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Abstract

The dynamics of time-dependent evolution towards symmetry in Hamiltonian
systems poses a difficult problem as the analysis has to be global in phas-
espace. For one and two degrees of freedom systems this leads to the presence
of one respectively two global adiabatic invariants and also the persistence
of asymmetric features over a long time.
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1 Introduction

In studies in the natural sciences assumptions of symmetries abound: spher-
ical symmetry, cylindrical symmetry, reflection symmetry etc. This is partly
because such an assumption simplifies the mathematical analysis but it is
also based on the observation that equilibrium states as the outcome of a
transient, evolutionary process, usually display symmetries.

It is quite remarkable that in nature one can observe many systems with
symmetries, for instance rotating planets or stars which usually are displaying
axi-symmetry. A similar observation holds for galaxies which for a large part
have a more or less regular structure like a rotating disk or ellipsoid. More
down to earth: flow structures may display some rotational or axi-symmetry,
mechanical structures like pendula are often characterized by reflection sym-
metry with respect to a plane.

Symmetry assumptions are causing degenerations which necessitate the
calculation of higher order normal forms. In mathematics, the analysis is
usually focused on generic cases but in fields of application like mechanical
engineering or nonlinear wave mechanics, symmetric cases abound which are
not generic at all in the mathematical sense. A survey of the consequences
of symmetry assumptions for Hamiltonian systems by normal form methods
is given by Verhulst (1998).

Here we consider the problem of evolution towards symmetry. Apart
from the additional complications of time-dependence we have that analysis
by normal forms is not sufficient: normalisation involves localisation in some
sense while time-evolution is interesting when including global dynamics. We
shall review a number of case studies with rather intriguing results.



In this paper we start with an evolution problem in a special formulation:
tidal evolution. The surprise in this case is that the outcome of evolution is
rather symmetric. This inspires us to assume that the subset of symmetric
systems has an attracting set in the space of dynamical systems. We want
to study the dynamics inside this attracting set, i.e. the evolution from an
asymmetric system to a symmetric system.

For one and two degrees of freedom Hamiltonian systems this leads to the
presence of one respectively two adiabatic invariants and also unexpectedly
to the persistence of asymmetric features over a very long time.

2 Tidal evolution in the two-body problem

Consider the Newtonian two-body problem where the bodies are stars, star
and planet or planet and satellite. We assume that the masses are outside
the Roche limit which determines the break-up of a body by tidal forces.
The bodies contain fluid (water, gases etc.) which is affected by gravitation,
resulting in tidal bulges. The basic mass distribution of the bodies is spherical
apart from the fluid bulges; of course the bulges in their turn influence the
motion but this is a higher order effect.

In such a mechanical system we have energy dissipation of a form which

depends strongly on the actual physical conditions: the location of conti-
nents, the nature of the fluid etc. Apart from energy dissipation the tidal
bulges produce a torque which results in an exchange of orbital and spin
angular momenta.
Because of tidal evolution the bodies will slowly spiral in and remarkably
enough, we can predict the possible outcome of evolution in such a system
without a more detailed specification of the physical mechanism. This is im-
portant as the long time behaviour of for instance the Solar System, cannot
be understood without taking into account tidal evolution.

The analysis which we present is based on Counselman (1973) where the
two-dimensional case is treated, and Hut (1980) which deals with the full
three-dimensional case. For the slowly changing energy we have in relative
coordinates
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where (i is the gravitational constant, M and m the masses of the bodies, a



the length of the (slowly changing) semi-major axis, [; and [ the moments
of inertia, 2 and w the respective angular velocities of rotation. The total
angular momentum L will be conserved
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with h the orbital angular momentum.

To find the possible equilibrium states we determine the critical points
of £ under the constraint that L is constant in a six-dimensional subspace
(obtained after some reductions) with nine parameters. The result is that
we have

e no equilibrium state if L < L. with L = |L| and L. a positive
number depending on the masses and the moments of inertia.

e two equilibrium states if L > L..;; which correspond with orbits which
are coplanar, circular and corotating. A very symmetric end stage.

To determine the stability of the equilibrium states one considers the second
order variation of the energy F under the constraint L is constant. One
finds that for stability the orbital angular momentum has to exceed a critical
value; this means that the equilibrium state corresponding with the widest
orbit is stable, the other one is unstable.

We note that it is quite remarkable that without specification of the
mechanism of tidal dissipation we can determine the outcome of evolution.
Also, that the equilibrium states clearly display a certain symmetry.

3 Evolution towards symmetry in one degree
of freedom

Studies of the evolution of actual physical systems are difficult and so rela-
tively rare. We propose therefore to ignore, at least for the time being, the
physical mechanisms and to consider systems described by a simple looking
Hamiltonian of the form

Hip.g.c1) = L7 +¢*) - Sa(et)d’ n



where the asymmetric part is slowly vanishing as we put for a(et) a smooth,
monotonically decreasing function for which

a(0) = 1,}1}1{({10 a(et) =0,0<e <k 1 (2)

The problem was analysed by Huveneers and Verhulst (1997). Putting p = #,
¢ = x we have the equation of motion

T4z = a(et):z;2 (3)

We note that in the autonomous system (3), ¢ = 0, there are basically two
regions: within the homoclinic solution the orbits are bounded, outside the
homoclinic solution the orbits diverge to infinity (with the exception of the
stable manifold and the saddle point itself). In system (3) for ¢ > 0 we have
no fixed saddle point, still it turns out that we have two separate regions of
initial values in which the orbits are bounded or diverge to infinity. It is in-
structive (though slightly wrong) to view system (3) as having a saddle point
moving slowly towards infinity and having a slowly expanding homoclinic or-
bit. In this picture, an orbit can remain bounded in two ways, either by
starting inside the homoclinic orbit, or by getting “captured” by the slowly
expanding homoclinic orbit, which can only happen if the orbit starts suf-
ficiently close to the stable manifold of the saddle point. To make these
statements mathematically correct, one should use the concept of normally
hyperbolic motion. One of the aims of this study is then to obtain adiabatic
invariants characterizing the dynamics of the problem.

Two key ideas play a part in the paper by Huveneers and Verhulst (1997).
First, by using a simple transformation a direct relation to dissipative me-
chanics is established. Secondly the subsequent analysis in this paper is
based on averaging methods using elliptic and hypergeometric functions but,
because of its relation to dissipative mechanics and “crossing of separatrix”
aspects it clearly profits from the results by Haberman (1983), Robinson
(1983), Haberman and Ho (1994,1995) and Bourland and Haberman (1990,
1991). Rand (1990) used a different approach (Jacobian elliptic functions)
to study a similar class of dynamical systems. We also mention Neishtadt
(1987) and a nice survey of the theory of adiabatic invariants by Henrard
(1993).

The key step in analyzing system (3) is performing the transformation

y = a(et)x (4)



The idea behind this transformation is to fix the normally hyperbolic motion
of system (3). We want to study system (3) for all time; this time-dependent
rescaling of the coordinates enables us to study a bounded domain, which
simplifies the calculations considerably. This transformation has also disad-
vantages, in particular the loss of the Hamiltonian structure. The special
choice a(et) = e" will be used to show some of the more general results; for
the general treatment see Huveneers and Verhulst (1997). With this choice
for a(et), system (3) becomes

J+y—y = —2ey—cy (5)

From the original equation describing evolution towards symmetry, we have
now obtained a dissipative system. The region of attraction of system (5) is
bounded by the stable manifold of the saddle point.

By averaging one determines an adiabatic invariant inside the homoclinic
solution which takes a different form in different domains of the phase-plane.
The location of the stable manifold of the saddle point of system (5) is cal-
culated by considering the variation of the energy along the stable manifold.
Since this variation is an O(e) effect, we may use the unperturbed stable
manifold in this calculation, which involves elliptic functions. One of the
conclusions is:

There exists a global adiabatic invariant inside the homoclinic orbit of the un-
perturbed system with the exclusion of an exponentially thin boundary layer,
valid for all time.

An explicit calculation of the adiabatic invariant and transforming back
to the original z, & variables produces an interesting result. The level curves
of the adiabatic invariant for a fizred time “resemble” ellipses, of which the
long axis and the short axis differ by an O(e) amount. and which are rotated
around the origin, causing asymmetry.

This behaviour persists when ¢ tends to infinity. Put in other words,
when t goes to infinity, our dynamical system (3) becomes symmetric (with
respect to @ and #), but the level curves of the adiabatic invariant remain
asymmetric. So we have reached the following conclusion:

The evolution of an ensemble of phase points towards a symmetric potential
will show significant (i.e. O(e)) traces of its asymmetrical past, for all time.

So there is a sort of hysteresis effect present: although the system becomes
symmetric, it still “knows” that it was asymmetric in the past. One can



demonstrate this phenomenon visually by taking ¢ not too small and choosing
for instance a(et) = e~ to obtain level curves of the adiabatic invariant. The
asymmetric effect is clearly present.

4 Evolution towards symmetry in two degrees
of freedom

A natural question is how to extend the preceding results to Hamiltonian
systems with two degrees of freedom. It turns out that this is quite difficult;
however, with some restrictive assumptions, Huveneers (1997) obtained re-
sults which we shall review and discuss. The difficulties can be summarized
as follows:

e There is very little experience with a global (i.e. global in the energy)
analysis of Hamiltonian systems, time-dependent or not.

e For two and more degrees of freedom there are resonance manifolds in
phase space which pose special obstructions.

e The Hamiltonian may be integrable, near-integrable or non-integrable
which requires different treatments.

o In the integrable case we should employ action-angle variables but these
are very difficult to construct globally.

We start again with
H = Hyy + a(et)Hysym, 0 < e < 1, (6)

where H,y,,18 the symmetric part of the Hamiltonian, H,,,,, the asymmetric
part and a decreases again monotonically and smoothly from 1 to 0. The
condition on ¢ ensures adiabatic evolution to symmetry.

A second degree of freedom introduces an important complication: reso-
nance. It is clear from normal form theory that in order to have an interesting
system, we must choose the linear part to be in low order resonance, like 1:2,
1:1 or 1:3. Here the 1:2 resonance has been chosen, since the first resonant
nonlinear terms appear already at third order in this case. Actually the cal-
culations for the 1:1 resonance are easier (for various mathematical reasons),
although one has to take fourth order terms into account. The calculations
for the 1:3 resonance are more elaborate, on the other hand.



4.1 The unperturbed Hamiltonian

We will concentrate on the case in which the unperturbed system, ¢ = 0,is
integrable:

1 1 1
H = §p% + 227 + §p§ + 5:1;3 + a(et) {2:1;:1)’ + :1:1:1;3} (7)

for which the unperturbed system (¢ = 0)

1 1 1
Ho = 5pi + 207 + 505 + 55 + 207 + o (8)

possesses the two first integrals

1 1 1
B = §pf + 227 + §p§ + 5:1;3 + (2:)1/':1g + :1;1:1;3) 9)
2 2 L4 2,2
Ey = xopipy + v125 — 24py + 11’2 + 1) (10)

Note that the unperturbed potential is discrete symmetric with respect to s,
but asymmetric with respect to x;. The corresponding equations of motion

are
T = p
p1 = —day — i — 62}
Ty = po
}52 = —xy— 21179

Identifying 227 + 23 + 227 + 123 as the potential energy of the unperturbed
system, one can draw the equipotential curves which give a crude qualitative
description of the dynamics.

It is clear that the neighbourhood of the origin contains bounded solu-
tions which live on compact tori due to the Liouville-Arnold theorem. Near
the two saddle (hyperbolic) points the energy manifolds loses compactness,
the tori break open, resulting in unbounded and less interesting dynamics.
With this picture in mind, we can give a crude qualitative description of the
perturbed system, for which the coefficient a decreases slowly to zero. Due
to the slow decrease in @, the hyperbolic points are moving slowly towards
infinity, resulting in capturing of nearby orbits; see for comparison similar
behaviour in the one-degree-of-freedom problem discussed above. The unper-
turbed system possesses a heteroclinic orbit connecting the two hyperbolic



points. The heteroclinic orbit is important for our analysis, since it may be
regarded as a periodic orbit with an infinitely large period, so averaging is
due to fail near this heteroclinic orbit.
To do any computations, one must know the range of values which (£, E3)
can take (in the unperturbed problem). The range of F; is easily determined
from the compactness requirement to be [0, ﬂ . Determining the range for £
is more subtle since it depends on Fj. It is worthwile to note that at
and Fj .., there is only one value of 27 at which the orbit is allowed to inter-
sect the hyperplane x5 = 0. This implies that these orbits are periodic. The
one-parameter (F;) family of these orbits constitutes a manifold of relative
equilibria , see Derks and Valkering (1992), Derks (1992) and Zeegers (1993),
see also (Mitropolsky, 1963).

There are two more sources of periodic orbits. The first one are the
resonant tori and the second one is the normal mode x; = p; = 0, i.e.
Ey = 0 which is unstable (hyperbolic) for any £y < 1.

4.2 Integrability and dissipation

A difficulty in analysing the perturbed system (7) is that the interesting
dynamics takes place on a slowly expanding subset of phase space. Analogous
to the 1-degree of freedom case (Huveneers and Verhulst, 1997) this difficulty
is removed by rescaling the space variables adiabatically:

1 )(
= —_—
{ - (1)

T2 = sz

The conjugated momentum variables (py, p2) are mixed with (2, x3) and
transformed into (Py, P,) defined by P, = X..

Note that this is not a canonical transformation. By performing this
transformation the interesting part of phase space remains bounded for all
time, but as a penalty we lose the Hamiltonian structure of our system. Also
note that this transformation only works if the perturbation is homogeneous
of a certain degree, as is the case in our system.

After applying (11) we arrive at the following system



X, = P
Pio= X, - X} 6X7 4 2:0E0py 2 {“;/((5)) 2 (2/<(§>))2} X
Xy, = P
By = Xy~ 2X, X, + 20 P, 4 {“;'((53) -2 (Z/<(5f>))2} X
(12)

which we will study. So our phasespace transformation (11) has transformed
the perturbed system (7) into the unperturbed system (8) with an additional
small (i.e. O(¢)) dissipation added. The terms of order ¢* can be neglected
on a % timescale, as long as the terms between curly braces remain bounded.

Therefore we demand that both %Ié)l and %g%l are bounded for all £&. These
conditions are satisfied for many monotonically decreasing functions, and in
particular for a(et) = ¢~ for which (12) reduces to an autonomous system.

This explicit equivalence of adiabatic Hamiltonian perturbation and small
dissipation is very helpful both in understanding the dynamics and in doing

calculations, since we can use ideas and techniques from both fields.

4.3 Action-Angle transformation

We will construct the action variables following the proof of the Liouville-
Arnold theorem, i.e. by evaluating the contour integral

fﬁ-d}?

along two irreducible circuits on the torus determined by fixed values of F;
and Fy. The first circuit is of course easy to find, since it is to a high degree
arbitrary. So we choose it in such a way that the contour integral becomes
as simple as possible. This is done by intersecting the torus with the X3 =0
hyperplane. The contour integral reduces to

7{ PdX,

so we have to evaluate the area enclosed by the contour after projection onto
the (Pr, X1) plane. Using the results from the preceding subsection, we know
that the contour is given by

10



X1

From this relation the lower and upper limits of X are easily calculated
(numerically), taking into account that X; > 0 for £y < 0 and X; < 0 for
Ey > 0. After that, any sophisticated numerical integrator can calculate the
value of the first action-variable Iy. We used the built-in numerical integrator
of Mathematica 2.2.

There is a discontinuity at £y = 0 which has no physical relevance. In
fact, the invariant normal mode plane X, = P, = 0 separates two indepen-
dent parts of phase space. Orbits can never pass through this discontinuity.
If necessary (which it is not) we could apply an additional transformation to
get rid of this discontinuity.

Calculating the second action variable Iy is more difficult, primarily be-
cause of the 1:2 resonance, which prohibits us to define the contour as the
intersection of the torus with a hyperplane (we tried by extensive calcula-
tions). We must choose a contour that traverses the entire torus. In order to
do so, we first project the torus onto the (X3, P») plane. It is easy to show
that this projection is symmetric with respect to reflection in the P, and
X5 axes and that there always is a neighbourhood of the origin which is not
covered by the projection. To insure irreducibility and independence of the
first circuit, we choose the second circuit to follow the inner boundary of the
projection (the outer boundary gives raise to major numerical difficulties).
Note that we still need to evaluate § P1dX; (parametrized by X3) as well as
¢ PydX5. The only use of the projection is that it defines a unique irreducible
circuit independent of the first circuit.

The calculation of § Pid X, and ¢ P,dX, is still not easy; for an efficient
calculation see Huveneers (1997).

Now that [y and [, are known it is easy to determine the corresponding
conjugated angles ¢1 and ¢y by following the flow induced by the Hamiltonian
on the torus. In the sequel we do not need ¢; and ¢, since they will vanish
in the averaging process. So we proceed directly to determining the location
of the resonances.

11



4.4 Resonances

In the next section we will show how averaging can be applied to the per-
turbed system (12). The concept of resonant tori (tori for which the angular
frequencies are rationally dependent) plays an important role in this analy-
sis, because on these tori the averaging process breaks down (better: needs
a separate treatment).

Locating the resonant tori is straightforward, since we are able to compute
the action-variables. We start with Hamilton’s equations for the unperturbed
system (8) in action-angle coordinates

]1 - 0

]2 - 0

i aE .

4‘51 = 3 =W
_ 9Fy __.

Q2 = Fo =W

The problem is how to compute w; and w,, given some arbitrary but fixed
values of Ey and Fs, using only the transformation (Ey, Ey) — ([, [3) and
not its expensive inverse. This can be accomplished by applying the implicit
function theorem, which results in

1%

_ ok,
“L= 5L ol _ oL oL
0E, 8F,  9FE, 0E;

oL

_ ok,
“2= TOL oL oL ok

Oky 0E, Oky 0E,

8, 8L AL
So to compute w; and wy; we only need to evaluate 55 5B 35 and
a1,

5B which can be done by applying a numerical differentiator to the action-
variables [15(E1, E3) as defined in the previous section. Again we used the
built-in numerical differentiator of Mathematica 2.2.

Often one is only interested in the value of o in which case one only

needs to evaluate 22 and 24

aF, aF,
alk

Yi_ 9k (13)
w, 2L
2 aF
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Using this approach we have calculated the position of the resonant tori
for many integral values of 2. For instance, for small values of F;, the
ratio = becomes arbitrary large. This Corresponds to motion close to the
normal mode plane (wy = 1) with an occasional excursion in the X, direction
(W < 1).

For Ey > 0 there are no resonant tori with o= 2, demonstrating the
strong non-linearity. Moreover, the limit of 2 towards the origin of phas-
espace (F7 = 0) does not exist. ThlS Corresponds to one of the phase-variables
becoming a slow variable (i.e. slowly dependent on time) which requires a
different type of averaging. To study the neighbourhood of the origin we can
use normal form theory instead.

For Iy < 0 there is a small region where % is close to two. These tori are
close to the heteroclinic orbit connecting the two rightmost saddle-points.
L is monotonically decreasing with
respect to Fy and Fy (this is a necessary condition for averaging near res-
onant 2-tori). This property is hard to prove, since we have no analytic

Next we will need the property that

expression for Z—; That - decreases monotonically with respect to F, is

clear, since for increasing E2 the torus moves away from the normal mode
plane which is a hyperbolic fixed point in the Poincaré section x; = 0. Near
this hyperbolic fixed point w; becomes arbitrary small, since orbits pass this
fixed point slowly (stay close to the normal mode plane) and occasionally
make excursions into phasespace.

It is harder to show the monotonic decrease with respect to F;. We have
been unable to find a mathematical or physical argument for this behaviour
and it might well be particular to the potential we are studying. We made
however many numerical cross-sections Ky = constant, the results of which
firmly support the claim of monotonic decrease in Fy. Although we realize
we have not proved this claim, we feel very confident about it and will assume
it is true in the sequel.

At the maximum and minimum values of Ey (the relative equilibria) the
ratio = approaches a limit value (for fixed E7). Although it is tempting to
assign the value =2t the relative equilibria, we should assign the limit
value instead, since on these degenerate tori [ equals zero. This implies that
wy 1is not deﬁned on these tori, so we must take the above limit to assign a
value to w; on these tori.

Near the normal mode plane (and in particular, near the origin), the ratio

13



o in (13) becomes arbitrary large. This has two important consequences:

o If we fix £, we cannot extend our calculations arbitrary close to the
normal mode plane (and thus the origin), since the timescale parameter
o becomes larger than % So we must be careful when taking limits.
The closer we want to be to the normal mode plane, the smaller ¢ has
to be.

e There is no smooth limit from the global asymptotic analysis (deter-
mined by Z—;) to the normal form analysis around the origin, where the
non-linear terms manifest themselves as a second perturbation and the
unperturbed system is in exact 1:2 resonance.

The ratio L has non-trivial minimum values for Iy > 0 and for F; < 0.
These values are easily calculated numerically using (13). We get

> W
{mmE2>0$ = 2.

3 Wi .
ming,<o 5~ = 1.

These ratios hold for the tori close to the two heteroclinic orbits connect-
ing the two rightmost saddle-points.

4.5 Averaging

Now that we are able to compute the angular frequencies w; we can prove
the existence of two adiabatic invariants, using averaging combined with a
theorem due to Neihstadt (1987). The main problem in averaging systems
with more than one degree of freedom is the presence of resonant tori, since
near these tori a linear combination of the two angular coordinates becomes
slowly dependent on time. This normally prohibits averaging over all angular
coordinates near these resonant tori.

However, for the case of two degrees of freedom a more accurate result
is known. Due to the perturbation the coordinates (1, I3) (which determine
the tori) will slowly change in time. If this flow crosses the main resonant
tori (we will make this more precise below) transversally everywhere, one
is still allowed to apply averaging. The idea behind this statement is that
although orbits cross resonant tori occasionally, they are only near a resonant
torus during a “short” (i.e. O(\/Lg)) time-interval, which gives only an O(,/¢)

14



contribution to the total error. This is the only effect of the resonant tori:
instead of an O(¢) approximation on a + timescale, we now get an O(,/¢)
approximation on a % timescale. This is sufficient to give a constructive prove
of the existence of two adiabatic invariants.

So we must first show that the perturbation in our system (12) induces a
flow in the (11, I3) plane which is transversal to the equi-angular-frequencies-
ratio lines. We will do this by showing that both %Elz and %Eg are negative
definite when averaged over the angular frequencies. We will omit the O(&?)
perturbation since it introduces only an O(g) error on a % timescale.

The first one, %Elz, is trivial since the transformation (11) turned our
perturbation into a friction, which guarantees a strict monotonic decrease in
the unperturbed energy (F4). This is also clear from

a'(et)
a(et)

d
—E} = 4e

- (P2 +P}) By

The second one, %Eg, is more difficult. We will first give the proof for

the case that £y > 0. So we must show that <%E2> < 0, where (-) denotes
averaging. Using the definition of Fy (10) and the perturbed system (12) it
is easy to show that the following relations hold

<%E2> = —QEZ(EEEZ)) <(X2P1 —X1P2)P2>

0 By + X X2+ alet) (3XE+ X2XE)) (14)

To calculate (X2 Py — X1P) Py) we must average over the angle coordi-
nates (the surface of a 2-torus). Except for the resonant tori, this is equivalent
to evaluating the time-average

1 T
T/o (Xo Py — X, 1) Padt

for arbitrary large T', where X; and P; are now understood to represent an or-
bit on the same torus. After partial integration and applying the unperturbed
equations of motion and taking the limit 7' — oo we arrive at

(X3P — X1 Py) Py) = — <3X1X22 + da(et) Gxg + Xfxg)> (15)
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Combining (14) and (15) we get
1 ) 1
(X,X3) = <1E2 — Jalet) (1)(;* + XfX§)>
and substituting this back in (14) we get the desired result

d a'let) /3 1 I 5 2)>
S p,) =2 2By — Zalet) (S X 4 X2X
<dt 2> 6a(et)< i 4“(€)<4 2 T Ay ) ) <0

This completes the proof for Ky > 0. For F; < 0 the arguments are
similar.

In conclusion, we are now allowed to apply Arnold’s theorem which states
that averaging the perturbed equations for I3 and I produces an O(\/¢)
approximation on a % timescale.

This implies that we are also allowed to average the equations for E,
and FEj over the 2-tori in (X1, X, P1, P») space provided we use the correct
measure

1

F=1= —
‘VEl V E,

in evaluating the phasespace integrals. This opens a route for implementing
the averaging process numerically in an efficient way.

An important remark is that (like in the one degree of freedom case) the
averaged equations are of the following form

jl = 52/((66;))141(]1,]2)
]2 = €MA2(]17]2)

This implies that the adiabatic invariants are given by the initial con-
ditions of these equations, or alternatively by the initial conditions of the
corresponding equations for £y and Fy in (X1, X3, Pi, Py) space. Moreover,
the slow time-dependence can be removed from these equations by a suitable
time rescaling

T = —% log(a(et))
{ .« (16)

)y = e 7

16



So the way in which a decays to zero does not affect the dynamics qual-
itatively. It only changes the timescale on which the dynamics takes place.
We might just as well set a(§) = ¢=¢ by which our perturbed system (12)
becomes autonomous.

4.6 Discussion

o Close to the origin we can rescale to produce an unperturbed Hamil-
tonian ( ¢ = 0) consisting of two independent harmonic oscillators,
the solutions of which are readily expressed in terms of goniometric
functions. We can normalize the system. For our system (7) these
calculations have been done by Van den Broek (1988).

The resulting system posesses two integrals of motion corresponding to
two adiabatic invariants of the general Hamiltonian. An easy general-
ization of this result shows that close to the origin even the non-integral
Hamiltonian posesses two adiabatic invariants.

o A different analysis is necessary near the two saddle points of the en-
ergy manifold (which have energy F; = i) where we are studying the
neighbourhood of the degenerate torus (heteroclinic orbit) connecting
the two saddle points; here both w; and wy become arbitrary small (al-
though their ratio has a nice limit). The basic idea is the same as for
the one degree of freedom study: if we consider a torus at a distance ¢
from the homoclinic orbit, the orbits on this torus pass the two saddle
points during a time-interval of the order —log 6. This implies that w,
is of the order (—log 5)_1. Since w; is of the same order, this intro-
duces a multiplicative error of order —log 6 in the averaging procedure
(i.e. when averaging over both angle coordinates). It is easy to show
that the approximation produced by averaging remains valid on a %
timescale. Decreasing ¢ only makes the approximation less accurate.

We conclude that the averaging method works as long as —elogé is
small ( o(1)), i.e. outside an exponentially small (e_%) neighbourhood
of the homoclinic orbit.

e [t isrelatively easy to show that the phase flow of our Hamiltonian (7) is
volume-preserving in the (z;, p;) space , although it is time-dependent.
This implies that our picture of saddle points slowly moving away from
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the origin with a slowly expanding heteroclinic orbit is not complete.
As the saddle points are slowly moving (at speed ) some orbits are
captured by entering the expanding set of points with energy less than
the saddle points, since it is positive invariant and volume preserving.
The only way an orbit can enter this set is along the stable manifold
of the two rightmost saddle points.

There are many open problems left. We mention the more general prob-
lem of evolution towards symmetry of a nonintegrable system which
poses a different type of averaging problem. There is also the impor-
tant case of more than two degrees of freedom. In the last type of
problem one may expect new phenomena; see also Verhulst (1998) or

Verhulst and Hoveijn (1992).
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