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1 Introduction

The first four sections of these notes form a quick, incisive introduction to the subject of Young
measure theory. The term Young measures refers to transition probabilities that are studied in
connection with a certain weak topology (i.e., the narrow topology for Young measures). This name
honors L.C. Young, whose seminal work on generalized solutions in the calculus of variations in 1937
[98] formed the starting point of such considerations.

Our presentation involves very little functional analysis, and is largely based on a transfer of
the classical theory of narrow convergence from the domain of probabilities (section 2) to the more
general domain of transition probabilities (section 4) by means of K-convergence and an associated
key Prohorov-type extension of Komlds’ theorem (Theorem 3.7). Such an extension of Komlds’
theorem applies, much more generally than displayed here, to certain classes of abstract-valued
scalarly integrable functions [18, 19, 38]. However, in the Young measure context it is particularly
effective to transfer narrow convergence properties. This is because tightness, a crucial condition for
Theorem 3.7, is, under mild restrictions, an automatic feature of narrow convergence of sequences of
Young measures [25]. The useful portmanteau and product convergence theorems for classical narrow
convergence, as well as Prohorov’s theorem (an important device for relative narrow compactness)
and certain limiting support properties are thus made available for Young measures.

These results of section 4 form the point of departure for the second part of the notes, where lower
closure (section 5), and variational inequalities and equilibria (section 6) are studied in connection
with some existence questions in economics (viz., optimal growth, optimal consumption, Cournot-
Nash equilibrium distributions and Nash equilibria in continuum games and games with incomplete
information). To keep these notes within a reasonable size, the choice has been made to discuss
those applications at a great level of generality, and with little regard for the economical context.
However, adequate references are suggested to fill this gap.

Other surveys of Young measure theory include the account given in J. Warga’s textbook [97]
(largely control-theoretical and mostly limited to a compact image space, but going well beyond
existence and lower closure issues), the study by H. Berliocchi and J.M. Lasry [42] (offering a locally
compact image space and a Scorza-Dragoni-type connection with classical narrow convergence, but
in many respects a very innovative study), M. Valadier’s survey in [94] (presenting much of the
material treated in sections 2 to 4 via a more functional-analytic approach and with rather different
applications) and the present author’s lecture notes [25], which cover more ground than the present
paper, but do not address economical applications at the level of generality presented here. Let us
also [67] for an apparently different approach to sequential narrow convergence on product spaces
that can nevertheless be reduced to the present one [33], [61, p. 2]. For recent important applications
in nonlinear analysis (that started with [91]) we refer to [83].

*Nine lectures given at the School on Measure Theory and Real Analysis (GNAFA, CNR) in Grado, Italy (15-26
September, 1997).
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2 Narrow convergence of probability measures

This section recapitulates some results on narrow convergence of probability measures on a topolog-
ical space; cf. [4, 43, 44, 55, 75, 82]. We discuss these results in two settings: (¢) a metrizable one,
for which the material presented is rather standard and (é¢) a nonmetrizable one, which includes the
situation where the topological space is completely regular and Suslin. As a rule, we extend from
(%) to (i7) via tightness.

Let S be a completely regular topological space, whose topology we indicate by 7. Let B(S, 1)
be the Borel o-algebra on (S, 7) and let Cy(S, 7) be the set of all bounded 7-continuous functions on
S. Throughout this paper we work with the following hypothesis:

Hypothesis 2.1 There exist a separable metric space P and a continuous mapping o : P — S such

that S = o(P).
Clearly, this hypothesis implies that the space (S, 7) is separable.

Proposition 2.2 There exists an (at most) countable collection (¢;) in Cy(S,7) that separates the
points of S (i.e., ® = &' if and only if c;(x) = ¢;(2') for all i € N). Consequently, there exists a
weak metric p on S whose topology 7, s such that 7, C 7.

ProOF. Since P x P is second countable, it has the the Lindelof property. That is, every open
subset of P x P has the countable subcover property. But then Sx S, being the continuous surjective
image of P x P, also has the Lindelof property. In particular, the complement C' of the diagonal
in S x S has the countable subcover property. Now (' is covered by the collection of all open sets
{(x,2") € SxS:e(x) # e(x)}, ¢ € Cy(S). Hence, C is already covered by a countable subcollection,
and this evidently corresponds to the fact that there is a countable subset (¢;) of C3 (S, 7) separating
the points of S. Setting p(x, ) := Y ;o 27 (supg |e;|) ~tei(x) — ¢;(2')| then produces a metric on
S, and the inclusion 7, C 7 is trivial. QED

While we accept that the topologies 7 and 7, may be different, the associated Borel o-algebras are
required to be identical:

Hypothesis 2.3 The metric p in Proposition 2.2 is such that
B(S,1,) = B(S, ) =: B(S).
Two different sufficient conditions for Hypothesis 2.3 to hold are as follows:

Remark 2.4 (i) If (S,7) is a separable metric space, then it meets Hypotheses 2.1 and 2.3 trivially
(let p be the postulated metric on S; then 7= 1,).

(#8) Let (S, 1) be completely regular and Suslin (i.e., a Hausdor{f space that is the surjective image
of a complete, separable metric space under a continuous mapping [55, 89]). Then Hypothesis 2.1
evidently holds, and Hypothesis 2.3 holds by a well-known property of Suslin spaces [89, Corollary 2,
p. 101].

Many useful spaces, e.g., Euclidean spaces, compact metric spaces, separable Banach spaces with
their strong or weak topology are completely regular and Suslin (observe that infinite-dimensional
separable Banach spaces are not metrizable for their weak topology — this example explains why we
are not just interested in the metrizable case).

Let P(S) be the set of all probability measures on (S, B(S)). Let Cy(S, p) be the set of all

T,-continuous bounded functions from S into R.

Definition 2.5 A sequence (v,) in P(S) converges narrowly with respect to the topology 7, to
vy € P(S) (notation: v, £ vp) if lim, fS cdv, = fS edyy for every ¢ in Cp(S, p).



The corresponding notion of 7-narrow convergence, denoted by “ = 7 is defined by replacing Co(S,p)
in the above definition by C3(S, 7). Clearly, T-narrow convergence implies 7,-narrow convergence by
Proposition 2.2, but in some interesting cases the two convergence modes will actually coincide.

A useful tool is the following so-called portmanteau theorem for 7,-narrow convergence. Here
Cu(S, p) stands for the set of all uniformly p-continuous and bounded functions from S into R.

Theorem 2.6 (i) Let (v,) and vy be in P(S). The following are equivalent:

(a) vy £ .

(b) limy, fS cdy, = fS edvy for every ¢ € Cu(S, p).

(¢) liminf, [gqdv, > [qqdvg for every p-lower semicontinuous function q : S — (—00,+00]
which is bounded from below.
(#) Moreover, if (v,) is T-tight, then the above are also equivalent to the following:

(d) vy = .

(e) liminf, fS qdv, > fS qdvg for every sequentially T-lower semicontinuous function q : S —
(—o0, +00] which is bounded from below.

Recall that 7-tightness in the above theorem can be defined in two equivalent forms:

Definition 2.7 A sequence (v,) in P(S) is 7-tight if either one of the following two equivalent
statements is true:

(a) There exists a sequentially 7-inf-compact function h : S — [0,4+0] (i.e., a function A for
which all lower level sets {# € S : h(z) < 5}, B € R, are sequentially 7-compact) such that
sup,, fS hdy, < +o0o.

(b) For every € > 0 there exists a sequentially m-compact set K, C S such that sup,, v,(S\K¢) < e.

Of course, the definition of 7,-tightness goes likewise, simply by replacing the topology 7 by 7,
and clearly 7-tightness of a sequence implies its 7,-tightness (notice in (a) that k is a fortiori p-inf-
compact). Returning to 7-tightness itself, note further that h is also p-lower semicontinuous, whence
B(S)-measurable. Similarly, it follows that the K. in (b) belong to B(S). The equivalence of (a) and
(b) in the above definition is a simple exercise [46, Exercise 10, p. 109] (see also the proof following
Definition 3.3). To identify sets in S that are sequentially T-compact, it is useful to observe that
any T-compact set K C S is automatically sequentially r-compact (use Proposition 2.2 and the fact
that 7 coincides with the metrizable topology 7, on K).

PROOF OF THEOREM 2.6: Part (4) is classical and can be found in e.g. [4, 4.5.1], [43, Proposi-
tion 7.21] or [44, Theorem 2.1]. As for part (i), we note the following:

(d) = (a): This is a fortiori.

(e) = (d): Evident by applying (e) to both ¢ and —c.

(d) = (e): Let h be as in Definition 2.7. For ¢ as specified we notice that for any ¢ > 0 the
function ¢, := ¢ + €h is sequentially 7-inf-compact, whence 7,-inf-compact and thus also 7,-lower
semicontinuous. We may therefore apply (¢) to ¢., which gives liminf, fS qdv, + esup,, fS hdv, >
[ qdvy. Letting € go to zero finishes the proof. QED

Remark 2.8 The above proof also justifies the existence of the quasi-integrals fS qdvy, in (e). This
goes as follows: in the above notation, § := supy, q15, 15 B(S)-measurable. Clearly, § coincides with q
on the sel {h < +oo} and it is equal to +00 on {h = +oo}. It remains to notice that Definition 2.7
forces the set {h = +oo} to have v,-measure zero for each n.

It turns out that tightness is a sufficient — and in a number of cases also necessary — condition for
relative compactness in the narrow topology. Just as in Definition 2.7 we only state the sequential
version of this result, even though there is also a fully topological analogue.

Theorem 2.9 (Prohorov) (i) Let (v,) in P(S) be 7,-tight. Then there exist a subsequence (V1)
of (vn) and v, € P(S) such that vy L0,
(1) Moreover, if (v,) is T-tight, then in fact v, = v. can be achieved in (7).



ProOF. Part (i) is Prohorov’s classical result in sequential format [44, Theorem 6.1], [75, Theo-
rem 12.3.A]. Part (i7) follows by Theorem 2.6(i¢)). QED

As a necessity complement to the above result, we remark that tightness is known to be a
necessary condition for relative sequential narrow compactness when S is complete separable metric
or locally compact [44, Theorem 6.2], [89, Theorem 4, p. 381]. See also Theorem 2.19 below.

As a rule, in what follows the parts (¢) of the above results, and also of those that still follow in
this section, are essential for the transfer process. What is done in the parts (¢7), all of which exploit
T-tightness to reduce the situation to that of the corresponding part (), could also have been added
ad hoc. However, it is hoped that the systematic inclusion of such parts (¢i) underlines the harmony
of the present approach.

Next, we study narrow convergence of product measures. The essence of the results that we
require is already available if we just consider probability measures on the product S x N. Here
N := N U {oo} is the usual Alexandrov-compactification of the natural numbers. This is a compact
metrizable space, which obviously satisfies Hypotheses 2.1, 2.3. From now on, let g be a fixed metric
on N let g be any compatible product metric on S x N and denote the topology 7 x 75 by 7.

We denote p-narrow and F-narrow convergence in P(S x N) by “ L7 and « &7 respectively. For
n € N, let ¢, € P(N) stand for the Dirac measure concentrated at the point n.

Proposition 2.10 (¢) Let (v,) and vg be in P(S). The following are equivalent:
(a) % ZnNzl Vp :p> vy. ~
(b) % ZnN:1(Vn X €n) £ vy X €co-

(i) Moreover, ’f(% ZnNzl vp) is T-tight, then the above are also equivalent to the following:
(¢) % ZnNzl Vpn = 1.
(d) %Zi\f:l(yn X €n) £> vy X €0

PROOF. (a) = (b): Let ¢ € Cu(S X N,ﬁ) and n > 0 be arbitrary. There exists p € N such that
le(z,n) — e(x,00)| < n/2 for all n > p, uniformly in € S. Hence, the triangle inequality gives

N
! 2 N —
S 15 3 el = el () < Fsup e+ S,

where the right hand side is less than 7 for N sufficiently large. So now (b) follows easily by invoking
Theorem 2.6(¢).

(b) = (a): Trivial, since any function ¢ in C3(S, p) can be identified with the function ¢ in
C(S x N) given by é(z,n) := c(x).

(a) & (¢): By Theorem 2.6(if).

(b) < (d): Also by Theorem 2.6(i7), since the sequence (wy) is trivially 7-tight. Here my :=
% ZnN:1(Vn X €y). Indeed, by hypothesis there exists h : S — [0, +o0], sequentially r-inf-compact,
such that s := supy + ZnN:1 [ hdvy, < 400. Then h(x,n) := h(z) defines a function h : S x N —

[0, +00] that is sequentially 7-inf-compact (by compactness of the space N), with sup fildﬂ'N =
s < +oo. QED

Corollary 2.11 (i) Let (vy) and vy be in P(S). The following are equivalent:
(a) vy £ v
(b) vp X €y L Vg X €os.
(#) Moreover, if (v,) is T-tight, then the above are also equivalent to the following:

(¢) vp X €y :f>1/0><eoo.

PROOF. (a) = (b): Suppose (b) were not true. Then there would exist ¢ > 0, ¢ € Cy(S x N, j)
and a subsequence (v,) of (v,) such that fS ed(vg X €x0) + € < fS ed(vn % €y) for all n'. Set

TN = %ZnN’:l(V”' X €y7). Then evidently fS ed(vg X €0o) € < fS edny for all N. But v, 2 1



implies %ZHN,:l V! £ Vg, SO TN £ Vg X € by Proposition 2.10. In the limit this contradicts
the above inequality for the my. The implication (b) = (a) is evident (see the proof of the same
implication in Proposition 2.10).

(b) < (¢): As in the proof of Proposition 2.10, it follows easily that under the additional

hypothesis (v, x €,) is 7-tight by compactness of the space N. So the result follows by Theorem 2.6.
QED

Let (S, 7) be another completely regular topological space for which the analogue of Hypothe-
ses 2.1, 2.3 holds; the associated metric on S’ is denoted by p’ (cf. Proposition 2.2). Tt is easy to see
that the Hypotheses 2.1, 2.3 hold for S x S’, which can either be equipped with the product metric
p x p' or the product topology 7 x 7’.

Theorem 2.12 (i) Let v, 2 v in P(S) and let v!, & vl in P(S'). Then vy, x v, "X vy x v} in
P(S x 5.
(#) Moreover, if (vy,) is T-tight and (v,

') is T'-tight, then in fact vy, x V), 'S vy X V).

PROOF. Let ¢ € Cu(S x 5", p x p') be arbitrary. Define ¢é: S x N — R, as follows:

ooz, ik < oo
ez, {}S xx)(d)) ifkioo

Then ¢ is p-continuous, thanks to uniform continuity of ¢. Hence, the proof of part (¢) is finished by
invoking Corollary 2.11(), since foN éd(vy X €y) = fS,XS,, cd(v, x v}). Under the extra tightness

conditions of part (i7), the sequence (v, x v},) is clearly tight with respect to the product topology
X 7 on S xS So the desired result follows from part (¢) by virtue of Theorem 2.6(é¢). QED

After this, we study the support of the limit of a narrowly convergent sequence.
Definition 2.13 The support 7-supp v of a probability measure v € P(S) is defined by
r-supp v = "{F: F CS,F r-closed, v(F)=1}.

The 7,-support of a measure v in P(5), denoted by 7,-supp v, is defined by replacing the topology
T by 7, in the above formula; of course, T-supp v is always contained in 7,-supp v.

Proposition 2.14 Fvery v € P(S) is carried by its support, i.e., v(r-supp v) = 1.

ProOF. By Definition 2.13 the set C' := S\7-supp v is the union of all r-open sets G with v(G) = 0.
By Hypothesis 2.1, C' evidently has the countable subcover property (see the proof of Proposi-
tion 2.2). So €', being the union of a countable collection of v-null sets, is a v-null set itself. QED

Definition 2.15 The sequential T-limes superior of a sequence of subsets (A4,) of S, denoted by
7-Lsp Ay, is the set of all # € S for which there exists a subsequence (A1) of (4,), and corresponding
elements z,: € A,/ such that © = 7-limy z,,.

The definition of the 7,-limes superior is of course completely analogous. However, the metrizable
nature of 7, causes an equivalent alternative formulation to be valid. The proof of this is an easy
exercise, left to the reader.

Lemma 2.16 Let (A,) be a sequence of subsets of S. Then

T-Ls, Ap = ﬂ Z17p-cl Upsp Ay,

Theorem 2.17 (i) Let (1) and vy be in P(S) with 3 Z 1 Vn L vy in P(S) (this holds in par-

ticular when v, = vy ). Then

Tp=Supp vy C 7p-Ls, 7,-supp vp.



(#) Moreover, zf(% ZnN:1 vp) ts T-tight then in fact
vo(r-seq-cl 7-Ls, T-supp v,) = 1

and, consequently,
T-supp vo C 7-cl 7-Ls, m-supp v,,.

Recall that the 7-sequential closure T-seq-cl A of a set A in S is defined as the intersection of
all those 7-sequentially closed sets C' in S for which ¢ O A. Clearly, 7-seq-cl A C 7-cl A.
Given Hypothesis 2.1, it is easy to check that for any sequence (A,) of subsets of S one has
T-seq-cl 7-Ls, Ap C 7,-Ls_ Ap.

PrROOF. (i) By Proposition 2.10 we have my := % ZnN:1(Vn X €p) £ 1y X €oy. Define qh S % N —
{0,400} by
0 if x € T,-supp vy and k < oo,
go(z, k) =< 0 if x € 7,-Ls_ 7,-supp v, and k = oo
+0o  otherwise.

Then g¢f is p-lower semicontinuous in every point (x,k) of S x N. Indeed, let (29, k) — (z,k)
(note that sequential arguments suffice to verify lower semicontinuity). We must show that o :=
liminf, ¢)(z7, k) > q)(x, k). If k < oo, then eventually k¥ = k, so a > ¢h(x, k) follows by the
fact that 7,-supp vy is 7,-closed (Lemma 2.16). If k& = oo, we distinguish two cases: if eventually
ki = oo, then o > q5(x, 00) follows by closedness of 7,-Ls, 7,-supp v;,, which in turn is an immediate
consequence of Lemma 2.16. On the other hand, if ¥/ < co infinitely often, then the same inequality
follows directly from Definition 2.15. So we conclude that ¢f is indeed p-lower semicontinuous. Now
foN q6d(vn X €n) = [ q6(x, n)va(dr) = 0 for every n (by Proposition 2.14). Hence, foN qhdrn =
0 for every N. Thus, Theorem 2.6(¢) gives fS qp(x, 00)vp(de) = 0, and the desired support properties
for vg follow.

(#) Under the additional 7-tightness condition it follows that 7x := % ZnN:1(Vn X €p) = Vo X €oo
by Proposition 2.10(47). Let qp : S x N — {0,400} be given by

0 if € T-supp v, and k < o0,
qo(z, k):=< 0 if © € T-seq-cl 7-Ls, 7-supp v, and k = oo
400 otherwise.

With a little careful work, this function is seen to be 7-sequentially lower semicontinuous on S X
N (observe that, unlike the previous part, 7-Ls,T-supp v, is not sequentially closed — hence the
additional sequential closure operation has been added in the definition of ¢y). By Proposition 2.14
and Theorem 2.6(ii) we find [q qo(2, 00)vo(dz) = 0. The desired properties of v then follow with
ease. QED

Remark 2.18 If in Theorem 2.17 there exists a T-compact set K containing U,supp vy, then the
set 7-Ls,m-supp v, is 7-closed and the following simplification can be made:

T-seq-cl 7-Ls, T-supp v, = 7-Ls, 7-supp v,.

Indeed, on K the topologies T and 7, coincide, which gives 7-Ls, 7-supp v, = 7,-Ls 7,-supp vy, and
the latter set is 7,-closed, whence T-closed (cf. Lemma 2.16).

In order to connect narrow and K-convergence of Young measures in section 4, the following
sufficient condition for 7,-tightness is quite useful. Recall that a probability measure v in P(S) is
said to be 7,-Radon if the singleton {r} is 7,-tight (cf. Definition 2.7). The set of all such Radon
probability measures is denoted by Pradon (S, 7).

Theorem 2.19 Let (v,) and vy be in Pradon(S, 7). Then v, £ v implies that (vy,) is T,-tight.

This is [44, Theorem 8, Appendix ITI] and [92, Theorem 9.3]; the proof depends critically on both
the metric nature of 7, and the fact that one considers only sequential narrow convergence.



3 HK-convergence of Young measures

This section develops K-convergence, an auxiliary, nontopological convergence mode for Young
measures introduced in [19, 20, 25]. This will be of great use in the next section when we transfer
narrow convergence results of the previous section from probability measures to Young measures.
Thus, the present section can be regarded as an intermediate stage in the transfer process. As in
section 2, results are developed both in a metrizable and in a nonmetrizable setting.

Let (£2,.4, ) be a finite measure space. Let us remark that much of what is done here extends
without further ado to a o-finite measure space [such a measure is equivalent to a finite one, and
one can always premultiply the integrands below by the appropriate Radon Nikodym derivative and
an appropriate extension of uniform integrability is also available]. Let (S, 7) be as in the previous
section (i.e., a completely regular topological space satisfying Hypotheses 2.1, 2.3).

Let R(€2;5) be the set of all transition probabilities from (€2, .4) into (S, B(S)) [81, T11.2]. That
is to say, R(€;S) consists of all functions § : 2 — P(S) such that w — §(w)(B) is A-measurable
for every B € B(S). [Note that this notion subsumes that of probability measure: P(S) can
be identified with the constant functions in R(£2;.5); in fact, R(£2;.S) coincides with P(S) when
A is trivial, ie., A = {0,Q}] In association with the central topology of these lecture notes
(Definition 4.1), transition probabilities are also called Young measures, and we shall adopt this
terminology (other names used for Young measures in the literature are, depending on the context:
Markov kernels, randomized decision functions, relaxed control functions, etc.). For some elementary
measure-theoretical properties of Young measures the reader is referred to [81, IT1.2] or [4, 2.6] (see
also Appendix A). In particular, the product measure that is induced on (2 x S, A x B(S)) by p and
any & € R(2;S) (cf. [81, I11.2]) is denoted by p @ &; cf. Theorem A.1. Let £%(€2;S) be the set of all
measurable functions from (£,.4) into (S, B(S)). A Young measure § € R(£2;.5) is said to be Dirac
if it is a degenerate transition probability, i.e., if there exists a function f € £°(Q;S) such that for
every w in €2

8(w) = €4(w) = Dirac measure at the point f(w).

In this special case ¢ is denoted by ¢; and is called the Young measure relazation of the function f.
The set of all Dirac Young measures in R(£2;.5) is denoted by Rpirac(2;.5).

The fundamental idea behind Young measure theory is that, in some sense, R(2;5) forms a
completion of L£°(Q;S), when the latter is identified with Rpirqc(€2;5). In the context of the
previous section, the much less fruitful analogue of this would be to view P(S) as an extension of
S, because the latter can be identified with the set {e; : © € S} of all Dirac measures, to which it
is homeomorphic.

Let us agree to the following terminology: an infegrand on £ x S is a function ¢ : © x S —
(=00, +00] such that for every w € Q the function g(w,-) on S is B(S)-measurable. Moreover,
such an integrand ¢ is said to be integrably bounded below if there exists ¢ € £1(Q;R) such that
g(w,z) > ¢(w) for all w € @ and = € S. Further, a function g : @ x S — (—o0, +o0] is said to be
a (sequentially) r-lower semicontinuous [r-continuous] [[r-inf-compact]] integrand on Q x S if for
every w € §2 the function g(w, -) on S is (sequentially) 7-lower semicontinuous [r-continuous] [[r-inf-
compact]] respectively. Let g be an integrand on £ x .S. The following expression is meaningful for

any & € R(£;5): .
1,(8) = /ﬂ [ / g(w, 2)8(w)(dz)](dw),

provided that the two integral signs are interpreted as follows: (1) for every fixed w the inte-
gral over the set S of the function g(w,-), which is B(S)-measurable by definition of the term
integrand, is a quasi-integral in the sense of [81, p. 41] and Appendix B, (2) the integral over
1 is interpreted as an outer integral in the sense of Appendix B (note that outer integration
comes down to quasi-integration when measurable functions are involved). The resulting func-
tional I, : R(2;5) — [—o0, +00] is called the Young measure integral functional associated to g.
Another integral functional associated to g, this time on the set £°($2; S) of all measurable functions



from © into S, is given by the formula

= gl F)ude) = (ey).

The following notion of convergence was introduced and studied in a more abstract context in

[18, 19].

Definition 3.1 A sequence
R(€; S) (notation: é, £ 8o

(6n) in R(£2;S) K-converges with respect to the topology 7 to 8y €
)

if for every subsequence (é,/) of (é,)

| X

v Z bt (w) = Sp(w) as N — oo for a.e. w in Q.
n'=1

Note that the exceptional null set is allowed to vary with the subsequence (é,/). Of course, the
short arrow “ = ” above refers to T-narrow convergence in P(S) in the sense of Definition 2.5.
Unlike narrow convergence, K-convergence is nontopological. If in the above definition = | i.e.,
the mode of pointwise convergence mode, is replaced by £ , we obtain a corresponding notion of

K-convergence with respect to 7, that is denoted by = Since “ =% 7 is implied by “ = 7, it

follows that « £ 7 is implied by « LS

Example 3.2 Let (2,4, ) be ([0, 1], £([0, 1]), A1) (i.e., the Lebesgue unit interval). Let (f,) be the

sequence of Rademacher functions, defined by f,(w) := sign sin(2"7w) (here S := R, of course).

Then ¢;, 57 8p, where &y € R([0, 1]; R) is the constant function §y(w) = %el + %e_l. In fact, here
one could argue that the strong law of large numbers applies to the sequence (e;, ) of P(R)-valued
random variables, but one can also give a proof of the above by means of the standard (scalar)

strong law of large numbers and scalarization, analogous to the proof of Theorem 3.7 below.

A crucial instrument for the transfer process of these notes is the following generalization of
Definition 2.7.

Definition 3.3 A sequence (4,) in R(§2;5) is 7-tight if either one of the following two equivalent
statements is true:
(a) There exists a nonnegative, sequentially 7-inf-compact integrand h on @ x S such that

sup I (6,) < +o0.

(b) For every ¢ > 0 there exists a multifunction I'; : Q — 2° with T'.(w) sequentially compact
for every w € €2, such that

sup /ﬂ* 8n(w)(S\Te(w))p(dw) < e.

n

Recall from the previously given definition of integrands that a sequentially 7-inf-compact integrand
h is simply a function on © x S with the following property: for every w € Q the function h(w, -)
is sequentially 7-inf-compact on S (i.e., all sets {z € S : h(w,z) < F}, B € R, are sequentially
r-compact). As is by now usual, the alternative, weaker notion of 7,-tightness of a sequence of
Young measures is obtained by replacing the topology 7 by 7, in the above definition.

PROOF OF EQUIVALENCE OF (a) AND (b) IN DEFINITION 3.3 [68].
(a) = (b): Let s :=sup, In(6,); then s € Ry. For every € > 0, let T';(w) be the set of all x € S
for which h(w, z) < s/€; then T';(w) is sequentially T-compact for every w. Also, for every n

o |
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and this proves that the definition as given in part (b) holds.

(b) = (a): Let [y, be the given multifunction corresponding to € = 37™ m € N. With no loss
of generality we may suppose that T'y,(w) C T'yyq1(w) for every w and m (otherwise, we could always
take finite unions of the I'y,). Now set [y = 0 and define

[ 2m e eTln(w\lm-1(w), meN
hiw, z) = { +oo ifz & UpTip(w)

Then h(w, -) is sequentially 7-inf-compact on S for every w and sup,, In(é,) < 6. QED

Example 3.4 (a) Let E be a separable reflexive Banach space with norm || -||. Let E’ be the dual
space of B. Observe that (E, 7) is a completely regular Suslin space for 7 := o(F, E'). Suppose that
(fn) C LYQ; E) is bounded in £'-seminorm: sup,, fﬂ [|fn(w)||p(dw) < +00. Then the corresponding
sequence (e, ) in R(2; E) is 7-tight: just take h(w, ) := ||| in Definition 3.3.

(b) Let E be a separable Banach space with norm || - ||. Then (E, ) is a completely regular
Suslin space for 7 := ¢(E, E'). Suppose that (f,) C £}(Q; E) is bounded in £!-seminorm and that
there exists a multifunction R : Q — 2° such that for a.e. w both {f,(w) : n € N} C R(w) and R(w)
is 7-ball-compact [i.e., the intersection of R(w) with every closed ball in F is ¢(F, E')-compact].
Then (e;,) is 7-tight, as is seen by considering hg(w,z) := ||z|| if © € R(w), and hgr(w,z) := 400
otherwise. For notice that for every w € @ and 5 € Ry the set of all # € F such that hp(w,z) < 3
coincides with the intersection of R(w) and the closed ball with radius 8 around 0. This set is
o(F, E')-compact, whence sequentially o(F, E')-compact by the Eberlein-Smulian theorem.

Part (b) in the above example generalizes part (a): simply observe that in part (a) E itself is
o(F, E')-ball-compact (by reflexivity), so that there one can set R(w) := E for all w € Q.

A very important property of K-convergence for Young measures is the following Fatou-Vitali-
type result:

Proposition 3.5 (i) Let 6, pily 8y in R(;5). Then liminf, I,(6,) > I,(60) for every 7,-lower
semicontinuous integrand g on Q x S such that

s(a) = sup/ [/ ¢~ (w, )b, (w)(dx)]pu(dw) — 0 for a — 0. (3.1)
n 0 {9<-al},

(49) Moreover, if (8,) is T-tight, then in fact iminf, I,(6,) > I,(60) for every sequentially T-lower

semicontinuous integrand g on Q2 x S such that (3.1} holds.

Here ¢= := max(—g,0) and {g < —a},, denotes the set {# € S : g(w,z) < —a}.

Remark 3.6 (i) If g is integrably bounded from below, then (3.1) holds automatically.
(79) In case b, = €;, for alln € N (this specification does not include the limit §y) the condition
(3.1) runs as follows:

a— 00

lim sup/Q Lig( fu(<—a}d” (W, fr(w))p(dw) = 0.

Clearly, for every w € Q we have g(w, fr(w)) < —a if and only if g~ (w, fn(w)) > «. This means that
(3.1) simply comes down to uniform (outer) integrability of the sequence (g7 (-, fnu(*))) in the case
of a Dirac sequence. If g is T x B(S)-measurable in addition, this coincides with the usual classical
formulations of uniform integrability a la Vitali of the sequence of negative parts (9~ (-, fa(%))); cf
[65, 9].

PrROOF OF PrROPOSITION 3.5. The proof of part (¢) will be given in two steps.
Step 1: the case g > 0. Set B := liminf, I,(é,); then there is a subsequence (bnr) such that

9 = i L) Dfne () = & Ty f oo i) and ) = f o).
Then liminfy ¢¥n(w) > o(w) for a.e. w by Theorem 2.6(7), because by Deﬁmtlon 3.1+ ¥ Zn, 1 Onr (W)



£ Sp(w) in P(S) for a.e. w. Thus, Fatou’s lemma for outer integration (Proposition B.4) can be
applied. This gives liminfy_ o fg Yndp > fg todp. Here the right-hand side is equal to I;(éy),
and the left-hand side is at most 3, by subadditivity of outer integrals (Lemma B.5) and by the
choice of (8,/).

Step 2: the general case. We essentially follow Toffe [65] by pointing out that the simple inequality
g+ 1iy<—a}9” > go = max(g, —a) on Q x S leads to

/ g(w, 2)8,(w)(dx) —1—/ Lig<—ap(w, 2)g™ (w, 2)6, (w)(dx) > / Golw, )8 (w)(da).

5 5 5

After one more (outer) integration this gives, in the notation of (3.1), I,(6, )+ s(«) > I, (6,), where
we use again the subadditivity of outer integration (Lemma B.5). Now observe that step 1 trivially
extends to any ¢ that is bounded from below, such as g,. This gives

liminf I,(6,) + s(«) > liminf I, (8,) > I, (80) > I;(60),

where the last inequality follows from g, > g. In view of (3.1), the proof of (¢) is now finished by
letting « go to infinity.

(#) Let h be as in Definition 3.3 and denote s := sup,, I5(é,). We augment g, similar to the
proof of Theorem 2.6(ii): For € > 0 define ¢¢ := g + €h. Then ¢ > ¢ and ¢“(w,-) is 7,-lower
semicontinuous on S for every w € Q (see the proof of Theorem 2.6(ii)). Thus, part (¢) gives
liminf, I,(6,)+es > liminf, I;c(8,) > I4:(80) > I,(60) for any € > 0. Letting € go to zero gives the
desired inequality. QED

The following important Prohorov-type “relative sequential compactness criterion for K-conver-
gence” (apostrophes are in order because K-convergence is nontopological) is a crucial tool for these
notes. It extends Prohorov’s classical Theorem 2.9 to K-convergence of Young measures and was
first obtained in [19, Theorem 5.1] as a specialization of an abstract Komlds’ theorem (i.e., an
abstract version of Theorem 3.9 below) to Young measures.

Theorem 3.7 (i) Let (6,) be a 7,-tight sequence in R(Q;S). Then there exist a subsequence (b,1)
of (6,) and 6, € R(;S) such that 5, =X 6, .
(#) Moreover, if (8,) is T-tight, then in fact 6, K 8. can be achieved in (7).

The following example, which extends Example 3.2, demonstrates the power of this result.
Clearly, this brings K-convergence (for subsequences!) to settings where the law of large numbers
stands no chance at all.

Example 3.8 Let (Q,.4, u) be ([0,1], £([0,1]), A1) (cf. Example 3.2). Let fi € £([0,1];R) be
arbitrary; it can be extended periodically from [0, 1] to all of R. We define f,11(w) := f1(2"w).
Clearly, the sequence (ey, ) is tight in the sense of Definition 3.3 [e.g., use h(w,z) := |z| to meet
part (a) or K. = [—1,1] to satisfy part (b)]. Therefore, by Theorem 3.7 there exist a subsequence

(fnr) of (fn) and some 6. € R([0,1]; R) such that ¢; , LS 8«. The precise nature of é, could now
be determined by means of Proposition 3.5, but we shall defer this to Example 4.3 later on.

To prove Theorem 3.7 we use an outstanding theorem, due to J. Komlés [71].1

Theorem 3.9 (Komlds) Let (¢,,) be a sequence in L1(2;R) such that

sup/ |on|dp < +00.
n Ja

IThe original proof in [71] went by subtle truncation arguments and application of a martingale limit theorem. It
is not hard to show that Komlés’ theorem implies the strong law of large numbers. What is much more interesting is
that, conversely, Theorem 3.9 also follows from the strong law of large numbers by invoking “subsequence principle
theory” [1, 53].
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Then there exist a subsequence (¢n/) of (¢n) and a function ¢. € LY(Q;R) such that for every
further subsequence (¢pnr) of (én')

lim 1 Z Gnr (W) = ¢u(w) for a.e. w in Q.

Observe here that ¢, is universal with respect to the possible choices of a subsequence (¢, ) from
(¢n'), but that the associated exceptional g-null set in the limit statement is allowed to vary with
the subsequence.

Lemma 3.10 There exists a countable set Co C Cy(S, p) such that for every (vy,) and vy in P(S)
lim/ cdy, = / cdvy for all ¢ € Cy
n Jg s

of and only if v, £ . In particular, Cy separates the points of P(S).

PrOOF. As was observed following Hypothesis 2.1, (S, 7) is separable. Hence, (S, 7,) is a sepa-
rable metric space (apply Proposition 2.2). Therefore, the result follows from [43, Proposition 7.19].
QED

Lemma 3.11 Let (v,) in P(S) be 1,-tight and let Co C Cyu(S, p) be as in Lemma 3.10. If

lim/ cdv,, exists for every ¢ € Cy,
n
5

then there exists v. € P(S) such that v, £ ..

ProOF. By Theorem 2.9 there exist a subsequence (v,/) of (v,) and v. € P(S) such that
V! £ .. Then fS cdvy, = o, := lim, fS edvy, for every ¢ € Cy. Now if (v,) as a whole were not to
converge to vy, there would exist é € Cy(S, p) and € > 0 such that for some subsequence (vy,) of (vy,)
one would have | [¢ édvy, — [gédv.] > € for all m. Since (vy,) is 7,-tight, there would then exist,
by another application of Theorem 2.9, a subsequence (vp,/) and v, € P(S) such that v, L ...
Just as above, this would entail fS cdv,,. = a, for all ¢ € Cy, so v, = v, by the point-separating
property of Cy. But since also |fS cdvy, — fS édv.| > ¢, a contradiction would follow. QED

PrROOF OF THEOREM 3.7. (i) By Lemma 3.10 there exists a countable subset Cy = {¢; : i € N} of
Cu(S, p) that separates the points of P(5). Clearly, sup,, [, |6inldp < o0 for every i € N, where we
set @i n( fS ¢i(2)bn(w)(dz). Let h be as in Definition 3.3 (case of 7,-tightness). By Lemma B.3
there eXlsts for each n e N a function ¢g, € L1(Q;R) such that ¢g,(w) > Js h(w, 2)bp(w)(dz)
for all w € Q and fﬂ $0ndp = In(6,). Applying the Komlés Theorem 3.9 in a diagonal extraction
procedure, we obtain a subsequence (8,/) of (é,) and functions ¢; . € L}(;R), i € N U {0}, such
that limp % ZnNH:1 $inn = @i a.e. for every further subsequence (é,~) and for all i € NU{0}. It
follows therefore that for every such subsequence (é,) for a.e. w in

hm/ (w, ) Z Spir(w)(de) = ¢p (W) < Fo00, (3.2)

n” 1

hm/ Z S = ¢i o(w) for all i € N. (3.3)

n” 1
Let us begin by considering (8,) itself as the subsequence in question. Fix w outside the exceptional
null set M, associated with this particular choice of a subsequence in (3.2)—(3.3). Then (3.2) implies
that for a.e. w the sequence (m, n) in P(S), defined by 7, n := %ZnN’:l bni(w), is Tp-tight in
P(S) in the sense of Definition 2.7. Also, (3.3) implies that limy fS c;dm, n exists for every i. By

11



Lemma 3.11(%), there exists v, . in P(S) such that =, n £ Vy «. Define é,(w) := v, . for w € Q\M.
Also, on M we define 8, to be equal to an arbitrary, but fixed element from P(S). Then it is
elementary, in view of Proposition A.2, that é, belongs to R(€2; S). Finally, the argument following
(3.3) can be repeated if one starts out with an arbitrary subsequence (8,) of (8,/), instead of (é,/)
itself. Except for the change in the exceptional null set M, for which the definition of K-convergence
allows, nothing changes. This finishes the proof of part (¢). Part (i7) then follows immediately by
Theorem 2.6(i¢), in view of the fact that for every subsequence (é,) of the above (§,/) (3.2) implies
that (TzuyN) is 7-tight for a.e. w, where WZU,N = % ZnNH:1 8 (w). QED

Remark 3.12 From (3.2} in the above proof it is scen that the sequence (8,7) in Theorem 3.7 is such
that for every further subsequence (8,1) the sequence (+ ZnN“:1 Spir(w)) in P(S) is either T,-tight
for a.e. w (part (i)) or even T-tight for a.e. w (part (ii)).

As the final results in this intermediate section, we present direct consequences of Proposition 2.10
and Theorem 2.17 for K-convergence of Young measures. Such results first figured in [20]; they will
be used in the next section.

Proposition 3.13 (i) Let (8,,) and by be in R(2;S). The following are equivalent:

(a) 6, 2L 8.

(B) 60 % €n =L 8y X €oo.
(#i) Moreover, if (6,) is T-tight, then the following two equivalent statements are implied by the
above:

(¢) FEvery subsequence (6,) of (8,) contains a further subsequence (8p1) such that é,v K7 8o.
(d) FEvery subsequence (8,/) of (8,) contains a further subsequence (ép1) such that §,n %

Entt ﬂ (50 X €og-
PrOOF. (a) < (b) follows by pointwise application of Proposition 2.10(¢). In part (i) (¢) < (d)
follows by pointwise application of Proposition 2.10(#%), by taking into consideration Remark 3.12.

Finally, the implication (a) = (¢) of part (i7) follows by pointwise application of Theorem 2.6, again
taking into consideration Remark 3.12. QED

Theorem 3.14 (i) Let (8,) and 6 be in R(S). Then &, £ 6 implies

Tp-supp bo(w) C 7p-Ls, T,-supp &, (w) for a.e. w in Q.
(#) Moreover, if (8,) is T-tight, then in fact

8p(w)(r-seq-cl 7-Ls,7-supp 6, (w)) =1 for a.e. w in Q,
so that in particular

T-supp bg(w) C 7-cl 7-Ls, m-supp b, (w) for a.e. w in Q.

PRrROOF. Part (¢) of this result follows directly from a pointwise application of Theorem 2.17(¢). Part
(i) also follows by a pointwise application of Theorem 2.17(#%), in view of the tightness observation

in Remark 3.12. QED

4 Narrow convergence of Young measures

In this section our program to transfer narrow convergence results for probability measures (sec-
tion 2) to Young measures is completed. We use the same fundamental hypotheses as in the previous
section: (£2,.4, u) is a finite measure space and (S, 7) is a topological space for which Hypotheses 2.1,
2.3 hold. We start out by giving the definition of narrow convergence for Young measures:
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Definition 4.1 A sequence (8,) in R(£2; S) converges T-narrowly to & in R(£2;.S) (this is denoted
by &, == &) if for every A € A and for every ¢ in C(S, 7)

lim [ [ s, @)aniuds) = [ [ st

The obviously weaker notion 7,-narrow convergence is defined by replacing 7 by 7,. Similar to
section 2, the latter notion is denoted by “ == ”. In analogy to section 2, we shall see that for tight
sequences of Young measures r-narrow and 7,-narrow convergence are actually the same. For further
benefit, note carefully the difference in notation between the narrow convergences for probability
measures (indicated by short arrows) and Young measures (indicated by long arrows).

In its above form the definition of narrow convergence 1s classical in statistical decision theory
[96, 74]. Tt merges two completely different classical modes of convergence:

Remark 4.2 Let (6,) and 8y be in R(82;5). The following are obviously equivalent:
(a) 6, == 6o in R(Q;5).
(b) For every A € A with u(A) >0

(1@ 8n)(A % )/ u(A) = [ @ 60](A x )/ u(A) in P(S).
(¢) For every ¢ € Cp(S, 1)

[ = [ dwpnidn) in (2R,

5
where “= 7 denotes convergence in the topology a(L>(Q;R), L1(Q; R)).
The following example continues the previous Examples 3.2 and 3.8.

Example 4.3 Let (2, A, ) be ([0, 1], £([0,1]), A1) (cf. Example 3.2). As in Example 3.8, let f; €
£1([0,1]; R) be arbitrary and extended periodically from [0,1] to all of R. We define f,41(w) :=
f1(2"w). Then ¢;, == 6y, where 65 € R([0,1]; R) is the constant function given by &(w) = /\{1.
Here M1 € P(R) is the image of A; under the mapping f1; i.e., A1 (B) := A(f; 1 (B)). To prove the
above convergence statement, let ¢ € C3(R) be arbitrary, and let A4 be of the form A = [0, 5] with
G > 0. Then a simple change of variable gives

[ clhpronas = [ T (2 e = 27 / s,

0

and by periodicity of f; the latter expression equals ﬁfol c(fi(w))de’ = M (A) g c(a:)/\{l(dx) in
the limit. So it has been shown that

(oo = [

A

lim c
n— 00 A

[/R e(2)bg(w)(de)]dw (4.1)

for A = [0,]. By subtraction, (4.1) continues to be valid for A’s of the form A = («, 4], and, by
summation, also for A’s that are a finite disjoint union of such intervals. Finally, by [4, 1.3.11] for
any A € A and any € > 0 there exists a finite union A’ of intervals (e, 5] such that the symmetric
difference of A and A’ has Lebesgue measure at most e. But then | [, ¢(f,) — [, ¢(fn)| < €supg |c],
so, by letting € go to zero, we conclude that (4.1) continues to hold in the general case.

The above example shows that é, in Example 3.8 is equal to the above 6y, modulo a A;-null set. In
fact, the narrow limit of a sequence of Young measures in R(£2;.5) can only be essentially unique
(that is to say, unique modulo a g-null set). This follows immediately from the following general
result:
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Proposition 4.4 For every &, § in R(; S) the following are equivalent:
(a) For every A€ A and ¢ € Cy

/A [ / o(2)8(w) (di)](d) = /A [ / ()8 () (d2)] ().
(b) 6(w) = 8'(w) for a.e. w in Q.

The essentially sequential setup chosen for these lecture notes leads to frequent use of a semi-
metric dgr on R(£2;S), as defined in the next result. This allows us to use sequentially oriented
approaches when we apply the narrow topology (the latter is of course defined by rereading Defini-
tion 4.1 with generalized sequences in mind).

Theorem 4.5 Suppose that the o-algebra A on Q is countably generated. Then there exists a
semimetric dr on R(Q;S) such that for every (6,) and 8y in R(Q2;S) the following are equivalent:
(a) 6, == 6.
(b) limy, dr (b5, 60) = 0.

PROOF. Define a semimetric on R(£2;.5) by

on0.4) = 3 2 [ [ ctoponaniua - |

i=1 j=1

[ / ()8 (@) (da)]pu(d) /(A5 ).

J

Here (¢;) is an enumeration of the functions, conveniently normalized so as to give supg |¢;] = 1 for
each 4, in the narrow convergence determining set Cy used in Lemma 3.10. Also, (A4;) is an at most
countable algebra which generates A.

(¢) = (b): By using the approximation result [4, 1.3.11] in the same way as in the above
Example 4.3, it follows that

tim [ [ epsu@)aninto) = [ [ e,

for every A € A and every i. By the narrow convergence determining property of Cp in Lemma 3.10,
this implies

[ @ 82J(A x )/ u(4) S [1© o)(A x )/p(A) in P(S)
for every A € A with p(A) > 0. By Remark 4.2 this implies 6, =% 6y. The converse implication
(a) = (b) is very simple. QED

From Proposition 3.5 and its proof we immediately obtain that K-convergence implies narrow
convergence:

Remark 4.6 Let (6,) and 8y be in R(£2;S). The following hold:
(a) If 6, L 80, then 8, =2 8.
(b) If 8, L 8y and if (8,) is T-tight, then 6, == 6.
(¢) If 8, 25 69, then 6, = 6.

The implications in this remark cannot be reversed: the following example shows that a narrowly
convergent sequence does not have to K-converge, even when S is the set of real numbers. Let us
already mention that, nevertheless, in Theorem 4.13 below a partial converse will be achieved in
terms of subsequences.

Example 4.7 Consider the sequence (f,) of Rademacher functions from Example 3.2. Define the
following sequence (f7,) in £}(Q;R): for each m € N define f/, := f,,, for 271 <n < 2™ — 1. From
Examples 3.2 and 4.3 it is clear that ¢/ = b9, where 6y = %el + %e_l a.e. By Remark 4.6 we
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know that if (¢ ) were to K-converge to some Young measure, it would have to be 6y (modulo null
sets). But it is easy to check the following: for N = 2™ — 1

1 N 1 2™ %1 2m—2 2m—1
¥ D eplw) = T D7 enw)+ o Cm (W) + o (@),
n=1 n=1

This shows that ¢/ £7 80 is not possible, since 2771 /(2™ —1) — 27" fori = 1,2, and A\ ({w € Q :
fm(w) = fm—1(w)}) > 0 for all m € N.

Concatenation of Theorem 3.7 and Remark 4.6 gives immediately a Prohorov-type result for
narrow convergence of Young measures:

Theorem 4.8 (i) Let (6,) be a 7,-tight sequence in R(Q;S). Then there exist a subsequence (b,1)
of (8,) and 6, € R(Q; S) such that 6,1 == 6.
(ii) Moreover, if (6,) is T-tight, then in fact 6,1 == 6. can be achieved in (7).

Example 4.9 We continue with Example 3.4(b). By o(E, E')-tightness of (e;, ) we get from The-
orem 4.8 that there exist a subsequence (f,/) of (f,) and 6, € R(Q; E) such that ¢; , = 6,.

(a) We now introduce a function f. € L}, that is “barycentrically” associated to 4., simply
by inspecting the consequences of the tightness inequality s := sup, In.(¢f,) < +oo that was
established there. For hp is a fortioria o(E, E')-lower semicontinuous integrand, so Theorem 4.10(e)
gives I, (6.) < 's < +oo, which implies [¢ hr(w, 2)6.(w)(dx) < 400 for a.e. w. So by the definition of
hg it follows that both 6, (w)(R(w)) = 1 and fE |26« (w)(dz) < +o0 for a.e. w. By Theorem A.10(%)
it follows that the barycenter f.(w) := bar é,(w) of the probability measure 6, (w) is defined for a.e.
w. Thus, if we set fi := 0 on the exceptional null set, we obtain a function f. € £°(Q; E). Finally
we notice that, as announced, f. is p-integrable, i.e., f. € L£Y(Q; E). This follows simply from
Ing,(8.) < 400 by use of Jensen’s inequality and the inequality hp(w,z) > ||2||.

(b) Suppose that in part (a) one has in addition that (|| f,]|) is uniformly integrable in £1(Q2; R).
Then fo = f. € LY(Q; E) (weak convergence in £'(; E))). This follows directly from another
application of Theorem 4.10(e), namely, to all integrands g of the type g(w,z) = £ < #,b(w) >
b€ L8, E)[FE]. The latter symbol denotes the set of all scalarly measurable bounded E’-valued
functions on £2; it forms the prequotient dual of L£H(Q; E). This yields lim, I, (e;,,) = I,(8,), with
Iy(es,,) = Jy( fn = [o < far,b> dp and I,( fﬂ<f*,b>du (cf. TheoremAlO( ))

Part (b) in the above example implies that f,, — fo in Example 4.3, where f is the constant function

given by fo(w) := bar dp(w) = [Rg frdA1 (apply [55, 11.12]).
Proposition 3.5 and Theorem 3.7 imply the following transfer of the earlier portmanteau Theo-
rem 2.6 to Young measures (see [16, Theorem 2.2] for other equivalences of this sort).

Theorem 4.10 Suppose that (S,p) is Suslin. Let (8,) and by be in R(2;S). The following are
equivalent:
(Cl) bn :> 6.
) limy, fA fS z)bp (w)(dx)] fA fS w)(da)p(dw) for every A € A, ¢ € Cu(S, p).
(c) liminf, I,(é, ) > 9(60) for every p-lower semzcontmuous integrand g on Q@ x S such that

lim sup/Q [/{g< o ¢ (w, )b, (w)(da)]p(dw) = 0.

a— 00 n

(#) Moreover, if (8,) is T-tight, then the above are also equivalent to the following:

(d) 6, == &.

(e) liminf, I,(6,) > I,(60) for every sequentially T-lower semicontinuous integrand g on 2 x S
such that

lim sup/Q [/{g< . ¢~ (w, )b, (w)(da)]p(dw) = 0.
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Observe that (¢) = (¢) and (d) = (e), which are the most powerful implications of the above
theorem, constitute a very general theorem of Fatou-Vitali type for narrow convergence of Young
measures. Results of this kind are usually obtained by means of approximation procedures for the
lower semicontinuous integrands [48, 42, 7, 67, 9, 16, 94, 95]. In contrast to the present result, such
procedures depend on approximation arguments requiring the measurable projection theorem and
related Suslin conditions for S.

The following important lemma establishes that 7,-narrow convergence implies 7,-tightness when
(S, p) is a Suslin space (note: this is the case in particular when (S, 7) itself is a Suslin space).

Lemma 4.11 Suppose that (S, p) is Suslin. Let (8,) and by be in R(£2;S) with é, =L 8y. Then
(6n) is T,-tight.

PROOF. Set v, = [ @ 6,](2 x )/u(2); then v, € Pradon(S,7,) for every n € N U {0},
since Pradon(S,7,) = P(S) by [65, II1.69]. By Remark 4.2 it follows that v, £ 1y. Therefore,
Theorem 2.19 implies that (v,,) is 7,-tight in P(S). By Definition 2.7(a), this means that there
exists a 7,-inf-compact function h' : S — [0, +oc] such that sup,, [ h'dv, < +00. Now by definition
of v,, we have fS W dvy, = In(6,)/11(Q) for every n, where h(w,x) := h'(z). Thus sup,, Ir(6,) < +0,
which demonstrates that (é,) is 7,-tight. QED

PrOOF OF THEOREM 4.10. We start with the proof of part (7).

(a) < (b): The equivalence follows immediately from the equivalence of (a) and (b) in Theo-
rem 2.6 and Remark 4.2.

(¢) = (b): Obvious, for (b) follows by applying (¢) to both g(w,z) := 14(w)ec(z) and ¢'(w, z) :=
—1a(w)e(x), with A € A and ¢ € Cy (S, p).

(a) = (¢): For g as stated, let § := liminf, I;(é,). Then 8 = lim, I;(é,:) for a suitable
subsequence (8,/) of (6,,). By Lemma 4.11 we have that (é,), whence (é,/), is 7,-tight, so by Theo-
rem 3.7(7) there exists a subsequence (8,7) of (8,7) such that &, Ky 8. for some 8, in R(£2;S). But
in combination with (a) this implies é,(w) = ép(w) a.e. (apply Remark 4.6 and Proposition 4.4), so
in fact 6, Ky 8g. The desired Fatou-Vitali inequality 5 > I,(éy) then follows from Proposition 3.5.

Next, we prove part (i) of the theorem.

(e) = (d) = (¢) = (b) = (a): These all hold a fortiori (see also the proof of (7)).

(a) = (e): The proof is virtually the same as the proof of (a) = (¢) that was given above. This
time, tightness is forced ab initio; let h correspond to the condition of r-tightness as in Definition 3.3.
In the remainder of the proof of (a) = (¢) we now substitute g° := g + €h, which is certainly a 7,-
lower semicontinuous integrand (see the proof of Proposition 3.5). Letting ¢ go to zero then gives

(e). QED

Remark 4.12 Note that in the above proof the Suslin space hypothesis for S (in the shape of Lem-
mma 4.11) was only used one time, namely for the proof of the implication (a) = (c).

From Remark 4.6 we already know that K-convergence implies narrow convergence of Young
measures. The above proof of Theorem 4.10 enables us now to characterize narrow convergence
completely in terms of K-convergence:

Theorem 4.13 (i) Suppose that (S, p) is Suslin. Let (é,) and by be in R(€2;.S). The following are
are equivalent:

(a) 6, == 6.

(b) FBvery subsequence (6,) of (8,) contains a further subsequence (8p1) such that é,v K.p 0.
(#) Moreover, if (8,) is T-tight, then the above are also equivalent to the following:

(¢) 6, == &o.

(d) FEvery subsequence (6,) of (6,) contains a further subsequence (6,1) such that &, K7 8.
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In parts (b) and (d) the use of subsequences cannot be replaced by the use of the entire sequence
(6) itself, because of Example 4.7. Observe also that in part (¢7) the Suslin space hypothesis is
actually not needed by Remark 4.12.

Theorem 4.14 (i) Suppose that (S, p) is Suslin. Let (é,) and by be in R(2;.S). The following are
are equivalent:

(a) 6, == 6.
(b) 6 % €n =25 60 X €o.
(#) Moreover, if (8,) is T-tight, then the above are also equivalent to the following:
(¢) 6, == &o.
(d) 6n X €0 == 60 X €o.

This result, which is the Young measure analogue of Corollary 2.11, follows simply from Propo-
sition 3.13 by Theorem 4.13. Observe once more that in part (¢¢) the Suslin space hypothesis is
actually not needed by Remark 4.12. The transfer of the support Theorem 2.17 to Young measures
1s now immediate because of the intermediate support Theorem 3.14 and Theorem 4.13:

Theorem 4.15 (i) Suppose that (S,p) is Suslin. Let (8,) and &y be in R(2;S) with &, £ 8.
Then
Tp-supp bo(w) C 7p-Ls, T,-supp &, (w) for a.e. w in Q.

(#8) Let (6,), 8o be in R(Q; S), with 6, = &y and (bn) T-tight. Then
8o(w)(r-seq-cl 7-Ls, 7-supp 6, (w)) =1 for a.e. w in Q.

As before, in part (i) the Suslin space hypothesis is actually not needed (Remark 4.12).
Next, we examine narrow convergence when it is restricted to the set Rpirqac(€2; 5). Recall first
that a sequence (f,) in £L°(£2;5) is defined to converge in measure to fo € L%(Q;5) (we denote this

as f, & fo) if for every € > 0
lim({ € Q¢ p(fa (@), fo(w)) > €}) = 0.

Recall also that for any f € £9(Q;5) the image measure pf of y under f is defined by pu/(B) :=
u(§1(B)), B € B(S): by ¢ (w)(B) = 1p(f(w)) this implies 1 ¢/)(2 x ) = 4/ (-).

Proposition 4.16 Suppose that (S, p) is Suslin. Let (fy) and fo be in LO(2;S). Then the following
are equivalent:

(a) €g, =N €fo 1 Rpirac(€;5).
(b) fo & fo in £2(Q; S).

PROOF. (a) = (b): Let € > 0 be arbitrary. Define a lower semicontinuous integrand on € x S by

. -1 lfp(l‘,fo((.d)) ZEa

g(w,z) = { 0  otherwise.
By Lemma 4.11 and Theorem 4.10(¢) we have liminf, J,(f,) > J4(fo) = 0; i.e., limsup, pu({w € Q@ :
o), Jo(e)) > ) = 0.

(b) = (a): Let A € A, ¢ € Cy(S, p) be arbitrary. It is enough to prove that 3 = [, ¢(fo)dp for
B :=liminf, [, ¢(fn)dp (for the same argument applies to —c). Clearly, there exists a subsequence
(fnr) such that 8 = limy: [, ¢(fnr)dpu. By (D), (p(fnr, fo)) certainly converges in measure to zero in
L°(Q;R). So by [4, Theorem 2.5.3] (f,+) has a subsequence (f,~) that p-converges a.e. to fo. The
desired identity for 7 thus follows from the dominated convergence theorem. QED

Next, Theorem 2.12 is transferred to tensor products of Young measures. Let (',.A’, u’) be
another finite measure space and let (5’,7') be another topological space for which the obvious
analogues of Hypotheses 2.1, 2.3 hold; we denote the associated metric on S’ by p’ (observe that the
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topological space S x S’ then also meets the analogue of Hypotheses 2.1, 2.3). The tensor product
§© & of 6§ € R(Q;5) and & € R(';5") is defined by

(6 @ &) (w,w') = 8(w) x &' (W),

e, (§ ® ¢ )(w,w’) is the product of the two probability measures §(w) and ' (w’). It is clear that
§ © &', thus defined, is a transition probability from (€ x Q', A x A’) into S x S’; hence, it belongs
to R(Q x Q55 x S'). We now present a continuity result for the tensor product with respect to
narrow convergence. There is also a fully topological analogue; see [16] where these results were first

introduced (see also [97, Ch. IX]).
Theorem 4.17 (i) Let é, = & in R(2;S) and let &/, é 8 in R(Q';5"). Then

6 @ 6 2L 50 0 6 in R(Q x Q58 x 5.

(#) Moreover, if (8,) is T-tight and (8),) is 7'-tight, then

8y @8 25 85y 06 in R(Q x 38 x S).

Lemma 4.18 For every A € A x A’ and every ¢ there ezist finitely many disjornt measurable
rectangles A; x AL in Ax A', i =1,...,m, such that the symmetric difference of A and UM, A; x A}
has p X p'-measure at most €.

ProoF. The algebra consisting of finite disjoint unions of measurable rectangles generates A x A’;

hence, the result follows by [4, 1.3.11]. QED

PROOF OF THEOREM 4.17. (i) Let A € Ax A’ and ¢ € C3(S x S, px p), and set g(w,w’, 2, 2') :=
1 ;(w,w’)e(z, 2'). Since uniform limits of finite sums of continuous functions are continuous, the
result obtained in Lemma 4.18 enables us to just consider the case A = Ax A’ with A € A and A’ €
A’. We may also suppose u(A) > 0, p/(A’) > 0. Then (6, @ 6)) = p(A)p/'(A") [4, 50 cd(vn x V),

where vy, := [ @ 6,](A x )/u(A) and v/, = [u @ 8, ](A' x -)/u/ (A') satisty v, = vy and v}, & v},
in view of Remark 4.2. By Theorem 2.12(4) this gives I, (6, @ &),) — I;(60 @ 6(). This finishes the
proof of part (é). Part (i) directly follows by Theorem 4.8(i7), since (6, ® é/,) is evidently tight for
7 x 7', Alternatively, it can be obtained as above by using Theorem 2.12(i7) this time. QED

As shown by the following counterexample, Theorem 4.17 need not hold when the measure on
(2 x Q' Ax A is not a product measure, even when g and p’ are its marginals.

Example 4.19 Take for (2, A) and (Q', A’) the space ([0,1],B([0,1])). Let (f) be the sequence
of Rademacher functions on Q and let (f) be the sequence of Rademacher functions on Q' (see
Example 3.2). Equip Q= [0, 1]? with A= B([0,1]?) and fi, defined to be the uniform measure
concentrated on the diagonal of [0,1]%. Equip (2,.4) and (€', A") each with the Lebesgue measure.
Then by Example 3.2, we have ¢;, == & in R(Q; R) and €fr == 6y in R(2;R), but (¢7, ® €5r)
does not narrowly converge to 69 ® ég in R(Q;Rz). To see the latter, apply Definition 4.1 with
A :=Q and c(x,2") := x’; then in Definition 4.1 the limit on the left equals 1, but the expression
on the right is equal to 0.

5 Lower closure
Let (2, A, p) be as in section 4 and let (S, 7) be a completely regular Suslin space (cf. Remark 2.4(7)).
In this section we combine the main results from section 4 in the form of so-called lower closure

results. As an abstract starting point for lower closure we have the following immediate consequence
of Theorems 4.8, 4.14 and 4.15:
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Theorem 5.1 Let (6,) be a 7-tight sequence in R(2;S). Then there exist a subsequence (6,1) of
(6n) and 8. € R(; S) such that

;
Opt X € = 8y X €0

Bestdes, 6, has the following pointwise support property:
8. (w)(r-seq-cl 7-Ls, 7-supp 6, (w)) =1 for a.e. w in Q.

Somewhat more concretely Theorem 5.1 can be stated as follows. Let (D, dp) be an arbitrary metric
space.

Theorem 5.2 Let (6,) in R(2; S) be T-tight and let d,, £ dy in L%(Q; D) (convergence in measure).
Then there exist a subsequence (6,) of (6n) and 8. in R(2;S) such that

it [ [ sz, du)ow@)doln(de) 2 [ [tz do(w))6. () de) )
' Ja Js o Js

for every sequentially T X 14, -sequentially lower semicontinuous integrand £ on Q x (S x D) such
that

s'(a) := sgp /ﬂ*[/{K_ } {7 (w, z,dp(w))8n (w)(de)|p(dw) — 0 for & — oo. (5.1)

Bestdes, 6, has the following pointwise support property:
8. (w)(r-seq-cl 7-Ls, 7-supp 6, (w)) =1 for a.e. w in Q.

Here {{ < —a}, » stands for the set of all € § for which {(w, 2, d,(w)) < —c.

PrOOF. Theorem 4.8 and well-known facts about convergence in measure ([4, Theorem 2.5.3])
imply the existence of a subsequence (é,/,dy,/) of (8,,,d,) and existence of a 8, € R(T'; S) such that
6t == 6, and dp(d,/(w), do(w)) — 0 for a.e. w. By Theorem 4.15 this implies the stated pointwise
support property for é.. By Theorem 4.14 this gives 6p = b, in R(Q;S’), with S == S x N,
on := bp X €, and b, := b, X €. Rather than to renumber, we suppose without loss of generality
that (n') enumerates all the numbers in N. Let ¢ be as stated. We define g, : @ x S — (—00, 0]
by
o lw,z dy(w)) ik < oo

g(w, 7) = { Uw,x, do(w)) ifk =00

Then g, is a T-lower semicontinuous integrand, modulo an insignificant null set (note that for k = co
lower semicontinuity of ge(w, ) at (#, 00) follows from d,/(w) — dg(w) and the lower semicontinuity
of l(w, -, ) at (z,do(w))). Since (5.1) coincides with (3.1) for ¢ = g¢, we may apply Theorem 4.10 to
g¢. This gives lim inf,. Ig[(gn/) > Ig[(g*). Since the following identities hold elementarily for each
n' and w:

/gz(w,i‘)gn/(w)(di‘):/E(w,x,dn/(w))én/(w)(dx),

/Sgg(w,i‘)g*(w)(di‘):/Sﬁ(w,x,do(w))é*(w)(dx),

the main inequality of the theorem has also been proven. QED

Remark 5.3 Let h be the nonnegative, sequentially T-inf-compact integrand h on 2 x S that corre-
sponds as in Definition 3.3 to the T-tight sequence (6,) in Theorem 5.2; i.e., with s := sup,, In(6,) <
+00. Then the uniform integrability condition (5.1) applies whenever the integrand € has the follow-
ing growth property with respect to h: for every e > 0 there exists ¢. € L1(Q;R) such that for every
neN

T (w,z,dp(w)) < eh(w, @) + de(w) on  x xS.

Indeed, we can observe that the set {{ < —a}y, , in (5.1) is contained in the union of {¢. < eh} and
{¢e > a/2}, which gives s'(«) < 3es + f{¢> Sa/2) $e dp, whence s'(o) — 0 for a — 00, as claimed.
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Let us show that the so-called fundamental theorem for Young measures in [40] follows from
Theorem 5.2. To this end, let L be a locally compact space that is countable at infinity; its usual
Alexandrov compactification is denoted by L := L U {oo0}. Although it could be avoided by the
additional introduction of transition subprobabilities (see the comments below), the Alexandrov
compactification LofL figures explicitly in the result. The space L is metrizable, and its metric is
denoted by d. On L we use the natural restriction of ci, and denote it by d. Let Co(L) be the usual
space of continuous functions on L that converge to zero at infinity. Also, below v denotes a o-finite
measure on (£2,.A).

Corollary 5.4 (i) Let (f,) in L°(Q; L) and the closed set C' C L be such thatlim, I/(fn_l(L\(})) =0
for every open G, C C G C L. Then there exist a subsequence (fnr) of (fn) and 6, in R(Q; L) such

that
lim [ )t )ulde) = [ ([ o). w)dnlud

for every ¢ € LY (Q;R) and every ¢ € Co(L). Besides, we have 6,(w)(L\C) =0 for a.e. w in Q.
(#) Moreover, if for that subsequence (fnr) there exists a sequence (K, ) of compact sets in L such

that lim, oo sup, v({w € Q@ : f(w) & Ky} =0 then éb.(w)({oo}) =0 for a.e. w in Q and

tim [ o@)elfu@ride) = [ [[ 6@)e()s @) d@nu(ds)

Jor every A € A, ¢ € LY(A;R) and ¢ € C(L) for which (1ac(fnr)) is relatively weakly compact in
LYA;R).

In [40] both L and 2 are Euclidean, and the K,’s are closed balls around the origin with radius r. As
was done in [40], the result could be equivalently restated in terms of the transition subprobability
8, from (2, A) into (L, B(L)), defined by obvious restriction to L, i.e., 8, (w)(B) := 8, (w)(BU{o0}),
B € B(L). In this connection the tightness condition in part (é¢) guarantees that é, is an authentic

transition probability (Young measure). Rather than via (é), part (#i) can also be derived directly
from Theorem 3.7 or 5.2.

PRrROOF. (i) By o-finiteness of v, there exists a finite measure p that is equivalent to v. Let q; be
a version of the Radon-Nikodym density dv/du. Now (é,), defined by 6, = ¢, € R(Q,;ﬁ), is
trivially tight by compactness of L (set h = 0). By Theorem 4.8 or 5.2 there exist a subsequence
(far) of (fn) and 6, € R(£; i) for which ¢, =L 6., Every ¢ € Co(L) has a canonical extension
¢ e Cb(ﬁ) by setting é(o0) = 0. Now ¢ is p-integrable for any ¢ € £Y(Q, A, v;R), and Theorem 4.10
(or 5.2) can be applied to ¢ : £ x L — R given by g(w,2) := £¢(w )q/;( )A( ). This gives the desired
equality, because of the identity fﬂ b fL é(2)b. () (da)dp = fﬂ o fL «()(dx)dv.

Next, let C' be as stated. For any ¢ € IN the set F}, consisting of all z E L with d-dist(x, C) < g7t
is closed in L. Note already that N; F; = C, by the given 74-closedness of C'in L. Further, F; := F; U
{oo} is closed in L. Set gi(w,x) = ¢(w)l L\F,( z). This defines a nonnegative lower semicontinuous
integrand g; on 2x L. Hence, I3,(6+) < B; :=liminf,s Iy, (e, ,) by Theorem 4.10(c). By ﬁ\F = L\F;
the definitions of ¢; and e; , give I (¢ ,) = I/(fn_,l(L\FZ)) So f; = liminf, v(f, (L\F )) <
I/(fn_,l(L\Gi)), where G;, G; C I}, is the Td open set of all x € L with d-dist(z,C) < i~!. Since
G; D C, the hypotheses imply 0 = 3; > I = [ 0«(-)(L\F;)dv. Hence 6.(w)(L\C) = 0 v-a.e.
because of N; F; = C', which was demonstrated above

(79) The additional condition is then a tightness condition for (e;, ), when viewed as a subset of
R(; L) (take I'. = K, for large enough r in Definition 3.3(b)). Hence, there is a 7,-inf-compact
integrand h on ©Q x L with s := sup,, I(6,) < +o0. Define the inf-compact integrand hon§QxL
by ﬁ(w, z):=h(w,z)if x € L and iz(w, o0) 1= 400. Since h is in particular a lower semicontinuous
integrand on Q x L, we have I;(6+) < liminf,, I; (¢s ,) by Theorem 4.10. Trivially, I;(¢s, ,) =
In(eg,, ), so we get I;(6.) < s < 400. The latter shows that 6.(w)({cc}) = 0 for p-a.e. w in Q,
whence for v-a.e. w. So é, can also be viewed as an element of R(2; L), for which we then get

€5, =4 5, in R(§; L) by the above. To conclude, observe that for any A € A with v(A4) < 4+
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Theorem 4.10 applies to g(w, x) := :I:lA(w)(/)(w)q;(w)c(x), which is a continuous integrand on  x L
that is p-integrably bounded. In view of part (¢), this gives the desired limit statement if A has
finite measure. If ¥(A) = 400 and A is as stated, there exists, by v’s o-finiteness, a sequence (A4;) of
subsets of A with finite v-measure, with A; T A. The previous result applies to each of the A; and
the weak relative compactness hypothesis implies uniform o-additivity, i.e., sup,, fA\Aj le(fo)ldv | O

[47]. So also in this case the desired limit statement follows. QED

If in the above lower closure Theorem 5.2 additional conditions are imposed upon the Young
measures (8, ), then extra “barycentric” information about é, may become available in terms of its
marginals. In this way, Theorem 5.2 will be turned into a very general lower closure result “with
convexity”. Let F and F' be separable Banach spaces, each of which is equipped with a locally
convex Hausdorff topology, respectively denoted by 7 and 7p, that is not weaker than the weak
topology and not stronger than the norm topology. As usual, £1(2; E) denotes the space of all
Bochner integrable E-valued functions (here this is precisely the space of all e € £%(Q; E) such
that ||e(-)||g is p-integrable). Let (D, dp) be a metric space. Functions that are “barycentrically”
associated to Young measures can play a special role in lower closure and existence results. This is
demonstrated by our proof of the following result.

Theorem 5.5 Let d, = dy in L%(; D) (convergence in measure), e, — eq in LY F) (weak
convergence), and let (f,,) in L1(; F) satisfy sup,, Jo lfallpdp < +o00. Suppose that there exist -
and tp-ball-compact multifunctions Rp : Q — 2F and Rp : Q — 28" (cf. Evample 3.4) such that

{(en(w), fu(w)) :n € N} C Rp(w) x Rp(w) p-a.e.

Then there exist a subsequence (dpr,enr, fnr) of (dnyen, fn) and fo € LY(Q; F) such that

*

lim inf/Q* Uw, e (W), for(w), dp(w))p(dw) > / U w, eg(w), fu(w), do(w))pu(dw)

n! Q

for every sequentially Tp X Tp X Tp-lower semicontinuous integrand € on Q x (E x F' x D) such that
the following hold:

(7 en(s), fa(0), dn (")) is uniformly (outer) integrable
(see Remark 3.6(4i)) and

Lw, -, -, do(w)) is conver on E X F for a.e. w.

Besides, the functions eq and f. can be localized as follows: *

(eg(w), fu(w)) € cl co-w-Lsy{(en(w), fr(w))} for a.e. w in Q.

Observe, as was already done following Example 3.4, that the ball-compactness condition involving
REg and Rp is automatically satisfied in case the Banach spaces F and F' are reflexive.

Proor. To apply Theorem 5.2 we set S := E' x F, 7 := 7g X 7p and 6, := €, j,). Observe
that S is a separable Banach space for the product norm || - ||, so (S, 7) is a Suslin space, and
by the Hahn-Banach theorem (5, 7) is completely regular. Next, we note that (||e,||]) in £1(2;R)
is uniformly integrable; this follows from the weak convergence hypothesis (apply [47, Theorem 1]
and [81, Proposition 11.5.2]). In particular, this implies sup,, [, [|(en, fn)||sdp < +o00. By 7-ball-
compactness of R := Rg x Rp this proves that (6,) is 7-tight, in view of Example 3.4. We can now
apply Theorem 5.2. Let the subsequence (8,/,d,) of (éy,dy) and b, in R(£2;.S) be as guaranteed
by that theorem, i.e., with &, == §&,. Then it is elementary to establish from Definition 4.1 that,
“E-marginally”, e , = ¢6F and, “F-marginally”, €5, == 6F. Here 6F(w) := 6.(w)(F x -) and
§F(w) := 6. (w)(- x F). So E-marginally we then have the situation of Example 4.9(b), which gives
that bar 6 = ¢ a.e. Also, F-marginally we have the more primitive situation of Example 4.9(a),

2In case F and F are finite-dimensional one may replace here “cl co” by “co”.
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which gives existence of f. € L£1(Q; F) such that f. = bar 6" a.e. (note that 7g- and 7 -ball-

compactness imply o(F, E')- and o(F, F’)-ball-compactness respectively). Recombining the above

two marginal cases, we find bar é. = (e, fi) a.e. (note that barycenters decompose marginally).
We now finish the proof. For an integrand ¢ of the stated variety Theorem 5.2 gives

*

liminf/* Uw, e (W), for(w), dp(w))p(dw) > /

n' 0 0

[ /E ()8 ) ) ()

(see also Remark 3.6(i7)). In the inner integral above, the convexity of £(w, -, -, do(w)) gives
/ Uw, z,y,do(w))b (w) > glw, bar §.(w), do(w)) = g(w, eg(w), fu(w), do(w))
ExF

for a.e. w, by Jensen’s inequality and our previous identity bar 6, = (eg, f«) a.e. The desired
inequality thus follows. QED

The above lower closure result “with convexity” is quite general: it further extends the results
in [9, 14], which in turn already generalize several lower closure results in the literature, including
those for orientor fields (cf. [52]). See [22] for another development, not covered by the above
result. Results of this kind are very useful in the existence theory for optimal control and optimal
growth theory. Corollaries of Theorem 5.5 are so-called weak-strong lower semicontinuity results
for integral functionals in the calculus of variations and optimal growth theory; cf. [45, 52, 65].
Recently, similar-spirited versions that employ quasi-convexity in the sense of Morrey have been
derived from Theorem 5.2 in [72, 90] (these have for e, the gradient function of d,, and depend on
a characterization of so-called gradient Young measures [83]). Another result that is generalized by
the above theorem is as follows.

Corollary 5.6 Let f, = fo in LY(Q;R?) (weak convergence). Then

fo(w) € co-Ls, {fn(w)} for a.e. w in Q.

This result is due to Z. Artstein [3, Proposition C]. It is obtained from Theorem 5.5 by setting
E = R® and activating the footnote in its statement. We turn briefly to an extension of the
Dunford-Pettis theorem (sufficiency part); this comes from [25, 32] and generalizes [49] and [36,
Lemma 4.3]. Again E denotes a separable Banach space.

Theorem 5.7 Let (f,,) in L1(Q; E) be uniformly integrable and such that for every e > 0 there is a
multifunction T, : Q — 2F having norm-compact values with p*({w € Q : fo(w) ¢ Te(w)}) < € for
all n. Then there exist a subsequence (fnr) of (fn) and f. € LY(Q; E) such that limy, || fA fardp —
S fudpl] = 0 for every A € A.

Above p* stands for outer p-measure. Obviously, when F is finite-dimensional, the tightness con-
dition in the above result holds automatically and we get the Dunford-Pettis theorem (sufficiency
part).

Proor. We set S := F and 7 := norm-topology. By Definition 3.3(b), the sequence (e;, ) is 7-
tight. Also, by uniform integrability, (f,,) is of course bounded in £!-seminorm. Theorem 3.7 gives
existence of a subsequence (f,/) and 6, € R(Q; E) such that ¢; , == 6.. Because of ¢(E, E') C T,
Example 4.9(b) implies f,» — f. := bar 6.. But more can be said. Let A € A be arbitrary and set
o = —limsup,/ || [,(far — fo)||dp. Without loss of generality we may suppose —|| [, (fnr — fi)dp]]
— « < 0. By the Hahn-Banach theorem, there exists a sequence (z/,) in the unit sphere of the dual
space E' such that

_H/A(fn’ = fdpl] =< /A(fn’ - f*)dﬂax;ﬂ >= /A < far— f*ax;ﬂ > dp

for every n’. By the Alaoglu-Bourbaki theorem it then follows that a subsequence of (z/,,) converges
in the weak star topology to some #’_ in the closed unit ball of E’ (note that this ball is metrizable);
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we may suppose without loss of generality that the entire sequence (#,) converges to x’ . Since
7 is the norm-topology, a semicontinuous integrand ¢ on ©Q x (N x ) is defined by l(w,n’,z) :=
la(w) < & — fu(w), 2], >. Then Theorem 5.2 gives a > [, < fu — fu,zl, > dp = 0, and we get
a=0. QED

More obvious corollaries of Theorem 5.5 (namely, where the space F' is completely absent) are so-
called weak-strong lower semicontinuity results for integral functionals in the calculus of variations
and optimal growth theory [45, 52, 65],

The following example is intended to indicate the usefulness of Theorem 5.5 for the study of
existence in optimal growth. Notwithstanding its modesty, it already covers quite some models used
in optimal growth theory (this point is elaborated in [41]). More general and more complex existence
results, with infinite horizon and a recursive discount term in the objective integrand can be found
in [22, 41]. Such applications require a slight extension of Theorem 5.5 to the situation where F' is
[0, +00] (i.e., a non-vector space).

Example 5.8 Consider the following optimal growth problem.
(P): minimize J(y) := / g (t, y(t), y(t))dt
[0,1]

over all y € Y, where Y is the set of all absolutely continuous functions y € AC([0, 1]; R™) that
satisfy both the differential inclusion

y(t) € U(t,y(t)) a.e. in [0, 1]

and the boundary condition y(t) € A(t) for all ¢ € [0,1]. Here [0, 1] is equipped with the usual
Lebesgue structure and A(¢) C R™ is compact for ¢ = 0 and closed for all other t. Also, U :

[0,1] x R" — 9R" is a multifunction whose values are compact and convex, and for every ¢ € [0, 1]
the multifunction U(¢, -) is upper semicontinuous. We suppose that there exists ¢ € £1([0, 1]; R) such
that every y in Y satisfies |(¢)] < #(t) a.e. Further, ¢° : [0, 1] x R* x R® — Ry is such that ¢°(¢, -, -)
is lower semicontinuous for every ¢ € [0, 1] and ¢°(¢, d, ) is convex for every (¢,d) € [0,1] x R"™. Then
an optimal solution for (P) exists, provided Y # 0.

To let this existence result follow from the above, we take a minimizing sequence (yz) in Y. By
the condition involving ¢, the collection (yi) is uniformly integrable, so by compactness of A(0)
we have that (yz) is equi-continuous and bounded. Hence, by applying in succession the Arzela-
Ascoli theorem and the Dunford-Pettis theorem, we get existence of a subsequence (y,) of (yi)
and functions y, in C([0,1]; R") and e. in £1([0, 1]; R") such that y, — y. uniformly on [0, 1] and
Un — e, weakly in £1([0,1]; R?). This immediately implies y.(t) € A(t) for every ¢, and also, by
yn(t) = yn(0) + fot gn, for every n, we get y.(t) = y.(0) + fot e.. Hence, g, = e, a.e.

We now apply Theorem 5.5 with the following substitutions: D := F :=R"”, d,, := yn, do := Y«
and e, 1= Yn, € := Y. Also, for ¢ we take:

0 .
| 't d,x) itz e Ut d),
g(t,l‘,d) T { +00 otherwise.

Let us verify that o := liminf; g(¢, 27, d’) > g(, 2, d) whenever (27, d’) — (z,d) in R*. If a« = 400,
there is nothing to verify. Otherwise, we may suppose without loss of generality that g(¢, 2, &) — «
and that g(¢, 2/, d/) < 4oo for all j. This gives z/ € U(t,d’) and g(¢,z7,d’) = g°(¢,d’, 27 ), whence in
the limit # € U (¢, d) (by upper semicontinuity of U(¢, -)) and ¢°(¢, d, #) < o (by lower semicontinuity
of g°(t,-,-)). We therefore conclude g(t,z,d) < «, as was desired. It is evident that g(¢, -, do(t)) is
convex for every t, so all the conditions of Theorem 5.5 are met. Since d. = g a.e. and g > ¢¥ we
get

*

liminf /[] ot 0, 2 [ (000,300 = T3,

" [0,1]

But recall that (y,) is a subsequence of a minimimizing sequence of (P); this implies inf(P) =
lim, J(yn). Also, (y,) is in Y, which implies g(¢, yn (), yn(t)) = ¢°(t, yn(t), 9n(t)) for a.e. ¢ for
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every n € N. Combination of the preceding gives inf(P) > J(y.). Now either inf(P) = +o0 or
inf(P) < 4oco. The first possibility means that J = 400 on Y, in which case every y € ) is an
optimal solution of (P). The second possibility implies, by the inequality inf(P) > J(y.), that for a.e.

t we have g(t, 9. (1), y« (1)) < 400, i.e., gu(t) € U(t,y«(t)) (and g(t, g (1), y« (1)) = ¢°(t, y (1), 9 (1))).
This proves that g, belongs to Y, so the conclusion is that y, is an optimal solution of (P).

The following lower closure result “without convexity” comes from [9, 10]; it is a “Fatou-Vitali
lemma in several dimensions” that subsumes the result given in [3] and the original “Fatou lemma
in several dimensions” due to Schmeidler [87]. This kind of Fatou lemma has played a role as a
technical tool to obtain equilibrium existence results; e.g., cf. [62]. See [37] for further generalizations
of the result, involving multifunctions with unbounded values and associated asymptotic correction
terms.

Theorem 5.9 Let (f,) in LY(Q;R?) be such that

a:= lim/ fndy exists (in RY)
" Ja

and
(max(0, — ), is uniformly integrable fori=1,...,d.

Then there exists f. € L1(; RY) such that Jo fedp < a (ie., componentwise) and

fo(w) € Lep{fn(w)} for a.e. w in Q.

Observe how, in contrast to Corollary 5.6, the convex hull operator has disappeared from the last
statement of the theorem. We prepare the proof as follows. First, state Lyapunov’s theorem in
the following convenient form for Young measure theory, where (S, ) is a completely regular Suslin
space.

Theorem 5.10 Suppose that (Q, A, p) is nonatomic. Let g := (g1,...94) : x5 — R4 be AxB(S)-
measurable and let & € R(;.S) be such that

1] late 2ls@dnnis) < +ox.
Then there exists f € LY(Q;S) such that
Jo(f)y=1,,08),i=1,...,d, and f(w) € supp §(w) for a.e. w in Q.

In terminology of decision theory, the above result is a purification result. It immediately also implies
a general denseness property of Rpirqec(£2;.5) in R(Q; S) with respect to the r-narrow topology; cf.
[97] and [12, 29]. For S := R4 and g;(w, z) := z* (i-th coordinate function) Theorem 5.10 yields the
following corollary.

Corollary 5.11 Suppose that (Q, A, u) is nonatomic. Let & € R(Q;RY) be such that
[ teledeutas) < +oc.
o JRa
Then there exists f € L1(Q;RY) such that

/ fdp = / bar 8du and f(w) € supp §(w) for a.e. w in Q.
Q Q

PROOF OF THEOREM 5.10. Denote T'(w) := supp é(w). By Proposition 2.14 and Theorem A.10(¢%4)
we have

p(w) = /S(|g(w, z)|, g(w, 2))8(w)(dz) € co {(|g(w, z)|, g(w,z)) : z € ['(w)} for a.e. w in Q.
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The closed-valued multifunction ' : Q — 27 is measurable in the standard sense [50, I11.9, I11.10]),
because for any open U C S the set of all w with T'(w)NU # § is precisely {w € Q : §(w)(U) £ 0} €
A. So by Carathéodory’s theorem and an obvious application of the implicit measurable selection

theorem [50, Theorem II1.38] there exist A-measurable functions ay, ..., g2 : £ — [0,1], with
Zd+12 a;(w) =1 for all w, and A-measurable selections s1,...,5442 : 2 — S of T such that
d+2
plw) = Zai(w)ﬂg(w, si(w))], g(w, si(w))) for a.e. w in Q.
i=1

Integration over w in the first component of this identity gives fﬂ > ailg(, si(4))| < 4+oo. Hence,
by the extended Lyapunov Theorem A.9 there exists a measurable partition By, ..., Bgya of & such
that each ¢(-, s;(-)) is integrable over B; and

/Z%W&lg& Z/mszmwm»

We define f € £1(Q;S) by setting f := s; on B;, i = 1,...,d + 2. Then, f is evidently an a.e.

selection of T' and if we integrate over w in the last d coordinates of the above identity for p(w) we

e /ng& Z/ N= [ a0

This is the desired identity, for its right hand side equals (J4, (f), ..., J4.(f)) and by the definition
of p(w) the left hand side is equal to (I, (8),...,1;,(8)). QED

PrROOF oF THEOREM 5.9. By Proposition A.6, (€2,.4, ) can be decomposed in a nonatomic part
Q" and a purely atomic part that is the union of at most countably many p-atoms A4;. It is easy
to see from the conditions that the sequence (f,) is bounded in £!-seminorm. Since every function
fn is a.e. equal to some constant ¢/, € R% on the atom Aj, it follows from this £!'-boundedness that
() is relatively compact for every fixed j. Hence, an obvious diagonal extraction argument gives
that there exist a subsequence (fn) of (f,,) and a function f. : U;A; — R?, constant on each atom
A;, such that fi,(w) — fi(w) for a.e. w € U;A;. We can now apply Theorem 5.2 to the sequence
(6m) in R(Q;RY), with &, := €, (here S := R%). Notice that the central tightness condition of
that theorem holds, because obviously sup,, [, |fm|du < +oo (cf. Example 3.4). By Theorem 5.2
there exist a subsequence (8,,/) and &, € R(Q2;R?) for which the statements of the theorem hold.
In particular, the pointwise support property for é, gives

supp 8.(w) C Lsp{fm(w)} for a.e. w in Q"¢

and

supp b.(w) = {fu(w)} for a.e. w in U; 4;.

Now we apply the Fatou-Vitali inequality of Theorem 5.2 to the continuous integrands ¢; : (w,n, z) —
i = 1,...,d (observe that {;(w,m, fr(w)) > ¢m(w) := —max(0, —f,) for each i, with (énm)
uniformly integrable). This gives

a’ >/ / ) dz)p(dw) = /ﬂ(bar &) dp

(note that [, fL (w)p(dw) equals fﬂ (/R4 z'es, (w)(dz)p(dw)). Additionally, applying the same sort
of inequality to £ : (w,n,z) — lgra(w)|z| gives

/na [/Rd |26+ (w)(da)]p(dw) < +o00.

By Corollary 5.11, there is an integrable function f, : Q"* — R such that f.(w) € supp é.(w) a.e.
and

fedp = / bar é.du.
Qna na
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Concatenating f, with the function f, defined earlier on U; A;, we obtain the desired f, € £(; R%)
(recall that a' > S (bar 6+ )idp for each i). QED

We finish this section by two applications of lower closure “without convexity”. The first of these
concerns an existence problem whose origins lie in mathematical economics (cf. [6]):

Example 5.12 In [6] the following optimization problem was considered:
(P): maximize J(f) ::/ Ut, f(t))dt
[0,1]

over all functions f € £1([0,1]; RP) with f(¢) € RE a.e. and f[O,l]f =b. Here b € RE is fixed,
and the utility integrand U : [0,1] x RE — [—00, 4+00) is A x B(RE )-measurable, with U(t, ) upper
semicontinuous and (coordinatewise) nondecreasing on R for every ¢ € [0, 1]. In this form (P) need
not have an optimal solution [e.g., consider p = 1, U(¢,z) := 2% and b > 0]. However, as shown in

[6], (P) has an optimal solution if U has the following growth property: for every ¢ > 0 there exists
¢ € LY([0,1];R), ¢ > 0, such that for every ¢ € [0, 1]

U(t,z) < ¢|z| for all € RE with |z] > ¢(t).

We show that the principal existence result of [6] follows from Theorem 5.9. We first claim, following
[42, p. 157], that the growth poperty of [6] implies the following growth property: for every ¢ > 0
and every t € [0, 1]
U(t,z) < elz| + /pe(t) for all z € RE

where 1. := ¢1 + ¢.. Indeed, note that U(t,z(t)) < |2(2)|, where &(t) is the vector all of whose
components equal t¢(t); hence, by the given monotonicity of U(¢, -), it follows that U (¢, z) < |2(¢)| =
/Pe(t) whenever zt < ab(t) for all i, 1 < i < p. And if 2! > ¥ (t) for any 7, then |z| > ¢.(2), so
that U(t,2) < ¢|z| holds by the hypothesis. Hence, the claim has been proven. Let s := sup(P) and
observe, by the growth property in its new form, that we have s < 400. Without loss of generality
we may suppose s € R. Let (f,,) be any maximizing sequence for (P), i.e., (f,) is a sequence of
nonnegative functions in £([0, 1]; RF) with f[O,l] fa = band J(f,) — s (note that (P) is feasible
for elementary reasons). To apply Theorem 5.9 we take for (€2, A, ) the unit interval cum Lebesgue
structure. Also, we define a sequence (fn) by

Fat) := (ZU(L fa (1)), fu(1)).

Then without loss of generality (fn) C L£(]0,1]; RPT1) and f[o 1] fn — (—s,b). Also, (max(0, —fﬁl))n
is uniformly integrable for ¢ = 0,...,p. For i = 1,...,p this is trivial (by f, > 0), and for i = 0
it follows from the growth property, in the form above, that for every ¢ > 0 and every measurable

subset A4 of [0, 1]

Ut )it < e [ 1+ vp [ o< eS 04 vp [ e
/. IIREDNE )

This implies equi-integrability, so the sequence (—f,?) is uniformly integrable [81, I1.5.2]. Therefore,
all the conditions of Theorem 5.9 hold. It follows that there exists f. € £1([0,1]; RP*1) such that
f[o,l] fo < —s, f[O,l] f« < b (here f. = (fj, : ,ff)) and for a.e. t f*(t) € Lsnfn(t), le., for ae. t
there exists a subsequence (n}) of (n), possibly ¢-dependent, such that

lim U (t, fu (1)) = F2() and Tim fo, (1) = fu(D).
By upper semicontinuity of U(¢,-), the above directly leads to ff(t) > —=U(t, f«(1)), whence s <
f[o,l] U(t, f(t))dt. Now define fi.(t) := fu(t) +b— f[o,l] fx; then f[o,l] fox = band J(fus) > s, as

a consequence of f.. > f. and the monotonicity property of U. This shows that f., is an optimal
solution of (P).
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The second example concerns existence of an optimal control function in a problem with no
explicit convexity properties; see [11] for more involved applications that are also based on Theo-
rem 5.9.

Example 5.13 Consider the optimal control problem.
(P): minimize J(f) := / g°(t, F(£))dt + e(y; (1))
[0,1]

over all control functions f € £°([0,1]; RF) with f(t) € F(t) a.e. Here [0,1] is equipped with the
Lebesgue o-algebra A and the Lebesgue measure p := Ay, Also, F' : [0,1] — R i5 compact
and nonempty-valued multifunction with A x B(RF)-measurable graph. The latter is denoted by
M. Further, the cost rate function ¢ : M — [0, +oc] is product measurable, and ¢%(¢,-) is lower
semicontinuous on F'(t) for every ¢t € [0, 1]. The final time cost term e : R™ — (—00, +o0] is supposed
to be lower semicontinuous and bounded from below. The dynamical system corresponding to (P)

is as follows. To each control function f there corresponds the absolutely continuous functions
yr € AC([0,1]; R™), defined as the solution y of

y(t) = AWy(t) + ¢(t, f(t)) for a.e. tin [0, 1],

with initial condition y(0) = yo, where yo € R™ is fixed. Here A belongs to £1([0, 1]; R™>*™) and
¢ : M — R™ is measurable and such that g(¢, -) is continuous on F'(t) for every t € [0, 1]. Moreover,
we suppose that there exists ¢ € £1([0, 1]; R) such that SUD e (1) lg(t, 2)| < ¢(t) for every t. By the
structure of the dynamical system, the trajectory y; corresponding to a control function f can be
expressed explicitly as follows [97, 11.4.8]:

0r(0) = Ao+ A10) | AW gl Far

Here A € AC([0, 1]; R™*™) is the fundamental solution, determined by A = AA and A(0) = m x m-
identity matrix. Using Theorem 5.9, we prove that (P) has an optimal solution. Observe that (P)
is feasible, since F' has a measurable a.e. selection. Let ¢ := inf(P). We may suppose without loss
of generality ¢ < +00; hence, ¢ € R. Let (f,) be a minimizing sequence of control functions, i.e.,
with J(fn) — ¢. Let ¢/ := liminf, e(f,); then ¢/ € R. Rather than concentrating on a suitable
subsequence, we may suppose without loss of generality that e(f,) — ¢/. Also, by integrability of ¢,
it follows easily that (y;, (1)) is a bounded sequence in R™. Hence, rather than taking a suitable
subsequence, we can also suppose that (ys, (1)) converges to some b € R™. Note already that
' > e(b), by lower semicontinuity of e. Let us define fn € £1([0,1]; R*™+1) by

Fa(t) = (9°(t, fa (D), AA@D) T g8, £u(1), —ADAD) " (2, Fa(1))).

Observe that f[o,l] fn — (e—=,b—A(D)yo, A(1)yo —b) and that (max(0, —fﬁl)) is obviously uniformly
integrable for each index i. Hence, by Theorem 5.9 there exists f. in L£1([0,1]; R*™+1) such that
f[o,l] <-4, [0.1] F<b—A(1)yo, f[O,l] f < A(1)yo — b, and such that for a.e. t there exists a
subsequence (n}) of (n), possibly t-dependent, with

F2(E) = g, £y (1)), £(2) = Viem AQUAW) g1, (1), F(O) = i —A(DAW®) ™ g(t, Fy 1))
Here f := (fj, cee ji:”) and f:=( ol me) From the above limit expressions it follows that
f = —f a.e., which leads to f[O,l f=b—A(1)yo. Also, in the above limits, each (n}) has a further

]
subsequence (n{') such that (f,/) converges to some vector z; in F'(t) (this is by compactness of the
set F'(t)). Thus, we get for a.e. ¢

FLt) 2 9"t ), f(1) = = F(8) = MDA (g (t, 2)
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by (semi)continuity of ¢°(¢, -) and g(¢, -). By Theorem A.4 we get the existence of f. € £°([0, 1]; RP)
such that f,(¢) = for a.e. t. From the above we now conclude that f. is a control function
such that f[o,l] o<~ and f[o,l] ADA=(t)g(t, fo(t))dt = b — A(1)yo. The latter simply states
yr. (1) = b and, by the previous inequality ¢’ > e(b), the former implies J(fs) < ¢ := inf(P). This
concludes the argument.

A more general approach to the subject of existence without convexity can be found in [23].
There the dynamical system is also semilinear, as above, but the objective integrand gy is allowed
to depend in the state variable in a special way, involving concavity. Problems of this kind were first
investigated in [79]; see also [51, 76, 86, 80]. This approach uses a Bauer-type extremum principle
[564] that is applied to a relaxation of the optimal control problem, i.e., a reformulation in terms
of Young measures. Use of this extremum principle is based on the fact that in general the set
Rp(£2;S) of Dirac Young measures forms the extreme point boundary of R(2; S).

6 Nash equilibria

Instead of a lower closure result for Young measures, as formed by Theorem 5.2, we can also give
existence results for variational inequalities in terms of Young measures. As shown in [21, 26, 30],
such results can be used to obtain existence results of a more classical nature in game theory and
economics. As in the previous section, we suppose that (S, 7) is a completely regular Suslin space
and refer to Remark 2.4 in this connection.

Theorem 6.1 Let h be a nonnegative, sequentially T-inf-compact integrand on Q x S and let Ry, be
the set of all 6 € R(2; S) with In(6) < 1; suppose that Ry is nonempty. Let g : Q2 x S xRy — R be
A x B(S) x B(Rp)-measurable and such that g(w, -, ) is lower semicontinuous on S x Ry for every
w € Q, and g(w, z,-) is narrowly continuous on Ry, for every (w,z) € QxS. Moreover, g is supposed
to have the following growth property with respect to h: for every ¢ > 0 there exists ¢. € L1 R)
such that

lg(w, z,8)| < eh(w,2) + ¢c(w) on @ x S x Rp.

Then there exists 6. € Ry, such that

ut [ gtozs) o) = [ [ go.a800 @) d0)utde),
ERn Ja Js QJs

Of course, in this result the set R is equipped with the (relative) narrow topology and the corre-
sponding Borel o-algebra.

ProoF. There exists, by Proposition A.11, a countably generated sub-c-algebra Ay of A such that
¢ is also Ap x B(S) x B(Rp)-measurable. Hence, we may suppose without loss of generality that A
itsell is countably generated [note in particular that this also holds with respect to the nonemptiness
issue — augment by the c-algebra that is generated by any fixed § € Ry # 0]. We set C':= R, and
define 7 : Ry X Ry — R in the following way:

7‘-(6’ 77) = Iy, (77) - Ig&(é)a

where the integrand gs on © x S is defined by gs(w, z) := g(w, z,8). By Theorem 5.2 we have that
Rp, is compact in the vector space generated by R(£2;.S) (the narrow topology obviously extends
to the latter). By that same theorem we also have that (6,7) — I, (n) is lower semicontinuous.
Indeed, by Theorem 4.5 it is enough to check sequential lower semicontinuity, so if we let (6,,7,)
converge narrowly to (8p,10) we can define, in a by now well-known way, {(w,n,z) := g(w, z,8,)
and f(w,z,00) := g(w,x,é) to form an integrand g on £ x (S x Rp) that meets the conditions
of Theorem 5.2. The corresponding lower semicontinuity statement in Theorem 5.2 then amounts
precisely to liminf, Iy, (1,) > Iy, (10). Also, it follows, directly by Fatou’s classical lemma, that
for every n € Ry the functional § — I, (n) is upper semicontinuous. Taken together, this shows
that = meets the lower semicontinuity condition of Theorem A.3, and all of the remaining conditions
hold trivially. An appeal to Theorem A.3 can thus be made, and this finishes the proof. QED
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Observe in the proof above that measurability of g(w, z,8) in the variable é only serves to fulfill
the requirements of Proposition A.11. Hence, if one works a prior: with a countably generated
sub-o-algebra A, there is no need for such measurability in 4. In a special, quite relevant situation
the variational inequality statement of Theorem 6.1 can be sharpened considerably [21, 26, 30]:

Corollary 6.2 Let ¥ : Q — 2° be a nonempty, T-compact-valued multifunction with A x B(S)-
measurable graph G. Let Ry be the set of all 6 € R(2;S) for which

S(w)(Z(w)) =1 for a.e. w e Q.

Let g : G x Ry — [—o00,+x] be ((A x B(S) NG) x B(Rx)-measurable and such that g(w,-, ) is
lower semicontinuous on L(w) X Ry for every w € Q, and g(w,z,-) is narrowly continuous on Ry
for every (w,x) € G. Then there exists 6. € Ry such that

6*(w)(argminx62(w)g(w, 2,6))=1 for a.e. w in Q.

ProoF. Define
0 if z € ¥(w),

+oo  otherwise.

h(w, ) == {

Then h satisfies the conditions of Theorem 6.1 and R, = Ry; also, the von Neumann-Aumann
measurable selection theorem [50, Theorem II1.22] implies that Ry is nonempty. Let § := arctan g.
Then § possesses the same (semi-)continuity properties as g, and in addition it is bounded. Thus,
by Theorem 6.1 there exists 6. € Ry such that

nt [ e 8 @lad) = L e s ) e ().

But here the left side can be processed further: it is certainly not larger than the corresponding
infimum over Rpirqc(£2;5) N Ry. Hence,

inf /ﬂ 3w, F(w), 6 )p(dw) > /

fecy Q

[ / 8 ) (),

where £ stands for the set of all f € £°(Q;5) with f(w) € ¥(w) a.e. By another application of
the measurable selection theorem in this specific context ([15, Theorem B.1] — see also [50, VII.7])
and by using obvious modifications of functions measurable with respect to the completion of A, it
follows that

inf /ﬂg(waf(w)aé*)ﬂ(dw):/ inf g(w,z,6.)p(dw).

Fecy 0 eeB(w)
So we conclude that

[ int i soutan > [ i B8 ) )

€D (w)
and, obviously, the converse inequality must hold as well. It follows now immediately that for a.e.

w the probability measure 6, (w) is carried by the set argminz(w)ﬁ(az, -, 8.), which is clearly identical
to argminz(w)g(az, -, 8,) by strict monotonicity of the arctangent function. QED

Corollary 6.3 Suppose that ju is a probability measure on (2, A). Let ¥ : Q — 25 be a multifunction
with nonempty T-compact values and with ¢ A x B(S)-measurable graph G. Let Ry be as defined in
Corollary 6.2. Let U : G x P(S) — [—o0,+0] be ((A x B(S) NG) x B(P(S))-measurable and such
that U(w, -, -) is upper semicontinuous on N(w) x P(S) for every w € Q, and U(w, z,-) is narrowly
continuwous on P(S) for every (w,x) € G. Then there exists 6. € Ry such that

b (w)(argmax, e sy Ulw, 2, [p® 6,J( x -))) = 1 for a.e. w in Q.

29



This is a specialization of Corollary 6.2. It generalizes the main results of [70, 77]; cf. [21, 26].
See [35] for further improvements, including a unification of the above results with two separate
existence results given in [85]. Above, (2, A, u) functions as a measure space of players, U(w, -, )
stands for the payoff (or utility) function of a player w, and the product probability measure p ® é,
constitutes a so-called Cournot-Nash equilibrium distribution for the game.

Proor. Apply Corollary 6.2 by setting g(w,x,é) := =U(w,», [t ® 6](Q x -)). By Remark 4.2 the
mapping & — [ ® 8](Q x -) is continuous from R(£2;S) to P(S), so g easily meets the conditions
imposed in Corollary 6.2. QED

Corollary 6.4 Suppose that S is a separable Banach space, equipped with the weak topology . Let
Y Q — 2° be a multifunction with nonempty, T-compact and conver values, integrably bounded
and with a A x B(S)-measurable graph G. Let L be the set of all f € LY(Q;5) with f(w) € B(w)
a.e., equipped with the weak topology. Let U : G x L — [—o0,+00] be ((A x B(S) N G) x B(LL)-
measurable and such that U(w, -, ") is upper semicontinuous on L(w) x L for everyw € Q, U(w, z, )
is weakly continuous on Ly, for every (w,x) € G and U(w, -, f) 15 quasi-concave on X(w) for every
(w, f) €Q x L. Then there ewists f. € LY such that

felw) € argmaxer(M)U(w,x,f*) for a.e. w in Q.

ProoF. First, we apply Corollary 6.2 by setting ¢(w, #,8) := —U(w, z, bar §). Note that for é € Ry
the barycentric function w +— bar §(w) (or at least an a.e.-modification of it) belongs to £L; cf. the
proof of Theorem 5.5. Recall that the dual of £1(2;S) can be identified with the (prequotient) space
L£2(€; 5*)[S] of all uniformly bounded and scalarly measurable S*-valued functions on (£2, .4, p);
cf. [66, TV]. For any b € £7°(2; S*)[S] the identity

/ﬂ < bar 8§,b > dy = /ﬂ[/g < 2, b(w) > 6(w)(dx)]pu(dw)

shows that § — bar § from Ry into £4 is a narrowly continuous mapping. Hence, the conditions of
Corollary 6.2 are met, and we conclude that there exists 8, € Ry such that

b (w)(argmaxer(M)U(w, z, fi)) =1 for ae. win Q,

where we set f.. := bar 8, (by the above, this is an integrable function). By the given quasi-concavity
the “argmax” set is convex in the above expression. Since it is also weakly closed (in fact weakly
compact) it follows (Hahn-Banach) that it is strongly closed. Therefore, the desired statement
follows directly from Theorem A.10(i7). QED

The above existence result for Nash equilibria generalizes [88, Theorem 2.1] and [69, Theo-
rem 7.1]. Recently, a more general existence result was obtained in [31]; see also [35] for further
extensions. This involves a new topology, called the feeble topology, which dispenses with integrable
boundedness of ¥ by extending the above weak topology on L% to the set £% of measurable a.e.
selections of ¥. Also, this result includes (partial) purification by nonatomicity (so as to avoid
quasi-concavity and convexity assumptions), and for instance the main result Theorem 4.7.3 in [64]
follows from it as well. The analogy should be clear to the reader: just as barycentric techiques
for lower closure “with convexity” were useful above, so can techniques for lower closure “without
convexity” lead to parallel (or combined, via a partition of the measure space, as in the case of
Theorem 5.9 and [31]) existence results for equilibria.

Finally, we present an existence result for Bayesian Nash equilibrium in games with incomplete
information [63, 16, 39, 78]. In such games each player i privately observes the i-th component of a
random outcome w = (wq,...,wm), as generated by some (probability) measure & on € = 172, Q;,
and acts accordingly. However, player ¢’s payoff function U; depends upon the entire realization w
(“incomplete information”).

Theorem 6.5 Suppose that S =172, S; and that Q@ = 172, Q;, where (S;, 1) is a completely regular
Suslin space for i = 1,...,m and where (;, A;, ;) is a finite measure space. Suppose that T is
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the product of the topologies 7; and that pu s absolutely continuous with respect to the product of
the measures p;. Fort=1,...,m, let h; be a nonnegative, sequentially T-inf-compact integrand on
Q; X S;, and, corespondingly, let Ry, be the set of all b; € R(Y;; S;) with I, (8;) < 1. Suppose that
Rhyy--oy, Rn,, are nonempty. Fori=1,....m, let U; : QxS — R be A x B(S)-measurable and
such that (1, ..., %_1,%i41, ..., Zm) — Ui(w, &) is continuous on I1;2;S; for every (w,z;) € Q x S;
and U;(w, ) is upper semicontinuous on S for every w € Q. Moreover, U; is supposed to have the
following growth property: for every ¢ > 0 there exists ¢. € L*(Q; R) such that

|Ui(w, 2)] < eZhj(w,xj) + ¢e(w) on Q2 x S.
ji=1

Then fori=1,...,m there exist b.; in Rp, such that

sup IU,((S*l @ - '6*2'—1 @ 62 @ 6*i+1 Q- 6*m) = IU,((S*l @B 6*m)
8, €ERR,

Proor. Rather than premultiplying all integrands by the Radon-Nikodym derivative of u with
respect to the measures p;, we shall suppose that p itself has this product structure (as required
in Theorem 4.17) without loss of generality. Observe also that by Proposition A.11 the o-algebra
A may be supposed countable (see the proof of Theorem 6.1). We shall apply Theorem A.3 to
C :=1;Rp, and to 7 : €' x C'— R, defined as follows:

T((61, B (D)) 2= ST, (610 - @ @ b) = T, (61 @ - @ ).
i=1

Using Theorem 4.10, in the style of the proof of Theorem 5.2, and Theorem 4.17, one can see
that (61, -, 6m) — I, (61 @ -+~ @ 1; @ -+ by, ) is narrowly continuous on C for every n; € Rp,,
i=1,...,m. Moreover, by the same sort of argument (61, --,8m) — Iy, (61 ® - - - ® 6,,) is narrowly
upper semicontinuous on C'. Hence, it follows that x(-, (51, ...,7m)) is lower semicontinuous on C
for every (n1,...,nm) in C' On the other hand, #((é1,...,6m),) is trivially affine on C for every
(61,...,6m) € C. Also, C is trivially convex, and it is narrowly relatively compact by Theorem 4.8
and narrowly closed by Theorem 4.10. Hence, all conditions of Ky Fan’s Theorem A.3 hold. The
existence result then follows with ease. QED

A Auxiliary results

We recall and derive some results from measure theory and convex analysis which play a role in the
main text. Our first result is a Fubini-type theorem from [81, T11.2] (see also [4, 2.6]). As in the
main text, (2,4, u) is a finite measure space and S a topological space.

Theorem A.1 For any § € R(£2;S) the formula

o 84 x B) = [ S)(Bude)

defines a unique product measure @6 on (2x.S, AxB(S)). Moreover, for every AxB(S)-measurable
Junction g : Q x S — [0, 4+00]

W / g(w, x)8(w)(dx) is A-measurable
s

and

| wnen = [1] s moanin),
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Proposition A.2 Let é§: Q — P(S). The following are equivalent:
(a) 6 € R(£2; S).
(b) 6 is measurable with respect to A and the narrow Borel o-algebra on P(S,1,).

PROOF. (a) = (b): For every ¢ € Cy(S, p) the mapping w — [ c(x)é(w)(dx) is A-measurable by
Theorem A.1. Since P(S, 7,) is separable and metrizable for the narrow convergence topology ([43,
Proposition 7.20], [55, I11.60]), (b) follows elementarily.

(b) = (a): For any 7,-open set G C S there exists a nondecreasing sequence (¢, ) in Cy(S, p) such
that lim,, ¢p(2) = 1g(x) for every x € S ([4, A6], [43, Lemma 7.7]). Hence, é(-)(G) is A-measurable
by an application of the monotone convergence theorem. Since finite intersections of open sets are
open, (a) follows by an application of a well-known c-additive class result [4, 4.1.2], in view of the

identity B(S, 1) = B(S, 7,) by Hypothesis 2.3. QED

The following result is due to Ky Fan ([59, Lemma 1], [5, Theorem 5, p. 330]). This result
remains valid in a non-Hausdor{l setting, because, as observed in [57, pp. 500-501], Ky Fan’s proof
does not require the Hausdorff property.

Theorem A.3 (Ky Fan) Let C' be a compactl convexr and nonempty subsel of a topological vector
space (possibly non-Hausdorff). Let w : C' x C' — [—00, +o¢] be such that

7(-,y) is lower semicontinuous for every y € C,

w(x, ) is quasiconcave for every x € C,
(e, 2) <0 for every x € C.
Then there exists ©* € C' such that n(x*,y) <0 for ally € C.

The following implicit measurable function result is taken from [50, Theorem I11.38].

Theorem A.4 Let (V,V) be a measurable space, S a Suslin space, and © : Q — 2V a multifunction
whose graph
gph © :={(w,v) €A xV:veBw)}

belongs to A x B(V). Let g : Q@ x S — V be measurable with respect to A x B(S) and V such that
g(w,S)NOwW) #£ 0 for a.e. w. Then there exists f € LO(Q;S) such that g(w, f(w)) € O(w) for a.e.

w m Q.
Next, we give some Lyapunov-type results which lead up to the instrumental Theorem A.9.

Definition A.5 An atom of (Q, A, ) is a set A € A, u(A) > 0, for which there exists no B € A,
B C A, such that 0 < pu(B) < p(A).

Note that as atoms we only accept nonnull sets. It is elementary to check that any A-measurable
function must be a.e. constant on any atom of (2, A4, p).

Proposition A.6 There exists an at most countable collection (Aj) of atoms of (2, A, p), such that
Q" = Q\ U; A; contains no atoms.

PrROOF. For each ¢ € N there can be at most ¢ atoms whose p-measure is at least p(2)/i. This

gives the desired collection (4;). QED

If @ = Q" then (Q,.A, p) is said to be nonatomic. The most important property of nonatomic
measure spaces is as follows [50, p. 118 f.].

Theorem A.7 (Lyapunov) Let ¢ € N and let f € LY (Q;RY). If Q is nonatomic, then

C::{/Afdﬂ:AEA}:{/Qfadu:aEEOO(Q;R),Ogag1}.
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Corollary A.8 Letm,r € N, let f1, -+, fr be functions in L}(Q; R™) and let oy, - - -, o, be nonneg-
ative functions in L R), with 3 ._, oy = 1. If Q is nonatomic, then there exisls a measurable
partition By, -+, B, of Q such that

/ﬂgaiﬁ»du = Z:;/B fidp.

Proor. We use induction for ». For r = 1 the result holds trivially. Suppose it is true for
r = k — 1. Denote Zlf_l o fi by g, where af(w) := o;(w)/(1 — ag(w)) if ap(w) < 1 and af(w) := 0
if ap(w) = 1. By Theorem A.7, there exists 4 € A for which fA(g,fk) = fﬂ ar(g, fr). This gives
fQ\Ag = fﬂ(l — ag)g, so now the result follows by the induction step applied to the functions

Jilaya- QED

The next result is [24, Proposition 3.2], which extends Corollary A.8: the important fact to
observe 1s that the participating functions are no longer supposed integrable.

Theorem A.9 (extended Lyapunov theorem) Let m,r € N, let f1, -, f- be functions in
LOQ;R™) and let oy, -+, a, be nonnegative functions in L(Q;R), with Y_._, oy = 1, such that

/ Zal|fl|du < 400.
2 i=1

If Q is nonatomic, then there exists a measurable partition By, -+, B, of Q such that fori=1,...,r
the function f; is integrable over B; and

/ﬂgaiﬁdﬂ = Z:;/B fidp.

PrOOF. Define for every p € N the set €, to consist of all w for which max; |fi(w)| belongs to
(p,p — 1]. Then the Q, are disjoint and on each 2, we can apply Corollary A.8. For every p this

gives the existence of a measurable partition By p,---, B, of , such that
r r
/ Sl £) = Z/ (5], £),
Qp =1 i=1/Bip

By Beppo Levi’s theorem we then get » :_; fupB,,p Ifil = Jq >oizi il fil < +o0, by summing over
p and noting that for each ¢ the B;, are disjoint. This implies that each f; is integrable over
B; == UpB; p. It is now elementary to conclude that, by the above,

o fi = / o fi = / fis
which proves the result. QED

Theorem A.10 Let E be a separable Banach space; let v € P(E) be such that [, ||z||v(dz) < +oo.
(?) A unique point in F, the barycenter of v, is defined by

bar v ::/ zv(de).
E

(#%) If C C E is closed and conver with v(C) =1 then bar v belongs to C.

(iii) If E = R® and if C C R? is convexr — possibly nonmeasurable — with outer measure v*(C) = 1
then bar v belongs to C.
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Part (¢) follows from elementary facts about Bochner integration in separable Banach spaces [56, 97].
Part (i) follows directly from the Hahn-Banach theorem [97, 1.6.13], and part (¢4i) is proven by
induction for the dimension of £ (see [84, Lemma] and [60, Lemma 3, p. 74]).

The following result forms a trick to reduce arguments involving at most countably many product
measurable sets or functions to a countably generated situation; cf. [50, p. 78] and [93, Appendix].

Proposition A.11 Let (V,V) be a measurable space and let g : 2 x V — [—o0, +o0] be A x V-
measurable. Then there exists a countably generated sub-c-algebra Ay of A such that g is also
Ag x V-measurable. Moreover, if (Q, A, ) is nonatomic, then Ay can be chosen in such a way as
to make (Q, Ag, ) nonatomic.

Proor. If g = 1¢, G € A x V, then it suffices to observe that the union of all o-algebra’s Ay x V,
Ap a countably generated sub-o-algebra of A, is a o-algebra which must coincide with A x V. The
usual approximation by a sequence of simple functions then finishes the argument for general g.

In addition, if A is nonatomic, then let (A4;) be an enumeration of the atoms of Ag, just as in
Proposition A.6. By nonatomicity of A, for each m € N each Agp-atom fij can be partitioned as
Aj = Ug”le;n’j, with /J(Blm’j) < u(A4;)/m, 1 < i< m. Now let A; be the o-algebra generated by A
and all Blm’j. Suppose that A is an atom of A;. Of course, we can only have (AN (Q\U; 4;)) > 0
it u(A) = p(AN(Q\ U; 4;)). But this implies that, modulo a null set, the 4;- and Ag-atom A is
contained in Q\ U; A;, which is the nonatomic part of (2, Ag, p) (cf. Proposition A.6). Therefore, it
follows that u(AN(Q\U; 4;)) = 0, i.e., A is essentially contained in U; A;. Hence, for every m € N
there must be j and ¢, 1 <4 < m, with (AN Blm’j) > 0. But since A is an atom this implies then

u(A) = /J(B;n’j) < p(Aj)/m < p(Q2)/m. So u(A) = 0, in contradiction to our Definition A.5. QED

B Outer integration

We recapitulate some standard facts concerning outer integrals; e.g., see [43] for a slightly different
treatment.

Definition B.1 Let ¢ : O — [—00,+00] be arbitrary (possibly nonmeasurable). Then the outer
integral fg wdpu 1s defined by

[ v =int( | ddu6 € £ (@R)0 2 v on 9,
Q Q
where the infimum over the empty set is set equal to +oc0.

Lemma B.2 Let ¢ : Q — [—00, +0o0] be A-measurable. Then

/ﬂ* ¢du=/ﬂ¢dﬂ ::/chlué/ﬂwdu,

where Y1 1= max(v,0), ¥~ := max(—,0) and — is as ordinary subtraction, but with the additional
convention (+00)—(+00) := +o0.

Proor. If fﬂ YT = 4co, the result is immediate (the infimum in Definition B.1 is then taken over
the empty set).

So suppose fﬂ ¥t < +oo. Note that fﬂ o > fﬂ Y for every ¢ participating in the infimum in
Definition B.1. Hence, fgd) > fﬂ1/) Now if fﬂ Y~ < +oo, then ¢ € L1(Q;R), so Definition B.1
implies that fgd) < fﬂ1/), which finishes the argument. And if fﬂ ¥~ = oo, then an obvious
argument with the sequence ¢, := ¢¥* — min(y~, n) shows that fg Y= —00 = fﬂ . QED

Lemma B.3 Letv : Q — [—00, +00] (possibly nonmeasurable) and ¢ € £ R) be such that > ¢
on Q and f;; Ydp < +o0o. Then there exists ¢ € LL(QR), ¢ > ¢, such that Jo édp = fg wdp.
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ProoOF. By Definition B.1 there exists a sequence (¢3) in Q; R) such that ¢ > ¢ and [, ¢ <

LN
fow + k! for all k. Define ¢ := infy ¢4; then ¢1 > ¢ > ¥ > ¢ (hence ¢ € L(Q;R)) and
fﬂq; < fg 1. The converse inequality is trivial. QED

Proposition B.4 (Fatou-Vitali) Let (¢,) be a sequence of (possibly nonmeasurable) functions
Uy 1 Q@ — [—00,+00] such that there exists a uniformly integrable sequence (¢r) in LLQ;R) for
which for every n € N

(W) > ¢n(w) for allw € Q.

Then . .
liminf/ P (w)p(dw) > / lim inf ¢, (w) p(dw).

Proo¥. By Lemma B.3, for each n there exists bn € L1 (2, R) such that bn > ¥y > ¢, and
Jo0n = fg ¢ By uniform integrability of (¢, ), the classical Fatou-Vitali lemma [4, 7.5.2] applies.

This gives
lim inf / ¥, = liminf / bn > / lim inf ¢,,.
n Q n Q Q "

Since lim inf,, ¢,, > lim inf,, ¥,,, Definition B.1 gives [ liminf, ¢, > [ liminf, ¢,. Since liminf, ¢,
is A-measurable, Lemma B.2 applies, and the result follows. QED

Lemma B.5 Let ¢, ¢ : @ — [—00, +00] be arbitrary (possibly nonmeasurable). Then

/¢dﬂ+/ ¢du>/ (60! )dp,

where + is defined just as ordinary addition, but with (—oo0)+(+00) := 400 as an additional con-
vention.

ProoF. If either term on the left is equal to 400, the result is trivially true. So suppose that
fg dp < +oo and f;; ¢¥'dy < 400 (hence both ¢ and ¢’ are a.e. not equal to +o0). By Defini-

tion B.1, there exist sequences (¢,,) and (¢,,) in £1(£2; R) such that fﬂ On — fﬂ ¢ and [, ¢}, — fﬂ P
with ¢, > ¢ and ¢, > ¢'. But then simple work with (¢,, + ¢!,) gives the inequality immediately.
QED

Lemma B.6 Let ¢ : Q — [—0c0,+o0] be arbitrary and let ¢ € LY(Q;R). Then

/Q*ww)du:/ﬂ*ww/ﬂqsdu.

ProOF. An elementary consequence of Definition B.1. QED
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