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Extremal points of infinite clusters in stationary

percolation

Ronald Meester

Abstract

It is well known that in stationary percolation, an infinite com-
ponent cannot have a finite number of extremal points in a certain
direction. In this note, we investigate whether or not an infinite clus-
ter can have infinitely many extremal points in a certain direction. To
make this question at all interesting, it is necessary (and natural) to
simultaneously ask for an infinite path in the opposite direction. It
turns out that the answer depend on the dimension of the model, and

on the question whether or not the model has so-called finite range.

1 Properties of infinite clusters

In this note, we shall look at certain characteristics of infinite clusters in
stationary d-dimensional percolation. We will restrict ourselves to the d-
dimensional integer lattice, but this is mostly for convenience. The set up is
the following. Denote by E? the set of undirected edges {{z;,z;} : 2,2, €
Z?}. That is, E? consists of all edges, not only nearest neighbour edges. We
equip € := {0, 1}Ed with the usual sigma field, and p denotes a stationary

measure on this space, i.e. p is invariant under translations. Two points z
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and z’ are connected in w € Q if there is a sequence (2 = z,29,...,2;, = 2’)
of vertices such that w({z,,2z,41}) = 1forn =1,...,k — 1. An edge with
label 1 will be referred to as being open, other edges are called closed. A
cluster of a realisation w is a maximal set of connected vertices. We say that
p percolates if p assigns positive probability to the event that the origin is
contained in an infinite cluster. We are mostly interested in measures p that
percolate.

A selection rule is a measurable function s : @ — {0,1}Zd with the
property that for each cluster C' of w, there is exactly one vertex z € (' with
s(w)(z) = 1. We say that a selection rule is stationary if the induced measure
wos~ton {0, 1}Zd is stationary. We shall abuse notation: if C' is a cluster
of w, we write s(C') for the unique vertex z of C' for which s(w)(z) = 1.

For instance, the vertex of C' closest to the origin (with a certain prede-
termined decision rule in case of ties) is a selection rule that is not stationary.
If all clusters are finite a.s., then putting s(C') equal to the left-lowest vertex
of ' yields a stationary selection rule.

One of the more useful facts about infinite clusters is the following. Al-
though typically not stated in this form, versions of this result are well
known. We shall sketch a modern proof, using the idea of ‘mass transport’

which was introduced in the percolation literature in Haggstrém (1997).

Lemma 1.1 If p percolates, then there are no stationary selection rules.

Proof Suppose p percolates and suppose that s is a stationary selection
rule. Denote the cluster that contains z by C(z). Denoting cardinality by
#, the process (1,(,)(z)=1, #(C(#))) is jointly stationary, and therefore also

the process 1(5(u)(2)=1,#(C(z))=c0} I8 stationary. Imagine that each vertex has



‘mass’ 1. We now redistribute all these masses in a stationary way as follows:
each vertex z in an infinite cluster sends its mass to s(C'). Other than that,
nothing changes. Denote, for each vertex z, the mass sent away by Mgyui(z)
and the mass received by M;,(z). No mass gets lost, and therefore it follows
by stationarity and the ergodic theorem that EMyu(z) = EMiy(z). But
clearly, EMy,(2) < 1, and at the same time, the probability to receive an

infinite amount of mass is positive, hence EM;,(2) = o0, a contradiction. O.

Lemma 1.1 might look a bit abstract, but it really tells a lot about the
geometry of infinite clusters. It is one of the most important steps in the
modern proof that in independent percolation there can be at most one
infinite cluster (see Burton and Keane 1989, 1991). The question addressed
in this paper is not interesting in independent percolation. Here are some

other consequences of Lemma 1.1:

(1) Infinite clusters either have no lowest point, or infinitely many lowest
points. To see this, suppose that an infinite cluster has, say, three lowest
points with positive probability. We can change the configuration in a sta-
tionary way by removing all infinite clusters which do not have three lowest
points. In the resulting configuration, we then put s(C') equal to the left-
lowest point of €', and this would be a stationary selection rule, contradicting
Lemma 1.1.

(2) Infinite clusters cannot be rooted binary trees, since we could put s(C')

equal to this (unique) root.

We see that the general principle of non-existence of stationary selection
rules exludes certain topological and geometrical possibilities for infinite

clusters. But questions remain. For instance, is it possible for an infinite



cluster to have infinitely many lowest vertices? (Here and in what follows,
the use of the word ‘lowest’ refers to an extreme point in any particular
direction.) With a little thought it is easy to see that this is the wrong ques-
tion: the measure p (in two dimensions) that makes all horizontal edges
open and all remaining edges closed has of course infinitely many infinite
clusters with infinitely many lowest points. So we have to ask another ques-
tion: is it possible to have an infinite cluster with infinitely many lowest
points which is unbounded in the opposite direction? We shall see below
that this question is not so interesting either. The most interesting question
in this context is the following. Is it possible for an infinite cluster to have
infinitely many lowest vertices, and at the same time to have an infinite
path which goes to infinity in the opposite direction? (It might take a little
thought to understand that this is really a different question.) We shall see
that the answer depends on the dimension and the so called range of u. The
range of p is defined as sup{|z; — z;| : p({z,2;} = 1) > 0}, i.e. the range is
the length of the longest possible open edge. Choosing one specific direction

for definiteness, we call a cluster C' special if

o The set {z = (2(1),...,2(d)) : 2(1) = min{z/(1) : 2/ € C'} contains

infinitely many elements;
o The set {z(1) : z € C'} is unbounded above.
We call a cluster C' very special if

o The set {# = (2(1),...,2(d)) : 2(1) = min{z(1) : 2’ € C} contains

infinitely many elements;

e There is an infinite path (21, 23,...) in C such that lim, ., z,(1) = occ.



Theorem 1.2 Let p be a (stationary) measure in two dimensions with

bounded range. Then no very special clusters exist i - a.s.

We shall see that both conditions (dimension and range) are needed for
the conclusion of the theorem. The theorem is also no longer true if we
replace ‘very special’ by ‘special’. We give examples in the next section.
Before we proceed with the proof of the theorem, we make a few more
definitions. For the rest of this section, we are in two dimensions.

The density p,(A) of a subset A C {z € Z* : 2(1) = n} is the limit

i #(AN{z: =k <2(2) < k})7

if this limit exists. Here #(-) denotes cardinality.

Denote by C(n) the union of all infinite clusters C' for which min{z(1) :
z € ('} = n. Furthermore, for all k& > 0, we denote the set C(n) N {z :
2(1) =n+ k} by Cr(n).

It is clear from the stationarity of p that Cx(n) forms a stationary process
with respect to all vertical translations, i.e., the process (Wf)er defined by
Wy = 1if (n+ k,0) € Ci(n) and W, = 0 otherwise, is stationary. It
then follows from the ergodic theorem that Cr(n) has a (random) density
Pn+k(Cr(n)) which we denote by Dg(n). The sequence (Dg(n)), for fixed
k is stationary, and therefore the expectation of Dy(n) with respect to p is

independent of n and denoted by eg.

Lemma 1.3 It is the case that
d e <1 (1)
n=0

Furthermore, for all m and n we have,

p((n+ k,m) e Cr(n) for infinitely many k) = 0. (2)



Proof Since the sets C,,(—n) are all subsets of the y-axis, and are mutually

disjoint by construction, it follows that

Z Dn(_n) < 17
n=0

surely. Hence, by taking expectations, we find (1). It is a simple consequence
of the ergodic theorem that for all m, the vertex (n + k,m) is contained in
Cr(n) with probability eg. From (1) and the Borel-Cantelli lemma, (2) now

follows. O

Proof of Theorem 1.2 Suppose that very special clusters exist with pos-
itive probability. Then C(0) contains a very special cluster with positive
probability. If this is the case, this implies that for any & > 0, the line
{# : 2(1) = n+ k} contains vertices which are contained in an infinite clus-
ter of the halfspace {z : z(1) > n+k}. (Note that this would not necessarily
be true for special clusters instead of very special clusters.) Now let R < oo
be the range of u, and consider the set S = {z : 2(1) > 0,0 < 2(2) < R}.
According to (1), only finitely many vertices in ' belong to C(0) a.s. This
implies that there is a finite (random) number M so that SN {z : 2(1) >
M} NC(0) = 0. Let mg be such that p(M = mg) > 0. (Note that mg is not
random.) Next we consider the following map g from @ — Q: g(w)(e) =0

if each of the following is true:

e both endpoints of e are in a very special cluster C' with inf{z(1) : z €

C'} = n, for some n., and

¢ both endpoints of e are contained in {z : 2(1) < n. + mp};



in all other cases, g(w)(e) = w(e). In words, g eliminates all open edges of
very special clusters between their left boundary {z : z(1) = n} and the
line {z : 2(1) = n + mg}.

Define p/ = pog="'. It is clear from the construction that u’ is stationary.
It is also clear that u' assigns positive probability to infinite clusters. But
i’ has the additional property that with positive probability, a realisation
chosen according to ¢’ contains a very special cluster with empty intersection
with the strip 5. Let C be such a very special cluster, with inf{z(1) : z €
C'} =0, say. Since C'N.S =0, and the range of x' is at most R (the range of
), this implies that C' is either completely above S or completely below 5.
In the former case, C' has a left lower vertex, in the latter case, it has a left

upper vertex. Both conclusions contradict Example (1) following Lemma

1.1. O

2 Counterexamples

Next we show that both conditions are needed for the theorem to be true.
We first construct an example of a two-dimensional measure p with infinite

range with very special clusters.

Example 1 We label each vertex z of Z* with a label ¢(e) from the set
{1,2,...} in such a way that all labels are independent and indentically
distributed and such that the probability of label m equals 27™. For any
vertex z we find the nearest vertex z’ with the following properties: (i)
Z'(1) = 2z(1) + 1, (ii) ¢(2') = ¢(z) 4+ 1. If there is more than one nearest z’
with these properties we choose one randomly. Next we declare the edge

between z and z’ open. We repeat this procedure for every vertex z. Edges



that are not declared open are declared closed. It is clear that this yields
a stationary probability measure on ). Furthermore, all clusters are very
special clusters ‘starting’ at vertices with label 1. Finally, the constructed

measure obviously has infinite range.

Our next example shows that special clusters with bounded range can exist

in two dimensions.

Example 2 Consider a discrete time (indexed by Z), regenerative, station-
ary stochastic process taking values in {0, 1,2,...} and making steps of size
1 only and which is a.s. unbounded above. For instance, we could take a
one-sided simple random walk on the positive line with negative drift. Draw
the path of this process in a space-time diagram, connecting consecutive
points by edges of length v/2. Suppose that time is depicted vertically and
space horizontally. For any n € Z, the row (—o0,00) X [n,n 4 1] contains
exactly one edge of the path of our process, and we declare this edge open,
together with all its horizontal translates. All other edges are closed. The
measure p corresponding to this construction is stationary and has infinitely

many special clusters a.s.

Our final example shows that bounded range in dimension three is not
enough to rule out very special clusters. The construction can be seen as a

three-dimensional version of Example 1.

Example 3 We start our description with the square lattice Z2. We first
give a geometrical description; probability comes in later. Tile the plane
with adjacent 2 x 2 squares S(7,7) = [0,2] x [0,2] + (2¢,25). Now for every
second square (in both directions, starting at an arbitrary one), we label the

centre of the square 0. The vertices labelled 0 are the corners of another



tiling of the plane with squares of size 4 x 4. We again consider every second
square in both directions among these and label the centres of these squares
with a 1. The vertices labelled 1 again define a tiling of the plane. The
centres of every second square in this tiling is labelled 2, and so on.

We can make this labelling stationary (in the two-dimensional sense)
as follows: when we tile the plane initially with 2 by 2 squares, we have
four possibilities of doing that, and we choose one of them with uniform
probabilities. Then, at each stage, we have two possibilities: either all
centres in the ‘even’ squares, or all centres in the ‘odd’ squares are labelled.
Each time we choose one of these possibilities with equal probability. The
result of this is a stationary labelling of Z2. We make this into a labelling
of Z* by copying this labelling in all layers {z : 2(1) = U + 10k}, k € Z,
where U is an independent uniform random variable on {0,1,...,9}.

Finally, we connect a vertex z in the layer {z : z(1) = U 4 10ko}
with label m with a vertex with the nearest vertex with label m + 1 in the
layer {# : 2(1) = U 4+ 10(ko + 1)} with a nearest neighbour path which is
completely between these layers, in such a way that any path from a label
m to alabel m + 1 is disjoint from any path from label £ to label £+ 1, when
m # (. It is easy to see that in three-dimensional space there is enough

room to do this. This yields a configuration with only very special clusters.
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