling of 7 itself. Also note that the sigma fields
generated by £1(7) := {e : e is both below 7 and to the right of the line
z = 0 (inclusive)} and &3 := {e : e is both above m and to the left of the

line = 0 (inclusive)} are independent.

Proof of Theorem 4.2: We assume p does percolate, and show that this
leads to a contradiction.

Choose a northwest-southeast directed path = = (..., z_1, 20, 21, ...) as
follows (recall the definition of h and v): zg is the origin, and for some (possi-
bly large) M, z_as, . . ., za are all on the z-axis. The vertices zar41, 2ar42, - - -
can now be chosen in such a way that they are all above the line through
zpyy with direction —h/2v; the vertices z_p;—1, 2_pr—2, . . . can now be chosen
in such a way that they are all below the line through z_p; with direction
—h/2v. Label the edges of m independently (with the correct marginals).
The point of this choice is that according to our geometrical picture obtained
in the previous section, for some M, there must be a positive probability
that the origin is contained in a 0-labelled directed infinite path going down-
right, all whose edges are strictly below 7. We call this event Fq. It is clear
that Fj is measurable with respect to the sigma field generated by &4 (7).

On the other hand, there is a positive probability that the four edges
between the origin, (0,1),(—1,0) and (—1, —1) are all labelled 1. This event,
let’s call it Fs, is measurable with respect to the sigma field generated by
Eo(m). We noted above that these two sigma fields are independent and it
follows that Fy and Fj are independent. Hence P(E;N Ey) > 0, but on this
event, the origin is a dead end in the sense of Lemma 3.5, a contradiction.

a
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It is interesting to compare the last theorem with a result of Kesten
(1982). He showed that if we label all edges independently, with vertical
edges being 0 with probability p and horizontal edges with probability 1 — p,
then the system does not percolate. In fact, the system is critical in the sense
that if one increases the probability for either the horizontal or vertical edges

by a positive amount, the sytem does in fact percolate.

4.2 Example 2

The geometrical picture of infinite clusters looks highly non-mixing. After
all, if we look at the realisation below the horizontal line y = n, we have a lot
of information about the infinite clusters, an this should tell a lot about the
realisation in the halfplane y > n 4+ m, for m large. So it seems that a per-
colating cocycle measure has long distance dependencies and therefore weak
mixing properties. But we shall now see that a percolating cocycle measure
can be constructed which has trivial full tail, which is much stronger than
being mixing. The construction is based on an exclusion process introduced
in Yaguchi (1986) and studied by Hoffman (1998).

We first describe Yaguchi’s construction. We shall initially work in the
half plane & > 0, but the measure can of course be extended to a measure
on the full plane. Consider the y-axis. Fach vertex is either blue, red or
not coloured (probability comes in later). We next colour the line 2 = 1
as follows. Each coloured vertex z (on the y-axis) decides independently
with a certain (fixed and constant) probability if it wants to move down one
unit. It also checks whether or not the vertex below is not coloured. If both
the vertex wants to move, and the vertex below is not coloured, then we

colour the vertex z4 (1, —1) with the same colour as z. Otherwise we colour

18



z 4 (1,0) with the same colour as z. This procedure is repeated when we
go from 2 = 1 to 2 = 2, etc. Yaguchi (1986) characterised the stationary
measures of the associated Z? action, in particular he showed such measures
exist. Hoffman (1998) showed that these measures have trivial full tail; in
particular they are mixing.

How does this relate to cocycle measures? We shall make a few minor
modifications. First, we look at all red points on the y-axis that are between
two given blue points (with no other blue points in between). Take the top
vertex among these red vertices and change its colour into green. When a
coloured vertex z causes z+(1,0) to be coloured with the same colour as z we
also colour the edge between these two vertices with the same colour. When
z causes z 4 (1, —1) to be coloured, we colour the two edges (2,24 (0,—1))
and (z + (0,—1),z+4 (1,—1)) with the same colour. Finally we keep the
green edges and ‘uncolour’ all other edges. A configuration now consists
of infinitely many disjoint, bi-infinite strictly northwest-southeast directed
green paths. We can transform a realisation to a labelling of the edges that
satisfy the cocycle identity as follows: All green edges are labelled 0. All
edges that have one endpoint in common with a green edge are label 1.
All remaining edges are labelled 0. It is easy to prove that the realisation
obtained this way satisfies our cocycle identity. It is obtained as a ergodic-
theoretical factor of a mixing process, and therefore also mixing. On the

other hand, it percolates along the edges that are coloured green.
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