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1 Introduction

The analysis of weakly nonlinear partial differential equations both qualita-
tively and quantitatively, is emerging as an exciting field of investigation. In
this report we consider specific results, related to averaging but we do not
aim at completeness. The sections 3.1 and 3.4 contain important material
which is not easily accessible in the literature.

Of the literature which we will not discuss in detail we should mention: For-
mal approximation methods which have been nicely presented by Cole and
Kevorkian [1981]. A number of formal methods for nonlinear hyperbolic
equations on unbounded domains have been analysed with respect to the
question of asymptotic validity by van der Burgh [1979].

An adaptation of the Poincaré-Lindstedt method for periodic solutions of
weakly nonlinear hyperbolic equations was given by Hale [1967]; note that
this is a rigorous method, based on the implicit function theorem. An early
version of the Galerkin-averaging method, presented in section 3.2, can be
found in Rafel [1983] who considers vibrations of bars.

In the sequel ¢ will always be a small, positive parameter.

1.1 Qualitative aspects

The analysis of asymptotic approximations with proofs of validity rests firmly
on the qualitative theory of weakly nonlinear partial differential equations.
Existence and uniqueness results are avalailable which involve typically con-
traction, other fixed point methods and maximum principles; we will also
use projection methods in Hilbert spaces.

Some of our examples will concern conservative systems (sections 3.3-4). In
the theory of finite-dimensional Hamiltonian systems we have for nearly-
integrable systems the celebrated KAM-theorem which, under certain non-
degeneracy conditions, guarantees the persistence of many tori in the non-
integrable system. For infinite-dimensional, conservative systems we now
have the KIKAM-theorems developed by Kuksin [1991]. Finite-dimensional
invariant manifolds obtained in this way are densely filled with quasi-periodic
orbits; these are the kind of solutions we obtain by our approximation meth-
ods. It is stressed however, that identification of approximate solutions with
solutions covering invariant manifolds is only possible if the validity of the
approximation has been demonstrated.



1.2 Averaging for ode’s

Averaging is concerned with equations which have been put into the Lagrange
standard form:

t=cf(t,x), x(0)=z9 , (1)

where @ € R™, f(t,x) is T-periodic in ¢ and x is the initial value of x(¢). We
introduce the average:

1 /T
ey = [ ft o)
T Jo
and consider the associated system:

g=efy), y(0)==mz0 . (2)

Solving (2) we have found an approximation of x(¢), as under rather general
conditions we can prove:

x(t)—y(t)=0() for 0<et<C

with O the standard order symbol, €' a positive constant independent of e.
Sometimes this is also expressed verbally as: y(t) is an order e-approximation
of x(t) on the time-scale 1/¢. Note that as ¢ is a small parameter, this is a
long time-scale. Proofs can be found in the monographs Sanders and Verhulst
[1985]; see also Bogoliubov and Mitropolsky [1961] and Verhulst [1996] for
an introduction.

Four remarks should be added.

L. First, f(¢,2) might not be T-periodic but may have an average in the
sense that:

.17 0
lim T/o ft,a)dt = f(x)

T—o0

exists. The averaging procedure then also produces an approximation
of x(t) on the time-scale 1/¢; in this case the error may be somewhat
larger than e, for instance /¢ or elne. If f(¢, ) is quasi-periodic, i.e.
f can be expressed as a finite sum of periodic functions with periods
independent over the reals, then the error is again O(e).



2. If equation (2) contains an equilibrium solution ¢, so f°(c) = 0, while ¢
is a hyperbolic fixed point (there are no eigenvalues with real part zero)
then there exists a T-periodic solution ¢(¢) in an e-neighbourhood of
o = ¢. We have ¢(t) = ¢ + O(e) for all time. Moreover, if y(t) =
¢ is an asymptotically stable solution of (2), then any solution x(t)
of (1) which starts in an interior subset of the domain of attraction
of ¢, is approximated by the solution of the corresponding averaged
equation for all time. For a precise formulation and proof see Sanders

and Verhulst [1985].

3. To derive the standard form (1) is not altogether trivial, especially if
we start with a nonlinear, unperturbed problem. See Verhulst [1996]
and for nonlinear, unperturbed problems Sanders and Verhulst [1985],

Rand [1990], Coppola and Rand [1991].

4. If necessary, we may calculate higher order approximations of the solu-
tions of (1). This yields an improvement of the error estimate but the
validity of this result is usually still on the time scale 1/e.

2 Operators with a continuous spectrum

Various forms of averaging techniques are being used in the literature. They
are sometimes indicated by terms like ‘homogenization’” or ‘regularization’
methods and their main purpose is to stabilize numerical integration schemes
for partial differential equations. However, apart from numerical improve-
ments we are also interested in asymptotic estimates of validity and in qual-
itative characteristics of the solutions. This will be the subject of the subse-
quent sections.

2.1 Averaging of operators

A typical problem formulation would be to consider the Gauchy problem (or
later an initial-boundary value problem) for equations like

ur+ Lu = ef(u), t>0,u(0) = uop. (3)

L is a linear operator, f(u) represents the nonlinear terms.
To obtain a standard form (1) suitable for averaging in the case of a partial
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differential equation can already pose a formidable technical problem, even
in the case of simple geometries. However it is reasonable to suppose that
one can solve the ‘unperturbed’ (¢ = 0) problem in sufficient explicit form
before proceeding to the nonlinear equation.

A number of authors, in particular in the former Sowjet-Union, have ad-
dressed problem (3). For a survey of results see Mitropolskii, Khoma and
Gromyak [1997]; see also Shtaras [1987].

There still doesnot exist a unified mathematical theory with a satisfactory
approach to higher order approximations (normalisation to arbitrary order)
and enough convincing examples.

Here we shall follow the theory developed by Krol [1991] which has some
interesting applications. Consider the problem (3) with two spatial variables
x,y and time ¢; assume that, after solving the unperturbed problem, by a
variation of constants procedure we can write the problem in the form

or

5r = cLOFE, F(z,y,0) = 5(z,y). (4)
We have
L(t) = La(t) + La(1) (5)
where
LZ(t) = bl(xvyv )a 2 —I_b?(x yv )aaa —|—b3($ Y, )a—ygv (6)
Li(t) = al(xayvt)aa_x—l'a?(xvy?t)% (7)

in which Ls(t) is a uniformly elliptic operator on the domain, Ly, Ly and so
L are T-periodic in t; the coefficients a;, b; and v are C'* and bounded with
bounded derivatives.

We average the operator L by averaging the coefficients a;, b; over ¢:

T/ i@,y dt, T/ i@,y dt, (8)

producing the averaged operator L. As an approximating problem for (4) we
now take

— =cLF, F(z,y,0)=v(z,y). (9)



A rather straightforward analysis shows existence and uniqueness of the so-
lutions of problems (4) and (9) on the time-scale 1/e. Krol [1991] proves the
following theorem:

Let F be the solution of initial value problem ({) and F the solution of ini-
tial value problem (9), then we have the estimate |[F' — F|| = O(g) on the
time-scale 1/e. The norm ||.|| is the supnorm on the spatial domain and on
the time-scale 1/e.

The classical approach to prove such a theorem would be to transform equa-
tion (4) by a near-identity transformation to an averaged equation which
satisfies equation (4) to a certain order in . In this approach we meet in
our estimates fourth-order derivatives of F'; this puts serious restrictions on
the method. Instead Krol [1991] applies a near-identity transformation to
F which is autonomous and about which we have explicit information.The
actual proof involves barrier functions and the Phragmen-Lindelof principle
(see for instance Protter and Weinberger [1967]).

2.2 Application to a time-periodic advection-diffusion
problem

As an application Krol [1991] considers the transport of material (chemicals
or sediment) by advection and diffusion in a tidal basin. In this case the
advective flow is nearly periodic and diffusive effects are small. The problem
can be formulated as

O V. (uC) = AC =0, Cry,0) = 1(2,), (10)

where C'(x,y,t) is the concentration of the transported material, the flow
u = up(x,y,t) + cus(x,y) is given; ug is T-periodic in time and represents
the tidal flow, cu; is a small reststream. As the diffusion process is slow, we
are interested in a long time-scale approximation.

If the flow is divergence-free the unperturbed (¢ = 0) problem is given by

0C,

a—;‘|‘u0vco =0, Co(:z:,y,()) :V(xvy)v (11)
a first-order equation which can be integrated along the characteristics with
solution Cy = v(Q(t)(x,y)). In the spirit of variation of constants we intro-

duce the change of variables

Clz,y,t) = F(Q(t)(x,y),1) (12)



We expect F' to be slowly time-dependent when introducing (12) into the
original equation (10). Using again the technical assumption that the flow
ug + cuy is divergence-free we find a slowly varying equation of the form (4).
Note that the assumption of divergence-free flow is not essential, it only fa-
cilitates the calculations.

Krol [1991] presents some extensions of the theory and explicit examples
where the slowly varying equation is averaged to obtain a time-independent
parabolic problem. Quite often the latter problem still has to be solved nu-
merically and one may wonder what then the use is of this technique. The
answer is that one needs solutions on a long time-scale and that numerical
integration of an equation where the fast periodic oscillations have been elim-
inated is a much safer procedure.

In the analysis presented thus far we have considered unbounded domains.
To study the equation on spatially bounded domains, adding boundary con-
ditions, doesnot present serious obstacles to the techniques and the proofs.
An example is given below.

2.3 Boundary conditions and sources

An extension of the advection-diffusion problem has been obtained by Hei-
jnekamp et al. [1995]. They considered the problem with initial and bound-
ary values on the two-dimensional domain Q,0 <{ < oo

aa—f—l—v.(uC)—eAC—l—ef(C) = eB(x,y,1), (13)
Cla,y,0) = ~(a,y),(z,y) € Q (14)
Clz,y,t) = 0,(x,y) € 9N x [0,00). (15)

The flow u is expressed as above, the term f(C') is a small reaction-term
representing for instance the reactions of material with itself or the settling
down of sediment; B(x,y,t) is a T-periodic source term, for instance repre-
senting dumping of material.

Note that we chose the Dirichlet problem; the Neumann problem would be
more realistic but it presents some problems, boundary layer corrections and
complications in the proof of asymptotic validity which we avoid here.

The next step is to obtain the standard form (4) by the variation of constants
procedure (12) which yields

Uy=eL(t)U —cf(U)+eD(z,y,1) (16)
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where L(t) is a uniform elliptic T-periodic operator generated by the (unper-
turbed) time ¢ flow operator as before, D(x,y,1) is produced by the inhomo-
geneous term B. Averaging over time ¢ produces the averaged equation

Ul‘ :€IJU—€]E($,y,U)+5D($,y) (17)

with appropriate initial-boundary values.

Krol’s [1991] theorem formulated above produces that U(t) —U(t) = O(e) on
the time-scale 1/e. It is interesting that we can obtain a stronger result in
this case. Using sub- and supersolutions in the spirit of maximum principles
(Protter and Weinberger, 1967) we can show that the O(e) estimate is valid
for all time.

Another interesting aspect is that the presence of the source term triggers
off the existence of a unique periodic solution which is attracting the flow.
In the theory of averaging in the case of ordinary differential equations the
existence of a periodic solution is derived from the implicit function theorem.
In the case of averaging of this parabolic initial-boundary value problem one
has to use a topological fixed point theorem.

The paper by Heijnekamp et al. [1995] contains an explicit example for a
circular domain with reaction-term f(C') = aC? and for the source term B
Dirac-delta functions.

3 Operators with a discrete spectrum

In this section we shall be concerned with weakly nonlinear hyperbolic equa-
tions of the form

Uy + Au = eg(u, ug, t,¢) (18)

where A is a positive, selfadjoint linear differential operator on a separable
real Hilbert space. Equation (18) can be studied in various ways. First we
shall discuss theorems by Buitelaar [1993] who considers more general semi-
linear wave equations with a discrete spectrum to prove asymptotic estimates
on the 1/e time-scale.

The procedure involves solving an equation corresponding with an infinite
number of ordinary differential equations. In most interesting cases reso-
nance will make this virtually impossible and we have to take recourse to
truncation techniques; we discuss results by Krol [1989] on the asymptotic



validity of truncation methods which at the same time yield information on
the time-scale of interaction of modes.

Another fruitful approach of weakly nonlinear wave equations like (18) is by
the multiple times-scales method. In the discussion and the examples we
shall compare some of the methods.

3.1 Averaging results by Buitelaar
Consider the semilinear initial value problem

C;—I;—I—Aw:asf(w,t,e), w(0) = wo (19)
where — A generates a uniformly bounded Cy-group H(t), —oo < t < 400, on
the separable Hilbert space X (in fact the original formulation is on a Banach
space but here we focus on Hilbert spaces), f satisfies certain regularity
conditions and can be expanded with respect to ¢ in a Taylorseries, at least
to some order. A generalized solution is defined as a solution of the integral
equation

w(t) = H(t)wy + 5/; H(t = s)f(w(s), s, £)ds. (20)

Using the variation of constants transformation w(t) = H(#)z(¢) we find the
integral equation corresponding with the standard form
¢

z(t) = wo + 5/ F(z(s),s,e)ds, F(z,s,e)=H(—s)f(H(s)z,s,¢). (21)

0
Introduce the average F'° of F' by

FO(z) = lim %/OT F(z,5,0)ds (22)

T—o0

and the averaging approximation z(¢) of z(t) by

) =wotz [ " Fol2(s))ds. (23)

We mention that:



e f has to be Lipschitz-continuous and uniformly bounded on D x[0, 00) x
[0, 0] where D is an open, bounded set in the Hilbertspace X.

e F'is Lipschitz-continuous in D, uniformly in ¢ and e.

Under these rather general conditions Buitelaar [1993] proves that z(¢) —
Z(t) = o(1) on the time-scale 1/e.

In the case that F'(z,t,¢)is T-periodic in t we have the estimate z(¢) — z(¢) =
O(e) on the time-scale 1/¢.

It turns out that in the right frame-work we can use again the methods of
proof as they were developed for averaging in ordinary differential equations.
Note that, assuming that X is a separable Hilbert space and that —iA4 is
self-adjoint and generates a denumerable, complete orthonormal set of eigen-
functions, we have that if f(w,t,¢) is almost-periodic, F(z,%,¢) is almost-
periodic in t. This means that in this case the limit Fy(z) exists.

A straightforward application is then to consider semilinear initial value prob-
lems of hyperbolic type

up + Au = eg(u,ur, t, ), u(0) = uo, ue(0) = vo (24)

where A is a positive self-adjoint linear operator on a separable Hilbert space.
An example is the wave equation

Ut — Ugy = Ef (U Ug, ug, tyx,e), 12>0,0<2 <1 (25)
where

u(0,t) = u(l,t) = 0,u(x,0) = (), us(2,0) = (x),0 < a < 1

also the Klein-Gordon equation
Ut — Ugy + a*u =cu®, 1>0,0 <2 < ma>0. (26)

Buitelaar presents extensive applications to rod and beam equations. A
rod problem with extension and torsion produces two linear and nonlinearly
coupled Klein-Gordon equations which is a system with many resonances. A
number of cases are explored.
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3.2 Galerkin-averaging results by Krol

The averaging result by Buitelaar is of importance in its generality, in many
interesting cases however the resulting averaged system is still difficult to
analyse and we need additional theorems. One of the most important tech-
niques involves truncation which has been discussed by Krol [1989].
Consider again the initial-boundary value problem for the nonlinear wave
equation (25). The normalized eigenfunctions of the unperturbed (¢ = 0)
problem are v, (x) = v/2sin(nmz),n = 1,2, --- and we propose to expand the
solution of the initial-boundary value problem for equation (25) in a Fourier
series with respect to these eigenfunctions of the form

u(t,z) = ij:lun(t)vn(x) (27)

By taking inner products this yields an infinite system of ordinary differential
equations which is equivalent to the original problem. The next step is
then to truncate this infinite dimensional system and apply averaging to
the truncated system. The truncation is known as Galerkin’s method and
one has to estimate the combined error of truncation and averaging.

The first step is that (25) with its initial-boundary values has exactly one
solution in a suitably chosen Hilbert space Hj = HE x HE' where HE
are the well-known Sobolev spaces consisting of functions v with derivatives
U® € [,[0,1] and u?) zero on the boundary whenever 2/ < k. It is not
trivial but rather standard to establish existence and uniqueness of solu-
tions on the time-scale 1/ under certain mild conditions on f; examples are
righthandsides f like u®, uu?, sin u, sinh u; etc. Moreover we note that:

1. If & > 3, u is a classical solution of equation (25).

2. If f = f(u) is an odd function of «, one can find an even energy integral.
If such an integral represents a positive definite energy integral, we are
able to prove existence and uniqueness for all time; see also Reed [1976].

In Galerkin’s truncation method one considers only the first N modes of the
expansion (27) which we shall call the projection uy of the solution v on a
N-dimensional space. To find uy we have to solve a 2 N-dimensional system
of ordinary differential equations for the expansion coefficients u,(¢) with
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appropriate (projected) initial values. The estimates for the error |[u — uy]|
depend strongly on the smoothness of the righthandside f of equation (25)
and the initial values ¢(x),¢ () but, remarkably enough, not on . Krol
[1989] finds supnorm estimates on the time-scale 1/¢ and as N — oo of the
form

lu—unll.e = O(N
lue = unilloe = O(N

) (28)
). (29)

We shall return later to estimates in the analytic case.

As mentioned before the truncated system is in general difficult to solve.
Averaging as described in section 1 for the periodic case, produces an ap-
proximation uy of uy and finally the following

Galerkin-averaging theorem (Krol [1989])
Consider the initial-boundary value problem

Ut — Ugy = Ef (U Ug, ug, tyx,e), 12>0,0<2 <1 (30)
where
u(0,t) = u(l,t) = 0,u(x,0) = (), us(,0) = Y(x),0 < a < 1.

Suppose that [ is k-times continuously differentiable and satisfies the exis-
tence and uniqueness conditions on the time-scale 1/e,(p,v0) € Hy; if the
solution of the initial-boundary problem is (u,u:) and the approximation ob-
tained by the Galerkin-averaging procedure (uy,un:) we have on the time-
scale 1/e

Je—anlle = O(N
|us — Nl = O(N

Y4+ 0(), N—o0,e—0 (31)
)+ 0(e), N = o0,e—0. (32)

There are a number of remarks:

e Taking N = 0(5_2;——1) we obtain an O(e)-approximation on the time-
scale 1/e. So, the required number of modes decreases when the regu-
larity of the data and the order up to which they satisfy the boundary
conditions, increases.

12



e However, this decrease of the number of required modes is not uniform
in k. So it is not obvious for which choice of k the estimates are optimal
at a given value of ¢.

o An interesting case arises if the nonlinearity f satisfies the regularity
conditions for all £. This happens for instance if f is an odd polynomial
in v and with analytic initial values. In such cases the results can be
improved by introducing Hilbert spaces of analytic functions (so-called
Gevrey classes). The estimates by Krol [1989] for the approximations
on the time-scale 1/¢ obtained by the Galerkin-averaging procedure
become in this case

v —tnllew = ONTa™)+0(e), N—=o00,e—=0 (33)
| — tneljo = O(a™™)+0(g), N —= 00,6 — 0, (34)

where the constant « arises from the bound one has to impose on the
size of the strip around the real axis on which analytic continuation is
permitted in the initial-boundary value problem.

The important implication is that, because of the a N-term we need
only N = O(|loge|) terms to obtain an O(e) approximation on the
time-scale 1/e.

We shall return to this important point in section 3.4.

e Here and in the sequel we have chosen Dirichlet boundary conditions.
It is stressed that this is by way of example and not a restriction. We
can also use the method for Neumann conditions, periodic boundary
conditions etc.

e [t is possible to generalize these results to higher dimensional (spatial)
problems; see Krol [1989] for remarks and Pals [1996] for an analysis
of a two-dimensional nonlinear Klein-Gordon equation with Dirichlet
boundary conditions. Also it is possible to include dispersion although
not without some additional difficulties; see section 3.3.

3.3 A nonlinear Klein-Gordon equation

As a prototype of a nonlinear wave equation with dispersion consider the
nonlinear Klein-Gordon equation

Ugt — Upy Fu=cu’, 1>0,0< <7 (35)
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with boundary conditions u(0,1) = u(m,t) = 0 and initial values u(x,0) =
(), ug(x,0) = ¢(x) which are supposed to be sufficiently smooth.

The problem has been studied by many authors, for an introduction to for-
mal approximation procedures see Kevorkian and Cole [1981].

What do we know qualitatively? It follows from Krol’s [1989] analysis that
we have existence and uniqueness of solutions on the time-scale 1/¢ and for
all time if we add a minus sign on the righthand side. Kuksin [1991], Bobenko
and Kuksin [1995] consider Klein-Gordon equations as a perturbation of
the (integrable) sine-Gordon equation and prove, in an infinite-dimensional
version of KAM-theory, the persistence of most finite-dimensional invariant
manifolds in system (35). See also the subsequent discussion of results by
Bourgain [1996] and Bambusi [1998].

We start with the eigenfunction expansion (27) where we have
vo(x) =sin(ne), N> =n* +1,n=1,2,---

for the eigenfunctions and eigenvalues. Substituting the expansion in the
equation (35) and taking the Ly inner product with v,(z) for n = 1,2,---
produces an infinite number of coupled ordinary differential equations. As
the spectrum is nonresonant we can average (or normalize) to any truncation
number N. The result is that the actions are constant to this order of
approximation, the angles are varying slowly as a function of the energy
level of the modes.

With regards to the asymptotic character of the estimates we can make the
following observations:

e Stroucken and Verhulst [1987] prove that, depending on the smoothness
of the initial values (¢,1’) we need N = O(¢7") modes (3 a positive
constant) to obtain an O(e”) approximation (0 < a < 1) on the time-
scale 1/e.

e Note that according to Buitelaar [1993], section 3.2, we have the case of
averaging of an almost periodic infinite dimensional vector field which
yields an o(1) approximation on the time-scale 1/¢ in the case of gen-
eral, smooth initial values.

e It is not difficult to improve the result in the case of finite-mode initial
values, i.e. the initial values can be expressed in a finite number of

14



eigenfunctions v,(x). In this case the error becomes O(e) on the time-
scale 1/e if N is taken large enough.

Using the method of two time-scales van Horssen and van der Burgh
[1988] construct an asymptotic approximation of the same form with
estimate O(e) on the time-scale 1/y/c. Van Horssen [1992] develops a
method to prove an O(e) approximation on the time-scale 1/¢ which
is applied to the nonlinear Klein-Gordon equation with a quadratic
nonlinearity (—eu?).

Stroucken and Verhulst [1987] also have constructed a second-order
approximation in the small parameter ¢. It turns out that there exists
a small interaction between modes with number m and number 3m
which probably involves much longer time-scales than 1/¢. This is still
an open problem.

Bourgain [1996] considers the nonlinear Klein-Gordon equation (35) in
the rather general form

Uy — Upy + V(x)u=cf(u), t>0,0<az<m (36)

with V' a periodic, even function and f(u) an odd polynomial in u. As-
suming rapid decrease of the amplitudes in the eigenfunction expansion
(27) and diophantine (non-resonance) conditions on the spectrum, it is
proved that infinite-dimensional invariant tori persist in the nonlinear
wave equation (36) corresponding with almost-periodic solutions. The

proof involves a perturbation expansion which is valid on a time-scale
1/eM™ with M > 0 a fixed number.

Bambusi [1998] considers the nonlinear Klein-Gordon equation (35) in
the general form

Uyt — Ugy + mu = ed(z,u), t>0,0< <7 (37)

and the same boundary conditions. The function ¢(x,u) is polyno-
mial in u, entire analytic and periodic in x and odd in the sense that

R e ——)

Under a certain non-resonance condition on the spectrum Bambusi
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[1998] shows that the solutions remain close to finite-dimensional in-
variant tori corresponding with quasi-periodic motion on time-scales
longer than 1/e.

The results of Bourgain [1996] and Bambusi [1998] add to the under-
standing and interpretation of the averaging results and, as we are
describing phenomena which are really there, it raises the question of
how to obtain longer time-scale approximations.

3.4 A nonlinear wave equation with infinitely many
resonances

In Kevorkian and Cole [1981] and Stroucken and Verhulst [1987] a more
exciting and difficult problem is briefly discussed: the inital-boundary value
problem

Uy — Upy = >, 1>0,0< <7 (38)

with boundary conditions u(0,1) = u(m,t) = 0 and initial values u(x,0) =
(), ug(x,0) = ¢(x) which are supposed to be sufficiently smooth.
Starting with an eigenfunction expansion (27) we have

2
o) = J;sin(nx),)\i =n*n=12---

for the eigenfunctions and eigenvalues. The authors note that as there are
an infinite number of resonances, after applying the two time-scales method
or averaging, we still have to solve an infinite system of coupled ordinary dif-
ferential equations. In fact the problem is reminiscent of the famous Fermi-
Pasta-Ulam problem (see for references and a discussion for instance Jackson
[1978, 1991]) and it displays similar interaction between the modes and re-
currence.

Apart from numerical approximation, Galerkin-averaging seems to be a pos-
sible approach and we state here the application of Krol’s [1989] theory to
this problem with the cubic term. Suppose that for the initial values ¢, ¢ we
have a finite-mode expansion of M modes only; of course we take N > M
in the eigenfunction expansion. Now the initial values ¢, are analytic and
Krol [1989] optimizes the way in which the analytic continuation of the initial
values takes place. The analysis leads to the estimate for the approximation
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uy obtained by Galerkin-averaging:
|lu — tun|loo = 0(575&@%)7 0< SN < 1. (39)

It is clear that if NV > M the error estimate tends to O(e) and the time-scale
to 1/e. The result can be interpreted as an upper bound for the speed of
energy transfer from the first M modes to higher order modes.

The analysis by van der Aa and Krol [1990]

Consider the coupled system of ordinary differential equations corresponding
with problem (38) for arbitrary N; this system is generated by the Hamilto-
nian V. Note that although (38) corresponds with an infinite-dimensional
Hamiltonian system, this property does not necessarily carries over to pro-
jections.

Important progress has been achieved by van der Aa and Krol [1990] who ap-
ply Birkhoff normalisation, which is asymptotically equivalent to averaging,
to the Hamiltonian system H"; the normalized Hamiltonian is indicated by
HY . Remarkably enough the flow generated by H” for arbitrary N, contains
an infinite number of invariant manifolds.

Consider the ‘odd” manifold M; which is characterized by the fact that only
odd-numbered modes are involved in M;. Inspection of HY reveals that M;
is an invariant manifold.

In the same way the ‘even’ manifold M; is characterized by the fact that
only even-numbered modes are involved; this is again an invariant manifold
of HN.

In Stroucken and Verhulst [1987] this was noted for N = 3 which is rather
restricted; moreover it can be extended to manifolds M,, with m = 2F¢, ¢q
and odd natural number, £ a natural number. It turns out that projections
to two modes yield little interaction, so this motivates to look at projections
with at least N = 6 involving the odd modes 1,3,5 on M; and 2.4,6 on M,.
Van der Aa and Krol [1990] analyse H®, in particular the periodic solutions
on Mj. For each value of the energy this Hamiltonian produces three normal
mode (periodic) solutions which are stable on M;. Analysing the stability in
the full system generated by H® we find again stability.

An open question is if there exist periodic solutions in the flow generated by
H® which are not contained in either M; or M.

What is the relation between the periodic solutions found by averaging and
periodic solutions of the original nonlinear wave problem (38)7 Van der Aa
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and Krol [1990] compare with results obtained by Fink et al. [1974] who em-
ploy the Poincaré-Lindstedt continuation method to prove existence and to
approximate periodic solutions. Related results employing elliptic functions
have been derived by Lidskii and Shulman [1988]. It turns out that there is
very good agreement but the calculation by the Galerkin-averaging method
is technically simpler.
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