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Abstract
The dynamics of time�dependent evolution towards symmetry in Hamiltonian
systems poses a di�cult problem as the analysis has to be global in phas�
espace� For one and two degrees of freedom systems this leads to the presence
of one respectively two global adiabatic invariants and also the persistence
of asymmetric features over a long time�
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� Introduction

In studies in the natural sciences assumptions of symmetries abound� spher�
ical symmetry� cylindrical symmetry� re�ection symmetry etc� This is partly
because such an assumption simpli�es the mathematical analysis but it is
also based on the observation that equilibrium states as the outcome of a
transient� evolutionary process� usually display symmetries�

It is quite remarkable that in nature one can observe many systems with
symmetries� for instance rotating planets or stars which usually are displaying
axi�symmetry� A similar observation holds for galaxies which for a large part
have a more or less regular structure like a rotating disk or ellipsoid� More
down to earth� �ow structures may display some rotational or axi�symmetry�
mechanical structures like pendula are often characterized by re�ection sym�
metry with respect to a plane�

Symmetry assumptions are causing degenerations which necessitate the
calculation of higher order normal forms� In mathematics� the analysis is
usually focused on generic cases but in �elds of application like mechanical
engineering or nonlinear wave mechanics� symmetric cases abound which are
not generic at all in the mathematical sense� A survey of the consequences
of symmetry assumptions for Hamiltonian systems by normal form methods
is given by Verhulst �������

Here we consider the problem of evolution towards symmetry� Apart
from the additional complications of time�dependence we have that analysis
by normal forms is not su�cient� normalisation involves localisation in some
sense while time�evolution is interesting when including global dynamics� We
shall review a number of case studies with rather intriguing results�
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In this paper we start with an evolution problem in a special formulation�
tidal evolution� The surprise in this case is that the outcome of evolution is
rather symmetric� This inspires us to assume that the subset of symmetric
systems has an attracting set in the space of dynamical systems� We want
to study the dynamics inside this attracting set� i�e� the evolution from an
asymmetric system to a symmetric system�

For one and two degrees of freedom Hamiltonian systems this leads to the
presence of one respectively two adiabatic invariants and also unexpectedly
to the persistence of asymmetric features over a very long time�

� Tidal evolution in the two�body problem

Consider the Newtonian two�body problem where the bodies are stars� star
and planet or planet and satellite� We assume that the masses are outside
the Roche limit which determines the break�up of a body by tidal forces�
The bodies contain �uid �water� gases etc�� which is a�ected by gravitation�
resulting in tidal bulges� The basic mass distribution of the bodies is spherical
apart from the �uid bulges� of course the bulges in their turn in�uence the
motion but this is a higher order e�ect�

In such a mechanical system we have energy dissipation of a form which
depends strongly on the actual physical conditions� the location of conti�
nents� the nature of the �uid etc� Apart from energy dissipation the tidal
bulges produce a torque which results in an exchange of orbital and spin
angular momenta�
Because of tidal evolution the bodies will slowly spiral in and remarkably
enough� we can predict the possible outcome of evolution in such a system
without a more detailed speci�cation of the physical mechanism� This is im�
portant as the long time behaviour of for instance the Solar System� cannot
be understood without taking into account tidal evolution�

The analysis which we present is based on Counselman ���	� where the
two�dimensional case is treated� and Hut ����
� which deals with the full
three�dimensional case� For the slowly changing energy we have in relative
coordinates

E � �GMm

�a
�

�

�
I�j	j� � �

�
I�j�j�

where G is the gravitational constant� M and m the masses of the bodies� a

	



the length of the �slowly changing� semi�major axis� I� and I� the moments
of inertia� 	 and � the respective angular velocities of rotation� The total
angular momentum L will be conserved

L � h� I�	 � I��

with h the orbital angular momentum�
To �nd the possible equilibrium states we determine the critical points

of E under the constraint that L is constant in a six�dimensional subspace
�obtained after some reductions� with nine parameters� The result is that
we have

� no equilibrium state if L � Lcrit with L � jLj and Lcrit a positive
number depending on the masses and the moments of inertia�

� two equilibrium states if L � Lcrit which correspond with orbits which
are coplanar� circular and corotating� A very symmetric end stage�

To determine the stability of the equilibrium states one considers the second
order variation of the energy E under the constraint L is constant� One
�nds that for stability the orbital angular momentum has to exceed a critical
value� this means that the equilibrium state corresponding with the widest
orbit is stable� the other one is unstable�

We note that it is quite remarkable that without speci�cation of the
mechanism of tidal dissipation we can determine the outcome of evolution�
Also� that the equilibrium states clearly display a certain symmetry�

� Evolution towards symmetry in one degree

of freedom

Studies of the evolution of actual physical systems are di�cult and so rela�
tively rare� We propose therefore to ignore� at least for the time being� the
physical mechanisms and to consider systems described by a simple looking
Hamiltonian of the form

H�p� q� �t� �
�

�
�p� � q��� �

	
a��t�q� ���

�



where the asymmetric part is slowly vanishing as we put for a��t� a smooth�
monotonically decreasing function for which

a�
� � �� lim
t��

a��t� � 
� 
 � �� � ���

The problem was analysed by Huveneers and Verhulst ������ Putting p � �x�
q � x we have the equation of motion

�x� x � a��t�x� �	�

We note that in the autonomous system �	�� � � 
� there are basically two
regions� within the homoclinic solution the orbits are bounded� outside the
homoclinic solution the orbits diverge to in�nity �with the exception of the
stable manifold and the saddle point itself�� In system �	� for � � 
 we have
no �xed saddle point� still it turns out that we have two separate regions of
initial values in which the orbits are bounded or diverge to in�nity� It is in�
structive �though slightly wrong� to view system �	� as having a saddle point
moving slowly towards in�nity and having a slowly expanding homoclinic or�
bit� In this picture� an orbit can remain bounded in two ways� either by
starting inside the homoclinic orbit� or by getting �captured� by the slowly
expanding homoclinic orbit� which can only happen if the orbit starts suf�
�ciently close to the stable manifold of the saddle point� To make these
statements mathematically correct� one should use the concept of normally
hyperbolic motion� One of the aims of this study is then to obtain adiabatic
invariants characterizing the dynamics of the problem�

Two key ideas play a part in the paper by Huveneers and Verhulst ������
First� by using a simple transformation a direct relation to dissipative me�
chanics is established� Secondly the subsequent analysis in this paper is
based on averaging methods using elliptic and hypergeometric functions but�
because of its relation to dissipative mechanics and �crossing of separatrix�
aspects it clearly pro�ts from the results by Haberman ����	�� Robinson
����	�� Haberman and Ho ����������� and Bourland and Haberman ����
�
������ Rand ����
� used a di�erent approach �Jacobian elliptic functions�
to study a similar class of dynamical systems� We also mention Neishtadt
����� and a nice survey of the theory of adiabatic invariants by Henrard
����	��

The key step in analyzing system �	� is performing the transformation

y � a��t�x ���

�



The idea behind this transformation is to �x the normally hyperbolic motion
of system �	�� We want to study system �	� for all time� this time�dependent
rescaling of the coordinates enables us to study a bounded domain� which
simpli�es the calculations considerably� This transformation has also disad�
vantages� in particular the loss of the Hamiltonian structure� The special
choice a��t� � e��t will be used to show some of the more general results� for
the general treatment see Huveneers and Verhulst ������ With this choice
for a��t�� system �	� becomes

�y � y � y� � ��� �y � ��y ���

From the original equation describing evolution towards symmetry� we have
now obtained a dissipative system� The region of attraction of system ��� is
bounded by the stable manifold of the saddle point�

By averaging one determines an adiabatic invariant inside the homoclinic
solution which takes a di�erent form in di�erent domains of the phase�plane�
The location of the stable manifold of the saddle point of system ��� is cal�
culated by considering the variation of the energy along the stable manifold�
Since this variation is an O��� e�ect� we may use the unperturbed stable
manifold in this calculation� which involves elliptic functions� One of the
conclusions is�
There exists a global adiabatic invariant inside the homoclinic orbit of the un�
perturbed system with the exclusion of an exponentially thin boundary layer�
valid for all time�

An explicit calculation of the adiabatic invariant and transforming back
to the original x� �x variables produces an interesting result� The level curves
of the adiabatic invariant for a 	xed time �resemble� ellipses� of which the
long axis and the short axis di�er by an O��� amount� and which are rotated
around the origin� causing asymmetry�

This behaviour persists when t tends to in�nity� Put in other words�
when t goes to in�nity� our dynamical system �	� becomes symmetric �with
respect to x and �x�� but the level curves of the adiabatic invariant remain
asymmetric� So we have reached the following conclusion�
The evolution of an ensemble of phase points towards a symmetric potential
will show signi	cant 
i�e� O���� traces of its asymmetrical past� for all time�

So there is a sort of hysteresis e�ect present� although the system becomes
symmetric� it still �knows� that it was asymmetric in the past� One can
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demonstrate this phenomenon visually by taking � not too small and choosing
for instance a��t� � e��t to obtain level curves of the adiabatic invariant� The
asymmetric e�ect is clearly present�

� Evolution towards symmetry in two degrees

of freedom

A natural question is how to extend the preceding results to Hamiltonian
systems with two degrees of freedom� It turns out that this is quite di�cult�
however� with some restrictive assumptions� Huveneers ����� obtained re�
sults which we shall review and discuss� The di�culties can be summarized
as follows�

� There is very little experience with a global �i�e� global in the energy�
analysis of Hamiltonian systems� time�dependent or not�

� For two and more degrees of freedom there are resonance manifolds in
phase space which pose special obstructions�

� The Hamiltonian may be integrable� near�integrable or non�integrable
which requires di�erent treatments�

� In the integrable case we should employ action�angle variables but these
are very di�cult to construct globally�

We start again with

H � Hsym � a��t�Hasym� 
 � �� �� ���

where Hsymis the symmetric part of the Hamiltonian�Hasym the asymmetric
part and a decreases again monotonically and smoothly from � to 
� The
condition on � ensures adiabatic evolution to symmetry�

A second degree of freedom introduces an important complication� reso�
nance� It is clear from normal form theory that in order to have an interesting
system� we must choose the linear part to be in low order resonance� like ����
��� or ��	� Here the ��� resonance has been chosen� since the �rst resonant
nonlinear terms appear already at third order in this case� Actually the cal�
culations for the ��� resonance are easier �for various mathematical reasons��
although one has to take fourth order terms into account� The calculations
for the ��	 resonance are more elaborate� on the other hand�





��� The unperturbed Hamiltonian

We will concentrate on the case in which the unperturbed system� � � 
�is
integrable�

H �
�

�
p�� � �x�� �

�

�
p�� �

�

�
x�� � a��t�

n
�x�� � x�x

�
�

o
��

for which the unperturbed system �� � 
�

H� �
�

�
p�� � �x�� �

�

�
p�� �

�

�
x�� � �x�� � x�x

�
� ���

possesses the two �rst integrals

E� �
�

�
p�� � �x�� �

�

�
p�� �

�

�
x�� �

�
�x�� � x�x

�
�

�
���

E� � x�p�p� � x�x
�
� � x�p

�
� �

�
�

�
x�� � x��x

�
�

�
��
�

Note that the unperturbed potential is discrete symmetric with respect to x��
but asymmetric with respect to x�� The corresponding equations of motion
are �����

����
�x� � p�
�p� � ��x� � x�� � �x��
�x� � p�
�p� � �x� � �x�x�

Identifying �x���
�
�x

�
���x���x�x

�
� as the potential energy of the unperturbed

system� one can draw the equipotential curves which give a crude qualitative
description of the dynamics�

It is clear that the neighbourhood of the origin contains bounded solu�
tions which live on compact tori due to the Liouville�Arnold theorem� Near
the two saddle �hyperbolic� points the energy manifolds loses compactness�
the tori break open� resulting in unbounded and less interesting dynamics�
With this picture in mind� we can give a crude qualitative description of the
perturbed system� for which the coe�cient a decreases slowly to zero� Due
to the slow decrease in a� the hyperbolic points are moving slowly towards
in�nity� resulting in capturing of nearby orbits� see for comparison similar
behaviour in the one�degree�of�freedom problem discussed above� The unper�
turbed system possesses a heteroclinic orbit connecting the two hyperbolic
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points� The heteroclinic orbit is important for our analysis� since it may be
regarded as a periodic orbit with an in�nitely large period� so averaging is
due to fail near this heteroclinic orbit�
To do any computations� one must know the range of values which �E�� E��
can take �in the unperturbed problem�� The range of E� is easily determined

from the compactness requirement to be
h

� ��

i
� Determining the range for E�

is more subtle since it depends on E�� It is worthwile to note that at E��min

and E��max there is only one value of x� at which the orbit is allowed to inter�
sect the hyperplane x� � 
� This implies that these orbits are periodic� The
one�parameter �E�� family of these orbits constitutes a manifold of relative
equilibria � see Derks and Valkering ������� Derks ������ and Zeegers ����	��
see also �Mitropolsky� ���	��

There are two more sources of periodic orbits� The �rst one are the
resonant tori and the second one is the normal mode x� � p� � 
� i�e�
E� � 
 which is unstable �hyperbolic� for any E� � �

�
�

��� Integrability and dissipation

A di�culty in analysing the perturbed system �� is that the interesting
dynamics takes place on a slowly expanding subset of phase space� Analogous
to the ��degree of freedom case �Huveneers and Verhulst� ���� this di�culty
is removed by rescaling the space variables adiabatically�

	
x� � �

a��t�X�

x� � �
a��t�X�

����

The conjugated momentum variables �p�� p�� are mixed with �x�� x�� and
transformed into �P�� P�� de�ned by Pi � �Xi�

Note that this is not a canonical transformation� By performing this
transformation the interesting part of phase space remains bounded for all
time� but as a penalty we lose the Hamiltonian structure of our system� Also
note that this transformation only works if the perturbation is homogeneous
of a certain degree� as is the case in our system�

After applying ���� we arrive at the following system

�



���������
��������

�X� � P�

�P� � ��X� �X�
� � �X�

� � ��a
���t�
a��t�

P� � ��


a����t�
a��t�

� �
�
a���t�
a��t�

���
X�

�X� � P�

�P� � �X� � �X�X� � ��a
���t�
a��t�

P� � ��


a����t�
a��t�

� �
�
a���t�
a��t�

���
X�

����
which we will study� So our phasespace transformation ���� has transformed
the perturbed system �� into the unperturbed system ��� with an additional
small �i�e� O���� dissipation added� The terms of order �� can be neglected
on a �

�
timescale� as long as the terms between curly braces remain bounded�

Therefore we demand that both a�����
a���

and a����
a���

are bounded for all �� These
conditions are satis�ed for many monotonically decreasing functions� and in
particular for a��t� � e��t for which ���� reduces to an autonomous system�

This explicit equivalence of adiabatic Hamiltonian perturbation and small
dissipation is very helpful both in understanding the dynamics and in doing
calculations� since we can use ideas and techniques from both �elds�

��� Action�Angle transformation

We will construct the action variables following the proof of the Liouville�
Arnold theorem� i�e� by evaluating the contour integralI

�P � d �X

along two irreducible circuits on the torus determined by �xed values of E�

and E�� The �rst circuit is of course easy to �nd� since it is to a high degree
arbitrary� So we choose it in such a way that the contour integral becomes
as simple as possible� This is done by intersecting the torus with the X� � 

hyperplane� The contour integral reduces toI

P�dX�

so we have to evaluate the area enclosed by the contour after projection onto
the �P��X�� plane� Using the results from the preceding subsection� we know
that the contour is given by

�




P��X�� � �
s
�E� � �X�

� �
E�

X�
� �X�

�

From this relation the lower and upper limits of X� are easily calculated
�numerically�� taking into account that X� � 
 for E� � 
 and X� � 
 for
E� � 
� After that� any sophisticated numerical integrator can calculate the
value of the �rst action�variable I�� We used the built�in numerical integrator
of Mathematica ����

There is a discontinuity at E� � 
 which has no physical relevance� In
fact� the invariant normal mode plane X� � P� � 
 separates two indepen�
dent parts of phase space� Orbits can never pass through this discontinuity�
If necessary �which it is not� we could apply an additional transformation to
get rid of this discontinuity�

Calculating the second action variable I� is more di�cult� primarily be�
cause of the ��� resonance� which prohibits us to de�ne the contour as the
intersection of the torus with a hyperplane �we tried by extensive calcula�
tions�� We must choose a contour that traverses the entire torus� In order to
do so� we �rst project the torus onto the �X�� P�� plane� It is easy to show
that this projection is symmetric with respect to re�ection in the P� and
X� axes and that there always is a neighbourhood of the origin which is not
covered by the projection� To insure irreducibility and independence of the
�rst circuit� we choose the second circuit to follow the inner boundary of the
projection �the outer boundary gives raise to major numerical di�culties��
Note that we still need to evaluate

H
P�dX� �parametrized by X�� as well asH

P�dX�� The only use of the projection is that it de�nes a unique irreducible
circuit independent of the �rst circuit�

The calculation of
H
P�dX� and

H
P�dX� is still not easy� for an e�cient

calculation see Huveneers ������

Now that I� and I� are known it is easy to determine the corresponding
conjugated angles 	� and 	� by following the �ow induced by the Hamiltonian
on the torus� In the sequel we do not need 	� and 	� since they will vanish
in the averaging process� So we proceed directly to determining the location
of the resonances�
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��� Resonances

In the next section we will show how averaging can be applied to the per�
turbed system ����� The concept of resonant tori �tori for which the angular
frequencies are rationally dependent� plays an important role in this analy�
sis� because on these tori the averaging process breaks down �better� needs
a separate treatment��

Locating the resonant tori is straightforward� since we are able to compute
the action�variables� We start with Hamilton�s equations for the unperturbed
system ��� in action�angle coordinates

������
�����

�I� � 

�I� � 

�	� � �E�

�I�
�� ��

�	� � �E�

�I�
�� ��

The problem is how to compute �� and ��� given some arbitrary but �xed
values of E� and E�� using only the transformation �E�� E�� � �I�� I�� and
not its expensive inverse� This can be accomplished by applying the implicit
function theorem� which results in

�� �
�I�
�E�

�I�
�E�

�I�
�E�

� �I�
�E�

�I�
�E�

�� � �
�I�
�E�

�I�
�E�

�I�
�E�

� �I�
�E�

�I�
�E�

So to compute �� and �� we only need to evaluate �I�
�E�

� �I�
�E�

� �I�
�E�

and
�I�
�E�

� which can be done by applying a numerical di�erentiator to the action�
variables I����E�� E�� as de�ned in the previous section� Again we used the
built�in numerical di�erentiator of Mathematica ����

Often one is only interested in the value of ��
��
� in which case one only

needs to evaluate �I�
�E�

and �I�
�E�

��

��
�

�I�
�E�

�I�
�E�

��	�
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Using this approach we have calculated the position of the resonant tori
for many integral values of ��

��
� For instance� for small values of E�� the

ratio ��
��

becomes arbitrary large� This corresponds to motion close to the
normal mode plane ��� � �� with an occasional excursion in the X� direction
��� � ���

For E� � 
 there are no resonant tori with ��
��

� �� demonstrating the
strong non�linearity� Moreover� the limit of ��

��
towards the origin of phas�

espace �E� � 
� does not exist� This corresponds to one of the phase�variables
becoming a slow variable �i�e� slowly dependent on time� which requires a
di�erent type of averaging� To study the neighbourhood of the origin we can
use normal form theory instead�

For E� � 
 there is a small region where ��
��

is close to two� These tori are
close to the heteroclinic orbit connecting the two rightmost saddle�points�

Next we will need the property that ��
��

is monotonically decreasing with
respect to E� and E� �this is a necessary condition for averaging near res�
onant ��tori�� This property is hard to prove� since we have no analytic
expression for ��

��
� That ��

��
decreases monotonically with respect to E� is

clear� since for increasing E� the torus moves away from the normal mode
plane which is a hyperbolic �xed point in the Poincar�e section x� � 
� Near
this hyperbolic �xed point �� becomes arbitrary small� since orbits pass this
�xed point slowly �stay close to the normal mode plane� and occasionally
make excursions into phasespace�

It is harder to show the monotonic decrease with respect to E�� We have
been unable to �nd a mathematical or physical argument for this behaviour
and it might well be particular to the potential we are studying� We made
however many numerical cross�sections E� � constant� the results of which
�rmly support the claim of monotonic decrease in E�� Although we realize
we have not proved this claim� we feel very con�dent about it and will assume
it is true in the sequel�

At the maximum and minimum values of E� �the relative equilibria� the
ratio ��

��
approaches a limit value �for �xed E��� Although it is tempting to

assign the value ��
��

� � to the relative equilibria� we should assign the limit
value instead� since on these degenerate tori I� equals zero� This implies that
�� is not de�ned on these tori� so we must take the above limit to assign a
value to �� on these tori�

Near the normal mode plane �and in particular� near the origin�� the ratio

�	



��
��

in ��	� becomes arbitrary large� This has two important consequences�

� If we �x �� we cannot extend our calculations arbitrary close to the
normal mode plane �and thus the origin�� since the timescale parameter
��
��

becomes larger than �
�
� So we must be careful when taking limits�

The closer we want to be to the normal mode plane� the smaller � has
to be�

� There is no smooth limit from the global asymptotic analysis �deter�
mined by ��

��
� to the normal form analysis around the origin� where the

non�linear terms manifest themselves as a second perturbation and the
unperturbed system is in exact ��� resonance�

The ratio ��
��

has non�trivial minimum values for E� � 
 and for E� � 
�
These values are easily calculated numerically using ��	�� We get

	
minE���

��
��

� ��

minE���
��
��

� ��

These ratios hold for the tori close to the two heteroclinic orbits connect�
ing the two rightmost saddle�points�

��� Averaging

Now that we are able to compute the angular frequencies �i we can prove
the existence of two adiabatic invariants� using averaging combined with a
theorem due to Neihstadt ������ The main problem in averaging systems
with more than one degree of freedom is the presence of resonant tori� since
near these tori a linear combination of the two angular coordinates becomes
slowly dependent on time� This normally prohibits averaging over all angular
coordinates near these resonant tori�

However� for the case of two degrees of freedom a more accurate result
is known� Due to the perturbation the coordinates �I�� I�� �which determine
the tori� will slowly change in time� If this �ow crosses the main resonant
tori �we will make this more precise below� transversally everywhere� one
is still allowed to apply averaging� The idea behind this statement is that
although orbits cross resonant tori occasionally� they are only near a resonant
torus during a �short� �i�e� O� �p

�
�� time�interval� which gives only an O�

p
��

��



contribution to the total error� This is the only e�ect of the resonant tori�
instead of an O��� approximation on a �

�
timescale� we now get an O�

p
��

approximation on a �
�
timescale� This is su�cient to give a constructive prove

of the existence of two adiabatic invariants�
So we must �rst show that the perturbation in our system ���� induces a

�ow in the �I�� I�� plane which is transversal to the equi�angular�frequencies�
ratio lines� We will do this by showing that both d

dt
E�

� and
d

dt
E�

� are negative
de�nite when averaged over the angular frequencies� We will omit the O����
perturbation since it introduces only an O��� error on a �

�
timescale�

The �rst one� d
dt
E�

�� is trivial since the transformation ���� turned our
perturbation into a friction� which guarantees a strict monotonic decrease in
the unperturbed energy �E��� This is also clear from

d

dt
E�

� � ��
a���t�

a��t�

�
P �
� � P �

�

�
E�

The second one� d

dt
E�

� � is more di�cult� We will �rst give the proof for

the case that E� � 
� So we must show that
D
d

dt
E�

E
� 
� where h�i denotes

averaging� Using the de�nition of E� ��
� and the perturbed system ���� it
is easy to show that the following relations hold

D
d

dt
E�

E
� ���a���t�

a��t�
h�X�P� �X�P��P�i

� ���a���t�
a��t�

D
�E� �X�X

�
� � a��t�

�
�
�X

�
� �X�

�X
�
�

�E � ����

To calculate h�X�P� �X�P��P�i we must average over the angle coordi�
nates �the surface of a ��torus�� Except for the resonant tori� this is equivalent
to evaluating the time�average

�

T

Z T

�
�X�P� �X�P��P�dt

for arbitrary large T � where Xi and Pi are now understood to represent an or�
bit on the same torus� After partial integration and applying the unperturbed
equations of motion and taking the limit T �� we arrive at

h�X�P� �X�P��P�i � �
�
	X�X

�
� � �a��t�

�
�

�
X�

� �X�
�X

�
�

�
����

��



Combining ���� and ���� we get

D
X�X

�
�

E
�
�
�

�
E� � �

�
a��t�

�
�

�
X�

� �X�
�X

�
�

�

and substituting this back in ���� we get the desired result

�
d

dt
E�

�
� ���a

���t�

a��t�

�
�	

�
E� � �

�
a��t�

�
�

�
X�

� �X�
�X

�
�

�
� 


This completes the proof for E� � 
� For E� � 
 the arguments are
similar�

In conclusion� we are now allowed to apply Arnold�s theorem which states
that averaging the perturbed equations for I� and I� produces an O�

p
��

approximation on a �
�
timescale�

This implies that we are also allowed to average the equations for �E�

and �E� over the ��tori in �X��X�� P�� P�� space provided we use the correct
measure


 �
�������rE�

����
������rE�

����
in evaluating the phasespace integrals� This opens a route for implementing
the averaging process numerically in an e�cient way�

An important remark is that �like in the one degree of freedom case� the
averaged equations are of the following form

��
�

�I� � �
a���t�
a��t�

A��I�� I��
�I� � �a

���t�
a��t�A��I�� I��

This implies that the adiabatic invariants are given by the initial con�
ditions of these equations� or alternatively by the initial conditions of the
corresponding equations for �E� and �E� in �X��X�� P�� P�� space� Moreover�
the slow time�dependence can be removed from these equations by a suitable
time rescaling

	
� � ��

�
log�a��t��

a��t� � e���
����

��



So the way in which a decays to zero does not a�ect the dynamics qual�
itatively� It only changes the timescale on which the dynamics takes place�
We might just as well set a��� � e�� by which our perturbed system ����
becomes autonomous�

��� Discussion

� Close to the origin we can rescale to produce an unperturbed Hamil�
tonian � � � 
� consisting of two independent harmonic oscillators�
the solutions of which are readily expressed in terms of goniometric
functions� We can normalize the system� For our system �� these
calculations have been done by Van den Broek �������

The resulting system posesses two integrals of motion corresponding to
two adiabatic invariants of the general Hamiltonian� An easy general�
ization of this result shows that close to the origin even the non�integral
Hamiltonian posesses two adiabatic invariants�

� A di�erent analysis is necessary near the two saddle points of the en�
ergy manifold �which have energy E� �

�
�� where we are studying the

neighbourhood of the degenerate torus �heteroclinic orbit� connecting
the two saddle points� here both �� and �� become arbitrary small �al�
though their ratio has a nice limit�� The basic idea is the same as for
the one degree of freedom study� if we consider a torus at a distance �
from the homoclinic orbit� the orbits on this torus pass the two saddle
points during a time�interval of the order � log �� This implies that ��

is of the order �� log ����� Since �� is of the same order� this intro�
duces a multiplicative error of order � log � in the averaging procedure
�i�e� when averaging over both angle coordinates�� It is easy to show
that the approximation produced by averaging remains valid on a �

�

timescale� Decreasing � only makes the approximation less accurate�

We conclude that the averaging method works as long as �� log � is
small � o����� i�e� outside an exponentially small

�
e�

�

�

�
neighbourhood

of the homoclinic orbit�

� It is relatively easy to show that the phase �ow of our Hamiltonian �� is
volume�preserving in the �xi� pi� space � although it is time�dependent�
This implies that our picture of saddle points slowly moving away from

�



the origin with a slowly expanding heteroclinic orbit is not complete�
As the saddle points are slowly moving �at speed �� some orbits are
captured by entering the expanding set of points with energy less than
the saddle points� since it is positive invariant and volume preserving�
The only way an orbit can enter this set is along the stable manifold
of the two rightmost saddle points�

� There are many open problems left� We mention the more general prob�
lem of evolution towards symmetry of a nonintegrable system which
poses a di�erent type of averaging problem� There is also the impor�
tant case of more than two degrees of freedom� In the last type of
problem one may expect new phenomena� see also Verhulst ������ or
Verhulst and Hoveijn �������
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