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� Introduction

The �rst four sections of these notes form a quick� incisive introduction to the subject of Young
measure theory� The term Young measures refers to transition probabilities that are studied in
connection with a certain weak topology �i�e�� the narrow topology for Young measures�� This name
honors L�C� Young� whose seminal work on generalized solutions in the calculus of variations in ���	

��� formed the starting point of such considerations�

Our presentation involves very little functional analysis� and is largely based on a transfer of
the classical theory of narrow convergence from the domain of probabilities �section � to the more
general domain of transition probabilities �section �� by means of K�convergence and an associated
key Prohorov�type extension of Koml�os� theorem �Theorem ��	�� Such an extension of Koml�os�
theorem applies� much more generally than displayed here� to certain classes of abstract�valued
scalarly integrable functions 
��� ��� ���� However� in the Young measure context it is particularly
e�ective to transfer narrow convergence properties� This is because tightness� a crucial condition for
Theorem ��	� is� under mild restrictions� an automatic feature of narrow convergence of sequences of
Young measures 
��� The useful portmanteau and product convergence theorems for classical narrow
convergence� as well as Prohorov�s theorem �an important device for relative narrow compactness�
and certain limiting support properties are thus made available for Young measures�

These results of section � form the point of departure for the second part of the notes� where lower
closure �section ��� and variational inequalities and equilibria �section �� are studied in connection
with some existence questions in economics �viz�� optimal growth� optimal consumption� Cournot�
Nash equilibrium distributions and Nash equilibria in continuum games and games with incomplete
information�� To keep these notes within a reasonable size� the choice has been made to discuss
those applications at a great level of generality� and with little regard for the economical context�
However� adequate references are suggested to �ll this gap�

Other surveys of Young measure theory include the account given in J� Warga�s textbook 
�	�
�largely control�theoretical and mostly limited to a compact image space� but going well beyond
existence and lower closure issues�� the study by H� Berliocchi and J�M� Lasry 
�� �o�ering a locally
compact image space and a Scorza�Dragoni�type connection with classical narrow convergence� but
in many respects a very innovative study�� M� Valadier�s survey in 
��� �presenting much of the
material treated in sections  to � via a more functional�analytic approach and with rather di�erent
applications� and the present author�s lecture notes 
��� which cover more ground than the present
paper� but do not address economical applications at the level of generality presented here� Let us
also 
�	� for an apparently di�erent approach to sequential narrow convergence on product spaces
that can nevertheless be reduced to the present one 
���� 
��� p� �� For recent important applications
in nonlinear analysis �that started with 
���� we refer to 
����

�Nine lectures given at the School on Measure Theory and Real Analysis �GNAFA� CNR� in Grado� Italy ������
September� �		
��
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� Narrow convergence of probability measures

This section recapitulates some results on narrow convergence of probability measures on a topolog�
ical space� cf� 
�� ��� ��� ��� 	�� ��� We discuss these results in two settings� �i� a metrizable one�
for which the material presented is rather standard and �ii� a nonmetrizable one� which includes the
situation where the topological space is completely regular and Suslin� As a rule� we extend from
�i� to �ii� via tightness�

Let S be a completely regular topological space� whose topology we indicate by � � Let B�S� � �
be the Borel ��algebra on �S� � � and let Cb�S� � � be the set of all bounded � �continuous functions on
S� Throughout this paper we work with the following hypothesis�

Hypothesis ��� There exist a separable metric space P and a continuous mapping � � P � S such
that S � ��P ��

Clearly� this hypothesis implies that the space �S� � � is separable�

Proposition ��� There exists an �at most� countable collection �ci� in Cb�S� � � that separates the
points of S �i�e�� x � x� if and only if ci�x� � ci�x�� for all i � N�� Consequently� there exists a
weak metric � on S whose topology �� is such that �� � � �

Proof� Since P � P is second countable� it has the the Lindel�of property� That is� every open
subset of P�P has the countable subcover property� But then S�S� being the continuous surjective
image of P � P � also has the Lindel�of property� In particular� the complement C of the diagonal
in S � S has the countable subcover property� Now C is covered by the collection of all open sets
f�x� x�� � S�S � c�x� �� c�x��g� c � Cb�S�� Hence� C is already covered by a countable subcollection�
and this evidently corresponds to the fact that there is a countable subset �ci� of Cb�S� � � separating
the points of S� Setting ��x� x�� ��

P�
i�� 

�i�supS jcij���jci�x�� ci�x��j then produces a metric on
S� and the inclusion �� � � is trivial� QED

While we accept that the topologies � and �� may be di�erent� the associated Borel ��algebras are
required to be identical�

Hypothesis ��� The metric � in Proposition ��� is such that

B�S� ��� � B�S� � � �� B�S��

Two di�erent su�cient conditions for Hypothesis �� to hold are as follows�

Remark ��� �i� If �S� � � is a separable metric space� then it meets Hypotheses ��� and ��� trivially
�let � be the postulated metric on S	 then � � ����
�ii� Let �S� � � be completely regular and Suslin �i�e�� a Hausdor
 space that is the surjective image
of a complete� separable metric space under a continuous mapping ���� ���� Then Hypothesis ���
evidently holds� and Hypothesis ��� holds by a well�known property of Suslin spaces ��� Corollary ��
p� �����

Many useful spaces� e�g�� Euclidean spaces� compact metric spaces� separable Banach spaces with
their strong or weak topology are completely regular and Suslin �observe that in�nite�dimensional
separable Banach spaces are not metrizable for their weak topology � this example explains why we
are not just interested in the metrizable case��

Let P�S� be the set of all probability measures on �S�B�S��� Let Cb�S� �� be the set of all
���continuous bounded functions from S into R�

De�nition ��� A sequence ��n� in P�S� converges narrowly with respect to the topology �� to

�� � P�S� �notation� �n �� ��� if limn

R
S
cd�n �

R
S
cd�� for every c in Cb�S� ���





The corresponding notion of � �narrow convergence� denoted by �
�� �� is de�ned by replacing Cb�S� ��

in the above de�nition by Cb�S� � �� Clearly� � �narrow convergence implies ���narrow convergence by
Proposition �� but in some interesting cases the two convergence modes will actually coincide�

A useful tool is the following so�called portmanteau theorem for ���narrow convergence� Here
Cu�S� �� stands for the set of all uniformly ��continuous and bounded functions from S into R�

Theorem ��� �i� Let ��n� and �� be in P�S�� The following are equivalent�

�a� �n
�� ���

�b� limn

R
S cd�n �

R
S cd�� for every c � Cu�S� ���

�c� lim infn
R
S qd�n �

R
S qd�� for every ��lower semicontinuous function q � S � ��	��	�

which is bounded from below�
�ii� Moreover� if ��n� is � �tight� then the above are also equivalent to the following�

�d� �n
�� ���

�e� lim infn
R
S qd�n �

R
S qd�� for every sequentially � �lower semicontinuous function q � S �

��	��	� which is bounded from below�

Recall that � �tightness in the above theorem can be de�ned in two equivalent forms�

De�nition ��	 A sequence ��n� in P�S� is � �tight if either one of the following two equivalent
statements is true�

�a� There exists a sequentially � �inf�compact function h � S � 
���	� �i�e�� a function h for
which all lower level sets fx � S � h�x� 
 �g� � � R� are sequentially � �compact� such that
supn

R
S
hd�n � �	�

�b� For every 	 
 � there exists a sequentially � �compact set K� � S such that supn �n�SnK�� 
 	�

Of course� the de�nition of ���tightness goes likewise� simply by replacing the topology � by ���
and clearly � �tightness of a sequence implies its ���tightness �notice in �a� that h is a fortiori ��inf�
compact�� Returning to � �tightness itself� note further that h is also ��lower semicontinuous� whence
B�S��measurable� Similarly� it follows that the K� in �b� belong to B�S�� The equivalence of �a� and
�b� in the above de�nition is a simple exercise 
��� Exercise ��� p� ���� �see also the proof following
De�nition ����� To identify sets in S that are sequentially � �compact� it is useful to observe that
any � �compact set K � S is automatically sequentially � �compact �use Proposition � and the fact
that � coincides with the metrizable topology �� on K��

Proof of Theorem ���� Part �i� is classical and can be found in e�g� 
�� ������� 
��� Proposi�
tion 	��� or 
��� Theorem ���� As for part �ii�� we note the following�

�d�� �a�� This is a fortiori�
�e�� �d�� Evident by applying �e� to both c and �c�
�d� � �e�� Let h be as in De�nition �	� For q as speci�ed we notice that for any 	 
 � the

function q� �� q � 	h is sequentially � �inf�compact� whence ���inf�compact and thus also ���lower
semicontinuous� We may therefore apply �c� to q�� which gives lim infn

R
S
qd�n � 	 supn

R
S
hd�n �R

qd��� Letting 	 go to zero �nishes the proof� QED

Remark ��
 The above proof also justi�es the existence of the quasi�integrals
R
S
qd�n in �e�� This

goes as follows� in the above notation� �q �� supk q��k is B�S��measurable� Clearly� �q coincides with q
on the set fh � �	g and it is equal to �	 on fh � �	g� It remains to notice that De�nition ���
forces the set fh � �	g to have �n�measure zero for each n�

It turns out that tightness is a su�cient � and in a number of cases also necessary � condition for
relative compactness in the narrow topology� Just as in De�nition �	 we only state the sequential
version of this result� even though there is also a fully topological analogue�

Theorem ��� �Prohorov �i� Let ��n� in P�S� be ���tight� Then there exist a subsequence ��n��

of ��n� and �� � P�S� such that �n�
�� ���

�ii� Moreover� if ��n� is � �tight� then in fact �n�
�� �� can be achieved in �i��

�



Proof� Part �i� is Prohorov�s classical result in sequential format 
��� Theorem ����� 
	�� Theo�
rem ����A�� Part �ii� follows by Theorem ���ii��� QED

As a necessity complement to the above result� we remark that tightness is known to be a
necessary condition for relative sequential narrow compactness when S is complete separable metric
or locally compact 
��� Theorem ���� 
��� Theorem �� p� ����� See also Theorem ��� below�

As a rule� in what follows the parts �i� of the above results� and also of those that still follow in
this section� are essential for the transfer process� What is done in the parts �ii�� all of which exploit
� �tightness to reduce the situation to that of the corresponding part �i�� could also have been added
ad hoc� However� it is hoped that the systematic inclusion of such parts �ii� underlines the harmony
of the present approach�

Next� we study narrow convergence of product measures� The essence of the results that we
require is already available if we just consider probability measures on the product S �  N� Here
 N ��N�f	g is the usual Alexandrov�compacti�cation of the natural numbers� This is a compact
metrizable space� which obviously satis�es Hypotheses ��� ��� From now on� let  � be a �xed metric
on  N� let �� be any compatible product metric on S �  N � and denote the topology � � ��� by �� �

We denote ���narrow and �� �narrow convergence in P�S �  N� by �
��� � and �

��� � respectively� For

n �  N� let 	n � P�  N� stand for the Dirac measure concentrated at the point n�

Proposition ���� �i� Let ��n� and �� be in P�S�� The following are equivalent�

�a� �
N

PN
n�� �n

�� ���

�b� �
N

PN
n����n � 	n�

��� �� � 	��

�ii� Moreover� if � �
N

PN
n�� �n� is � �tight� then the above are also equivalent to the following�

�c� �
N

PN
n�� �n

�� ���

�d� �
N

PN
n����n � 	n�

��� �� � 	��

Proof� �a� � �b�� Let c � Cu�S �  N� ��� and � 
 � be arbitrary� There exists p � N such that
jc�x� n�� c�x�	�j � �� for all n 
 p� uniformly in x � S� Hence� the triangle inequality gives

Z
S

j �
N

NX
n��

c�x� n�� c�x�	�j�n�dx� 
 p

N
sup
S
jcj� �N � p��

N
�

where the right hand side is less than � for N su�ciently large� So now �b� follows easily by invoking
Theorem ���i��

�b� � �a�� Trivial� since any function c in Cb�S� �� can be identi�ed with the function �c in

Cb�S �  N� given by �c�x� n� �� c�x��
�a�� �c�� By Theorem ���ii��
�b� � �d�� Also by Theorem ���ii�� since the sequence �N � is trivially �� �tight� Here N ��

�
N

PN
n����n � 	n�� Indeed� by hypothesis there exists h � S � 
���	�� sequentially � �inf�compact�

such that s �� supN
�
N

PN
n��

R
S hd�n � �	� Then �h�x� n� �� h�x� de�nes a function �h � S �  N �


���	� that is sequentially �� �inf�compact �by compactness of the space  N�� with supN
R
�hdN �

s � �	� QED

Corollary ���� �i� Let ��n� and �� be in P�S�� The following are equivalent�

�a� �n
�� ��

�b� �n � 	n
��� �� � 	��

�ii� Moreover� if ��n� is � �tight� then the above are also equivalent to the following�

�c� �n � 	n
��� �� � 	��

Proof� �a� � �b�� Suppose �b� were not true� Then there would exist 	 
 �� !c � Cb�S �  N� ���
and a subsequence ��n�� of ��n� such that

R
S
!cd��� � 	�� � 	 �

R
S
!cd��n� � 	n�� for all n�� Set

N �� �
N

PN
n�����n� � 	n��� Then evidently

R
S
!cd��� � 	�� � 	 �

R
S
!cdN for all N � But �n�

�� ��

�



implies �
N

PN
n��� �n�

�� ��� so N
��� �� � 	� by Proposition ���� In the limit this contradicts

the above inequality for the N � The implication �b� � �a� is evident �see the proof of the same
implication in Proposition �����

�b� � �c�� As in the proof of Proposition ���� it follows easily that under the additional

hypothesis ��n�	n� is ���tight by compactness of the space  N� So the result follows by Theorem ���
QED

Let �S�� � �� be another completely regular topological space for which the analogue of Hypothe�
ses ��� �� holds� the associated metric on S� is denoted by �� �cf� Proposition ��� It is easy to see
that the Hypotheses ��� �� hold for S � S�� which can either be equipped with the product metric
� � �� or the product topology � � � ��

Theorem ���� �i� Let �n
�� �� in P�S� and let ��n

��� ��� in P�S��� Then �n � ��n
����� �� � ��� in

P�S � S���

�ii� Moreover� if ��n� is � �tight and ���n� is �
��tight� then in fact �n � ��n

��� �� �� � ����

Proof� Let c � Cu�S � S�� � � ��� be arbitrary� De�ne �c � S �  N� R as follows�

�c�x� k� ��

� R
S�
c�x� x����k�dx

�� if k �	R
S c�x� x

������dx
�� if k �	

Then �c is ���continuous� thanks to uniform continuity of c� Hence� the proof of part �i� is �nished by
invoking Corollary ����i�� since

R
S�

�N
�cd��n� 	n� �

R
S��S�� cd��n� ��n�� Under the extra tightness

conditions of part �ii�� the sequence ��n � ��n� is clearly tight with respect to the product topology
� � � � on S � S�� So the desired result follows from part �i� by virtue of Theorem ���ii�� QED

After this� we study the support of the limit of a narrowly convergent sequence�

De�nition ���� The support � �supp � of a probability measure � � P�S� is de�ned by

� �supp � �� fF � F � S� F � �closed� ��F � � �g�
The ���support of a measure � in P�S�� denoted by ���supp �� is de�ned by replacing the topology
� by �� in the above formula� of course� � �supp � is always contained in ���supp ��

Proposition ���� Every � � P�S� is carried by its support� i�e�� ��� �supp �� � ��

Proof� By De�nition ��� the set C �� Sn� �supp � is the union of all � �open sets G with ��G� � ��
By Hypothesis ��� C evidently has the countable subcover property �see the proof of Proposi�
tion ��� So C� being the union of a countable collection of ��null sets� is a ��null set itself� QED

De�nition ���� The sequential � �limes superior of a sequence of subsets �An� of S� denoted by
� �LsnAn� is the set of all x � S for which there exists a subsequence �An�� of �An�� and corresponding
elements xn� � An� � such that x � � �limn� xn� �

The de�nition of the ���limes superior is of course completely analogous� However� the metrizable
nature of �� causes an equivalent alternative formulation to be valid� The proof of this is an easy
exercise� left to the reader�

Lemma ���� Let �An� be a sequence of subsets of S� Then

���LsnAn �� �p�����cl �n�p An�

Theorem ���	 �i� Let ��n� and �� be in P�S� with �
N

PN
n�� �n

�� �� in P�S� �this holds in par�

ticular when �n
�� ���� Then

���supp �� � ���Lsn���supp �n�

�



�ii� Moreover� if � �
N

PN
n�� �n� is � �tight then in fact

���� �seq�cl � �Lsn� �supp �n� � �

and� consequently�
� �supp �� � � �cl � �Lsn� �supp �n�

Recall that the � �sequential closure � �seq�cl A of a set A in S is de�ned as the intersection of
all those � �sequentially closed sets C in S for which C � A� Clearly� � �seq�cl A � � �cl A�
Given Hypothesis ��� it is easy to check that for any sequence �An� of subsets of S one has
� �seq�cl � �LsnAn � ���LsnAn�

Proof� �i� By Proposition ��� we have N �� �
N

PN
n����n� 	n�

��� ��� 	�� De�ne q�� � S �  N�
f���	g by

q���x� k� ��

��
�

� if x � ���supp �k and k �	�
� if x � ���Lsn���supp �n and k �	
�	 otherwise�

Then q�� is ���lower semicontinuous in every point �x� k� of S �  N� Indeed� let �xj� kj� � �x� k�
�note that sequential arguments su�ce to verify lower semicontinuity�� We must show that � ��
lim infn q���x

j� kj� � q���x� k�� If k � 	� then eventually kj � k� so � � q���x� k� follows by the
fact that ���supp �k is ���closed �Lemma ����� If k � 	� we distinguish two cases� if eventually
kj � 	� then � � q���x�	� follows by closedness of ���Lsn���supp �n� which in turn is an immediate
consequence of Lemma ���� On the other hand� if kj �	 in�nitely often� then the same inequality
follows directly from De�nition ���� So we conclude that q�� is indeed ���lower semicontinuous� NowR
S�

�N
q��d��n�	n� �

R
S
q���x� n��n�dx� � � for every n �by Proposition ����� Hence�

R
S�

�N
q��dN �

� for every N � Thus� Theorem ���i� gives
R
S
q���x�	����dx� � �� and the desired support properties

for �� follow�

�ii� Under the additional � �tightness condition it follows that N �� �
N

PN
n����n�	n�

��� ���	�
by Proposition ����ii�� Let q� � S �  N� f���	g be given by

q��x� k� ��

��
�

� if x � � �supp �k and k �	�
� if x � � �seq�cl � �Lsn� �supp �n and k �	
�	 otherwise�

With a little careful work� this function is seen to be �� �sequentially lower semicontinuous on S �
 N �observe that� unlike the previous part� � �Lsn� �supp �n is not sequentially closed � hence the
additional sequential closure operation has been added in the de�nition of q��� By Proposition ���
and Theorem ���ii� we �nd

R
S q��x�	����dx� � �� The desired properties of �� then follow with

ease� QED

Remark ���
 If in Theorem ���� there exists a � �compact set K containing �nsupp �n� then the
set � �Lsn� �supp �n is � �closed and the following simpli�cation can be made�

� �seq�cl � �Lsn� �supp �n � � �Lsn� �supp �n�

Indeed� on K the topologies � and �� coincide� which gives � �Lsn� �supp �n � ���Lsn���supp �n� and
the latter set is ���closed� whence � �closed �cf� Lemma ������

In order to connect narrow and K�convergence of Young measures in section �� the following
su�cient condition for ���tightness is quite useful� Recall that a probability measure � in P�S� is
said to be ���Radon if the singleton f�g is ���tight �cf� De�nition �	�� The set of all such Radon
probability measures is denoted by PRadon�S� ����

Theorem ���� Let ��n� and �� be in PRadon�S� ���� Then �n
�� �� implies that ��n� is ���tight�

This is 
��� Theorem �� Appendix III� and 
�� Theorem ����� the proof depends critically on both
the metric nature of �� and the fact that one considers only sequential narrow convergence�

�



� K�convergence of Young measures

This section develops K�convergence� an auxiliary� nontopological convergence mode for Young
measures introduced in 
��� �� ��� This will be of great use in the next section when we transfer
narrow convergence results of the previous section from probability measures to Young measures�
Thus� the present section can be regarded as an intermediate stage in the transfer process� As in
section � results are developed both in a metrizable and in a nonmetrizable setting�

Let �"�A� �� be a �nite measure space� Let us remark that much of what is done here extends
without further ado to a ���nite measure space 
such a measure is equivalent to a �nite one� and
one can always premultiply the integrands below by the appropriate Radon Nikodym derivative and
an appropriate extension of uniform integrability is also available�� Let �S� � � be as in the previous
section �i�e�� a completely regular topological space satisfying Hypotheses ��� ����

Let R�"�S� be the set of all transition probabilities from �"�A� into �S�B�S�� 
��� III��� That
is to say� R�"�S� consists of all functions � � " � P�S� such that � �� �����B� is A�measurable
for every B � B�S�� 
Note that this notion subsumes that of probability measure� P�S� can
be identi�ed with the constant functions in R�"�S�� in fact� R�"�S� coincides with P�S� when
A is trivial� i�e�� A � f��"g�� In association with the central topology of these lecture notes
�De�nition ����� transition probabilities are also called Young measures� and we shall adopt this
terminology �other names used for Young measures in the literature are� depending on the context�
Markov kernels� randomized decision functions� relaxed control functions� etc��� For some elementary
measure�theoretical properties of Young measures the reader is referred to 
��� III�� or 
�� ��� �see
also Appendix A�� In particular� the product measure that is induced on �"�S�A�B�S�� by � and
any � � R�"�S� �cf� 
��� III��� is denoted by �� �� cf� Theorem A��� Let L��"�S� be the set of all
measurable functions from �"�A� into �S�B�S��� A Young measure � � R�"�S� is said to be Dirac
if it is a degenerate transition probability� i�e�� if there exists a function f � L��"�S� such that for
every � in "

���� � 	f��� �� Dirac measure at the point f����

In this special case � is denoted by 	f and is called the Young measure relaxation of the function f �
The set of all Dirac Young measures in R�"�S� is denoted by RDirac�"�S��

The fundamental idea behind Young measure theory is that� in some sense� R�"�S� forms a
completion of L��"�S�� when the latter is identi�ed with RDirac�"�S�� In the context of the
previous section� the much less fruitful analogue of this would be to view P�S� as an extension of
S� because the latter can be identi�ed with the set f	x � x � Sg of all Dirac measures� to which it
is homeomorphic�

Let us agree to the following terminology� an integrand on " � S is a function g � " � S �
��	��	� such that for every � � " the function g��� �� on S is B�S��measurable� Moreover�
such an integrand g is said to be integrably bounded below if there exists � � L��"�R� such that
g��� x� � ���� for all � � " and x � S� Further� a function g � " � S � ��	��	� is said to be
a �sequentially� � �lower semicontinuous �� �continuous� ��� �inf�compact�� integrand on " � S if for
every � � " the function g��� �� on S is �sequentially� � �lower semicontinuous 
� �continuous� 

� �inf�
compact�� respectively� Let g be an integrand on "� S� The following expression is meaningful for
any � � R�"�S��

Ig��� ��

Z �

�




Z
S

g��� x������dx����d���

provided that the two integral signs are interpreted as follows� ��� for every �xed � the inte�
gral over the set S of the function g��� ��� which is B�S��measurable by de�nition of the term
integrand� is a quasi�integral in the sense of 
��� p� ��� and Appendix B� �� the integral over
" is interpreted as an outer integral in the sense of Appendix B �note that outer integration
comes down to quasi�integration when measurable functions are involved�� The resulting func�
tional Ig � R�"�S� � 
�	��	� is called the Young measure integral functional associated to g�
Another integral functional associated to g� this time on the set L��"�S� of all measurable functions

	



from " into S� is given by the formula

Jg�f� ��

Z �

�

g��� f������d�� � Ig�	f ��

The following notion of convergence was introduced and studied in a more abstract context in

��� ����

De�nition ��� A sequence ��n� in R�"�S� K�converges with respect to the topology � to �� �
R�"�S� �notation� �n

K���� ��� if for every subsequence ��n� � of ��n�

�

N

NX
n���

�n����
�� ����� as N �	 for a�e� � in "�

Note that the exceptional null set is allowed to vary with the subsequence ��n��� Of course� the

short arrow �
�� � above refers to � �narrow convergence in P�S� in the sense of De�nition ���

Unlike narrow convergence� K�convergence is nontopological� If in the above de�nition
�� � i�e��

the mode of pointwise convergence mode� is replaced by
�� � we obtain a corresponding notion of

K�convergence with respect to �� that is denoted by �
K��� �� Since �

�� � is implied by �
�� �� it

follows that �
K��� � is implied by �

K���� ��

Example ��� Let �"�A� �� be �
�� ���L�
������ ��� �i�e�� the Lebesgue unit interval�� Let �fn� be the
sequence of Rademacher functions� de�ned by fn��� �� sign sin�n�� �here S �� R� of course��

Then 	fn
K���� ��� where �� � R�
�� ���R� is the constant function ����� � �

		� �
�
		��� In fact� here

one could argue that the strong law of large numbers applies to the sequence �	fn � of P�R��valued
random variables� but one can also give a proof of the above by means of the standard �scalar�
strong law of large numbers and scalarization� analogous to the proof of Theorem ��	 below�

A crucial instrument for the transfer process of these notes is the following generalization of
De�nition �	�

De�nition ��� A sequence ��n� in R�"�S� is � �tight if either one of the following two equivalent
statements is true�

�a� There exists a nonnegative� sequentially � �inf�compact integrand h on "� S such that

sup
n

Ih��n� � �	�

�b� For every 	 
 � there exists a multifunction #� � " � S � with #���� sequentially compact
for every � � "� such that

sup
n

Z �

�

�n����Sn#�������d�� 
 	�

Recall from the previously given de�nition of integrands that a sequentially � �inf�compact integrand
h is simply a function on " � S with the following property� for every � � " the function h��� ��
is sequentially � �inf�compact on S �i�e�� all sets fx � S � h��� x� 
 �g� � � R� are sequentially
� �compact�� As is by now usual� the alternative� weaker notion of ���tightness of a sequence of
Young measures is obtained by replacing the topology � by �� in the above de�nition�

Proof of equivalence of �a� and �b� in Definition ��� �����
�a�� �b�� Let s �� supn Ih��n�� then s � R
� For every 	 
 �� let #���� be the set of all x � S

for which h��� x� 
 s�	� then #���� is sequentially � �compact for every �� Also� for every n

s

	

Z �

�

�n����Sn#�������d�� 
 Ih��n� 
 s�

�



and this proves that the de�nition as given in part �b� holds�
�b� � �a�� Let #m be the given multifunction corresponding to 	 � ��m� m � N� With no loss

of generality we may suppose that #m��� � #m
���� for every � and m �otherwise� we could always
take �nite unions of the #m�� Now set #� � � and de�ne

h��� x� ��

�
m if x � #m���n#m������ m �N
�	 if x �� �m#m���

Then h��� �� is sequentially � �inf�compact on S for every � and supn Ih��n� 
 �� QED

Example ��� �a� Let E be a separable re$exive Banach space with norm k � k� Let E� be the dual
space of E� Observe that �E� � � is a completely regular Suslin space for � �� ��E�E��� Suppose that
�fn� � L��"�E� is bounded in L��seminorm� supn

R
� kfn���k��d�� � �	� Then the corresponding

sequence �	fn � in R�"�E� is � �tight� just take h��� x� �� kxk in De�nition ����
�b� Let E be a separable Banach space with norm k � k� Then �E� � � is a completely regular

Suslin space for � �� ��E�E��� Suppose that �fn� � L��"�E� is bounded in L��seminorm and that
there exists a multifunction R � "� S such that for a�e� � both ffn��� � n �Ng � R��� and R���
is � �ball�compact 
i�e�� the intersection of R��� with every closed ball in E is ��E�E���compact��
Then �	fn � is � �tight� as is seen by considering hR��� x� �� kxk if x � R���� and hR��� x� �� �	
otherwise� For notice that for every � � " and � � R
 the set of all x � E such that hR��� x� 
 �
coincides with the intersection of R��� and the closed ball with radius � around �� This set is
��E�E���compact� whence sequentially ��E�E���compact by the Eberlein�%Smulian theorem�

Part �b� in the above example generalizes part �a�� simply observe that in part �a� E itself is
��E�E���ball�compact �by re$exivity�� so that there one can set R��� �� E for all � � "�

A very important property of K�convergence for Young measures is the following Fatou�Vitali�
type result�

Proposition ��� �i� Let �n
K��� �� in R�"�S�� Then lim infn Ig��n� � Ig���� for every ���lower

semicontinuous integrand g on "� S such that

s��� �� sup
n

Z �

�




Z
fg���g�

g���� x��n����dx����d��� � for ��	� �����

�ii� Moreover� if ��n� is � �tight� then in fact lim infn Ig��n� � Ig���� for every sequentially � �lower
semicontinuous integrand g on "� S such that ����� holds�

Here g� �� max��g� �� and fg 
 ��g� denotes the set fx � S � g��� x� 
 ��g�

Remark ��� �i� If g is integrably bounded from below� then ����� holds automatically�
�ii� In case �n � 	fn for all n � N �this speci�cation does not include the limit ��� the condition

����� runs as follows�

lim
���

sup
n

Z �

�
�fg�	�fn�	�����gg

���� fn������d�� � ��

Clearly� for every � � " we have g��� fn���� 
 �� if and only if g���� fn���� � �� This means that
����� simply comes down to uniform �outer� integrability of the sequence �g���� fn����� in the case
of a Dirac sequence� If g is T �B�S��measurable in addition� this coincides with the usual classical
formulations of uniform integrability �a la Vitali of the sequence of negative parts �g���� fn�����	 cf�
���� ���

Proof of Proposition ��	� The proof of part �i� will be given in two steps�
Step �� the case g � �� Set � �� lim infn Ig��n�� then there is a subsequence ��n�� such that

� � limn� Ig��n��� De�ne �N ��� �� �
N

PN
n���

R
S g��� x��n�����dx� and ����� ��

R
S g��� x�������dx��

Then lim infN �N ��� � ����� for a�e� � by Theorem ���i�� because by De�nition ��� �
N

PN
n��� �n����

�



�� ����� in P�S� for a�e� �� Thus� Fatou�s lemma for outer integration �Proposition B��� can be
applied� This gives lim infN��

R �
�
�Nd� �

R �
�
��d�� Here the right�hand side is equal to Ig�����

and the left�hand side is at most �� by subadditivity of outer integrals �Lemma B��� and by the
choice of ��n���

Step �� the general case� We essentially follow Io�e 
��� by pointing out that the simple inequality
g � �fg���gg

� � g� �� max�g���� on " � S leads to

Z
S

g��� x��n����dx� �

Z
S

�fg���g��� x�g
���� x��n����dx� �

Z
S

g���� x��n����dx��

After one more �outer� integration this gives� in the notation of ������ Ig��n��s��� � Ig���n�� where
we use again the subadditivity of outer integration �Lemma B���� Now observe that step � trivially
extends to any g that is bounded from below� such as g�� This gives

lim inf
n

Ig��n� � s��� � lim inf
n

Ig� ��n� � Ig� ���� � Ig�����

where the last inequality follows from g� � g� In view of ������ the proof of �i� is now �nished by
letting � go to in�nity�

�ii� Let h be as in De�nition ��� and denote s �� supn Ih��n�� We augment g� similar to the
proof of Theorem ���ii�� For 	 
 � de�ne g� �� g � 	h� Then g� � g and g���� �� is ���lower
semicontinuous on S for every � � " �see the proof of Theorem ���ii��� Thus� part �i� gives
lim infn Ig��n�� 	s � lim infn Ig���n� � Ig����� � Ig���� for any 	 
 �� Letting 	 go to zero gives the
desired inequality� QED

The following important Prohorov�type �relative sequential compactness criterion for K�conver�
gence� �apostrophes are in order because K�convergence is nontopological� is a crucial tool for these
notes� It extends Prohorov�s classical Theorem �� to K�convergence of Young measures and was
�rst obtained in 
��� Theorem ���� as a specialization of an abstract Koml�os� theorem �i�e�� an
abstract version of Theorem ��� below� to Young measures�

Theorem ��	 �i� Let ��n� be a ���tight sequence in R�"�S�� Then there exist a subsequence ��n��

of ��n� and �� � R�"�S� such that �n�
K��� ���

�ii� Moreover� if ��n� is � �tight� then in fact �n�
K���� �� can be achieved in �i��

The following example� which extends Example ��� demonstrates the power of this result�
Clearly� this brings K�convergence �for subsequences&� to settings where the law of large numbers
stands no chance at all�

Example ��
 Let �"�A� �� be �
�� ���L�
������ ��� �cf� Example ���� Let f� � L��
�� ���R� be
arbitrary� it can be extended periodically from 
�� �� to all of R� We de�ne fn
���� �� f��

n���
Clearly� the sequence �	fn � is tight in the sense of De�nition ��� 
e�g�� use h��� x� �� jxj to meet
part �a� or K� � 
��� �� to satisfy part �b��� Therefore� by Theorem ��	 there exist a subsequence

�fn�� of �fn� and some �� � R�
�� ���R� such that 	fn�
K���� ��� The precise nature of �� could now

be determined by means of Proposition ���� but we shall defer this to Example ��� later on�

To prove Theorem ��	 we use an outstanding theorem� due to J� Koml�os 
	����

Theorem ��� �Koml�os Let ��n� be a sequence in L��"�R� such that

sup
n

Z
�

j�njd� � �	�

�The original proof in �
� went by subtle truncation arguments and application of a martingale limit theorem� It
is not hard to show that Koml�os� theorem implies the strong law of large numbers� What is much more interesting is
that� conversely� Theorem ��	 also follows from the strong law of large numbers by invoking �subsequence principle
theory� ��� ���

��



Then there exist a subsequence ��n�� of ��n� and a function �� � L��"�R� such that for every
further subsequence ��n��� of ��n��

lim
N��

�

N

NX
n����

�n����� � ����� for a�e� � in "�

Observe here that �� is universal with respect to the possible choices of a subsequence ��n��� from
��n��� but that the associated exceptional ��null set in the limit statement is allowed to vary with
the subsequence�

Lemma ���� There exists a countable set C� � Cu�S� �� such that for every ��n� and �� in P�S�

lim
n

Z
S

cd�n �

Z
S

cd�� for all c � C�

if and only if �n
�� ��� In particular� C� separates the points of P�S��

Proof� As was observed following Hypothesis ��� �S� � � is separable� Hence� �S� ��� is a sepa�
rable metric space �apply Proposition ��� Therefore� the result follows from 
��� Proposition 	�����
QED

Lemma ���� Let ��n� in P�S� be ���tight and let C� � Cu�S� �� be as in Lemma ����� If

lim
n

Z
S

cd�n exists for every c � C��

then there exists �� � P�S� such that �n
�� ���

Proof� By Theorem �� there exist a subsequence ��n�� of ��n� and �� � P�S� such that

�n�
�� ��� Then

R
S
cd�� � �c �� limn

R
S
cd�n for every c � C�� Now if ��n� as a whole were not to

converge to ��� there would exist �c � Cb�S� �� and 	 
 � such that for some subsequence ��m� of ��n�
one would have j RS �cd�m � RS �cd��j � 	 for all m� Since ��m� is ���tight� there would then exist�

by another application of Theorem ��� a subsequence ��m�� and ��� � P�S� such that �m�

�� ����
Just as above� this would entail

R
S cd��� � �c for all c � C�� so �� � ��� by the point�separating

property of C�� But since also j R
S
�cd��� �

R
S
�cd��j � 	� a contradiction would follow� QED

Proof of Theorem ��
� �i� By Lemma ���� there exists a countable subset C� � fci � i � Ng of
Cu�S� �� that separates the points of P�S�� Clearly� supn

R
� j�i�njd� � �	 for every i �N� where we

set �i�n��� ��
R
S
ci�x��n����dx�� Let h be as in De�nition ��� �case of ���tightness�� By Lemma B��

there exists for each n � N a function ���n � L��"�R� such that ���n��� �
R
S
h��� x��n����dx�

for all � � " and
R
� ���nd� � Ih��n�� Applying the Koml�os Theorem ��� in a diagonal extraction

procedure� we obtain a subsequence ��n�� of ��n� and functions �i�� � L��"�R�� i � N � f�g� such
that limN

�
N

PN
n���� �i�n�� � �i�� a�e� for every further subsequence ��n�� � and for all i �N � f�g� It

follows therefore that for every such subsequence ��n�� � for a�e� � in "

lim
N

Z
S

h��� x�
�

N

NX
n����

�n�� ����dx� � ������� � �	� ����

lim
N

Z
S

ci�x�
�

N

NX
n����

�n������dx� � �i����� for all i �N� �����

Let us begin by considering ��n� � itself as the subsequence in question� Fix � outside the exceptional
null set M � associated with this particular choice of a subsequence in ����������� Then ���� implies

that for a�e� � the sequence ���N � in P�S�� de�ned by ��N �� �
N

PN
n��� �n����� is ���tight in

P�S� in the sense of De�nition �	� Also� ����� implies that limN

R
S
cid��N exists for every i� By

��



Lemma �����i�� there exists ���� in P�S� such that ��N
�� ����� De�ne ����� �� ���� for � � "nM �

Also� on M we de�ne �� to be equal to an arbitrary� but �xed element from P�S�� Then it is
elementary� in view of Proposition A�� that �� belongs to R�"�S�� Finally� the argument following
����� can be repeated if one starts out with an arbitrary subsequence ��n��� of ��n� �� instead of ��n��
itself� Except for the change in the exceptional null set M � for which the de�nition of K�convergence
allows� nothing changes� This �nishes the proof of part �i�� Part �ii� then follows immediately by
Theorem ���ii�� in view of the fact that for every subsequence ��n�� � of the above ��n� � ���� implies

that ����N � is � �tight for a�e� �� where 
�
��N �� �

N

PN
n���� �n������ QED

Remark ���� From ����� in the above proof it is seen that the sequence ��n� � in Theorem ��� is such

that for every further subsequence ��n��� the sequence � �N
PN

n���� �n������ in P�S� is either ���tight
for a�e� � �part �i�� or even � �tight for a�e� � �part �ii���

As the �nal results in this intermediate section� we present direct consequences of Proposition ���
and Theorem ��	 for K�convergence of Young measures� Such results �rst �gured in 
��� they will
be used in the next section�

Proposition ���� �i� Let ��n� and �� be in R�"�S�� The following are equivalent�

�a� �n
K��� ���

�b� �n � 	n
K���� �� � 	��

�ii� Moreover� if ��n� is � �tight� then the following two equivalent statements are implied by the
above�

�c� Every subsequence ��n� � of ��n� contains a further subsequence ��n�� � such that �n��
K���� ���

�d� Every subsequence ��n� � of ��n� contains a further subsequence ��n�� � such that �n�� �
	n��

K����� �� � 	��

Proof� �a� � �b� follows by pointwise application of Proposition ����i�� In part �ii� �c� � �d�
follows by pointwise application of Proposition ����ii�� by taking into consideration Remark ����
Finally� the implication �a�� �c� of part �ii� follows by pointwise application of Theorem ��� again
taking into consideration Remark ���� QED

Theorem ���� �i� Let ��n� and �� be in R�"�S�� Then �n
K��� �� implies

���supp ����� � ���Lsn���supp �n��� for a�e� � in "�

�ii� Moreover� if ��n� is � �tight� then in fact

������� �seq�cl � �Lsn� �supp �n���� � � for a�e� � in "�

so that in particular

� �supp ����� � � �cl � �Lsn� �supp �n��� for a�e� � in "�

Proof� Part �i� of this result follows directly from a pointwise application of Theorem ��	�i�� Part
�ii� also follows by a pointwise application of Theorem ��	�ii�� in view of the tightness observation
in Remark ���� QED

� Narrow convergence of Young measures

In this section our program to transfer narrow convergence results for probability measures �sec�
tion � to Young measures is completed� We use the same fundamental hypotheses as in the previous
section� �"�A� �� is a �nite measure space and �S� � � is a topological space for which Hypotheses ���
�� hold� We start out by giving the de�nition of narrow convergence for Young measures�

�



De�nition ��� A sequence ��n� in R�"�S� converges � �narrowly to �� in R�"�S� �this is denoted

by �n
�

�� ��� if for every A � A and for every c in Cb�S� � �

lim
n

Z
A




Z
S

c�x��n����dx����d�� �

Z
A




Z
S

c�x�������dx����d���

The obviously weaker notion ���narrow convergence is de�ned by replacing � by ��� Similar to

section � the latter notion is denoted by �
�

�� �� In analogy to section � we shall see that for tight
sequences of Young measures � �narrow and ���narrow convergence are actually the same� For further
bene�t� note carefully the di�erence in notation between the narrow convergences for probability
measures �indicated by short arrows� and Young measures �indicated by long arrows��

In its above form the de�nition of narrow convergence is classical in statistical decision theory

��� 	��� It merges two completely di�erent classical modes of convergence�

Remark ��� Let ��n� and �� be in R�"�S�� The following are obviously equivalent�

�a� �n
�

�� �� in R�"�S��
�b� For every A � A with ��A� 
 �


�� �n��A� �����A� �� 
�� ����A� �����A� in P�S��

�c� For every c � Cb�S� � �
Z
S

c�x��n����dx� ��
Z
S

c�x�������dx� in L��"�R��

where �
�
� � denotes convergence in the topology ��L��"�R��L��"�R���

The following example continues the previous Examples �� and ����

Example ��� Let �"�A� �� be �
�� ���L�
������ ��� �cf� Example ���� As in Example ���� let f� �
L��
�� ���R� be arbitrary and extended periodically from 
�� �� to all of R� We de�ne fn
���� ��

f��n��� Then 	fn
�

�� ��� where �� � R�
�� ���R� is the constant function given by ����� � �f�� �
Here �f� � P�R� is the image of �� under the mapping f�� i�e�� �f� �B� �� ��f��� �B��� To prove the
above convergence statement� let c � Cb�R� be arbitrary� and let A be of the form A � 
�� �� with
� 
 �� Then a simple change of variable gives

Z
A

c�fn
�����d� �

Z �

�

c�f��
n���d� � �n

Z 	n�

�

c�f���
���d���

and by periodicity of f� the latter expression equals �
R �
� c�f���

���d�� � ���A�
R
R c�x��f�� �dx� in

the limit� So it has been shown that

lim
n��

Z
A

c�fn����d� �

Z
A




Z
R
c�x�������dx��d� �����

for A � 
�� ��� By subtraction� ����� continues to be valid for A�s of the form A � ��� ��� and� by
summation� also for A�s that are a �nite disjoint union of such intervals� Finally� by 
�� ������� for
any A � A and any 	 
 � there exists a �nite union A� of intervals ��� �� such that the symmetric
di�erence of A and A� has Lebesgue measure at most 	� But then j RA c�fn�� RA�

c�fn�j 
 	 supS jcj�
so� by letting 	 go to zero� we conclude that ����� continues to hold in the general case�

The above example shows that �� in Example ��� is equal to the above ��� modulo a ���null set� In
fact� the narrow limit of a sequence of Young measures in R�"�S� can only be essentially unique
�that is to say� unique modulo a ��null set�� This follows immediately from the following general
result�

��



Proposition ��� For every �� �� in R�"�S� the following are equivalent�
�a� For every A � A and c � C�

Z
A




Z
S

c�x������dx����d�� �

Z
A




Z
S

c�x�������dx����d���

�b� ���� � ����� for a�e� � in "�

The essentially sequential setup chosen for these lecture notes leads to frequent use of a semi�
metric dR on R�"�S�� as de�ned in the next result� This allows us to use sequentially oriented
approaches when we apply the narrow topology �the latter is of course de�ned by rereading De�ni�
tion ��� with generalized sequences in mind��

Theorem ��� Suppose that the ��algebra A on " is countably generated� Then there exists a
semimetric dR on R�"�S� such that for every ��n� and �� in R�"�S� the following are equivalent�

�a� �n
�

�� ���
�b� limn dR��n� ��� � ��

Proof� De�ne a semimetric on R�"�S� by

dR��� �
�� ��

�X
i��

�X
j��

�i�jj
Z
Aj




Z
S

ci�x������dx����d�� �
Z
Aj




Z
S

ci�x��
�����dx����d��j���Aj��

Here �ci� is an enumeration of the functions� conveniently normalized so as to give supS jcij � � for
each i� in the narrow convergence determining set C� used in Lemma ����� Also� �Aj� is an at most
countable algebra which generates A�

�a� � �b�� By using the approximation result 
�� ������� in the same way as in the above
Example ���� it follows that

lim
n

Z
A




Z
S

ci�x��n����dx����d�� �

Z
A




Z
S

ci�x�������dx����d���

for every A � A and every i� By the narrow convergence determining property of C� in Lemma �����
this implies


�� �n��A� �����A� �� 
�� ����A� �����A� in P�S�
for every A � A with ��A� 
 �� By Remark �� this implies �n

�
�� ��� The converse implication

�a�� �b� is very simple� QED

From Proposition ��� and its proof we immediately obtain that K�convergence implies narrow
convergence�

Remark ��� Let ��n� and �� be in R�"�S�� The following hold�

�a� If �n
K��� ��� then �n

�
�� ���

�b� If �n
K��� �� and if ��n� is � �tight� then �n

�
�� ���

�c� If �n
K���� ��� then �n

�
�� ���

The implications in this remark cannot be reversed� the following example shows that a narrowly
convergent sequence does not have to K�converge� even when S is the set of real numbers� Let us
already mention that� nevertheless� in Theorem ���� below a partial converse will be achieved in
terms of subsequences�

Example ��	 Consider the sequence �fn� of Rademacher functions from Example ��� De�ne the
following sequence �f �n� in L��"�R�� for each m �N de�ne f �n �� fm for m�� 
 n 
 m� �� From

Examples �� and ��� it is clear that 	f �n
�

�� ��� where �� � �
		� �

�
		�� a�e� By Remark ��� we

��



know that if �	f �n� were to K�converge to some Young measure� it would have to be �� �modulo null
sets�� But it is easy to check the following� for N � m � �

�

N

NX
n��

	f �n��� �
�

m � �

	m����X
n��

	f �n ��� �
m�	

m � �
	fm��

��� �
m��

m � �
	fm ����

This shows that 	f �n
K���� �� is not possible� since m�i��m� ��� �i for i � �� � and ���f� � " �

fm��� � fm�����g� 
 � for all m �N�

Concatenation of Theorem ��	 and Remark ��� gives immediately a Prohorov�type result for
narrow convergence of Young measures�

Theorem ��
 �i� Let ��n� be a ���tight sequence in R�"�S�� Then there exist a subsequence ��n��

of ��n� and �� � R�"�S� such that �n�
�

�� ���

�ii� Moreover� if ��n� is � �tight� then in fact �n�
�

�� �� can be achieved in �i��

Example ��� We continue with Example ����b�� By ��E�E���tightness of �	fn � we get from The�

orem ��� that there exist a subsequence �fn� � of �fn� and �� � R�"�E� such that 	fn�
�

�� ���
�a� We now introduce a function f� � L�

E that is �barycentrically� associated to ��� simply
by inspecting the consequences of the tightness inequality s �� supn IhR �	fn� � �	 that was
established there� For hR is a fortiori a ��E�E���lower semicontinuous integrand� so Theorem �����e�
gives IhR ���� 
 s � �	� which implies

R
S hR��� x�������dx� � �	 for a�e� �� So by the de�nition of

hR it follows that both ������R���� � � and
R
E
kxk������dx� � �	 for a�e� �� By Theorem A����i�

it follows that the barycenter f���� �� bar ����� of the probability measure ����� is de�ned for a�e�
�� Thus� if we set f� �� � on the exceptional null set� we obtain a function f� � L��"�E�� Finally
we notice that� as announced� f� is ��integrable� i�e�� f� � L��"�E�� This follows simply from
IhR ���� � �	 by use of Jensen�s inequality and the inequality hR��� x� � kxk�

�b� Suppose that in part �a� one has in addition that �kfn�k� is uniformly integrable in L��"�R��

Then fn�
w� f� � L��"�E� �weak convergence in L��"�E��� This follows directly from another

application of Theorem �����e�� namely� to all integrands g of the type g��� x� � � � x� b��� 
�
b � L��"� E��
E�� The latter symbol denotes the set of all scalarly measurable bounded E��valued
functions on "� it forms the prequotient dual of L��"�E�� This yields limn� Ig�	fn� � � Ig����� with
Ig�	fn� � � Jg�fn�� �

R
�
� fn� � b 
 d� and Ig���� �

R
�
� f�� b 
 d� �cf� Theorem A����i���

Part �b� in the above example implies that fn
w� f� in Example ���� where f� is the constant function

given by f���� �� bar ����� �
R
R f�d�� �apply 
��� II�����

Proposition ��� and Theorem ��	 imply the following transfer of the earlier portmanteau Theo�
rem �� to Young measures �see 
��� Theorem �� for other equivalences of this sort��

Theorem ���� Suppose that �S� �� is Suslin� Let ��n� and �� be in R�"�S�� The following are
equivalent�

�a� �n
�

�� ���
�b� limn

R
A


R
S
c�x��n����dx����d�� �

R
A


R
S
c�x�������dx����d�� for every A � A� c � Cu�S� ���

�c� lim infn Ig��n� � Ig���� for every ��lower semicontinuous integrand g on " � S such that

lim
���

sup
n

Z �

�



Z
fg���g�

g���� x��n����dx����d�� � ��

�ii� Moreover� if ��n� is � �tight� then the above are also equivalent to the following�

�d� �n
�

�� ���
�e� lim infn Ig��n� � Ig���� for every sequentially � �lower semicontinuous integrand g on "� S

such that

lim
���

sup
n

Z �

�




Z
fg���g�

g���� x��n����dx����d�� � ��

��



Observe that �a� � �c� and �d� � �e�� which are the most powerful implications of the above
theorem� constitute a very general theorem of Fatou�Vitali type for narrow convergence of Young
measures� Results of this kind are usually obtained by means of approximation procedures for the
lower semicontinuous integrands 
��� �� 	� �	� �� ��� ��� ���� In contrast to the present result� such
procedures depend on approximation arguments requiring the measurable projection theorem and
related Suslin conditions for S�

The following important lemma establishes that ���narrow convergence implies ���tightness when
�S� �� is a Suslin space �note� this is the case in particular when �S� � � itself is a Suslin space��

Lemma ���� Suppose that �S� �� is Suslin� Let ��n� and �� be in R�"�S� with �n
�

�� ��� Then
��n� is ���tight�

Proof� Set �n �� 
� � �n��" � �����"�� then �n � PRadon�S� ��� for every n � N � f�g�
since PRadon�S� ��� � P�S� by 
��� III����� By Remark �� it follows that �n

�� ��� Therefore�
Theorem ��� implies that ��n� is ���tight in P�S�� By De�nition �	�a�� this means that there
exists a ���inf�compact function h� � S � 
���	� such that supn

R
S
h�d�n � �	� Now by de�nition

of �n we have
R
S
h�d�n � Ih��n����"� for every n� where h��� x� �� h��x�� Thus supn Ih��n� � �	�

which demonstrates that ��n� is ���tight� QED

Proof of Theorem ���� We start with the proof of part �i��
�a� � �b�� The equivalence follows immediately from the equivalence of �a� and �b� in Theo�

rem �� and Remark ���
�c� � �b�� Obvious� for �b� follows by applying �c� to both g��� x� �� �A���c�x� and g���� x� ��

��A���c�x�� with A � A and c � Cu�S� ���
�a� � �c�� For g as stated� let � �� lim infn Ig��n�� Then � � limn� Ig��n�� for a suitable

subsequence ��n�� of ��n�� By Lemma ���� we have that ��n�� whence ��n��� is ���tight� so by Theo�

rem ��	�i� there exists a subsequence ��n�� � of ��n�� such that �n��
K��� �� for some �� in R�"�S�� But

in combination with �a� this implies ����� � ����� a�e� �apply Remark ��� and Proposition ����� so

in fact �n��
K��� ��� The desired Fatou�Vitali inequality � � Ig���� then follows from Proposition ����

Next� we prove part �ii� of the theorem�
�e�� �d�� �c�� �b�� �a�� These all hold a fortiori �see also the proof of �i���
�a�� �e�� The proof is virtually the same as the proof of �a�� �c� that was given above� This

time� tightness is forced ab initio� let h correspond to the condition of � �tightness as in De�nition ����
In the remainder of the proof of �a� � �c� we now substitute g� �� g � 	h� which is certainly a ���
lower semicontinuous integrand �see the proof of Proposition ����� Letting 	 go to zero then gives
�e�� QED

Remark ���� Note that in the above proof the Suslin space hypothesis for S �in the shape of Lem�
mma ����� was only used one time� namely for the proof of the implication �a�� �c��

From Remark ��� we already know that K�convergence implies narrow convergence of Young
measures� The above proof of Theorem ���� enables us now to characterize narrow convergence
completely in terms of K�convergence�

Theorem ���� �i� Suppose that �S� �� is Suslin� Let ��n� and �� be in R�"�S�� The following are
are equivalent�

�a� �n
�

�� ���

�b� Every subsequence ��n�� of ��n� contains a further subsequence ��n��� such that �n��
K��� ���

�ii� Moreover� if ��n� is � �tight� then the above are also equivalent to the following�

�c� �n
�

�� ���

�d� Every subsequence ��n�� of ��n� contains a further subsequence ��n��� such that �n��
K���� ���

��



In parts �b� and �d� the use of subsequences cannot be replaced by the use of the entire sequence
��n� itself� because of Example ��	� Observe also that in part �ii� the Suslin space hypothesis is
actually not needed by Remark ����

Theorem ���� �i� Suppose that �S� �� is Suslin� Let ��n� and �� be in R�"�S�� The following are
are equivalent�

�a� �n
�

�� ���

�b� �n � 	n
��

�� �� � 	��
�ii� Moreover� if ��n� is � �tight� then the above are also equivalent to the following�

�c� �n
�

�� ���

�d� �n � 	n
��

�� �� � 	��

This result� which is the Young measure analogue of Corollary ���� follows simply from Propo�
sition ���� by Theorem ����� Observe once more that in part �ii� the Suslin space hypothesis is
actually not needed by Remark ���� The transfer of the support Theorem ��	 to Young measures
is now immediate because of the intermediate support Theorem ���� and Theorem �����

Theorem ���� �i� Suppose that �S� �� is Suslin� Let ��n� and �� be in R�"�S� with �n
�

�� ���
Then

���supp ����� � ���Lsn���supp �n��� for a�e� � in "�

�ii� Let ��n�� �� be in R�"�S�� with �n
�

�� �� and ��n� � �tight� Then

������� �seq�cl � �Lsn� �supp �n���� � � for a�e� � in "�

As before� in part �ii� the Suslin space hypothesis is actually not needed �Remark �����
Next� we examine narrow convergence when it is restricted to the set RDirac�"�S�� Recall �rst

that a sequence �fn� in L��"�S� is de�ned to converge in measure to f� � L��"�S� �we denote this

as fn
	� f�� if for every 	 
 �

lim
n
��f� � " � ��fn���� f����� 
 	g� � ��

Recall also that for any f � L��"�S� the image measure �f of � under f is de�ned by �f �B� ��
��f���B��� B � B�S�� by 	f ����B� � �B�f���� this implies 
�� 	f ��"� �� � �f ����
Proposition ���� Suppose that �S� �� is Suslin� Let �fn� and f� be in L��"�S�� Then the following
are equivalent�

�a� 	fn
�

�� 	f� in RDirac�"�S��

�b� fn
	� f� in L��"�S��

Proof� �a�� �b�� Let 	 
 � be arbitrary� De�ne a lower semicontinuous integrand on " � S by

g��� x� ��

� �� if ��x� f����� � 	�
� otherwise�

By Lemma ���� and Theorem �����i� we have lim infn Jg�fn� � Jg�f�� � �� i�e�� lim supn ��f� � " �
��fn���� f����� � 	g� � ��

�b� � �a�� Let A � A� c � Cb�S� �� be arbitrary� It is enough to prove that � �
R
A c�f��d� for

� �� lim infn
R
A c�fn�d� �for the same argument applies to �c�� Clearly� there exists a subsequence

�fn�� such that � � limn�
R
A
c�fn��d�� By �b�� ���fn� � f��� certainly converges in measure to zero in

L��"�R�� So by 
�� Theorem ����� �fn� � has a subsequence �fn�� � that ��converges a�e� to f�� The
desired identity for � thus follows from the dominated convergence theorem� QED

Next� Theorem �� is transferred to tensor products of Young measures� Let �"��A�� ��� be
another �nite measure space and let �S�� � �� be another topological space for which the obvious
analogues of Hypotheses ��� �� hold� we denote the associated metric on S� by �� �observe that the

�	



topological space S � S� then also meets the analogue of Hypotheses ��� ���� The tensor product
� � �� of � � R�"�S� and �� � R�"��S�� is de�ned by

�� � ������ ��� �� ����� �������

i�e�� �� � ������ ��� is the product of the two probability measures ���� and ������� It is clear that
� � ��� thus de�ned� is a transition probability from �" �"��A�A�� into S � S�� hence� it belongs
to R�" � "��S � S��� We now present a continuity result for the tensor product with respect to
narrow convergence� There is also a fully topological analogue� see 
��� where these results were �rst
introduced �see also 
�	� Ch� IX���

Theorem ���	 �i� Let �n
�

�� �� in R�"�S� and let ��n
��

�� ��� in R�"��S��� Then

�n � ��n
����

�� �� � ��� in R�"� "��S � S���

�ii� Moreover� if ��n� is � �tight and ���n� is �
��tight� then

�n � ��n
��� �
�� �� � ��� in R�" �"��S � S���

Lemma ���
 For every �A � A � A� and every 	 there exist �nitely many disjoint measurable
rectangles Ai�A�i in A�A�� i � �� � � � �m� such that the symmetric di
erence of �A and �mi��Ai�A�i
has �� ���measure at most 	�

Proof� The algebra consisting of �nite disjoint unions of measurable rectangles generates A �A��
hence� the result follows by 
�� �������� QED

Proof of Theorem ���
� �i� Let �A � A�A� and c � Cb�S � S�� �� ���� and set g��� ��� x� x�� ��
� �A��� �

��c�x� x��� Since uniform limits of �nite sums of continuous functions are continuous� the

result obtained in Lemma ���� enables us to just consider the case �A � A�A�� with A � A and A� �
A�� We may also suppose ��A� 
 �� ���A�� 
 �� Then Ig��n � ��n� � ��A����A��

R
S�S�

cd��n � ��n��

where �n �� 
� � �n��A � �����A� and ��n �� 
� � ��n��A
� � ������A�� satisfy �n

�� �� and ��n
��� ����

in view of Remark ��� By Theorem ���i� this gives Ig��n � ��n� � Ig��� � ����� This �nishes the
proof of part �i�� Part �ii� directly follows by Theorem ����ii�� since ��n � ��n� is evidently tight for
� � � �� Alternatively� it can be obtained as above by using Theorem ���ii� this time� QED

As shown by the following counterexample� Theorem ���	 need not hold when the measure on
�"� "��A� A�� is not a product measure� even when � and �� are its marginals�

Example ���� Take for �"�A� and �"��A�� the space �
�� ���B�
�� ����� Let �fn� be the sequence
of Rademacher functions on " and let �f �n� be the sequence of Rademacher functions on "� �see
Example ���� Equip �" �� 
�� ��	 with �A �� B�
�� ��	� and ��� de�ned to be the uniform measure
concentrated on the diagonal of 
�� ��	� Equip �"�A� and �"��A�� each with the Lebesgue measure�

Then by Example ��� we have 	fn
�

�� �� in R�"�R� and 	f �n
�

�� �� in R�"��R�� but �	fn � 	f �n�

does not narrowly converge to �� � �� in R��"�R	�� To see the latter� apply De�nition ��� with
A �� �" and c�x� x�� �� xx�� then in De�nition ��� the limit on the left equals �� but the expression
on the right is equal to ��

� Lower closure

Let �"�A� �� be as in section � and let �S� � � be a completely regular Suslin space �cf� Remark ���ii���
In this section we combine the main results from section � in the form of so�called lower closure
results� As an abstract starting point for lower closure we have the following immediate consequence
of Theorems ���� ���� and �����

��



Theorem ��� Let ��n� be a � �tight sequence in R�"�S�� Then there exist a subsequence ��n�� of
��n� and �� � R�"�S� such that

�n� � 	n
��

�� �� � 	��

Besides� �� has the following pointwise support property�

������� �seq�cl � �Lsn� �supp �n���� � � for a�e� � in "�

Somewhat more concretely Theorem ��� can be stated as follows� Let �D� dD� be an arbitrary metric
space�

Theorem ��� Let ��n� in R�"�S� be � �tight and let dn
	� d� in L��"�D� �convergence in measure��

Then there exist a subsequence ��n� � of ��n� and �� in R�"�S� such that

lim inf
n�

Z �

�



Z
S

���� x� dn������n� ����dx����d�� �
Z �

�



Z
S

���� x� d�����������dx����d��

for every sequentially � � �dD �sequentially lower semicontinuous integrand � on " � �S � D� such
that

s���� �� sup
n

Z �

�




Z
f
���g��n

����� x� dn�����n����dx����d��� � for ��	� �����

Besides� �� has the following pointwise support property�

������� �seq�cl � �Lsn� �supp �n���� � � for a�e� � in "�

Here f� 
 ��g��n stands for the set of all x � S for which ���� x� dn���� 
 ���
Proof� Theorem ��� and well�known facts about convergence in measure �
�� Theorem ������
imply the existence of a subsequence ��n� � dn�� of ��n� dn� and existence of a �� � R�T �S� such that

�n�
�

�� �� and dD�dn����� d������ � for a�e� �� By Theorem ���� this implies the stated pointwise

support property for ��� By Theorem ���� this gives ��n�
��

�� ��� in R�"� �S�� with �S �� S �  N�
��n �� �n � 	n and ��� �� �� � 	�� Rather than to renumber� we suppose without loss of generality
that �n�� enumerates all the numbers in N� Let � be as stated� We de�ne g
 � "� �S � ��	��	�
by

g
��� �x� ��

�
���� x� dk���� if k �	
���� x� d����� if k �	

Then g
 is a �� �lower semicontinuous integrand� modulo an insigni�cant null set �note that for k �	
lower semicontinuity of g
��� �� at �x�	� follows from dn����� d���� and the lower semicontinuity
of ���� �� �� at �x� d������� Since ����� coincides with ����� for g � g
� we may apply Theorem ���� to
g
� This gives lim infn� Ig� ���n� � � Ig� ������ Since the following identities hold elementarily for each
n� and �� Z

�S
g
��� �x���n� ����d�x� �

Z
S

���� x� dn������n� ����dx��

Z
�S
g
��� �x��������d�x� �

Z
S

���� x� d�����������dx��

the main inequality of the theorem has also been proven� QED

Remark ��� Let h be the nonnegative� sequentially � �inf�compact integrand h on "� S that corre�
sponds as in De�nition ��� to the � �tight sequence ��n� in Theorem ���	 i�e�� with s �� supn Ih��n� �
�	� Then the uniform integrability condition ����� applies whenever the integrand � has the follow�
ing growth property with respect to h� for every 	 
 � there exists �� � L��"�R� such that for every
n � N

����� x� dn���� 
 	h��� x� � ����� on "� �S�
Indeed� we can observe that the set f� 
 ��g��n in ����� is contained in the union of f�� � 	hg and
f�� � ��g� which gives s���� 
 �	s �

R
f�����	g

�� d�� whence s����� � for ��	� as claimed�

��



Let us show that the so�called fundamental theorem for Young measures in 
��� follows from
Theorem ��� To this end� let L be a locally compact space that is countable at in�nity� its usual
Alexandrov compacti�cation is denoted by  L �� L � f	g� Although it could be avoided by the
additional introduction of transition subprobabilities �see the comments below�� the Alexandrov
compacti�cation  L of L �gures explicitly in the result� The space  L is metrizable� and its metric is
denoted by  d� On L we use the natural restriction of  d� and denote it by d� Let C��L� be the usual
space of continuous functions on L that converge to zero at in�nity� Also� below � denotes a ���nite
measure on �"�A��

Corollary ��� �i� Let �fn� in L��"�L� and the closed set C � L be such that limn ��f
��
n �LnG�� � �

for every open G� C � G � L� Then there exist a subsequence �fn�� of �fn� and �� in R�"�  L� such
that

lim
n

Z
�

����c�fn�������d�� �

Z
�




Z
L

����c�x�������dx����d��

for every � � L��"�R� and every c � C��L�� Besides� we have ������LnC� � � for a�e� � in "�
�ii� Moreover� if for that subsequence �fn�� there exists a sequence �Kr� of compact sets in L such
that limr�� supn� ��f� � " � fn���� �� Krg � � then ������f	g� � � for a�e� � in " and

lim
n

Z
A

����c�fn�������d�� �

Z
A




Z
L

����c�x�������dx����d��

for every A � A� � � L��A�R� and c � C�L� for which ��Ac�fn��� is relatively weakly compact in
L��A�R��

In 
��� both L and " are Euclidean� and the Kr�s are closed balls around the origin with radius r� As
was done in 
���� the result could be equivalently restated in terms of the transition subprobability
��� from �"�A� into �L�B�L��� de�ned by obvious restriction to L� i�e�� �������B� �� ������B �f	g��
B � B�L�� In this connection the tightness condition in part �ii� guarantees that �� is an authentic
transition probability �Young measure�� Rather than via �i�� part �ii� can also be derived directly
from Theorem ��	 or ���

Proof� �i� By ���niteness of �� there exists a �nite measure � that is equivalent to �� Let �� be
a version of the Radon�Nikodym density d��d�� Now ��n�� de�ned by �n �� 	fn � R�"� �  L�� is

trivially tight by compactness of  L �set h � ��� By Theorem ��� or �� there exist a subsequence

�fn�� of �fn� and �� � R�"�  L� for which 	fn�
�

�� ��� Every c � C��L� has a canonical extension

 c � Cb� L� by setting  c�	� � �� Now ��� is ��integrable for any � � L��"�A� ��R�� and Theorem ����
�or ��� can be applied to g � "�  L� R given by g��� x� �� ���������� c�x�� This gives the desired
equality� because of the identity

R
� �

��
R
L
 c�x�������dx�d� �

R
� �
R
L
c�x�������dx�d��

Next� let C be as stated� For any i �N the set Fi� consisting of all x � L with d�dist�x�C� 
 i���
is closed in L� Note already that iFi � C� by the given �d�closedness of C in L� Further�  Fi �� Fi�
f	g is closed in  L� Set  gi��� x� �� �������Ln �Fi�x�� This de�nes a nonnegative lower semicontinuous

integrand  gi on "�  L� Hence� I�gi ���� 
 �i �� lim infn� I�gi �	fn� � by Theorem �����c�� By  Ln  Fi � LnFi
the de�nitions of  gi and 	fn� give I�gi �	fn� � � ��f��n� �LnFi��� So �i � lim infn� ��f

��
n� �LnFi�� 


��f��n� �LnGi��� where Gi� Gi � Fi� is the �d�open set of all x � L with d�dist�x�C� � i��� Since
Gi � C� the hypotheses imply � � �i � I�gi ���� �

R
�
������LnFi�d�� Hence ������LnC� � � ��a�e�

because of iFi � C� which was demonstrated above�
�ii� The additional condition is then a tightness condition for �	fn�� when viewed as a subset of

R�"�L� �take #� � Kr for large enough r in De�nition ����b��� Hence� there is a ���inf�compact

integrand h on " � L with s �� supn Ih��n� � �	� De�ne the inf�compact integrand  h on " �  L

by  h��� x� �� h��� x� if x � L and  h���	� �� �	� Since  h is in particular a lower semicontinuous
integrand on " �  L� we have I�h���� 
 lim infn� I�h�	fn� � by Theorem ����� Trivially� I�h�	fn� � �
Ih�	fn� �� so we get I�h���� 
 s � �	� The latter shows that ������f	g� � � for ��a�e� � in "�
whence for ��a�e� �� So �� can also be viewed as an element of R�"�L�� for which we then get

	fn�
d

�� �� in R�"�L� by the above� To conclude� observe that for any A � A with ��A� � �	

�



Theorem ���� applies to g��� x� �� ��A������������c�x�� which is a continuous integrand on "�L
that is ��integrably bounded� In view of part �i�� this gives the desired limit statement if A has
�nite measure� If ��A� � �	 and A is as stated� there exists� by ��s ���niteness� a sequence �Aj� of
subsets of A with �nite ��measure� with Aj � A� The previous result applies to each of the Aj and
the weak relative compactness hypothesis implies uniform ��additivity� i�e�� supn

R
AnAj

jc�fn�jd� � �

�	�� So also in this case the desired limit statement follows� QED

If in the above lower closure Theorem �� additional conditions are imposed upon the Young
measures ��n�� then extra �barycentric� information about �� may become available in terms of its
marginals� In this way� Theorem �� will be turned into a very general lower closure result �with
convexity�� Let E and F be separable Banach spaces� each of which is equipped with a locally
convex Hausdor� topology� respectively denoted by �E and �F � that is not weaker than the weak
topology and not stronger than the norm topology� As usual� L��"�E� denotes the space of all
Bochner integrable E�valued functions �here this is precisely the space of all e � L��"�E� such
that ke���kE is ��integrable�� Let �D� dD� be a metric space� Functions that are �barycentrically�
associated to Young measures can play a special role in lower closure and existence results� This is
demonstrated by our proof of the following result�

Theorem ��� Let dn
	� d� in L��"�D� �convergence in measure�� en

w� e� in L��"�E� �weak
convergence�� and let �fn� in L��"�F � satisfy supn

R
� kfnkF d� � �	� Suppose that there exist �E �

and �F �ball�compact multifunctions RE � "� E and RF � "� F �cf� Example ���� such that

f�en���� fn���� � n �Ng � RE���� RF ��� ��a�e�

Then there exist a subsequence �dn� � en� � fn�� of �dn� en� fn� and f� � L��"�F � such that

lim inf
n�

Z �

�

���� en����� fn����� dn�������d�� �
Z �

�

���� e����� f����� d�������d��

for every sequentially �E � �F � �D�lower semicontinuous integrand � on "� �E �F �D� such that
the following hold�

������ en���� fn���� dn����� is uniformly �outer� integrable

�see Remark ����ii�� and

���� �� �� d����� is convex on E � F for a�e� ��

Besides� the functions e� and f� can be localized as follows� 	

�e����� f����� � cl co�w�Lsnf�en���� fn����g for a�e� � in "�

Observe� as was already done following Example ���� that the ball�compactness condition involving
RE and RF is automatically satis�ed in case the Banach spaces E and F are re$exive�

Proof� To apply Theorem �� we set S �� E � F � � �� �E � �F and �n �� 	�en�fn�� Observe
that S is a separable Banach space for the product norm k � kS� so �S� � � is a Suslin space� and
by the Hahn�Banach theorem �S� � � is completely regular� Next� we note that �kenk� in L��"�R�
is uniformly integrable� this follows from the weak convergence hypothesis �apply 
�	� Theorem ��
and 
��� Proposition II������ In particular� this implies supn

R
� k�en� fn�kSd� � �	� By � �ball�

compactness of R �� RE �RF this proves that ��n� is � �tight� in view of Example ���� We can now
apply Theorem ��� Let the subsequence ��n� � dn�� of ��n� dn� and �� in R�"�S� be as guaranteed

by that theorem� i�e�� with �n�
�

�� ��� Then it is elementary to establish from De�nition ��� that�
�E�marginally�� 	en�

�
�� �E� and� �F �marginally�� 	fn�

�
�� �F� � Here �E� ��� �� ������E � �� and

�F� ��� �� ������� � F �� So E�marginally we then have the situation of Example ����b�� which gives
that bar �E� � e� a�e� Also� F �marginally we have the more primitive situation of Example ����a��

�In case E and F are �nite�dimensional one may replace here �cl co� by �co��

�



which gives existence of f� � L��"�F � such that f� � bar �F� a�e� �note that �E� and �F �ball�
compactness imply ��E�E��� and ��F� F ���ball�compactness respectively�� Recombining the above
two marginal cases� we �nd bar �� � �e�� f�� a�e� �note that barycenters decompose marginally��

We now �nish the proof� For an integrand � of the stated variety Theorem �� gives

lim inf
n�

Z �

�

���� en����� fn����� dn�������d�� �
Z �

�




Z
E�F

���� x� y� d�����������d�x� y�����d��

�see also Remark ����ii��� In the inner integral above� the convexity of ���� �� �� d����� givesZ
E�F

���� x� y� d���������� � g��� bar ������ d����� � g��� e����� f����� d�����

for a�e� �� by Jensen�s inequality and our previous identity bar �� � �e�� f�� a�e� The desired
inequality thus follows� QED

The above lower closure result �with convexity� is quite general� it further extends the results
in 
�� ���� which in turn already generalize several lower closure results in the literature� including
those for orientor �elds �cf� 
���� See 
� for another development� not covered by the above
result� Results of this kind are very useful in the existence theory for optimal control and optimal
growth theory� Corollaries of Theorem ��� are so�called weak�strong lower semicontinuity results
for integral functionals in the calculus of variations and optimal growth theory� cf� 
��� �� ����
Recently� similar�spirited versions that employ quasi�convexity in the sense of Morrey have been
derived from Theorem �� in 
	� ��� �these have for en the gradient function of dn and depend on
a characterization of so�called gradient Young measures 
����� Another result that is generalized by
the above theorem is as follows�

Corollary ��� Let fn
w� f� in L��"�Rd� �weak convergence�� Then

f���� � co�Lsnffn���g for a�e� � in "�

This result is due to Z� Artstein 
�� Proposition C�� It is obtained from Theorem ��� by setting
E �� Rd and activating the footnote in its statement� We turn brie$y to an extension of the
Dunford�Pettis theorem �su�ciency part�� this comes from 
�� �� and generalizes 
��� and 
���
Lemma ����� Again E denotes a separable Banach space�

Theorem ��	 Let �fn� in L��"�E� be uniformly integrable and such that for every 	 
 � there is a
multifunction #� � "� E� having norm�compact values with ���f� � " � fn��� �� #����g� 
 	 for
all n� Then there exist a subsequence �fn� � of �fn� and f� � L��"�E� such that limn� k

R
A
fn�d��R

A f�d�k � � for every A � A�
Above �� stands for outer ��measure� Obviously� when E is �nite�dimensional� the tightness con�
dition in the above result holds automatically and we get the Dunford�Pettis theorem �su�ciency
part��

Proof� We set S �� E and � �� norm�topology� By De�nition ����b�� the sequence �	fn � is � �
tight� Also� by uniform integrability� �fn� is of course bounded in L��seminorm� Theorem ��	 gives

existence of a subsequence �fn�� and �� � R�"�E� such that 	fn�
�

�� ��� Because of ��E�E�� � � �

Example ����b� implies fn�
w� f� �� bar ��� But more can be said� Let A � A be arbitrary and set

� �� � lim supn� k
R
A�fn� � f��kd�� Without loss of generality we may suppose �k RA�fn� � f��d�k

� � 
 �� By the Hahn�Banach theorem� there exists a sequence �x�n�� in the unit sphere of the dual
space E� such that

�k
Z
A

�fn� � f��d�k ��
Z
A

�fn� � f��d�� x
�
n� 
�

Z
A

� fn� � f�� x
�
n� 
 d�

for every n�� By the Alaoglu�Bourbaki theorem it then follows that a subsequence of �x�n�� converges
in the weak star topology to some x�� in the closed unit ball of E� �note that this ball is metrizable��





we may suppose without loss of generality that the entire sequence �x�n�� converges to x��� Since

� is the norm�topology� a semicontinuous integrand � on " � �  N � S� is de�ned by ���� n�� x� ��
�A��� � x � f����� x

�
n� 
� Then Theorem �� gives � � R

A
� f� � f�� x

�
� 
 d� � �� and we get

� � �� QED

More obvious corollaries of Theorem ��� �namely� where the space F is completely absent� are so�
called weak�strong lower semicontinuity results for integral functionals in the calculus of variations
and optimal growth theory 
��� �� ����

The following example is intended to indicate the usefulness of Theorem ��� for the study of
existence in optimal growth� Notwithstanding its modesty� it already covers quite some models used
in optimal growth theory �this point is elaborated in 
����� More general and more complex existence
results� with in�nite horizon and a recursive discount term in the objective integrand can be found
in 
� ���� Such applications require a slight extension of Theorem ��� to the situation where F is

���	� �i�e�� a non�vector space��

Example ��
 Consider the following optimal growth problem�

�P � � minimize J�y� ��

Z �

�����
g��t� y�t�� 'y�t��dt

over all y � Y� where Y is the set of all absolutely continuous functions y � AC�
�� ���Rn� that
satisfy both the di�erential inclusion

'y�t� � U �t� y�t�� a�e� in 
�� ��

and the boundary condition y�t� � A�t� for all t � 
�� ��� Here 
�� �� is equipped with the usual
Lebesgue structure and A�t� � Rn is compact for t � � and closed for all other t� Also� U �


�� ���Rn � R
n

is a multifunction whose values are compact and convex� and for every t � 
�� ��
the multifunctionU �t� �� is upper semicontinuous� We suppose that there exists � � L��
�� ���R� such
that every y in Y satis�es j 'y�t�j 
 ��t� a�e� Further� g� � 
�� ���Rn�Rn � R
 is such that g��t� �� ��
is lower semicontinuous for every t � 
�� �� and g��t� d� �� is convex for every �t� d� � 
�� ���Rn� Then
an optimal solution for �P � exists� provided Y �� ��

To let this existence result follow from the above� we take a minimizing sequence �yk� in Y� By
the condition involving �� the collection � 'yk� is uniformly integrable� so by compactness of A���
we have that �yk� is equi�continuous and bounded� Hence� by applying in succession the Arzela�
Ascoli theorem and the Dunford�Pettis theorem� we get existence of a subsequence �yn� of �yk�
and functions y� in C�
�� ���Rn� and e� in L��
�� ���Rn� such that yn � y� uniformly on 
�� �� and

'yn
w� e� weakly in L��
�� ���Rn�� This immediately implies y��t� � A�t� for every t� and also� by

yn�t� � yn��� �
R t
�
'yn for every n� we get y��t� � y���� �

R t
�
e�� Hence� 'y� � e� a�e�

We now apply Theorem ��� with the following substitutions� D �� E �� Rn� dn �� yn� d� �� y�
and en �� 'yn� e� �� 'y�� Also� for g we take�

g�t� x� d� ��

�
g��t� d� x� if x � U �t� d��
�	 otherwise�

Let us verify that � �� lim infj g�t� xj� dj� � g�t� !x� !d� whenever �xj � dj�� �!x� !d� in R	n� If � � �	�
there is nothing to verify� Otherwise� we may suppose without loss of generality that g�t� xj� dj�� �
and that g�t� xj� dj� � �	 for all j� This gives xj � U �t� dj� and g�t� xj� dj� � g��t� dj� xj�� whence in
the limit !x � U �t� !d� �by upper semicontinuity of U �t� ��� and g��t� !d� !x� 
 � �by lower semicontinuity
of g��t� �� ���� We therefore conclude g�t� !x� !d� 
 �� as was desired� It is evident that g�t� �� d��t�� is
convex for every t� so all the conditions of Theorem ��� are met� Since d� � 'y� a�e� and g � g� we
get

lim inf
n

Z �

�����

g�t� 'yn�t�� yn�t��dt �
Z �

�����

g��t� y��t�� 'y��t��dt � J�y���

But recall that �yn� is a subsequence of a minimimizing sequence of �P �� this implies inf�P � �
limn J�yn�� Also� �yn� is in Y� which implies g�t� 'yn�t�� yn�t�� � g��t� yn�t�� 'yn�t�� for a�e� t for

�



every n � N� Combination of the preceding gives inf�P � � J�y��� Now either inf�P � � �	 or
inf�P � � �	� The �rst possibility means that J � �	 on Y� in which case every y � Y is an
optimal solution of �P �� The second possibility implies� by the inequality inf�P � � J�y��� that for a�e�
t we have g�t� 'y��t�� y��t�� � �	� i�e�� 'y��t� � U �t� y��t�� �and g�t� 'y��t�� y��t�� � g��t� y��t�� 'y��t����
This proves that y� belongs to Y� so the conclusion is that y� is an optimal solution of �P ��

The following lower closure result �without convexity� comes from 
�� ���� it is a �Fatou�Vitali
lemma in several dimensions� that subsumes the result given in 
�� and the original �Fatou lemma
in several dimensions� due to Schmeidler 
�	�� This kind of Fatou lemma has played a role as a
technical tool to obtain equilibrium existence results� e�g�� cf� 
��� See 
�	� for further generalizations
of the result� involving multifunctions with unbounded values and associated asymptotic correction
terms�

Theorem ��� Let �fn� in L��"�Rd� be such that

a �� lim
n

Z
�

fnd� exists �in Rd�

and
�max����f in��n is uniformly integrable for i � �� � � � � d�

Then there exists f� � L��"�Rd� such that
R
� f�d� 
 a �i�e�� componentwise� and

f���� � Lsnffn���g for a�e� � in "�

Observe how� in contrast to Corollary ���� the convex hull operator has disappeared from the last
statement of the theorem� We prepare the proof as follows� First� state Lyapunov�s theorem in
the following convenient form for Young measure theory� where �S� � � is a completely regular Suslin
space�

Theorem ���� Suppose that �"�A� �� is nonatomic� Let g �� �g�� � � � gd� � "�S � Rd be A�B�S��
measurable and let � � R�"�S� be such that

Z
�




Z
S

jg��� x�j�����dx����d�� � �	�

Then there exists f � L��"�S� such that

Jgi�f� � Igi���� i � �� � � � � d� and f��� � supp ���� for a�e� � in "�

In terminology of decision theory� the above result is a puri�cation result� It immediately also implies
a general denseness property of RDirac�"�S� in R�"�S� with respect to the � �narrow topology� cf�

�	� and 
�� ��� For S �� Rd and gi��� x� �� xi �i�th coordinate function� Theorem ���� yields the
following corollary�

Corollary ���� Suppose that �"�A� �� is nonatomic� Let � � R�"�Rd� be such that
Z
�




Z
Rd

jxj�����dx����d�� � �	�

Then there exists f � L��"�Rd� such that
Z
�

fd� �

Z
�

bar �d� and f��� � supp ���� for a�e� � in "�

Proof of Theorem 	��� Denote #��� �� supp ����� By Proposition ��� and Theorem A����iii�
we have

p��� ��

Z
S

�jg��� x�j� g��� x�������dx� � co f�jg��� x�j� g��� x�� � x � #���g for a�e� � in "�

�



The closed�valued multifunction # � "� S is measurable in the standard sense 
��� III��� III������
because for any open U � S the set of all � with #���U �� � is precisely f� � " � �����U � �� �g �
A� So by Carath�eodory�s theorem and an obvious application of the implicit measurable selection
theorem 
��� Theorem III���� there exist A�measurable functions ��� � � � � �d
	 � " � 
�� ��� withPd
	

i�� �i��� � � for all �� and A�measurable selections s�� � � � � sd
	 � "� S of # such that

p��� �
d
	X
i��

�i����jg��� si����j� g��� si����� for a�e� � in "�

Integration over � in the �rst component of this identity gives
R
�

P
i �ijg��� si����j � �	� Hence�

by the extended Lyapunov Theorem A�� there exists a measurable partition B�� � � � � Bd
	 of " such
that each g��� si���� is integrable over Bi andZ

�

X
i

�i�jg��� si����j� g��� si����� �
X
i

Z
Bi

�jg��� si����j� g��� si������

We de�ne f � L��"�S� by setting f �� si on Bi� i � �� � � � � d � � Then� f is evidently an a�e�
selection of # and if we integrate over � in the last d coordinates of the above identity for p��� we
obtain Z

�

X
i

�ig��� si���� �
X
i

Z
Bi

g��� si���� �
Z
�

g��� f�����

This is the desired identity� for its right hand side equals �Jg� �f�� � � � � Jgd�f�� and by the de�nition
of p��� the left hand side is equal to �Ig� ���� � � � � Igd����� QED

Proof of Theorem 	��� By Proposition A��� �"�A� �� can be decomposed in a nonatomic part
"na and a purely atomic part that is the union of at most countably many ��atoms Aj� It is easy
to see from the conditions that the sequence �fn� is bounded in L��seminorm� Since every function
fn is a�e� equal to some constant cjn � Rd on the atom Aj � it follows from this L��boundedness that
�cjn� is relatively compact for every �xed j� Hence� an obvious diagonal extraction argument gives
that there exist a subsequence �fm� of �fn� and a function f� � �jAj � Rd� constant on each atom
Aj � such that fm��� � f���� for a�e� � � �jAj � We can now apply Theorem �� to the sequence
��m� in R�"�Rd�� with �m �� 	fm �here S �� Rd�� Notice that the central tightness condition of
that theorem holds� because obviously supm

R
� jfmjd� � �	 �cf� Example ����� By Theorem ��

there exist a subsequence ��m� � and �� � R�"�Rd� for which the statements of the theorem hold�
In particular� the pointwise support property for �� gives

supp ����� � Lsmffm���g for a�e� � in "na

and
supp ����� � ff����g for a�e� � in �jAj �

Now we apply the Fatou�Vitali inequality of Theorem �� to the continuous integrands �i � ��� n� x� ��
xi� i � �� � � � � d �observe that �i���m� fm���� � �m��� �� �max����f im� for each i� with ��m�
uniformly integrable�� This gives

ai �
Z
�



Z
Rd

xi������dx����d�� �

Z
�
�bar ���

id�

�note that
R
� f

i
m�����d�� equals

R �
�


R
Rd x

i	fm����dx����d���� Additionally� applying the same sort
of inequality to � � ��� n� x� �� ��na���jxj givesZ

�na



Z
Rd

jxj������dx����d�� � �	�

By Corollary ����� there is an integrable function f� � "na � Rd such that f���� � supp ����� a�e�
and Z

�na
f�d� �

Z
�na

bar ��d��

�



Concatenating f� with the function f� de�ned earlier on �jAj � we obtain the desired f� � L��"�Rd�
�recall that ai � R��bar ���id� for each i�� QED

We �nish this section by two applications of lower closure �without convexity�� The �rst of these
concerns an existence problem whose origins lie in mathematical economics �cf� 
����

Example ���� In 
�� the following optimization problem was considered�

�P � � maximize J�f� ��

Z
�����

U �t� f�t��dt

over all functions f � L��
�� ���Rp� with f�t� � Rp

 a�e� and

R
�����

f � b� Here b � Rp

 is �xed�

and the utility integrand U � 
�� ���Rp

 � 
�	��	� is A�B�Rp


��measurable� with U �t� �� upper
semicontinuous and �coordinatewise� nondecreasing on Rp


 for every t � 
�� ��� In this form �P � need
not have an optimal solution 
e�g�� consider p � �� U �t� x� �� x	 and b 
 ��� However� as shown in

��� �P � has an optimal solution if U has the following growth property� for every 	 
 � there exists
�� � L��
�� ���R�� �� � �� such that for every t � 
�� ��

U �t� x� 
 	jxj for all x � Rp

 with jxj � ���t��

We show that the principal existence result of 
�� follows from Theorem ���� We �rst claim� following

�� p� ��	�� that the growth poperty of 
�� implies the following growth property� for every 	 
 �
and every t � 
�� ��

U �t� x� 
 	jxj�p
p���t� for all x � Rp


�

where �� �� �� � ��� Indeed� note that U �t�  x�t�� 
 j x�t�j� where  x�t� is the vector all of whose
components equal ���t�� hence� by the given monotonicity of U �t� ��� it follows that U �t� x� 
 j x�t�j �p
p���t� whenever xi 
 ���t� for all i� � 
 i 
 p� And if xi 
 ���t� for any i� then jxj � ���t�� so

that U �t� x� 
 	jxj holds by the hypothesis� Hence� the claim has been proven� Let s �� sup�P � and
observe� by the growth property in its new form� that we have s � �	� Without loss of generality
we may suppose s � R� Let �fn� be any maximizing sequence for �P �� i�e�� �fn� is a sequence of
nonnegative functions in L��
�� ���Rp� with

R
����� fn � b and J�fn� � s �note that �P � is feasible

for elementary reasons�� To apply Theorem ��� we take for �"�A� �� the unit interval cum Lebesgue
structure� Also� we de�ne a sequence � �fn� by

�fn�t� �� ��U �t� fn�t��� fn�t���

Then without loss of generality � �fn� � L��
�� ���Rp
�� and
R
�����

�fn � ��s� b�� Also� �max���� �f in��n
is uniformly integrable for i � �� � � � � p� For i � �� � � � � p this is trivial �by fn � ��� and for i � �
it follows from the growth property� in the form above� that for every 	 
 � and every measurable
subset A of 
�� ��

Z
A

U �t� fn�t��dt 
 	

Z
A

jfnj�p
p

Z
A

�� 
 	

pX
i��

bi �
p
p

Z
A

���

This implies equi�integrability� so the sequence �� �f�n� is uniformly integrable 
��� II����� Therefore�
all the conditions of Theorem ��� hold� It follows that there exists �f� � L��
�� ���Rp
�� such thatR
�����

�f�� 
 �s� R
�����

f� 
 b �here f� �� � �f�� � � � � � �f
p
� �� and for a�e� t �f��t� � Lsn �fn�t�� i�e�� for a�e� t

there exists a subsequence �n�t� of �n�� possibly t�dependent� such that

lim
n�t

�U �t� fn�t�t�� �
�f�� �t� and lim

n�t

fn�t�t� � f��t��

By upper semicontinuity of U �t� ��� the above directly leads to �f�� �t� � �U �t� f��t��� whence s 
R
�����U �t� f��t��dt� Now de�ne f���t� �� f��t� � b � R����� f�� then R����� f�� � b and J�f��� � s� as

a consequence of f�� � f� and the monotonicity property of U � This shows that f�� is an optimal
solution of �P ��

�



The second example concerns existence of an optimal control function in a problem with no
explicit convexity properties� see 
��� for more involved applications that are also based on Theo�
rem ����

Example ���� Consider the optimal control problem�

�P � � minimize J�f� ��

Z
�����

g��t� f�t��dt � e�yf ����

over all control functions f � L��
�� ���Rp� with f�t� � F �t� a�e� Here 
�� �� is equipped with the

Lebesgue ��algebra A and the Lebesgue measure � �� ��� Also� F � 
�� �� � R
p

is a compact
and nonempty�valued multifunction with A � B�Rp��measurable graph� The latter is denoted by
M � Further� the cost rate function g� � M � 
���	� is product measurable� and g��t� �� is lower
semicontinuous on F �t� for every t � 
�� ��� The �nal time cost term e � Rm � ��	��	� is supposed
to be lower semicontinuous and bounded from below� The dynamical system corresponding to �P �
is as follows� To each control function f there corresponds the absolutely continuous functions
yf � AC�
�� ���Rm�� de�ned as the solution y of

'y�t� � A�t�y�t� � g�t� f�t�� for a�e� t in 
�� ���

with initial condition y��� � y�� where y� � Rm is �xed� Here A belongs to L��
�� ���Rm�m� and
g �M � Rm is measurable and such that g�t� �� is continuous on F �t� for every t � 
�� ��� Moreover�
we suppose that there exists � � L��
�� ���R� such that supx
F �t� jg�t� x�j 
 ��t� for every t� By the
structure of the dynamical system� the trajectory yf corresponding to a control function f can be
expressed explicitly as follows 
�	� II������

yf �t� � (�t�y� � (�t�

Z t

�

(�t����g�t�� f�t���dt��

Here ( � AC�
�� ���Rm�m� is the fundamental solution� determined by '( � A( and (��� � m�m�
identity matrix� Using Theorem ���� we prove that �P � has an optimal solution� Observe that �P �
is feasible� since F has a measurable a�e� selection� Let � �� inf�P �� We may suppose without loss
of generality � � �	� hence� � � R� Let �fn� be a minimizing sequence of control functions� i�e��
with J�fn� � �� Let �� �� lim infn e�fn�� then �� � R� Rather than concentrating on a suitable
subsequence� we may suppose without loss of generality that e�fn�� ��� Also� by integrability of ��
it follows easily that �yfn ���� is a bounded sequence in Rm� Hence� rather than taking a suitable
subsequence� we can also suppose that �yfn ���� converges to some b � Rm� Note already that

�� � e�b�� by lower semicontinuity of e� Let us de�ne �fn � L��
�� ���R	m
�� by

�fn�t� �� �g��t� fn�t���(���(�t�
��g�t� fn�t����(���(�t���g�t� fn�t����

Observe that
R
�����

�fn � ��� ��� b�(���y��(���y��b� and that �max���� �f in�� is obviously uniformly

integrable for each index i� Hence� by Theorem ��� there exists �f� in L��
�� ���R	m
�� such thatR
�����

�f�� 
 � � ���
R
�����

 f 
 b � (���y��
R
�����

)f 
 (���y� � b� and such that for a�e� t there exists a

subsequence �n�t� of �n�� possibly t�dependent� with

�f�� �t� � lim
n�t

g��t� fn�t�t���
 f�t� � lim

n�t

(���(�t���g�t� fn�t�t���
)f �t� � lim

n�t

�(���(�t���g�t� fn�t�t���

Here  f �� � �f�� � � � � � �f
m
� � and )f �� � �fm
�

� � � � � � �f	m� �� From the above limit expressions it follows that
 f � � )f a�e�� which leads to

R
�����

 f � b � (���y�� Also� in the above limits� each �n�t� has a further

subsequence �n��t � such that �fn��t � converges to some vector xt in F �t� �this is by compactness of the
set F �t��� Thus� we get for a�e� t

�f�� �t� � g��t� xt��  f�t� � � )f �t� � (���(���t�g�t� xt�

	



by �semi�continuity of g��t� �� and g�t� ��� By Theorem A�� we get the existence of f� � L��
�� ���Rp�
such that f��t� � xt for a�e� t� From the above we now conclude that f� is a control function
such that

R
�����

�f�� 
 �� �� and
R
����� (���(

���t�g�t� f��t��dt � b � (���y�� The latter simply states

yf� ��� � b and� by the previous inequality �� � e�b�� the former implies J�f�� 
 � �� inf�P �� This
concludes the argument�

A more general approach to the subject of existence without convexity can be found in 
���
There the dynamical system is also semilinear� as above� but the objective integrand g� is allowed
to depend in the state variable in a special way� involving concavity� Problems of this kind were �rst
investigated in 
	��� see also 
��� 	�� ��� ���� This approach uses a Bauer�type extremum principle

��� that is applied to a relaxation of the optimal control problem� i�e�� a reformulation in terms
of Young measures� Use of this extremum principle is based on the fact that in general the set
RD�"�S� of Dirac Young measures forms the extreme point boundary of R�"�S��

� Nash equilibria

Instead of a lower closure result for Young measures� as formed by Theorem ��� we can also give
existence results for variational inequalities in terms of Young measures� As shown in 
�� �� ����
such results can be used to obtain existence results of a more classical nature in game theory and
economics� As in the previous section� we suppose that �S� � � is a completely regular Suslin space
and refer to Remark �� in this connection�

Theorem ��� Let h be a nonnegative� sequentially � �inf�compact integrand on "�S and let Rh be
the set of all � � R�"�S� with Ih��� 
 �	 suppose that Rh is nonempty� Let g � "� S �Rh � R be
A� B�S� � B�Rh��measurable and such that g��� �� �� is lower semicontinuous on S �Rh for every
� � "� and g��� x� �� is narrowly continuous on Rh for every ��� x� � "�S� Moreover� g is supposed
to have the following growth property with respect to h� for every 	 
 � there exists �� � L��"�R�
such that

jg��� x� ��j 
 	h��� x� � ����� on "� S �Rh�

Then there exists �� � Rh such that

inf
�
Rh

Z
�




Z
S

g��� x� ��������dx����d�� �

Z
�




Z
S

g��� x� ���������dx����d���

Of course� in this result the set Rh is equipped with the �relative� narrow topology and the corre�
sponding Borel ��algebra�
Proof� There exists� by Proposition A���� a countably generated sub���algebra A� of A such that
g is also A� � B�S� �B�Rh��measurable� Hence� we may suppose without loss of generality that A
itself is countably generated 
note in particular that this also holds with respect to the nonemptiness
issue � augment by the ��algebra that is generated by any �xed � � Rh �� ��� We set C �� Rh and
de�ne  � Rh �Rh � R in the following way�

��� �� �� Ig� ���� Ig�����

where the integrand g� on " � S is de�ned by g���� x� �� g��� x� ��� By Theorem �� we have that
Rh is compact in the vector space generated by R�"�S� �the narrow topology obviously extends
to the latter�� By that same theorem we also have that ��� �� �� Ig� ��� is lower semicontinuous�
Indeed� by Theorem ��� it is enough to check sequential lower semicontinuity� so if we let ��n� �n�
converge narrowly to ���� ��� we can de�ne� in a by now well�known way� ���� n� x� �� g��� x� �n�
and ���� x�	� �� g��� x� ��� to form an integrand g on " � �S � Rh� that meets the conditions
of Theorem ��� The corresponding lower semicontinuity statement in Theorem �� then amounts
precisely to lim infn Ig�n ��n� � Ig�� ����� Also� it follows� directly by Fatou�s classical lemma� that
for every � � Rh the functional � �� Ig� ��� is upper semicontinuous� Taken together� this shows
that  meets the lower semicontinuity condition of Theorem A��� and all of the remaining conditions
hold trivially� An appeal to Theorem A�� can thus be made� and this �nishes the proof� QED

�



Observe in the proof above that measurability of g��� x� �� in the variable � only serves to ful�ll
the requirements of Proposition A���� Hence� if one works a priori with a countably generated
sub���algebra A� there is no need for such measurability in �� In a special� quite relevant situation
the variational inequality statement of Theorem ��� can be sharpened considerably 
�� �� ����

Corollary ��� Let * � " � S be a nonempty� � �compact�valued multifunction with A � B�S��
measurable graph G� Let R be the set of all � � R�"�S� for which

�����*���� � � for a�e� � � "�

Let g � G � R � 
�	��	� be ��A � B�S�  G� � B�R��measurable and such that g��� �� �� is
lower semicontinuous on *��� �R for every � � "� and g��� x� �� is narrowly continuous on R

for every ��� x� � G� Then there exists �� � R such that

������argminx
���g��� x� ���� � � for a�e� � in "�

Proof� De�ne

h��� x� ��

�
� if x � *����
�	 otherwise�

Then h satis�es the conditions of Theorem ��� and Rh � R� also� the von Neumann�Aumann
measurable selection theorem 
��� Theorem III�� implies that R is nonempty� Let �g �� arctan g�
Then �g possesses the same �semi��continuity properties as g� and in addition it is bounded� Thus�
by Theorem ��� there exists �� � R such that

inf
�
R�

Z
�



Z
���

�g��� x� ��������dx����d�� �

Z
�



Z
���

�g��� x� ���������dx����d���

But here the left side can be processed further� it is certainly not larger than the corresponding
in�mum over RDirac�"�S� R� Hence�

inf
f
L�

�

Z
�

�g��� f���� �����d�� �
Z
�




Z
���

�g��� x� ���������dx����d���

where L�
 stands for the set of all f � L��"�S� with f��� � *��� a�e� By another application of

the measurable selection theorem in this speci�c context �
��� Theorem B��� � see also 
��� VII�	��
and by using obvious modi�cations of functions measurable with respect to the completion of A� it
follows that

inf
f
L�

�

Z
�

�g��� f���� �����d�� �

Z
�

inf
x
���

�g��� x� �����d���

So we conclude thatZ
�

inf
x
���

�g��� x� �����d�� �
Z
�




Z
���

�g��� x� ���������dx����d���

and� obviously� the converse inequality must hold as well� It follows now immediately that for a�e�
� the probability measure ����� is carried by the set argmin����g��� �� ���� which is clearly identical
to argmin���g��� �� ��� by strict monotonicity of the arctangent function� QED

Corollary ��� Suppose that � is a probability measure on �"�A�� Let * � "� S be a multifunction
with nonempty � �compact values and with a A�B�S��measurable graph G� Let R be as de�ned in
Corollary ���� Let U � G� P�S� � 
�	��	� be ��A� B�S� G�� B�P�S���measurable and such
that U ��� �� �� is upper semicontinuous on *��� � P�S� for every � � "� and U ��� x� �� is narrowly
continuous on P�S� for every ��� x� � G� Then there exists �� � R such that

������argmaxx
���U ��� x� 
�� ����"� ���� � � for a�e� � in "�

�



This is a specialization of Corollary ��� It generalizes the main results of 
	�� 		�� cf� 
�� ���
See 
��� for further improvements� including a uni�cation of the above results with two separate
existence results given in 
���� Above� �"�A� �� functions as a measure space of players� U ��� �� ��
stands for the payo
 �or utility� function of a player �� and the product probability measure �� ��
constitutes a so�called Cournot�Nash equilibrium distribution for the game�

Proof� Apply Corollary �� by setting g��� x� �� �� �U ��� x� 
�� ���" � ���� By Remark �� the
mapping � �� 
� � ���" � �� is continuous from R�"�S� to P�S�� so g easily meets the conditions
imposed in Corollary ��� QED

Corollary ��� Suppose that S is a separable Banach space� equipped with the weak topology � � Let
* � " � S be a multifunction with nonempty� � �compact and convex values� integrably bounded
and with a A � B�S��measurable graph G� Let L�

 be the set of all f � L��"�S� with f��� � *���
a�e�� equipped with the weak topology� Let U � G� L�

 � 
�	��	� be ��A � B�S�  G� � B�L�
��

measurable and such that U ��� �� �� is upper semicontinuous on *����L�
 for every � � "� U ��� x� ��

is weakly continuous on L�
 for every ��� x� � G and U ��� �� f� is quasi�concave on *��� for every

��� f� � "�L�
� Then there exists f� � L�

 such that

f���� � argmaxx
���U ��� x� f�� for a�e� � in "�

Proof� First� we apply Corollary �� by setting g��� x� �� �� �U ��� x� bar ��� Note that for � � R

the barycentric function � �� bar ���� �or at least an a�e��modi�cation of it� belongs to L�
� cf� the

proof of Theorem ���� Recall that the dual of L��"�S� can be identi�ed with the �prequotient� space
L��"�S��
S� of all uniformly bounded and scalarly measurable S��valued functions on �"�A� ���
cf� 
��� IV�� For any b � L��"�S��
S� the identity

Z
�

� bar �� b 
 d� �

Z
�




Z
S

� x� b��� 
 �����dx����d��

shows that � �� bar � from R into L�
 is a narrowly continuous mapping� Hence� the conditions of

Corollary �� are met� and we conclude that there exists �� � R such that

������argmaxx
���U ��� x� f��� � � for a�e� � in "�

where we set f� �� bar �� �by the above� this is an integrable function�� By the given quasi�concavity
the �argmax� set is convex in the above expression� Since it is also weakly closed �in fact weakly
compact� it follows �Hahn�Banach� that it is strongly closed� Therefore� the desired statement
follows directly from Theorem A����ii�� QED

The above existence result for Nash equilibria generalizes 
��� Theorem ��� and 
��� Theo�
rem 	���� Recently� a more general existence result was obtained in 
���� see also 
��� for further
extensions� This involves a new topology� called the feeble topology� which dispenses with integrable
boundedness of * by extending the above weak topology on L�

 to the set L�
 of measurable a�e�

selections of *� Also� this result includes �partial� puri�cation by nonatomicity �so as to avoid
quasi�concavity and convexity assumptions�� and for instance the main result Theorem ��	�� in 
���
follows from it as well� The analogy should be clear to the reader� just as barycentric techiques
for lower closure �with convexity� were useful above� so can techniques for lower closure �without
convexity� lead to parallel �or combined� via a partition of the measure space� as in the case of
Theorem ��� and 
���� existence results for equilibria�

Finally� we present an existence result for Bayesian Nash equilibrium in games with incomplete
information 
��� ��� ��� 	��� In such games each player i privately observes the i�th component of a
random outcome � � ���� � � � � �m�� as generated by some �probability� measure � on " � +m

i��"i�
and acts accordingly� However� player i�s payo� function Ui depends upon the entire realization �
��incomplete information���

Theorem ��� Suppose that S � +m
i��Si and that " � +m

i��"i� where �Si� �i� is a completely regular
Suslin space for i � �� � � � �m and where �"i�Ai� �i� is a �nite measure space� Suppose that � is

��



the product of the topologies �i and that � is absolutely continuous with respect to the product of
the measures �i� For i � �� � � � �m� let hi be a nonnegative� sequentially � �inf�compact integrand on
"i � Si� and� corespondingly� let Rhi be the set of all �i � R�"i�Si� with Ihi ��i� 
 �� Suppose that
Rh� � � � � �Rhm are nonempty� For i � �� � � � �m� let Ui � " � S � R be A � B�S��measurable and
such that �x�� � � � � xi��� xi
�� � � � � xm� �� Ui��� x� is continuous on +j ��iSj for every ��� xi� � "�Si
and Ui��� �� is upper semicontinuous on S for every � � "� Moreover� Ui is supposed to have the
following growth property� for every 	 
 � there exists �� � L��"�R� such that

jUi��� x�j 
 	

mX
j��

hj��� xj� � ����� on "� S�

Then for i � �� � � � �m there exist ��i in Rhi such that

sup
�i
Rhi

IUi���� � � � ���i�� � �i � ��i
� � � � � � ��m� � IUi���� � � � � � ��m��

Proof� Rather than premultiplying all integrands by the Radon�Nikodym derivative of � with
respect to the measures �i� we shall suppose that � itself has this product structure �as required
in Theorem ���	� without loss of generality� Observe also that by Proposition A��� the ��algebra
A may be supposed countable �see the proof of Theorem ����� We shall apply Theorem A�� to
C �� +iRhi and to  � C � C � R� de�ned as follows�

����� � � � � �m�� ���� � � � � �m�� ��
mX
i��

IUi��� � � � � � �i � � � ��m� � IUi��� � � � � � �m��

Using Theorem ����� in the style of the proof of Theorem ��� and Theorem ���	� one can see
that ���� � � � � �m� �� IUi��� � � � � � �i � � � ��m� is narrowly continuous on C for every �i � Rhi �
i � �� � � � �m� Moreover� by the same sort of argument ���� � � � � �m� �� IUi��� � � � � � �m� is narrowly
upper semicontinuous on C� Hence� it follows that ��� ���� � � � � �m�� is lower semicontinuous on C
for every ���� � � � � �m� in C On the other hand� ����� � � � � �m�� �� is trivially a�ne on C for every
���� � � � � �m� � C� Also� C is trivially convex� and it is narrowly relatively compact by Theorem ���
and narrowly closed by Theorem ����� Hence� all conditions of Ky Fan�s Theorem A�� hold� The
existence result then follows with ease� QED

A Auxiliary results

We recall and derive some results from measure theory and convex analysis which play a role in the
main text� Our �rst result is a Fubini�type theorem from 
��� III�� �see also 
�� ����� As in the
main text� �"�A� �� is a �nite measure space and S a topological space�

Theorem A�� For any � � R�"�S� the formula


�� ���A�B� ��

Z
A

�����B���d��

de�nes a unique product measure ��� on �"�S�A�B�S��� Moreover� for every A�B�S��measurable
function g � "� S � 
���	�

� ��
Z
S

g��� x������dx� is A�measurable

and Z
��S

gd�� � �� �

Z
�




Z
S

g��� x������dx����d���

��



Proposition A�� Let � � "� P�S�� The following are equivalent�
�a� � � R�"�S��
�b� � is measurable with respect to A and the narrow Borel ��algebra on P�S� ����

Proof� �a� � �b�� For every c � Cb�S� �� the mapping � �� R
S
c�x������dx� is A�measurable by

Theorem A��� Since P�S� ��� is separable and metrizable for the narrow convergence topology �
���
Proposition 	���� 
��� III������ �b� follows elementarily�

�b�� �a�� For any ���open set G � S there exists a nondecreasing sequence �cn� in Cb�S� �� such
that limn cn�x� � �G�x� for every x � S �
�� A��� 
��� Lemma 	�	��� Hence� �����G� is A�measurable
by an application of the monotone convergence theorem� Since �nite intersections of open sets are
open� �a� follows by an application of a well�known ��additive class result 
�� ������ in view of the
identity B�S� � � � B�S� ��� by Hypothesis ��� QED

The following result is due to Ky Fan �
��� Lemma ��� 
�� Theorem �� p� ������ This result
remains valid in a non�Hausdor� setting� because� as observed in 
�	� pp� ��������� Ky Fan�s proof
does not require the Hausdor� property�

Theorem A�� �Ky Fan Let C be a compact convex and nonempty subset of a topological vector
space �possibly non�Hausdor
�� Let  � C �C � 
�	��	� be such that

��� y� is lower semicontinuous for every y � C�

�x� �� is quasiconcave for every x � C�

�x� x� 
 � for every x � C�

Then there exists x� � C such that �x�� y� 
 � for all y � C�

The following implicit measurable function result is taken from 
��� Theorem III�����

Theorem A�� Let �V�V� be a measurable space� S a Suslin space� and , � "� V a multifunction
whose graph

gph , �� f��� v� � " � V � v � ,���g
belongs to A � B�V �� Let g � " � S � V be measurable with respect to A � B�S� and V such that
g��� S� ,��� �� � for a�e� �� Then there exists f � L��"�S� such that g��� f���� � ,��� for a�e�
� in "�

Next� we give some Lyapunov�type results which lead up to the instrumental Theorem A���

De�nition A�� An atom of �"�A� �� is a set A � A� ��A� 
 �� for which there exists no B � A�
B � A� such that � � ��B� � ��A��

Note that as atoms we only accept nonnull sets� It is elementary to check that any A�measurable
function must be a�e� constant on any atom of �"�A� ���

Proposition A�� There exists an at most countable collection � !Aj� of atoms of �"�A� ��� such that
"na �� "n �j !Aj contains no atoms�

Proof� For each i � N there can be at most i atoms whose ��measure is at least ��"��i� This
gives the desired collection � !Aj�� QED

If " � "na then �"�A� �� is said to be nonatomic� The most important property of nonatomic
measure spaces is as follows 
��� p� ��� ����

Theorem A�	 �Lyapunov Let q �N and let f � L��"�Rq�� If " is nonatomic� then

C �� f
Z
A

fd� � A � Ag � f
Z
�
f�d� � � � L��"�R�� � 
 � 
 �g�

�



Corollary A�
 Let m� r �N� let f�� � � � � fr be functions in L��"�Rm� and let ��� � � � � �r be nonneg�
ative functions in L��"�R�� with

Pr
i�� �i � �� If " is nonatomic� then there exists a measurable

partition B�� � � � � Br of " such that

Z
�

rX
i��

�ifid� �
rX
i��

Z
Bi

fid��

Proof� We use induction for r� For r � � the result holds trivially� Suppose it is true for
r � k � �� Denote

Pk��
� ��ifi by g� where ��i��� �� �i������ � �k���� if �k��� � � and ��i��� �� �

if �k��� � �� By Theorem A�	� there exists A � A for which
R
A
�g� fk� �

R
�
�k�g� fk�� This givesR

�nA g �
R
��� � �k�g� so now the result follows by the induction step applied to the functions

fi��nA� QED

The next result is 
�� Proposition ���� which extends Corollary A��� the important fact to
observe is that the participating functions are no longer supposed integrable�

Theorem A�� �extended Lyapunov theorem Let m� r � N� let f�� � � � � fr be functions in
L��"�Rm� and let ��� � � � � �r be nonnegative functions in L��"�R�� with

Pr
i�� �i � �� such that

Z
�

rX
i��

�ijfijd� � �	�

If " is nonatomic� then there exists a measurable partition B�� � � � � Br of " such that for i � �� � � � � r
the function fi is integrable over Bi and

Z
�

rX
i��

�ifid� �
rX
i��

Z
Bi

fid��

Proof� De�ne for every p � N the set "p to consist of all � for which maxi jfi���j belongs to
�p� p � ��� Then the "p are disjoint and on each "p we can apply Corollary A��� For every p this
gives the existence of a measurable partition B��p� � � � � Br�p of "p such that

Z
�p

rX
i��

�i�jfij� fi� �
rX
i��

Z
Bi�p

�jfij� fi��

By Beppo Levi�s theorem we then get
Pr

i��

R
�pBi�p

jfij �
R
�

Pr
i���ijfij � �	� by summing over

p and noting that for each i the Bi�p are disjoint� This implies that each fi is integrable over
Bi �� �pBi�p� It is now elementary to conclude that� by the above�

Z
�

rX
i��

�ifi �
X
p

Z
�p

rX
i��

�ifi �
rX
i��

Z
�pBi�p

fi�

which proves the result� QED

Theorem A��� Let E be a separable Banach space	 let � � P�E� be such that
R
E kxk��dx�� �	�

�i� A unique point in E� the barycenter of �� is de�ned by

bar � ��

Z
E

x��dx��

�ii� If C � E is closed and convex with ��C� � � then bar � belongs to C�

�iii� If E � Rd and if C � Rd is convex � possibly nonmeasurable � with outer measure ���C� � �
then bar � belongs to C�

��



Part �i� follows from elementary facts about Bochner integration in separable Banach spaces 
��� �	��
Part �ii� follows directly from the Hahn�Banach theorem 
�	� I������� and part �iii� is proven by
induction for the dimension of E �see 
��� Lemma� and 
��� Lemma �� p� 	����

The following result forms a trick to reduce arguments involving at most countably many product
measurable sets or functions to a countably generated situation� cf� 
��� p� 	�� and 
��� Appendix��

Proposition A��� Let �V�V� be a measurable space and let g � " � V � 
�	��	� be A � V�
measurable� Then there exists a countably generated sub���algebra A� of A such that g is also
A� � V�measurable� Moreover� if �"�A� �� is nonatomic� then A� can be chosen in such a way as
to make �"�A�� �� nonatomic�

Proof� If g � �G� G � A � V� then it su�ces to observe that the union of all ��algebra�s A� � V�
A� a countably generated sub���algebra of A� is a ��algebra which must coincide with A � V� The
usual approximation by a sequence of simple functions then �nishes the argument for general g�
In addition� if A is nonatomic� then let � !Aj� be an enumeration of the atoms of A�� just as in
Proposition A��� By nonatomicity of A� for each m � N each A��atom !Aj can be partitioned as
!Aj � �mi��Bm�j

i � with ��Bm�j
i � 
 �� !Aj��m� � 
 i 
 m� Now let A� be the ��algebra generated by A�

and all Bm�j
i � Suppose that A is an atom of A�� Of course� we can only have ��A �"n�j !Aj�� 
 �

if ��A� � ��A  �"n �j !Aj��� But this implies that� modulo a null set� the A�� and A��atom A is
contained in "n�j !Aj� which is the nonatomic part of �"�A�� �� �cf� Proposition A���� Therefore� it
follows that ��A �"n�j !Aj�� � �� i�e�� A is essentially contained in �j !Aj� Hence� for every m �N
there must be j and i� � 
 i 
 m� with ��A Bm�j

i � 
 �� But since A is an atom this implies then

��A� � ��Bm�j
i � 
 �� !Aj��m 
 ��"��m� So ��A� � �� in contradiction to our De�nition A��� QED

B Outer integration

We recapitulate some standard facts concerning outer integrals� e�g�� see 
��� for a slightly di�erent
treatment�

De�nition B�� Let � � " � 
�	��	� be arbitrary �possibly nonmeasurable�� Then the outer
integral

R �
� �d� is de�ned by

Z �

�

�d� �� inff
Z
�

�d� � � � L��"�R�� � � � on "g�

where the in�mum over the empty set is set equal to �	�

Lemma B�� Let � � "� 
�	��	� be A�measurable� Then

Z �

�

�d� �

Z
�

�d� ��

Z
�

�
d� '�
Z
�

��d��

where �
 �� max��� ��� �� �� max���� �� and '� is as ordinary subtraction� but with the additional
convention ��	� '���	� �� �	�

Proof� If
R
� �


 � �	� the result is immediate �the in�mum in De�nition B�� is then taken over
the empty set��

So suppose
R
�
�
 � �	� Note that

R
�
� � R

�
� for every � participating in the in�mum in

De�nition B��� Hence�
R �
� � � R� �� Now if

R
� �

� � �	� then � � L��"�R�� so De�nition B��

implies that
R �
� � 
 R� �� which �nishes the argument� And if

R
� �

� � �	� then an obvious

argument with the sequence �n �� �
 �min���� n� shows that
R �
�
� � �	 �

R
�
�� QED

Lemma B�� Let � � "� 
�	��	� �possibly nonmeasurable� and � � L��"�R� be such that � � �
on " and

R �
� �d� � �	� Then there exists �� � L��"�R�� �� � �� such that

R
�
��d� �

R �
� �d��

��



Proof� By De�nition B�� there exists a sequence ��k� in L��"�R� such that �k � � and
R
� �k 
R �

� � � k�� for all k� De�ne �� �� infk �k� then �� � �� � � � � �hence �� � L��"�R�� andR
�
�� 
 R �

� �� The converse inequality is trivial� QED

Proposition B�� �Fatou�Vitali Let ��n� be a sequence of �possibly nonmeasurable� functions
�n � " � 
�	��	� such that there exists a uniformly integrable sequence ��n� in L��"�R� for
which for every n �N

�n��� � �n��� for all � � "�

Then

lim inf
n

Z �

�

�n�����d�� �
Z �

�

lim inf
n

�n�����d���

Proof� By Lemma B��� for each n there exists ��n � L��"�R� such that ��n � �n � �n andR
�
��n �

R �
� �n� By uniform integrability of ��n�� the classical Fatou�Vitali lemma 
�� 	���� applies�

This gives

lim inf
n

Z �

�

�n � lim inf
n

Z
�

��n �
Z
�

lim inf
n

��n�

Since lim infn ��n � lim infn �n� De�nition B�� gives
R �
� lim infn ��n �

R �
� lim infn�n� Since lim infn ��n

is A�measurable� Lemma B� applies� and the result follows� QED

Lemma B�� Let �� �� � "� 
�	��	� be arbitrary �possibly nonmeasurable�� Then

Z �

�

�d� '�

Z �

�

��d� �
Z �

�

�� '����d��

where '� is de�ned just as ordinary addition� but with ��	� '���	� �� �	 as an additional con�
vention�

Proof� If either term on the left is equal to �	� the result is trivially true� So suppose thatR �
�
�d� � �	 and

R �
�
��d� � �	 �hence both � and �� are a�e� not equal to �	�� By De�ni�

tion B��� there exist sequences ��n� and ���n� in L��"�R� such that
R
� �n �

R �
� � and

R
� �

�
n �

R �
� �

��
with �n � � and ��n � ��� But then simple work with ��n � ��n� gives the inequality immediately�
QED

Lemma B�� Let � � "� 
�	��	� be arbitrary and let � � L��"�R�� Then

Z �

�

�� � ��d� �

Z �

�

�d��

Z
�

�d��

Proof� An elementary consequence of De�nition B��� QED
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