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Torsion zero-cycles and the Abel-Jacobi map
over the real numbers

Joost van Hamel

ABSTRACT. Thisisa study of the torsion in the Chow group of zero-cycles on a variety
over the real numbers. The first section recalls important results from the literature. The
rest of the paper is devoted to the study of the Abel-Jacobi map a: A(X) — Alb(X)(R)
restricted to torsion subgroups. Using Roitman’s theorem over the complex numbers and a
version of Bloch’s cohomological Abel—Jacobi map over the real numbers, it is shown that
this map can be described completely in terms of &ae cohomology. For some examples
(products of curves, abelian varieties, certain fibre bundles) the torsion in the kernel and
cokernel of the Abel-Jacobi map o is computed explicitly.

Introduction

Consider the Abel-Jacobi map
a: Ag(X) = Alb(X) (k)

from the group of zero-cycles of degree O modulo rational equivalence into the k-points of
the Albanese variety of a nonsingular projective geometrically irreducible variety X over a
field k. If kisalgebraically closed, then a iswell-known to be surjective, but it need not be
injective. However, Roitman’s theorem on torsion zero-cycles asserts that the restriction

Otors: Ao(X)tors = AIB(X) (K)tors

to the torsion subgroups is an isomorphism when k is algebraically closed (with the p-
part in characteristic p due to Milne). In particular, we get for k algebraically closed of
characteristic zero that Ag(X)tors =~ (Q/Z)4, where g = dimg HL(X, Ox).

For k=R, and X(R) # 0, it was shown by Colliot-Théléne and Scheiderer that

Ao(X)tors = (Q/Z)9 x (2/2)5—17
with g as above and s the number of connected components of the set of real points X(R)
(for the euclidean topology; let me state here that in this paper the set of real points X(R)
and the set of complex points X(C) will always be equipped with the euclidean topol ogy).
However, the methods of [CTS96 do not give precise information on the Abel-Jacobi
map.

In general the map Qo5 iS NOt an isomorphism over R: it is easy to construct varieties
having g = 0, but a non-connected set of real points (for example, suitable hypersurfaces of
dimension > 2 in projective space). In that case Alb(X) istrivia, SO Qs iS NOt injective.
Another easy example is an abelian variety X the set of real points of which has more
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than two connected components (see Example 5.2). Surjectivity of a5 can fail as well;
examples are curves of odd genus without real points (see Section 1.2), but also certain
types of ‘twisted’ fibre bundles that do havereal points (see Example5.1).

A standard trace argument, combined with Roitman’stheorem on ayors Over C, implies
that the kernel and cokernel of aors Over R are purely 2-torsion. In particular, therestriction

Otorsdiv: Ao(X)torsdiv — AIB(X)tors div

to the maximal divisible torsion subgroupsis surjective. Since both groups are isomorphic
to (Q/Z)% one might be led to hope that at least dqrs gy 1S an isomorphism, but even this
analogue of Roitman’stheorem fails. see again Example5.1.

In this paper we will see that over R the torsion Abel—Jacobi map aqrs is determined
by the étale cohomology of X with coefficientsin Q/Z(j) = limn =) for j € Z. Morepre-
cisely, we have the following result, which is a combi natmn7 Theorem 3.3.i and Propo-
sition 4.1.

THEOREM. Let X be a nonsingular projective geometrically irreducible variety over
R of dimension d.

(i) The image obiiors is canonically isomorphic to the image of the natural mapping
HE (X, Q/Z(d)) — HE (X, Q/Z(d)) /R,
(i) The kernel obigrs giv is isomorphic to the cokernel of the natural mapping
HEH(X,Q/Z(d +1)) = HEH(Xc,Q/Z(d + 1)) /R,

Given the image of aiors, the kernel of aors giv, @nd the number of connected compo-
nents of X(R), it is of course asimple calculation to find the Z /2-dimension of the kernel
of aiors. Theformulais givenin Theorem 3.3.iii.

My method of proving the above resultsis strongly inspired by Bloch’s proof of Roit-
man’s theorem as presented in [CT93]. There the key step is the construction of a coho-
mological Abel-Jacobi map

Aii CH (X)tors = HZ XX, Q/Z(d))

for the torsion of the Chow group of cycles of codimensioni. This map is then shown to
be an isomorphism in the case of zero-cycles(i.e., i = d) by inspection of the Bloch-Ogus
spectral sequence.

When the ground field is not algebraically closed, the construction of A; usually runs
into trouble. We will seein Section 3.1, however, that over R there are no problems, thanks
to the finiteness of the absolute Galois group. Contrary to the case of an algebraicaly
closed field, we do not get that Ay is an isomorphism, but an analysis of the upper part
of the Bloch—Ogus spectral sequence carried out in Section 2 does give us a short exact
sequence

0 — CHo(X)tors — HZ(X,Q/Z(d)) — PH?(X(R),Z/2) —+ 0
i>0
(see Theorem 3.2), and a so the fact that the image of A¢g maps surj ectlvely onto theimage
of the base change map from H24(X,Q/Z(d)) to H2~1(Xc,Q/Z(d))®¥(C/R). From
these two factsit is not so hard to derive the main theorem

STRUCTURE OF THE PAPER. In the first section | will present a few existing results
on real zero-cyclesand | will discuss some of the special features of étale cohomology and
the Bloch—Ogus spectral sequence for varieties over R.



Section 2 contains a new result on the Bloch—Ogus spectral sequence for varieties
over R. Only Corollary 2.2 will be used in the rest of the paper.

The cohomological Abel-Jacobi map will be constructed and applied to the study of
the real Abel-Jacobi map in Section 3 with Theorem 3.2 and Theorem 3.3 as main results.
Also the filtration on CHo(X )tors induced by the cohomol ogical Abel-Jacobi map and the
Hochschild—Serre spectral sequenceisintroduced.

In Section 4 some of the criteria of Theorem 3.3 are trandated into criteria that are
easier to check in practice. This section is by nature quite technical; from a conceptual
point of view, it does not add anything to the insight provided by Section 3. The reader
might prefer to skip it at first reading (or to read the introduction only) and go directly to
the examples of Section 5 where the criteria of Section 4 are actually put to work.

REMARK. Undoubtedly, al resultsin this paper will bevalid over arbitrary real closed
fields when rephrased properly, and the proofs should be relatively straightforward to
adapt. However, | lacked the courage and the expertise to carry this out myself.

ACKNOWLEDGEMENTS. | would like to thank J.-L. Colliot-Thélene and C. Schei-
derer for the stimulating discussions. | also would like to thank the latter for his help with
the historical remarks and the referencesto the literature in the first two sections. Finally, |
would like to thank the referees for the careful reading and detailed comments that helped
me to improve the exposition, and for pointing out an error in the origina version of Ex-
ampleb5.1.

1. Known results

This section contains an overview of some known results on zero-cycles, Albanese
varieties and étale cohnomology over the real numbers. Throughout the paper a varietywill
be areduced, separated, but not necessarily irreducible scheme of finite type over afield.

SOURCES AND FURTHER READING. The theory of real abelian varieties as used in
Section 1.1 is essentially due to Comessatti and put into a modern framework by Silhol;
the reader isreferred to [Si89 Chap. IV] for more information. The results on divisors on
nonsingular projective curves over R in Section 1.2 go back to Harnack, Weichold, Klein
and Witt; see[PW91]] for ahistorical overview with precise references, and also for results
concerning non-projective and/or singular curves. In [CTS9§ the reader can find more
about the Chow group of zero-cycles of (not necessarily complete or nonsingular) varieties
of higher dimensions.

The relation between étale cohomol ogy and the equivariant cohnomology of the set of
complex points of avariety over R discussed in Section 1.5 seemsto be established first in
[Cox79. The relation between equivariant cohnomology and the cohomology of the set of
fixed points for an action of agroup of prime order lies at the very origin of the equivariant
cohomology theory, as developed by A. Borel (see [Bo6(Q, [Hs75, [AP93)]) after pioneer-
ing work of PA. Smith. For us it will be convenient to follow Grothendieck’s algebraic
approach as described in [Gr57, Ch. V], rather than using Borel’s geometric definition. In
[Sch94 the equivariant cohomology theory is set up in the context of topos theory, allow-
ing in particular to obtain analogues of the results in Sections 1.5 and 1.6 for varieties over
arbitrary real closed fields. For the readers who wish to compare the topological and the
topos-theoretic approach | have included references to analogous results in [Sch94 when-
ever | was ableto locate them. A basic paper on the application of equivariant cohomology
of X(C) to real algebraic geometry is[Kr83]; see also [Si89, Ch. I]. The treatment of the



Bloch—Ogus spectral sequence over the real numbersin Section 1.7 is based on [Sch94
Ch. 19].

1.1. Albanese varieties over R.The Albanese variety Alb(X) of a nonsingular pro-
jective geometrically irreducible variety X over R is an abelian variety over R admitting
a universal regular Galois-equivariant homomorphism from the group of zero-cycles of
degree 0 on Xc into the set of complex points of Alb(X) (see for example [Mu94] for
the definition of a regular homomorphism, and [Ra9§ for a modern definition in terms
of flat sheaves over the ground field). The universal regular homomorphism induces the
Abel-Jacobi map

a: Ao(X) — Alb(X)(R),

that we considered in the introduction.
We have a canonical isomorphism

Alb(X)(C) ~ Hom(H°(X(C),Q%),C)/(H1(X(C),Z)/tors)
of complex tori with an anti-holomorphic involution.  Here the involution on
Hom(H%(X(C),Q'),C) and on Hy(X(C),Z) is induced by the anti-holomorphic invo-
lution on X(C) and complex conjugation on C. Taking g = dimc H%(X(C),Q%) and
N\ =H1(X(C),Z)/tors, we get that
Alb(X)(R) ~ (CY/A)C.
From the theory of lattices with a G-action we see that A is of the form
N~Z8xZ(1)3xZ[G]92,
for some 0 < a<qg. HereZ(1) is Z with the involution z+— —z, and Z[G] is the free
abelian group generated by the elements of G with G acting in the obvious way. Since
(R[G]/Z[G])® ~R/Z and (R(1)/Z(1))® ~ Z /2, we get an isomorphism
AlIb(X)(R) ~ (R/Z)3 x (Z/2)2.
It is clear from the above construction that the torsion of Alb(X)(R) isisomorphic to
H1(X(C),Q/Z)®; Poincaré duality gives an isomorphism
AIb(X)(R)ars = H*1(X(C),Q/Z(d))°,
whered = dim(X) andQ/Z(d) isQ/Z withinvolutionx — (—1)9x. Thed-fold twist of the
coefficients comes from the fact that the fundamental class of X(C) liesin the G-invariant

part of Hyog(X(C),Z(d)), since complex conjugation on X(C) preserves the orientation if
andonly if d iseven.

1.2. Divisors on curves.Zero-cycles on nonsingular curves are divisors, so the Al-
banese variety of anonsingular projective geometrically irreducible curve X coincideswith
the Picard variety; it is better known as the Jacobian variety Jac(X) of X. From general
theory (valid over arbitrary fields) it follows that the mapping

a: Ag(X) = Jac(X)(R)
isinjectivefor X as above and surjectiveif X(R) # 0.
If X has genusg and X(R) has s > 0 connected components, then
Po(X) = Jac(X)(R) =~ (R/2) x (2/2)* L.
More precisely, we have that the class of a divisor Z of degree zero lies in the maximal
divisible subgroup of Ag(X) if and only if Z isan integral linear combination of
(i) rea pointswith multiplicity 2,



(i) closed pointswith complex residue field,
(iii) divisors of the form [P1] — [P2] with P; and P, real points in the same connected
component of X(R).

This also holdswhen X(R) = 0, so then
Ao(X) = (R/Z)°.
However, in this case we actually have

(R/Z)9 if giseven,

Jac(X)(R) =~ {(R/Z)g xZ/2 ifgisodd,

sowhengisodd and X hasno real points, then the mapping a has cokernel Z /2. Otherwise
o issurjective.

1.3. Zero-cycles on higher dimensional varietiesFor a nonsingular projective ge-
ometrically irreducible variety X over R of arbitrary dimension it was shown in [CTI81],
using the calculation for curves given above, that Ag(X) modulo the maximal divisible
subgroup Ao(X)div is aZ/2-vector space of dimension s— 1 if X(R) has s > 0 connected
components, and that Ag(X) is divisible if X has no real points. In fact, the criteria for a
zero-cycleto be divisible modul o rational equivalenceare precisely the same asthe criteria
for adivisor on a curve given above.

In[CTS9q it was shown using Roitman’s theorem over C and a trace argument, that
the torsion of Ag(X)g isisomorphicto (Q/Z)9 with g = dimg HY(X, Ox). Together with
the above expression for Ag(X) /Ao(X)div, this gives the formulaof the introduction:

Ao(X)tars =~ (Q/Z)% x (Z/Z)S_l

when X(R) # 0 (see [CTS96 Th. 1.6.b]). The group Ag(X)/Ao(X)tors iS uniquely divisi-
ble, which follows from the analogous statement for varieties over C and a trace argument
(see[CTS96 Th. 1.3)).

1.4. Etale and Galois cohomology.The group G = Gal (C/R) = Z/2 does not have
finite cohomological dimension for 2-torsion coefficients, so SpecR does not have finite
étale cohomological dimension, nor does any variety X over R with X(R) # 0.

As agraded ring, the cohomology ring H*(G, Z) isisomorphic to the (commutative!)
ring Z[n?]/(2n?), wheren? has degree 2. Also, H*(G,Z/2) ~ Z/2[n], with n of degree 1.
The notation already indicates what the natural map H*(G,Z) — H*(G,Z/2) looks like.
The cohomology of G is periodic cup product with n? induces for any g > 0 and any
G-module M a surjection

HY(G,M) — H¥2(G,m),
which is an isomorphismif g > 0. If M isaZ/2-module, cup product with n induces for
any g > O asurjection H4(G,M) — H%1(G,M) which is an isomorphismiif g > 0.

For the étale cohomology of a variety X over R this implies that when g > 2dim(X)
we have for any torsion sheaf F on X that H3 (X, F) ~ HI"2(X, F), and even H3 (X, F) ~
Hgt”(x,}“) if F is a2-torsion sheaf, as can be seen from the Hochschild—Serre spectral
sequence

EDY = HP(G,Hg(Xc, 7)) = HE (X, F)

(see Section 1.6 for a similar result with more details of the proof). In other words, the
étale cohomology of varieties over R is stablein degree > 2dim(X). This stable part hasa



very natural interpretation in terms of the cohomology of X(R). For example, in the case
F =2Z/2wehavefor every q > 2dim(X) an isomorphism

dimX
Hg(X,Z2/2) ~ @ H (X(R),Z/2),

which was first constructed by D. Cox in [Cox7q. In the next sections we will see how
this isomorphism can be obtained from a comparison theorem between étale cohomol ogy
over R and equivariant cohnomol ogy, combined with a localization theorem in equivariant
cohomol ogy.

1.5. Comparison betweeretale and equivariant conomology.To any abelian tor-
sion group M with an action of G = Z /2 we can associate on the one hand a locally con-
stant sheaf on the étale site of a variety X over R, and on the other hand a locally con-
stant G-sheaf on the space X (C), equipped with the euclidean topology and the canonical
G = Gal(C/R)-action. It wasfirst provedin [Cox79 using étale homotopy theory that for
every g > O thereis an isomorphism

(1) Hg(X,M) =~ HY(X(C); G,M).

Here the right hand side denotes equivariant cohomology in the sense of either
Grothendieck (see [Gr57, Ch. V]) or Borel (see [Bo6() — both theories are equivalent
since G isfinite. In fact, if we take Grothendieck’s definition of H9(X(C); G, —) as the
gth right derived functor of taking G-invariant global sections, then the isomorphism (1)
follows directly from the usual comparison between the étale cohomology of X¢ and the
cohomology of X(C) as given in [SGA4, Exp. XVI] and the fact that &ale cohomology
of SpecR corresponds to Galois cohomology (see also [Sch94 (15.3)], [Ni94], and the
commentsin [CTS96, §2.3]).

Observe that the G-sheaf associated to the G-module Q/Z(j) defined in Section 1.1

correspondsto the étele sheaf Q/Z(j) = linn i’

1.6. Equivariant cohomology. We will consider equivariant sheaf cohomology, as
defined in [Gr57, Ch. V], for G = Gal(C/R) acting onV = X(C) or X(R), where X is
avariety over R. Coefficients will always be taken in (the locally constant G-sheaf onV
associated to) atorsion G-module M, and wewill mainly concentrate on thecasesM =Z /2
or Q/Z(j). Wedenotebyi: VC < V theinclusion of the set of fixed points (note that here
VE = X(R)). By : V — V /G we denote the quotient map.

By [Gr57, Th. 5.2.1] we have two spectral sequences converging to equivariant coho-
mology: the Hochschild—Serre spectral sequence

2) E3% = HP(G,HI(V,M)) = HP*9(V;G, M),
(inthis context also known asthe Borel-Serre spectral sequen@ad the spectral sequence
(3) ESY = HP(V/G,H9(G,M)) = HP*(V; G, M),

where H9(G, M) isthe sheaf onV /G associated to the preshesf
U — HY(G,TtM(U)),

by [Gr57, Prop. 5.2.2]. Itisnot hard to check (see[Gr57, Th. 5.3.1]) that for g > 0 the sup-
port of H9(G,M) iscontainedinT(VC®), sothat HP(V /G, HY(G,M)) ~ HP(VC, HI(G,M))
for g > 0. Hence the morphism of spectral sequences (3) that correspondsto the restriction
homomorphism

4) i": H'(X(C);G,M) — H"(X(R); G,M)



is an isomorphism on the EX*%-level for g > 0.

1.6.1. Localization. Since X(C)/G has finite cohomological dimension (see [Qu71,
Prop. A.11], compare[Sch94 Cor. 7.18]), we have that the Ezp’o-term HP(V/G,H(G,M))
of spectral sequence (3) is zero for V = X(C) or X(R), and all sufficiently large p. Hence
the restriction map (4) is an isomorphism for al sufficiently large n.

In the modern theory of transformation groups this is usually rephrased in terms of
localization(compare [Qu71, §4], [Hs75 §l11.2]). First we consider the case M = Z /2.
LetH*(V;G,Z/2)[n~1] bethelocalization of the H* (G, Z /2)-module H* (V; G, Z /2) with
respect to the multiplicative subset of H*(G,Z/2) = Z/2[n] generated by n. Then the
above implies that the restriction map induces an isomorphism of graded Z/2[n,n1]-
algebras

() H*(X(C);G,Z2/2)[n™Y = H*(X(R);G,Z/2)[n "]

(compare [Sch94 Cor. 7.19)).

Inthecase M = Q/Z(j) for some j € Z we localize with respect to the multiplica-
tive subset of H*(G,Z) = Z[n?]/(2n?) generated by n2. Note that H*(G,Z)[n"?] ~
Z/2[n?,n~2]. Hence the isomorphism

(6) H*(X(C);G,Q/Z(j))[n~?] = H*(X(R);G,Q/Z(j))In ]

induced by the restriction map is an isomorphism of graded Z /2[n?,n~2]-modules.
Later we will also need to know that the natural homomorphisms

(1) HY(X(C):G,Z/2) Z@?ZH*(G,Z/Z)[ﬂ_l] - H*(X(C);G,Z/2)[n"Y]

and
) H”(X(C);G,Q/Z(i))ész*(G,Z)[n‘z] — HMMA2(X(C);G,Q/Z(j))In"?

are isomorphisms for n sufficiently large. We obtain good lower bounds for n by con-
sidering the Hochschild-Serre spectral sequence (2). For M = Z /2 we have that on the
E>%-level the cup product with n coincideswith the homomorphism E2% — EX*9 given
by cup product with n in Galois cohomology. Hence the periodicity of the cohomology of
Gimpliesthat if for some D > 0 we havethat H9(X(C),Z/2) = 0for al q > D, then cup
product with ) induces a surjection

H"(X(C);G,Z/2) = H™Y(X(C);G,Z/2)
for n > D whichisan isomorphismif n > D. We can awaystake D = 2dim(X), and even
D =dim(X) if X isaffine. We obtain that with such D the homomorphism(7) isasurjection
for n> D and anisomorphismif n > D (compare[Sch94 Cor. 7.19, Cor. 7.20]). By similar
reasoning for M = Q/Z(j) we obtain the same result for the homomorphism (8).
1.6.2. Cohomology of the set of real pointg/e will now analyse the equivariant co-

homology of X(R). For M = Z /2 the E5"%-terms of the spectral sequence (3) forV = X(R)
have the form

EY9=HP(X(R),Z/2)

for al p,q> 0. The edge morphisms E2p7O = HP(X(R),Z/2) - HP(X(R);G,Z/2) for
p > 0, and the cup product induce an isomorphism

9) H*(X(R),Z/Z)Z%H*(G,Z/Z)QH*(X(R);G,Z/Z)



of graded H*(G,Z/2)-algebras (see [Gr57, Th. 4.4.1, Cor. 5.4.1], compare [Sch94
Cor. 6.3.2]). In particular, the spectral sequence (3) istrivia forV =X(R) andM =2/2
(see[Gr57, Th. 4.4.1)).
Let m C H*(G,Z/2) bethe maximal ideal generated by (1—n). Combining the iso-
morphisms (9) and (5) we get an isomorphism of rings (not of graded rings)
H*(X(C);G,Z/2)/mH"(X(C);G,Z/2) = H"(X(R),2/2)

(compare[Sch94 Cor. 7.19]). The composition of thisisomorphism with the quotient map
will be denoted by

B=Bz/2: H'(X(C);G,Z2/2) - H"(X(R),Z/2).
Note that our results on the map (7) imply that the map

H(X(C);G,Z/2) =+ H'(X(R),Z/2)

obtained by restricting 3 to the cohomology in degree n is surjective for n > 2dim(X)
(resp. n > dim(X) if X is affine) and bijective for n > 2dim(X) (resp. n > dim(X) if X
is affine), compare [Sch94 Cor. 7.20]. Under the comparison isomorphism (1) this map
correspondsfor n > 2dim(X) to the isomorphism given in Section 1.4.

For M = Q/Z(j) with j € Z we have that the E5"%-terms of the spectral sequence (3)
for V = X(R) have the following form:

HP(X(R),Q/Z) ifq=0and jiseven,
Ef9= < HP(X(R),Z/2) ifg>0andj#q (mod2),
0 otherwise.

Thecoefficientmap Z /2 — Q/Z( j) induces a homomorphism of Eé”q-terms of the spectral
sequence (3) which isanisomorphismforal p>0,q>0and j Z g (mod 2). Therefore
the spectral sequence (3) istrivial forM =Q/Z(j) andV = X(R), and theisomorphism (9)
combined with the coefficientmap Z /2 — Q/Z(j) inducesfor n > dim(X) anisomorphism

@ HX(R),Z/2) 5 H"(X(R);G,Q/Z())).
iZn+]j (mod 2)
Hence, taking m; € H*(G,Z) to be the maximal ideal generated by (1 —n?), we get an
isomorphism of groups
H*(X(C);G,Q/Z(j))/mzH"(X(C); G,Q/Z(j)) = H*(X(R),Z/2).

which in this case preserves (resp. reverses) the natural Z /2-gradingswhen j isodd (resp.
even). Note that here the grading modulo 2 on the equivariant conomology of X(C) de-
scends to the quotient since m; is generated by the element 1 — n?, which is purely of even
degree. The composition of the above isomorphism with the quotient map will be denoted
by

B =Bqz(j): H(X(C);G,Q/Z(j)) = H"(X(R),Z/2).

Therestriction of (3 to the cohomology in degree n gives a surjection
HY(X(C);G,Q/z(i) = @ H'(X(R),Z/2)
iZn+j (mod 2)
forn>2dim(X) (resp. n> dim(X) if X isaffine) which isanisomorphismif n > 2dim(X)
(resp. n > dim(X) if X is affine); compare [Sch94 Th. 20.2.11, Th. 20.2.13]).

The notations 3, Bz,2, and Bg,z(j) will also be used for the composition of the com-
parison isomorphism (1) with the mappings defined above.



REMARK 1.1. Inorder to give someideaof the nature of the mappings 3, let me men-
tion herethat for X nonsingular the éale cyclemap cl: Z9(X) — Héth(x, Z/2) composed
with Bz, and theith projection givesfor every pair i, g > 0 amapping

Z9(X) = H'(X(R),Z/2)
which is zero outside the range g < i < 2q, and which coincides for i = g with the coho-
mological real algebraic cycle map
cr: Z9X) = HIYX(R),Z/2)
that sends a subvariety V C X of codimension g to the Poincaré dual of the class in
the ‘Borel-Moore’ homology group Hgim(x)—q(X(R),Z/2) represented by the set of real

pointsV (R), as defined by Borel and Haefliger in [BH61]. See [Kr94, Th. 0.6], [Sch95
Rem. 3.5], or see [VH96, §§5.1, 5.2] for a purely topological proof.

1.7. The Bloch—-Ogus spectral sequencd.he mapping from the éale site to the
Zariski site induces for any variety X over R and any étale sheaf F on X the local-to—
global spectral sequence

(10) EPY=HE, (X, HY(F)) = HE X, F),
where H9(F) isthe Zariski sheaf associated to the presheaf
U HI(U,F).

For X nonsingular and F alocally constant torsion sheaf this spectral sequence is often
called the Bloch—Ogus spectral sequensice (by [BO74, Rem. 6.4]) it coincides with
the coniveau spectral sequence studied by Bloch and Ogus in their fundamental paper
[BO74]. They showed in particular that with the above hypotheses on X and F the groups
HD. (X, H9(F)) vanishfor al p > g. Intherest of this section we will not need to assume
that X isnonsingular.

For X over an algebraically closed field and F atorsion sheaf we havethat H9(F) =0
for g > dim(X). In view of Section 1.4, this does not hold for X over R with X(R)
nonempty and F not 2-divisible. However, Colliot-Théléne and Parimala showed in
[CTPI(Q] for X nonsingular that the sheaves H9(Z /2) do admit a simple description for
g > dim(X). Scheiderer then showed how to derive their result (and the analogue when X
is singular) from the cohomological facts presented in Sections 1.5 and 1.6. Moreover, his
approach, which we will follow here, immediately gave an easy description of the coho-
mology groups HP(X,79(Z /2)) for g > dim(X), showing that these ‘extra EJ9-terms of
the local—to—global spectral sequence over R are not so hard to understand.

The homomorphism 37, defined in Section 1.6.2 induces for g > d an isomorphism

[~32 /2 from #H9(Z /2) to the Zariski-sheaf associated to the presheaf
U~ PH(U(R),Z/2)
i

and Bg,z(j) induces for g > d an isomorphism [~3Q/Z(j) from H9(Q/Z(j)) to the Zariski-
sheaf associated to the presheaf

U @ H(UR),Z/2).
i#g+]j (mod 2)

It is a remarkable fact that the graded pieces of the above presheaves of degreei > 0
vanish after sheafifying for the Zariski topology (Lemma1.2.i). This observationis dueto
Scheiderer and it was the key result that allowed him to give a different proof of the result



of Colliot-Théléene and Parimala, as well as the easy description referred to above of the
higher E>*9-termsin the local—to—global spectral sequence (see Corollary 1.3).

LEMMA 1.2. Let X be a variety oveR. Letd: X(R) — Xzg be the obvious mapping
of topological spaces. Lek be a locally constant sheaf on(R).

(i) Fori > Owe have
R¢.F=0.
(i) For any p> Owe have
H o (X, 9. F) = HP(X(R), F).

PROOF. (i) Thisis the analogue of [Sch94 Th. 19.2] for the euclidean topology, so
it follows from comparison between the conomology of X (R) and the cohomology of the
real spectrum of X. Scheiderer’s earlier approach (in [Sch9Q) gives a direct proof: it is
sufficient to find for every Zariski-neighbourhoodU of P € X(R) a smaller Zariski-open
neighbourhoodV C U of P, such that the restriction

H'(U(R),F) = H(V(R),F)

iszero. SuchaV iseasily constructed from the datathat give a semi-algebraic triangulation
of U(R) (see[BCR87, Th. 9.2.1]).
(ii) Thisfollowsfrom thefirst statement by general homological algebra. O

COROLLARY 1.3. Let X be a variety oveR of dimensiond. Let ¢ d.
(i) The homomorphisifi, /> induces an isomorphism

Bz/a: H(Z/2) 5 9.2/2
hence for any p> 0 an isomorphism
HY (X, H9(Z/2)) = HP(X(R),Z/2).
(if) For j € Z the homomorphisifigz(j) induces an isomorphism
0 ifg=j (mod 2),
¢.2/2 ifq#j (mod2),

hence for every pr 0 an isomorphism

éQ/Z(j): HUQ/Z(j))—= {

0 ifg=j (mod 2),

HZpaf(X’Hq(Q/Z(D));{Hp(X(R),Z/Z) fazj (mod2).

(iii) For q# j (mod 2) the isomorphisméz/z and BQ/Z(]) are compatible with the
homomorphism{9(Z /2) — H%(Q/Z(j)) induced by the coefficientma&y2 — Q/Z(j).

PROOF. Immediate from Lemma 1.2, the above descriptions of #9(Z/2) and
HYQ/Z(j)), and the definition of Bz, and Bg,z()- o

The fact that #9(Z/2) is isomorphic to ¢.Z/2 for g > d is (for X nonsingular) the
main theorem of Colliot-Théléne and Parimala (see [CTP90, Th. 2.3.1]). Thefull result is
due to Scheiderer (see [Sch94 Prop. 19.4, Cor. 19.5.1]).

Of course, the relation between the higher ES*%-terms of the local-to-global spectral
sequence and the cohomology of the set of real points is not only induced by 3 on the
local level, but globally as well. Heuristically, this means that the mapping 3 maps the
E}%-terms for g > dim(X) isomorphically to HP(X(R),Z/2) or 0. In order to make this
statement well-defined, we follow Scheiderer’s approach.



PROPOSITION 1.4. Let X be a variety defined ov& of pure dimension d. Let M be
atorsion G-module. The comparison isomorph{d@jrand the inclusion:i X(R) — X(C)
induce a morphism from the local-to—global spectral sequence

EY9=HD (X, HI(M)) = HETI(X, M),
to the spectral sequen¢g) for V = X(R):
E)%=H(X(R),H(G,M)) = HPT4(X(R); G,M).

On the limit terms this morphism is the comparison isomorpl{ignfiollowed by the re-
striction map(4). When M= Z /2 or Q/Z(j) for some je Z, then on the E9-terms this
morphism is for p> 0, and g> d the isomorphism of Corollary 1.3.

PROOF. Thisis the analogue of [Sch94 Prop. 19.7]. Let Y€ be the functor sending a
G-sheaf F of abelian groups on X(C) to the sheaf on Xz associated to the presheaf

U= F(U)C.
The comparison between étale cohomology and equivariant cohomology gives that the

spectral sequence (10) is canonically isomorphic to the spectral sequence associated to the
decomposition of derived functors

(11) RI%(c) = RMxgq o RUS,

with notationsasin [Gr57, §5.2]. Theinclusioni: X(R) < X(C) inducesan isomorphism
of functors

WPoi. = 0.0 HG,-),

with ¢ asin Lemma 1.2 and H%(G, —) asin Section 1.6. Hence the canonical morphism
M — i.M of G-sheaveson X(C) and the aboveisomorphismsinduce amap from the local—
to—global spectral sequence with coefficientsin M into the spectral sequence associated to
the decomposition of derived functors

(12) R R) = RNy 0 R(9. 0 HO(G, —))

appliedto the G-sheaf M on X(R). Sincel x,, o ¢. = 'x(r) and ¢.. isexact by Lemma 1.2,
the spectral sequence associated to (12) coincides with the spectral sequence (3) forV =
X(R), which is the spectral sequence associated to the decomposition

RM%r) = RMx(r) 0 H(G, —).

This proves the first two statements. The last statement follows immediately from the
definition of [3. O

2. Vanishing of differentials in the Bloch—Ogus spectral sequence

A crucia point in the study of the Bloch—Ogus spectral sequence over R is the vanish-
ing of the differentials

dPa; EPA y EpHA-T+L

for large q. See aso the historical remarks below. We will prove in this section that for
X nonsingular all differentials with source EP9 are zero when g > dim(X) (part (i) of
Theorem 2.1). In other words, the ‘extra’ q > dim(X) part of the Bloch—Ogus spectral
sequence is completely degenerate. For many purposes, and certainly for our purposes
here, this means that the Bloch—Ogus spectral sequence for varieties over R is no more
complicated than the Bloch—Ogus spectral sequence over C. Also, we will show that the
g > dim(X) part mapsto zero, under the pull-back mapping in étale conomol ogy associated



to base change from R to C. Thisis part (ii) of Theorem 2.1. In the rest of the paper we
will not use the theorem in its full strength; we will only need Corollary 2.2.

The theorem is proved by means of an auxiliary degenerate spectral sequence that
maps into the Bloch—Ogus spectral sequence. This will be the local—-to—global spectral
sequence for equivariant cohnomology with supportsin X(R). It is defined and studied in
Section 2.1. Then in Section 2.2 we study the map into the Bloch—Ogus spectral sequence,
and prove the theorem.

It should be said that, using Proposition 1.4, it is actualy not very hard to derive
Theorem 2.1 from a result of Krasnov in [Kr94] concerning the image of the mapping 3
(Theorem 2.8 in the present paper). This, and further connections with existing results,
will betreated in Section 2.3.

THEOREM 2.1. Let X be a nonsingular variety ov& of dimension d. Let M=Z/2
or Q/Z(j) for some je Z and let n> 0. Consider the Bloch—Ogus spectral sequence with
coefficients in M, and let Fbe the associated descending filtration of(, M), with pth
graded piece equal to " P.

(i) Forany pe Z, q> d and r> 2 the differential @: EPY — EPT4"is zero.
(i) The kernel of the canonical mapping

T HE(X,M) = H}(Xc, M)
maps surjectively onto
HL(X,M)/F"9HL (X, M).
PROOF. See Section 2.2. O

COROLLARY 2.2. Let X be a nonsingular variety ov& of dimension d.
() We have a short exact sequence

0— HIL 1(X, HY(Q/Z(d))) — HE 1(X,Q/Z(d)) -+ @DH 2 (X(R),Z/2) - O,
i>0
wheref' is the mapping followed by the projection.
(i) The image of the base change map

™ HZ1(X,Q/Z(d)) = HZ 1 (Xe,Q/Z(d))
is generated by the image o (X, H9(Q/Z(d))).

PROOF. (i) The exactnessfollows from part (i) of the theorem and Proposition 1.4.
(i) Part (ii) of the theorem says in the case of n = 2d — 1 that the cokernel of the
inclusion HS 1 (X, H4(Q/Z(d))) — H2¥~Y(X,Q/Z(d)) mapsto zero under Tt*. O

ar

HISTORICAL REMARKS. Thefirst result on vanishing of differentials of high degree
in the Bloch—Ogus spectral sequence over R is due to Colliot-Thééne and Parimala, who
proved the vanishing of all differentials in the Bloch-Ogus spectral sequence for a non-
singular geometrically irreducible surface over R having a compact set of real points (see
[CTP9AO, Prop. 3.11]). Inspired by this result, Scheiderer proved for a (possibly singular)
variety X of dimensiond over an arbitrary real closed field the vanishing of all differentials
having target EPY with r > 2, p+q > 2d and (p,q) # (d,d) (see [Sch94 Prop. 19.9]).
Together with Colliot-Théléne he improved the bounds on (p,q) to p€ Z and q > d (see
[CTS96 Th. 3.1.b, Rem. 3.1.1]). For X nonsingular they proved in the same paper that the

differentials having target E vanish aswell (see [CTS96 Th. 3.2.0]). Actually, all these



results are stated for coefficientsin Z /2 only, but the case of coefficientsin Q/Z(j) isan
easy conseguence.
2.1. Equivariant cohomology with supports. The equivariant cohomology groups

of X(C) with supportsin X(R) and coefficientsin Z /2 needed in the proof of Theorem 2.1
can be defined by

HQ(R) (X(C);G,2/2) := RiHomg 72(i.2/2,Z /2).

Herei: X(R) — X(C) denotes the inclusion and the subscript appended to RAHom indi-
cates that we are working in the derived category of G-sheaves of Z/2-moduleson X(C).
Thisis the obvious equivariant version of ordinary cohomology with supports:

Hsl ) (X(C). Z/2) = RHomy (1.2 /2,2 /2)

(see[Iv86, §11.9]). If X isnonsingular of dimension d, then X(R) isa submanifold of X(C)
of pure codimension d, so we have for every n € Z acanonical isomorphism

H'(X(R),Z/2) 3 HHS (X(C),Z2/2),

known as the Thom isomorphisr({see [Iv86, Th. VI11.2.3]). The situation is analogousin
the equivariant situation:

PROPOSITION 2.3 (Thom isomorphism). Let X be a nonsingular variety ovd® of
pure dimension d. We have for angrZ a canonical isomorphism
T: H'(X(R);G,Z2/2) 5 HQ(%(X(C);QZ/Z).
PROOF. ThemaptistheisomorphismH"(X(R),Z/2) = R'Homg 7,>(Z/2,i.Z/2) =
Rn+dHomG7Z/2(Z/2, i*Z/Z[—d])[Wl]Rn-i-dHomez/z(Z/z, R%Ofrk/z(l*Z/z, 2/2)) =
v86, .
R™Homg 7/2(i.2/2,2/2) = HQ?Fg’)(X(C); G,Z2/2). O
The decomposition of derived functors (11) applied to the complex of G-sheaves
RHony /,(i.Z/2,Z/2) givesthe local-to—global spectral sequence
(13) EDY = H7x (X, Hy m)) = Hi(r) (X(C):G,Z/2),
where HQ(R) is the Zariski-sheaf associated to the presheaf
U = Hj g (U(C):G,Z/2).
Thisisthe auxiliary spectral sequence mentioned in the introduction of this section.

LEMMA 2.4. Let X be a nonsingular variety ové of pure dimension d. Consider
the spectral sequeng8) for V = X(R) and M= Z /2 shifted vertically by d positions:

EP9= HP(X(R),H%9(G,Z/2)) = HP*9(X(R); G,Z/2).

There is an isomorphism from this spectral sequence into the spectral sequ8yc®r-
responding to the Thom isomorphisron limit terms.

PROOF. We saw in the proof of Proposition 1.4 that the spectral sequence (3) for
V = X(R) and M = Z /2 corresponds to the decomposition of derived functors

RMy(r) = Ry 0 (RYC o).
Therefore the required isomorphism is induced by the quasi-isomorphism
i.2/2[d] = RHomy (1.2 /2,2 /2)
which was used in the construction of the Thom isomorphism. O



COROLLARY 2.5. Let X be a nonsingular variety ov&® of pure dimension d. Con-
sider the spectral sequen¢Es) .

(i) The differentials 9 are zero for every pge Z and r > 2.
(i) We have for every p 0 and every r> 2

EPG ~ 0 forg<d,
" T |HP(X(R),Z/2) forq>d

(iii) Cup product with the nontrivial elemente H1(G,Z/2) induces for every & d,
every pe Z and every r> 2 an isomorphism B9 5 gP4H,

PrRoor. Thisfollowsimmediately from Lemma 2.4 and the corresponding properties
of the spectral sequence (3) forV = X(R) andM =Z/2. O

2.2. Proof of Theorem 2.1.First we will study the canonical mapping
Y HQ(R)(X(C);G,Z/Z) — H"(X(C);G,Z/2)
obtained by forgetting the supports.

LEMMA 2.6. Let X be a variety defined ov& of dimension d.
(i) The mappingp is an isomorphism in degreexn2d + 1.
(if) If X is nonsingular, themp is injective in every degree» 0.

Note that in the nonequivariant setting part (i) is trivialy true, since both groups are
zeroindegreen > 2d + 1. However, the nonequivariant analogue of the last statement does
not hold (not even for X = AN with N > 0).

PrROOF. (i) Thisfollowsfrom the long exact sequence

s HQ(R)(X(C);G,Z/Z) — H"(X(C);G,Z2/2) - HY(X(C) — X(R);G,Z/2) — ---
which is obtained by applying RHomg 7 ,>(—,Z/2) to the short exact sequence
0—=i.2/22/2—Z/2c)_xgr) 0

of G-sheaves on X(C) (compare [Iv86, §11.9]). Since G acts freely on X(C) — X(R), we
have that H"(X(C) — X(R);G,Z/2) is canonically isomorphic to the ordinary nth coho-
mology group of the quotient space, which vanishesfor n > 2d.

(if) Consider the following commutative diagram:

HQ(R)(X(C):G,Z/2)<U—“N> Hy ) (X(C);G,Z/2)
I Js
HM(X(C);G,Z/2) — s H™N(X(C); G, 2/2)

For any N > 0 the top horizontal arrow is injective by Corollary 2.5.iii. Taking N large
enough we get that the right hand vertical arrow is an isomorphism by statement (i); the
injectivity of the left hand vertical arrow now is obvious. O

COROLLARY 2.7. Let X be a nonsingular variety defined ovof dimension d. The
mappingy corresponds to a morphism form the local-to—global spectral sequd3ye



into the Bloch—Ogus spectral sequer{t8) with coefficients irzZ /2, that induces on the
E}%level for any pe Z and g> d an isomorphism

HE (X, ] ) 7 HE (X, HI(Z/2)).

PROOF. The existence of the morphism of spectral sequencesis clear from the defini-
tions. For the last statement, take q > d. We will show that  induces an isomorphism

Q: Hym ~ HIZ/2).

We see from part (ii) of theabovel emmathat { isinjective. Since both ’Hg R) andHY(Z/2)

are isomorphic to ¢..Z /2 by Proposition 2.3 and Corollary 1.3.i, thisimpliesthat ] is an
isomorphism. O

PROOF OF THEOREM 2.1. Consider the mapping of spectra sequences associ-
ated to the injection Z/2 — Q/Z(j). By Corollary 1.3, this induces a surjection
HY (X, H(Z/2)) — HEL (X, H9(Q/Z(]))) for any q > d. Therefore it is sufficient to
prove the theorem for M = Z /2.

() Thefirst statement follows immediately from Corollary 2.5.i and Corollary 2.7.

(i) From the Hochschild-Serre spectral sequence for H! &(X,Z/2) we see that
cup product with the nontrivial element n € Hl(G Z/2) induces a surjection from
HI 1(X,Z/2) to the kernel of the the pull-back map H! 1(X,Z/2) = HY(Xc,Z/2). There-
fore it is sufficient to prove that cup product with n mduc&for every g > d asurjection on
the ES%-level of the Bloch-Ogus spectral sequence

ER1 L ERI = EDY = HD (X, HY(Z/2)).
This follows immediately from Corollary 2.5.iii and Corollary 2.7. More precisdly, it fol-

lows from the following commutative diagram, where g > d and the vertical arrows are
induced by the morphism of spectral sequences of Corollary 2.7:

HZa (X, HX(R)) zar(X, HX(R))

l "

Epa-t 1 L HP (X HY(Z/2))
Here the upper horizontal arrow is an isomorphism by Corollary 2.5.iii and the right hand
vertical arrow is an isomorphism by Corollary 2.7. O

2.3. Connections with known results.Consider the following result:

THEOREM 2.8. Let X be a nonsingular variety ovd® of dimension d. For every
k > 0, the homomaorphisifa followed by the projection to the k lowest degree factors gives
a surjection

k
HE™(X,Z2/2) - PH(X(R),Z/2).
i=0

For X projective this is due to Krasnov, as a corollary to a more technical, but much
stronger result (see [Kr94, Th. 3.1, Cor. 3.2]). It aso follows (for X complete) from the
general result [AP93, Prop. 5.3.7] on the relation between [3 and the Gysin morphism
between the cohomology of Poincaré duality spaces, in this case applied to the inclusion
i: X(R) = X(C). Both proofs are purely topological: the important fact is that X(R) is
a submanifold of X(C) of codimension > d (with equality if X has pure dimension d). In



fact, the only reason for the projectiveness condition in Krasnov’sresult is that in the proof
itisused that X(R) isafinite cell complex. Asfar as| can follow his argument, it seems
that this condition can be relaxed in order to allow for arbitrary nonsingular X of pure
dimension d. On the other hand, in the approach of Allday and Puppe the compactness of
X(R) and X(C) is essential, since Poincaré duality (in the sense of nondegeneracy of the
cup product pairing) forms the heart of their methods.

PROPOSITION 2.9. For any variety X oveR of dimension d the statement of Theo-
rem 2.1 is equivalent to the statement of Theorem 2.8.

PrROOF. Asremarked in the proof of Theorem 2.1, we can restrict ourselves to coef-
ficientsin Z /2. Then, in view of Proposition 1.4, we have that part (i) of Theorem 2.1 is
equivalent to the statement that for k > 0 the map

k
B HEM (X, 2/2) —» DH'(X(R),Z/2)
i=0
given by [3 followed by the projection is surjective. This is a weaker version of Theo-
rem 2.8. Once we have part (i) of Theorem 2.1, we use the fact that cup product with n in-
ducesasurjectionfromH. (X, Z/2) tothekernel of themap H, (X, Z /2) — HL (Xc,Z/2)
(aswe saw in the proof). Since 3 respects cup product and sends n to the unit element of
H*(X(R),Z/2), we get the following commutative diagram:

un
H3(X,2/2) H3H(X,Z/2)

\ K M/B
PH'(X(R),Z/2)

i=0

By Proposition 1.4 we have that the subgroup Fk+1Hg+k+1(x,z /2) maps to zero under
the mapping B’ defined above, so (since we have part (i) of Theorem 2.1), the diagram
gives an immediate equivalence between part (ii) of Theorem 2.1 and the statement of
Theorem 2.8. O

It is also possible to give adirect proof of Theorem 2.8 with the methods used here.

SKETCH OF PROOF OF THEOREM 2.8. Without loss of generality we may assume X
to be of pure dimension d. Consider the composite mapping

8: HY(X(R),Z/2) — HIX (X(C);G,2/2) %

(R)
HHK(X(C):G,Z/2) —— HMK(X(R); G,Z/2).

This map correspondsto a morphism 6:* from the shifted spectral sequence of Lemma2.4
to the spectral sequence (3) for V = X(R), M = Z /2. In order to prove the theorem, it is
sufficient to provethat 8** is an isomorphism on the ES9-level for g > d.

Since both spectral sequences are trivial, it follows from Lemma 2.4, Corollary 2.7
and Proposition 1.4 that 829 is an isomorphism for every r > 2, p € Z and q > d; the case
g = d follows from Corollary 2.5.iii and the analogue for the spectral sequence (3). O

REMARK 2.10. The use of Corollary 2.7 and Proposition 1.4, hence of the Zariski
topology, in the above proof is a purely matter of convenience. With alittle more work
(using arguments similar to the ones used in the proof of Lemma 2.6 and Corollary 2.7)



we could have given adirect proof of the fact that 6% is an isomorphism for every r > 2,
peZandqg>d.

3. The Abel-Jacobi maps for torsion cycle classes

In this section we will see that Bloch's construction of a cohomological Abel—Jacobi
map for torsion cycles actually works over the real numbers. Combined with the results
of Section 2, this gives usin Section 3.2 precise information on the Abel—Jacobi mapping
Otors iN terms of étale cohomology. The cohomologica Abel—Jacobi map also induces a
filtration on CHo(X)tors, Which will be treated in Section 3.3.

3.1. Bloch’s cohomological Abel-Jacobi mapWe will analyse Bloch’s construc-
tion of a cohomological Abel-Jacobi map, as presented in [CT93, §§3, 4]. Let X be a
nonsingular variety over afield k of characteristic zero. Let K; be the Zariski-sheaf asso-
ciated to the presheaf U — K;(O(U)) of algebraic K-groups. The Gersten conjecture and
the Merkurjev—Suslin theorem on the K5 of fields give for every i > 0 adiagram

0— HEZHX, KD ©Q/Z —2 HEZHX, HH(Q/Z(1))) ~2 CHI (X )iors —+ O
(14) lw
H2-1(X,Q/Z(i))

with exact top row (see [CT93, §3.2]).

When k is algebraically closed and X is nonsingular and projective, it can be shown
that v, o ¢; = 0 (see [CT93, proof of Th. 4.3]) and y; and y; then induce Bloch's cohomo-
logical Abel-Jacobi map

Ai: CHi(X)tors—> Héi_l(X,Q/Z(i))-

If kisnot algebraically closed, theny; o ¢; need not be zero; for example, inthecasei =1
the diagram simplifies to the short exact sequence

0K ©Q/Z 2% HL(X,Q/Z(1)) — CH(X)ors — O,

but k* ®Q/Z # 0 when k is a number field or a p-adic field. When k = R, we do have
k"®Q/Z =0, hence y; o ¢1 = 0. By the following theorem this generalizes to higher
codimensions.

THEOREM 3.1. Let X be a nonsingular projective geometrically irreducible variety
overR of dimension d. For any>» 0 the mapping

Yiodi: Hy (X, Ki) ®Q/Z — HE1(X,Q/Z(i))
is zero. Hence the cohomological Abel-Jacobi mapping
Air CH' (X)tors — HA (X, Q/Z (i)
is defined. The image af coincides with the image of the map

vi: HZ (X HI(Q/Z (1)) — HEH(X,Q/Z(i)).



PROOF. Inview of diagram (14) it is sufficient to provethat y; o ¢; = 0. Consider the
commutative diagram associated to the base change t: X¢ — X:

HZH (X, Ki) ® Q/Z HZ-1(X,Q/Z(i))

L e I

Hya (Xc, Ki) ©Q/Z ——— HE ~*(Xc, Q/Z (1))
Sincey° o ¢ = 0 by [CT93, proof Th. 4.3] and HL_1(X, Ki) ® Q/Z isdivisible, it is suffi-

Zar
cient to show that the kernel of Tt does not contain any nonzero divisible subgroup. Since
Ttis étale of degree 2, we have that Tt. o TT" is multiplication by 2, hence the kernel of 1T" is

purely 2-torsion. O

Yiooi

Note that if y; isinjective, then A; maps CH! (X)tors isomorphically onto the image of
yi. For X over any field k, the mappings 'y, and y» are injective for trivial reasons: thereis
no differential in the Bloch—-Ogus spectral sequence that could kill HLZH (X, 7'(Q/Z(i)))
wheni =1, 2. Fori =d = dim(X) the situation is different in general, since we have for
every j smaller or equal to the cohomological dimension of k and satisfying0 < j <d-—2
apotentially nontrivial differential

d—2—j,d+j. —d—2—j,d+j d-1d
dji1 P B — B

However, we proved in Section 2 that these differentials vanish when k = R. We aso
determined the cokernel of vy, so we obtain the following result, which could be considered
as a cohomological aternative that works over R for Roitman’s theorem on torsion zero-
cycles over algebraically closed fields.

THEOREM 3.2. Let X be a nonsingular, projective, geometrically irreducible variety
overR of dimension d. We have a short exact sequence

0 CHo(X)1ors -+ HZ*3(X,Q/Z(d)) = EDHIA(X(R),Z/2) = 0,
i>0
wheref3' is the mapping followed by the projection.
PrRooOF. By Theorem 3.1 thisis an immediate consequence of Corollary 2.2.i. O

3.2. Kernel and image of the Abel-Jacobi map Consider the Abel-Jacobi map a
restricted to the torsion subgroups:

Otors: Ao(X)tors = AIB(X)(R)tors
and the restriction dors giv t0 the maximal divisible torsion subgroups. We define:
T(X)tors := Ker(ayors),
T(X)o := Ker(aorsdiv),
T(X)'"P 1= T (X)tors/ T(X)°,
AO(X)tOp = Ao(X)tors/ Ao(X)rtarsdiv(= Ao(X) /Ao (X) div),
Im(a)'P := Im(ttors) / IM(Ctorsdiv ) (= IM(a) / 1m(a) iy ).

The equalities between parentheses follow from the fact that Ag(X)/Ao(X)tars iS Uniquely
divisible (see Section 1.3). By definition we have short exact sequences

(15) 0— T(X)'P = Ag(X)"% — Im(a)® -0



and
(16) 0— T(X)% = T(X)tors = T(X)P — 0.

These are short exact sequences of finite dimensional Z /2-vector spaces, since T (X)tors IS
afinite dimensional Z /2-vector space (by [CTS96, Th. 1.6.a] and a trace argument) and

0 ifs=0
top |
Ao(X) = {(Z/Z)S—1 otherwise,

where sis the number of connected components of X (see Section 1.3). We will now give
cohomological descriptions of the above groups.
Over C we have a commutative diagram

Ao(Xc)tors
Alb(X) (C)rors = HZ 1 (Xc,Q/Z(d))

in which al arrows are isomorphisms by Roitman’s theorem (cf. [CT93, Th. 4.2]). Over
R we have the diagram

Po(X)tors———2—— H24-1(x, Q/Z(d)

(17) lators le’

AIB(X)(R)tors ——— H31(Xc,Q/Z(d))®
in which the lower horizontal arrow is an isomorphism.

THEOREM 3.3. Let X be a nonsingular projective geometrically irreducible variety
overR of dimension d.

(i) The isomorphism
Alb(X)(R)tors ~ H3' (Xc,Q/Z(d))®
sends the image ofors isomorphically onto the image of
T HETHX,Q/Z(d)) — HE (X, Q/Z(d))°.
(if) The injection
Ad: Ao(X)tors = Héztd_l(XaQ/Z(d)

sends the group {IX)° isomorphically onto the kernel af* restricted to the maximal
divisible subgroup of B ~1(X,Q/Z(d)).

(i) 1f X(R) = 0, then T(X)ors ~ T(X)P. Otherwise, we have an isomorphism

T(X)tors = (Z/2)575,

where s is the number of connected components (&)Xt is the Z/2-dimension of
Im(a)™P, and c is thez /2-dimension of TX)C.

PROOF. (i) Immediate from diagram (17), Theorem 3.1 and Corollary 2.2.ii.
(ii) Immediate from diagram (17) and the fact that A 4 induces an isomorphism

AO(X)torsdiv = Héztd_l(xa Q/Z(d))div
by Theorem 3.2.



(i) Immediate from (i) and (ii) and the short exact sequences (15) and (16). O

COROLLARY 3.4. Let X, X2 be nonsingular projective geometrically irreducible va-
rieties overR, such that X(C) and %(C) are equivariantly homeomorphic. The groups

Ao(X)tors, IM(Qtors), T(Xtors, T(X)?, T(X)P, Ag(X)!P, andIm(ars)'P are isomorphic
fori=1,2.

PrRoOOF. Immediate from Theorem 3.3 and the isomorphism (1). O

REMARK 3.5. Thetwo easy examplesof varietieswith T (X)iors 7 O givenintheintro-
duction have in fact T (X)tors = T(X)'°P. Indeed, the property T (X)©P £ 0 is so common,
that it can hardly be considered to be a ‘bad’ case. On the other hand, we will seein Ex-
ample 5.2 that the property T (X)? # 0 does not occur for varieties like products of curves
or abelian varieties (nor does it occur, trivially, for complete intersections). It corresponds

to certain nontrivial differentials in the Hochschild—Serre spectral sequence, which could
be considered to be ‘bad’.

3.3. A cohomological filtration on torsion cycle classesThefiltration on étale co-
homol ogy associated to the Hochschild—Serre spectral sequence

E;l = HP(G,Hg(Xc,Q/Z(1))) = HE (X, Q/Z(i))
inducesfor every i adescending filtration
0=F2 .- cF*c F=HZ(X,Q/Z(i))

with the pth graded piece given by E24—1-P_ pulling back to CH' (X)tors Via the cohomo-
logical Abel-Jacobi map

Ai CHi(X)tors — Hgfl(X,Q/Z(i))
gives a descending filtration on CH'(X)ors, Which is nondegenerate (i.e., FN = 0 for N >
0) if and only if A; isinjective. Note that for i = dim(X) we get

FlCHO(X)tors = T(X)tors-

We will seein Section 4.2 that the induced filtration on the maximal divisible subgroup
CHo(X)torsdiv Can be determined from the Hochschild—Serre spectral sequence. In Exam-
ple 5.2.1 we will see that for abelian varieties this filtration coincides with the filtration
coming from the Pontryagin product.

REMARK 3.6. A priori the filtration on CHo(X)tors Can go as deep as F24-1, but |
have no examples of an X of dimension d with F4*XCHo(X)ors # 0. For the induced
filtration on Ag(X)™©P = Ag(X)tors/Ao(X)torsdiv it can be shown, using Theorem 2.8 and
Poincaré duality (compare the discussion in [MvH98, §2]), that F 9+1A¢(X)°" = 0 for any
nonsingular projective geometrically irreducible X of dimension d.

4. Methods of calculation
In Section 3.2 we proved that the image of
Otors: Ao(X)tors = AID(X) (R)tors
coincides with the image of the pull-back
H2-1(X,Q/Z(d)) — H¥1(Xc,Q/Z(d))®,

which can be computed explicitly from the Hochschild—Serre spectral sequence. In this
section we will see in Proposition 4.1 that the kernel T(X)° of the restriction of Qs t0



the maximal divisible subgroup of CHo(X)tors admits a similar description. As acorollary
we get that if the Hochschild—Serre spectral sequencewith Q/Z-coefficientsistrivial, then
Qiors IS surjective and T (X)? istrivial.

By Poincaré duality (Lemma 4.3) the same conclusion holds when the Hochschild—
Serre spectral sequence with coefficientsin Z istrivial (in other words, when X isaZ-GM-
variety). Thiswill be used in Example 5.2. The fact that aiors (Or, in fact, a) is surjective
for aZ-GM-variety was originally proved by V.A. Krasnov in [Kr84] without using a co-
homological Abel-Jacobi map. For the calculations in Example 5.1 it will be useful that
Poincaré duality allows us to transform calculations involving high degree cohomology
with coefficients in Q/Z into calculations involving low degree cohomology with coeffi-
cientsin Z (see Corollary 4.6).

In Section 4.2 we use the methods of Proposition 4.1 for cal culating the conomol ogical
filtration on T (X)? in terms of the Hochschil d—Serre spectral sequence.

4.1. Calculating the kernel of the Abel-Jacobi mapping.

PROPOSITION 4.1. Let X be a nonsingular projective geometrically irreducible vari-
ety overR of dimension d. Let IX)° be the kernel of the Abel-Jacobi mappingestricted
to the maximal divisible subgroup 06&)tors. Then ‘I'(X)0 is isomorphic to the cokernel
of the base change map

T HA 4 (X,Q/Z(d+ 1)) — H2 1(Xc,Q/Z(d + 1))C.

PROOF. Let F* be the descending filtration on étale cohomology associated to the

Hochschild-Serre spectral sequence. Since F*H29 (X, Q/Z(d)) is the kernel of the base
change map 1" for coefficients in Q/Z(d), the intersection F*H29~1 with the maximal
divisible subgroup of H2-1(X,Q/Z(d)) isisomorphicto T (X)° by Theorem 3.3,

| claim that F*H39-1 is precisely the kernel of the map
(18) FHEH(X,Q/Z(d) — FPHE!(X,Q/Z(d + 1)

induced by cup-product with the nontrivial element n € H1(G, Z(1)). Since onthe Ex-level
of the Hochschild-Serre spectral sequence this gives an isomorphism

HP(G, Hg(Xc,Q/Z(d))) ~ HPH(G,Hg(Xc,Q/Z(d + 1))

for any g > 0 and any p > 0, we see that the kernel of (18) can be identified with the ele-
ments that are killed by differentials from HO(G,H24(Xc,Q/Z(d + 1))). More precisely,
we have an exact sequence

HZ1(X,Q/Z(d+ 1) = H® 1 (Xc,Q/Z(d +1))® —
FIHZI1(X,Q/Z(d)) = F2HE(X,Q/Z(d+ 1)),

which gives an isomorphism between the kernel of (18) and the cokernel of Tt*.
In order to prove that the kernel of (18) coincideswith F *H33 -2, hencewith T(X)0, it
is sufficient to prove that the kernel of the homomorphism

(19) HZ-1(X,Q/Z(d)) — HEZY(X,Q/Z(d+1))

is the maximal divisible subgroup. Since the image of (19) is contained in
F 1H§td (X,Q/Z(d+ 1)), which is purely 2-torsion (compare the end of the proof of Theo-
rem 3.1), it is sufficient to prove that the kernel of the homomorphism (19) is divisible.



Thiswe will deduce from the long exact sequence

(20) - = H® (X, Q/2) — HZ1(X,Q/Z(d)) = HZY(X,Q/Z(d+ 1)) — ---

obtained from the short exact sequence 0 — Q/Z(d + 1) —» m.Q/Zy_ — Q/Z(d) — O of
étale sheaves on X (compare [Sch94 (7.8.1)]). | claim that the boundary map & coin-
cides with the homomorphism (19) (compare[Sch94 Lemma7.10.1]). Assuming this, the
proposition follows, since the group H24—1(X¢,Q/Z) isdivisible.

In order to provethelast claim, observethat the above short exact sequenceisthe pull-
back of a short exact sequence of G-modules. Moreover, the boundary map & can be con-
sidered as the Yoneda product with an element of [8] € Ext:(Q/Z(d),Q/Z(d+1)) ~Z/2
(thisisExtinthe category of G-modules). Sincetensor product with Q/Z(d) inducesasur-
jectionH(G,Z(1)) = Ext}(Z,Z(1)) - Extg(Q/Z(d),Q/Z(d+1)), weget that & iseither
cup product with n or trivial. We rule out this last possibility by considering the long exact
sequence (20) for SpecR instead of X (without changing d). Since H'(SpecC,Q/Z) =0
forall i > 0and H9*1(SpecR,Q/Z(d)) = Z /2 = H*?(SpecR, Q/Z(d + 1)), we see that
disnontrivial. O

COROLLARY 4.2. Let X be anonsingular projective geometrically irreducible variety
overR. If the Hochschild—Serre spectral sequence with coefficier@y i is trivial, then
the mapping

Otors- AO(X)tors — A|b(X) (R)tors

is surjective and the mapping

Qtorsdiv: Ao(X)torsdiv = AID(X)(R)tors div
is an isomorphism.
PROOF. If the Hochschild—Serre spectral sequence with coefficientsin Q/Z istrivial,
then the Hochschil d—Serre spectral sequence with coefficientsin Q/Z (1) istrivial aswell,
as we see using cup product with the nontrivial element € H(G,Z(1)) and the period-

icity of the cohomology of G. The result now follows immediately from Proposition 4.1,
Theorem 3.3.i and the surjectivity of O tors div- O

LEMMA 4.3. Let M be a compact oriented manifold of dimension m with an action of
G=2Z/2 Letr>2,letp>0,letjeZ, letg >rwithp Zp (mod2) andlet ez
with j = j (mod 2) if the G-action preserves the orientation arfd4 j (mod 2) if the
G-action reverses the orientation. The image of the differential

d(Q/Z(i): EPUQ/Z(j)) = EPF I HQ/Z(j))
in the Hochschild—Serre spectral sequence of M with coefficierl@g # j) is isomorphic
to the image of the differential

d(z(j"): EP=H™HTHZ() — EPMYZ())
in the Hochschild—Serre spectral sequence with coefficierdsj).

PrRooF. Thisisaformal consequence of Poincaréduality for M and G: the cup prod-
uct pairing induces for any k € Z anatural isomorphism of G-modules

H¥(X(C),Q/Z(j)) =~ Hom(H™¥(X(C),Z(j")),Q/Z),
and for any G-module A, any i > 0, and any odd N > i, the cup product pairing
Hi(G,Hom(A,Q/Z)) HNT(G,A) — HN(G,Q/Z2)~2/2— Q/Z



induces an isomorphism

H'(G,Hom(A,Q/Z)) ~ Hom(HN1(G,Hom(A,Q/Z)),Q/2).
Combining these isomorphism, we get for i, k, N as above an isomorphism
(21) H'(G,H(M,Q/Z(j))) = Hom(H"~'(G,H™ (M, Z(j"))),Q/2).

The first two Poincaré duality morphisms given above can be obtained from natural
mappings of complexes. This enables us to construct a map ® from the Hochschild-Serre
spectral sequence with coefficientsin Q/Z(j) into the (shifted) Pontryagin dua

(22) B3N] = Hom(HN7(G,H™ (M, Z2(}"))),Q/Z) =
Hom(HN+™1-K(M; G, Z(j")),Q/Z)

of the Hochschild—Serre spectral sequence with coefficients in Z(j’), with the property
that @ induces the isomorphism (21) on the E'Z’k-level (till fori > 0 and N > i odd).
Unfortunately, I do not know any references to the literature for this type of result. Let me
just say here that on the one hand this mapping of spectral sequences can be constructed
explicitly by writing down a map between well-chosen double complexes. On the other
hand, it can be obtained from the following transformation of derived functors (with I © as
in[Gr57, Ch. V]):

Fi := RFS(RHom(—,Q/Z)) — RHom(Rr'(-),Q/Z[-N]) =: K,

since the composite derived functor Fy o 'y (—) applied to the sheaf Z(j’)[m] induces the
Hochschild—Serre spectral sequence with coefficientsin Q/Z(j), and Foo My (—) induces
the spectral sequence (22), when appliedto Z(j)[m].

Takingi = p,N = p'+ pandk = g, we get for every r > 2 acommutative diagram

d(Q/Z(1))

EPNQ/Z())) EPHRaHQ/z(j))
ld) & ld)
EPIIN] S AN
dz(i')"

Hom(EF"™%(2(j")),Q/Z) — > Hom(EP "™ *+L(Z(j")),Q/Z)

whered(Z(j"))V denotesthe Pontryagindual of d(Z(j)). For p>0and p’ > r the vertical
arrows are isomorphisms, and all groups in the diagram are finite, so we have proved the
statement. The remaining cases p = 0 and/or p’ = r follow from the periodicity of the
cohomology of G. O

For M as above, we deduce that al differentials in the Hochschild-Serre spectral se-
quencewith coefficientsin Q/Z aretrivial if and only if all differentialsin the Hochschild—
Serre spectral sequence with coefficientsin Z aretrivial.

DEFINITION 4.4 ([Kr83]). Let X be anonsingular projective variety over R. We say
that X isaZ-GM-varietyif al differentials are zero in the Hochschild—Serre spectral se-
quence converging to equivariant conomology of X(C) with coefficientsin Z.

In fact, Krasnov uses GMZ instead of Z-GM; the notation Z-GM comes from Silhol,
and should beread as ‘ Z-Galois-Maximal’ .



COROLLARY 4.5. Let X be a nonsingular projective geometrically irreducilde
GM-variety overR. Then the mappingiqs IS surjective and the mappindigs giv IS an
isomorphism.

PROOF. Immediate from Corollary 4.2, Lemma4.3. O

The part of the above corollary concerning the surjectivity of aos IS equivalent to
Theorem 3.2in [Kr84].

COROLLARY 4.6. Let X be anonsingular projective geometrically irreducible variety
overR.

(i) If X(R) # 0, then the group TX)? is isomorphic to the kernel of the composite
mapping
H(G,H*(X(C),Z(1))) = H*(X(C);G,Z(1)) = HY(X(R),Z/2),

where the first map is induced by the Hochschild—Serre spectral sequence, and the second
map is induced bf3.
(i) The group TX)Y is isomorphic to the kernel of the mapping

Pic%(X)/ Pic’(X)av = HY(X(R),Z/2)
induced by the cycle map. HeRc?(X) is the kernel of the composite map
Pic(X) — Pic(Xc) = H%(X(C),Z(1)).

PROOF. (i) Since X(R) # 0, the differential E2*™(z(1)) —» E2X*30(z(1)) =
H2443(G,HO(X(C),Z(1))) in the Hochschild-Serre spectral sequence is zero by [Kr83,
Lemma 2.2]. It then follows from Lemma 4.3 (with p=0, q=2d—-1, j =d+1,
pP=2d+1, j) =1, and 2 <r < 2d) that the cokernel of the mapping T* of Proposi-
tion 4.1 is isomorphic to the kernel of the quotient map E2™%(Z(1)) — EZ+11(Z(1)).
Since B maps E20+11(Z (1)) injectively into HY(X(R),Z/2), the statement follows from
the periodicity isomorphism H1(G,H(X(C),Z(1))) = Ex*(Z(1)) ~ EX Y (Z(1)).

(ii) Thisfollowsfrom (i) if X(R) # 0, since then the equivariant cycle map Pic(X) —
H2(X(C);G,Z(1)) (see[Kr94, §4]) induces an isomorphism

Pic’(X)/ Pic®(X)av = HY(G,HY(X(C),Z(1)))

which is compatible with the mappings of statements (i) and (ii). For X(R) = 0, we have
that the cycle map induces an isomorphism Pic®(X) / Pic®(X) giv ~ Eé’l(Z (1)) (see[vH98,
Prop. 3.3]) and we adapt the argument of (i). O

REMARKS 4.7. (i) Thereisan analogue of Corollary 4.6 for the cokernel of oo,
but it is more cumbersometo state, and we will not need it in the examples, since there the
image of a is quite easy to determine.

(ii) 1 have no method to determine the ‘topological quotient’ T (X)°P of the kernel of
Otors from the Hochschild—Serre spectral sequence without using apriori information about
the topology of X(R); it seems unlikely that such a method should exist in general.

4.2. Calculating the cohomological filtration on the divisible subgroup.Let F*
be the filtration defined on CHo(X)tors in Section 3.3. After restricting the filtration to the
maximal divisible subgroup CHo(X)torsdiv We can determine the graded pieces from the
Hochschild—Serre spectral sequence.



PROPOSITION 4.8. Let X be a nonsingular projective geometrically irreducible vari-
ety overR of dimension d. We have for any>p0 that

GIPF* CHo(X )rorsciv ~ Ker{ERZ-1-P(Q/Z(d)) 1 ERF12-1-P(Q/Z(d + 1))},

where B9(Q/Z()) denotes the E9-term of the Hochschild—Serre spectral sequence with
coefficients irQ/Z(j) andn € H(G,Z(1)) is the nontrivial element.

PrRooF. This follows immediately from the fact that the cohomological Abel—
Jacobi mapping induces an isomorphism between CHo(X)q, and the kernel of the map-
ping H24~1(X,Q/Z(d)) — H24(X,Q/Z(d + 1)), as we saw in the proof of Proposi-
tion4.1. 0

REMARK 4.9. | do not know whether there are varieties X with FP CHo(X)tors div
nonzero for p > dim(X). In other words, with nonzero differentials

EP*4(Q/Z(d+1)) = EF*(Q/Z(d+ 1))

for r > dim(X) 4+ 1 in the Hochschild—Serre spectral sequence (compare [VH98, Re-
mark 3.5.ii]).

5. Examples

Stock examples in the study of zero-cycles are products of curves, abelian varieties
and conic bundles. Here we will consider them over the real numbers. We will compute
the groups defined in Section 3.2 and in some cases the filtration defined in 3.3 as well.
Since the Abel—Jacobi map for torsion zero-cycles is completely determined by the equi-
variant topology of the complex points, we can in fact replace the geometric conditions by
topological conditions. Thus Example 5.1 is an immediate generalization of the example
of aconic bundle over acurve of which thereal part does not map surjectively onto the real
part of the curve (it was aready shown in [Si89, § V.4] that a smooth conic bundle with
that property is not a Z-GM-variety). Similarly, the results for products of elliptic curves
in Example 5.2 immediately generalize to abelian varietiesin Example 5.2.1.

5.1. Fibrations over curves.Let C be a nonsingular projective geometrically irre-
ducible curve over R of genus g such that C(R) has ¢ > 0 connected components. Recall
that c < g+ 1 (cf. Section 1.2). Let X beanonsingular projective geometrically irreducible
variety over R such that X(R) has s > 0 connected componentsand let ¢: X — C be a
dominant morphism satisfying the following two conditions:

(8) ¢ inducesan isomorphism¢*: Pic’(C) 5 Pic%(X).
(b) Themap X(R) — C(R) induced by ¢ is not surjective.

Leta > 0 bethe number of connected componentsV of C(R) such that ¢ ~(x) hasreal
points for some x € V. We denote by h the Z /2-dimension of the kernel of the pull-back
map ¢*: HY(C(R),Z/2) — HY(X(R),Z/2). Hypothesis (b) implies that h > 1. Note that
it isvery easy to construct exampleswitha < s, a < ¢, and/or h > 1.

It follows from hypothesis (a) that ¢ induces an isomorphism Alb(X) = Jac(C). This
isomorphism is compatible with the push-forward of cycles and the Abel-Jacobi map. We
see from Sections 1.2 and 1.3 that the image of the composite map

Ao(X) = Ao(C) — Jac(C)(R)/ Jac(C) (R)giv ~ (2 /2)°*

is generated by zero-cycles of the form [¢(P)] — [¢(Q)] with P,Q € X(R), and that for the
Albanesemap a: Ag(X) — Alb(X) we have;

(i) Cokera~2Z/2°2



and
(i) Im(0)'P ~ (Z/2)3"1,
The exact sequence (15) then implies that
(i) TX)P ~(Z/2)52
We will determine the group T(X)° using Corollary 4.6.ii. For this, consider the fol-
lowing commutative diagram:

CIX(R)

Pic’(X) ——— HY(X(R),Z/2)

Vo I
cl

. 0 C(R) 1
Pic’(C) —— H*(C(R),Z/2)

Here the horizontal arrows are the cycle maps (cf. Remark 1.1) and the left hand vertical
arrow is an isomorphism by hypothesis (a). It follows from the discussion in Section 1.2
that the kernel of clc(r) is divisible, and that the kernel of ¢* o clcry modulo its maximal
divisible subgroup is isomorphic to (Z /2)"* (since h > 0). Hence the commutativity of
the diagram and Corollary 4.6.ii imply

(iv) T(X)?~(z/2)M1.
Adding up we obtain

V) T(X)tors = (Z/2)52-1,
The cohomological filtration on T (X)ors NOt ONly depends on the invariants defined so far,
but also on the topology of the fibres of ¢.

5.1.1. Smooth conic bundled.et C beasaboveandlet ¢: X — C beaconic bundle,
then hypothesis (a) is satisfied. If, moreover, we assume ¢ to be smooth, then for every
connected component V C C(R) we have that $ ~1(V)(R) C X(R) is either empty or an
St-bundle over V. So a = sand h = ¢ — s, which implies that if hypothesis (b) is satisfied,
then

TX)ars = T(X)?~ (Z/2)¢ s L,

Moreover, Proposition 4.8, Lemma 4.3 and a closer examination of the Hochschild—Serre
spectral sequence with coefficientsin Z (which will not be carried out here) yield that

(Q/2)9x(z/2)** ifj=0,

, 0 if j=1
Gr! F* CHo(X)tors =~ ’
O( )tors (Z/Z)C_S_l if j =2,

0 if j>2

Note that for every choice of g, ¢, swith0 < s< c < g+ 1itiseasy to construct a smooth
conic bundle as above (compare [Si89, § V.4]).

5.2. Products of curves and abelian varietiesFor i = 1,...,d, let C; be anonsin-
gular projective geometrically irreducible curve over R of genus g; such that Ci(R) has
s > 0 connected components. Take X =Cj x --- x Cy. We have Alb(X) ~ Alb(Cy) x --- x
Alb(Cy), so

Alb(X)(R) ~ (R/Z)%i9 x (2 /2)2i(8 1),
On the other hand, X(R) hass= []; s connected components, so
Ao(X)tors = (Q/Z)219 x (Z/2)%7H,



whichimpliesthat thekernel T (X)ors Of Otors isnontrivial if s—1=([]js) — 1> Ti(s —1);
in other words, if 5 > 1 for more than oneindex i. We will see that the converse holds as
well.

By [Kr83, Props 3.6 and 5.6] we have that X is a Z-GM-variety (see Definition 4.4),
so it follows from Corollary 4.5 that

(i) aiors is surjective.
(i) T(X)°=0.
From the exact sequences (15) and (16) we then see:
(i) T(X)tors = T(X)P ~ (Z/2)Mis—Zi(s-1)-1
(iv) T(X)worsis nontrivial if and only if G(R) is not connected for more than one index i.
It will be some morework to determine the cohomological filtration F* on CHo(X)+ors.
Since thetotal cohomology H*(X(C),Z) istorsion free, the boundary map
H274(X(C): 6,Q/Z(d)) — H*(X(C); G,Z(d))
obtained from the short exact sequence 0 — Z(d) — Q(d) — Q/Z(d) — 0 induces for
p > 0 an isomorphism
HP(G,H*17P(X(C),Q/Z(d))) = HPH(G,H** 1 "P(X(C), Z(d)))

on the Ex-level of the Hochschild—Serre spectral sequences. Since X is a Z-GM-variety,
thisis still an isomorphism on the E«-level. It follows that up to a shift by 1 in theindices
the cohomological filtration F* on T (X)ors IS the same filtration as the one induced by
the descending filtration F2 of H24(X(C);G,Z(d)) associated to the Hochschild—Serre
spectral sequence. In other words,

FIT(X)tors ~ FJ T HY(X(R), Z/2)

for any j > 0, where FJHY(X(R),Z/2) is the image of FJH24(X(C):G,Z(d)) under B
followed by the projection onto H4(X(R),Z/2).
We have for any j > 0 acommutative diagram

D QFHGEC)6zZW) P QH(CR),Z/2)
T ! l

D H(X(R),Z/2)

in which, by the Kiinneth formula, the vertical arrow on the right is an isomorphism and
the vertical arrow on the left is a surjection (compare [Kr83, § 5.6]).
Since F2HY(Ci(R),Z/2) = Ofor everyi thisimplies:
W) FITX s~ @ QF'HYC(R),Z/2) for j > 0.

0<J1> >Jd<1 i
Yili=j+1

F/H2(X(C);G,Z(d))

Observe that
! HY(Ci(R),Z/2) ifji=0
FHY(G(R),Z/2) = ’ ’
Sra.z2 {HI(Q(R) Z/2° ifji=1
where HY(Ci(R),Z/2)° is the kernel of the trace map H(Ci(R),Z/2) —» Z/2. Hence
FIH(CGi(R),Z/2) = 0if and only if Ci(R) is connected. We deducefor j > O:

);
(vi) FIT(X)trs = Oifand only if j> #{i: 5 > 1} — L.



If s € {1,2} for al i (eg., if X is aproduct of eliptic curves), then X(R) has 22
connected components, where a is the number of indicesfor which C;(R) is not connected,
and we get the following resullt.

(vi) With X and a as above, we have thdimz,»T(X)ws = 2° —a—1 and

dimz/z(Grj F* CHo(X)tors) = (jil) for j > 0. In particular, we have for > 0

that FIT (X)iors = O if and only if j> a— 1.

5.2.1. Abelian varieties.When X isan abelian variety of dimension d defined over R,
then X(C) is equivariantly homeomorphic to the set of complex points of a product of d
elliptic curves over R. If X(R) has 22 connected components, we can take a product of a
copies of an dliptic curve of which the real part has 2 connected componentsand d — a
copies of an eliptic curve of which the real part has 1 connected component. Therefore
by Corollary 3.4 the statements (i), (ii), and (vii) above hold for X, so we have a complete
picture of T (X)ors in this case.

We can also rephrase the results on the filtration in terms of the Pontryagin product

x: CHo(X) x CHp(X) — CHo(X)

defined by y+T = . (Y X T), wherep: X x X — X isthemultiplication (cf. [BI76]). It can be
checked that if y € FI CHo(X)tors and T € FI' CHo(X)tors, then yx T € FI+1#1CHo(X)tors.
In other words, the j-fold Pontryagin power CHo(X)as € CHo(X)tors, generated by ele-
ments of theformyy x - --*yj, iscontainedin F J=1CHo(X)tors. From the representation (v)
of F* CHo(X)tors it isamatter of combinatoricsto deduce that

(viii) FICHo(X)tors = CHo(X):4Y for any j> 0.

References

[AP93] C. Allday and V. Puppe, Cohomological methods in transformation grou@ambridge Stud. Adv.
Math., vol. 32, Cambridge University Press, 1993.

[BI76]  S. Bloch, Some elementary theorems about algebraic cycles on Abelian varietest. Math. 37
(1976), 215-228.

[BO74] S.Blochand A. Ogus, Gersten’s conjecture and the homology of scheres. Sci Ecole Norm. Sup.
(4) 7 (1974), 181-201.

[BCR87] J. Bochnak, M. Coste, and M.-F. Roy, Géongtrie alggbrique €Eelle Ergeb. Math. Grenzgeb. (3),
vol. 12, Springer-Verlag, 1987. New edition: Real algebraic geometnErgeb. Math. Grenzgeb. (3),
vol. 36, Springer-Verlag, 1998.

[Bo60] A. Borel, Seminar on transformation groupénn. of Math. Studies, vol. 46, Princeton University
Press, 1960.

[BH61] A. Borel and A. Haefliger, La classe d’homologie fondamentale d’'un espace analytiGud. Soc.
Math. France 89 (1961), 461-513.

[CT93] J-L. Cdlliot-Théléne, Cycles algbriques de torsion et K-gworie algbrique Arithmetic algebraic
geometry (E. Ballico, ed.), Lect. Notes Math., vol. 1553, Springer-Verlag, 1993, pp. 1-49.

[CTI8L] J-L.Calliot-Thélene and F. Ischebeck, L'equivalence rationnelle sur les cycles de dimens&m des
variéetés algbriques gelles C.R. Acad. Sci., Paris, Sér. | 292(1981), 723-725.

[CTP9O] J-L.Cadlliot-Théléne and R. Parimala, Real components of algebraic varieties atdlé cohomology
Invent. Math. 101 (1990), 81-99.

[CTS96] J-L. Colliot-Thélene and C. Scheiderer, Zero-cycles and cohomology on real algebraic varieties

Topology 35 (1996), 533-559.
[Cox79] D. Cox, Theétale homotopy type of varieties oy Proc. Amer. Math. Soc. 76 (1979), 17-22.
[Gr57]  A. Grothendieck, Sur quelques points d’atpre homologiquel dhoku Math. J. (2) 9 (1957), 119-221.
[Hs75]  W.Y. Hsiang, Cohomology theory of topological transformation groufsgeb. Math. Grenzgeb.,
vol. 85, Springer-Verlag, 1975.
[Iv86] B. Iversen, Cohomology of sheaveSpringer-Verlag, 1986.
[Kr83] V.A.Krasnov, Harnack—Thom inequalities for mappings of real algebraic varietiee Akad. Nauk
SSSR Ser. math. 47 (1983), 268-297. English trandl. in Math. USSR 12\22 (1984) 247-275.



[Krg4]

[Krod]

[MVHOS]

[Mu94]

[Ni94]
[PWO1]

[Qu71]
[Ra98]

[Scho0]

[Scho4]
[Schos]

[Sigg]
[VH96]

[vH98]

[SGA4]

V.A. Krasnov, Albanese map for GK}tvarieties Mat. Zametki 35 (1984), 739—747. English trandl. in
Math. Notes35 (1984), 391-396.

V.A. Krasnov, On equivariant Grothendieck cohomology of a real algebraic variety, and its applica-
tions, Izv. Ross. Akad. Nauk Ser. Mat. 58 (1994), 36-52. English trand. in Russian Acad. Sci. lzv.
math.44 (1995), 461-477.

F. Mangolte and J. van Hamel, Algebraic cycles on real Enriques surfac€omp. Math. 110(1998),
215-237.

J. Murre, Algebraic cycles and algebraic aspects of conomology and K-thédgebraic cycles and
Hodge theory (A. Albano and F. Bardelli, eds.), Lect. Notes Math., vol. 1594, Springer-Verlag, 1994,
pp. 93-152.

V.V. Nikulin, On the Brauer group of real algebraic surfaces gebraic geometry and its applications
(A. Tikhomirov et a., eds.), Aspects Math., Vieweg, 1994, pp. 113-136.

C. Pedrini and C. Weibel, Invariants of real curvesRend. Sem. Mat. Univ. Politec. Torino 49 (1991),
139-173.

D. Quillen, The spectrum of an equivariant cohomology ringAhn. of Math. (2) 94 (1971), 549-572.
N. Ramachandran, Albanese and Picard one-motives of schemedectronic preprint
http://xxx.lanl.gov/abs/math.AG/9804042, 1998.

C. Scheiderer, A remark on the papeReal components of real algebraic varieties and étale conomol ogy
by J.-L. Colliot-Tteléne and R. Parimalaunpublished, 1990.

C. Scheiderer, Real andetale cohomologyl ect. Notes Math., vol. 1588, Springer-Verlag, 1994.

C. Scheiderer, Purity theorems for real spectra and applicatiofieal analytic and algebraic geometry
(F. Broglia et al., eds.), Walter de Gruyter, 1995, pp. 229-250.

R. Silhol, Real algebraic surfaces ect. Notes Math., vol. 1392, Springer-Verlag, 1989.

J. van Hamel, Equivariant Borel-Moore homology and Poineaduality for discrete transformation
groups Tech. Report WS-463, Vrije Universiteit Amsterdam, 1996.

J. van Hamel, Divisors on real algebraic varieties without real points appear in Manuscripta Math.

M. Artin, A. Grothendieck, and J.-L. Verdier (eds.), Théorie des topos et cohomologetale des
schémas (SGA 4yal. 3, Lect. Notes Math., vol. 305, Springer-Verlag, 1973.

MATHEMATISCH INSTITUUT, UNIVERSITEIT UTRECHT, BUDAPESTLAAN 6, 3584 CD UTRECHT, THE
NETHERLANDS, TEL: +31 30 253 93 23, Fax: +31 30 251 83 94
E-mail addressvanhamel@math.uu.nl



