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Abstract.

We extend Robins’ theory of causal inference for complex longitudinal data to the case
of continuously varying as opposed to discrete covariates and treatments. In particular
we establish versions of the key results of the discrete theory: the g-computation formula
and a collection of powerful characterizations of the g-null hypothesis of no treatment
effect. This is accomplished under natural continuity hypotheses concerning the conditional
distributions of the outcome variable and of the covariates given the past.

1. The problem.

Robins (1986, 1987, 1989, 1997) introduced the following framework for describing a lon-
gitudinal observational study in which new treatment decisions are repeatedly taken on
the basis of accumulating data. Suppose a patient will visit a clinic at K time points. At
visit £ = 1,..., K, medical tests are done yielding some data L. The data Ly, ..., Lr_1
from earlier visits is still available. The doctor gives a treatment Ay (this could be the
quantity of a certain drug). Earlier treatments Aq,...,Ax_1 are also known. Of interest
is some response Y, to be thought of as representing the state of the patient after the
complete treatment. Thus in time sequence the complete history of the patient results in
the alternating sequence of covariates (or responses) and treatments
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Any of the variables may be vectors and may take values in different spaces. The notation
Ly, for covariate and Ay for treatment was inspired by AIDS studies where L is lymphocyte
count (white blood corpuscles) and Ay, is the dose of the drug AZT at the k’th visit to the
clinic. Robins” approach generalizes the time-independent point-treatment counterfactual
approach of Neyman (1923) and Rubin (1974, 1978, 1983) to the setting of longitudinal
studies with time-varying treatments and covariates. Robins (1995, 1997) discusses the
relationship between his theory and causal theories based on directed acyclic graphs and
non-parametric structural equation models due to Pearl (1995) and Spirtes, Glymour, and
Scheines (1993).

The study typically yields values of an i.i.d. sample of this collection of random vari-
ables. On the basis of this data we want to decide whether treatment influences the final
outcome Y, and if so, how. In this paper we do not however consider statistical issues,
but concentrate on identification and modelling questions. We take the joint probability
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distribution of the data (L1, Ay,..., Lk, Ak,Y) as being given and ask whether the effect
of treatment is identified, when this distribution is known.

Note that we are considering an observational study, not a planned clinical trial. The
treatment decision at the k’th visit is not determined by a specified protocol but is the result
of the doctor’s personal decision at that moment. In different instances the treatment Ay
given at the kth visit will vary even though the available information Ly, Ay, ..., Ax_1, L
is the same. Indeed, it is precisely this variation which will allow us to study the effect of
treatment on outcome.

In Robins’ theory (some parts of which are presented below) the covariates and treat-
ments take values in discrete spaces. Our aim here is to extend the theory to the general
case. One might argue that in practice all data is discrete, but still in practice one will
often want to work with continuous models. Our original motivation was to rigorously
develop Robins’ (1997) outline of a theory of causal inference when treatments and covari-
ates can be administered and observed continuously in time. Here again it is necessary to
face up to the same questions, if the theory is to be given a firm mathematical foundation.

Write Ly, = (Ly,...,Ly), Ap = (Ay,..., Ay); we abbreviate Lx and Ax to L and
A. Values of the random variables are denoted by the corresponding lower case letters.
The aim is to decide how a specified treatment regime would affect outcome. A treatment
regime or plan, denoted ¢, is a rule which specifies treatment at each time point, given
the data available at that moment. In other words it is a collection (gx) of functions gy,
the k’th defined on sequences of the first k covariate values, where ap = gi(ly) is the
treatment to be administered at the k’th visit given covariate values I, = (I,...,l) up
till then. Following the notational conventions already introduced, we define g, (I) =
(g1(11), g2(l1,12)y - ooy gie(ly,y ... 1)) and g(I) = g (Ix). However for brevity we often ab-
breviate g, or g simply to g when the context makes clear which function is meant, as in
ar = g(l) or @ = g(l).

Robins’ approach is to assume that for given ¢ is defined, alongside of the ‘factual’
(L, A,Y), another so-called counterfactual random variable Y9: the outcome which would
have been obtained if the patient had actually been treated according to the regime ¢g. His
strategy is to show that the probability distribution of the counterfactual Y9 can be recov-
ered from that of the factual (L, A,Y) under some assumptions on the joint distribution
of (L, A,Y) and Y9. Assuming all variables are discrete, his assumptions are:

A1l: Consistency. Y =YY on A= g(L).
A2: Randomization. A, 1Y9 | Ly, Ap_y on Ap_y = g(Lp_1).

A3: Evaluability. For each k and @y, I, with @, = g(I), Pr(Ly = I, Ap_1 = Gp_1) >
0= PI‘(Lk = lk,Ak = Ek) > 0.

The consistency assumption Al states that if a patient coincidentally is given the same
sequence of treatments as the plan ¢ would have prescribed, then the outcome is the same
as it would have been under the plan. The randomisation assumption A2 states that the
k’th assignment of treatment, given the information available at that moment, does not
depend on the future outcome under the hypothetical plan ¢g. This assumption would be
true if treatment was actually assigned by randomization as in a controlled sequential trial.



On the other hand it would typically not be true if the doctor’s treatment decisions were
based on further variables than those actually measured which gave strong indications of
the patient’s underlying health status (and hence likely outcome under different treatment
plans). The evaluability condition A3 states that the plan g was in a sense actually tested in
the factual experiment: when there was an opportunity to apply the plan, that opportunity
was at least sometimes taken.

Under these conditions the distribution of Y9 can be computed by the g-computation
formula:

Pr(Y9 €)= / / Pr(Y €| Lg =g, A = ag)
li;a1=g1(l1) lxsarx=gx (Ix) (1)
K
H Pr(Ly € dly | Ly—1 = lp—1, Ap—1 = Qp—1).
k=1

Moreover, the right-hand side is a functional of the joint distribution of the factual vari-
ables only and of the chosen treatment plan g, and we sometimes refer to it as b(g) or
b(g;law(L, A,Y)). In particular, it does not involve conditional probabilities for which the
conditioning event has zero probability. We indicate the proof in a moment; it is rather
straightfoward formula manipulation. First we discuss some interpretational issues.

In practice computation of the right hand side of (1) could be implemented by a Monte-
Carlo experiment, as follows. An asterix is used to denote the simulated variables. First
set LT = [} drawn from the marginal distribution of Li. Then set A} = af = ¢1(l7). Next
set L5 =[5 drawn from the conditional distribution of Ls given Ly =[], A; = a}; and so
on. Finally set Y* = y* drawn from the conditional distribution of ¥ given L = Z*,Z =a".

This probabilistic reading of (1) begs a subject-matter interpretation in terms of further
counterfactual variables: the outcomes L7 of the k’th covariate, when patients are treated
by plan g. It seems as if we believe that

B1: the distribution of L7 given the (counterfactual) past, is the same as that of L; given
the same values of the factual variables.

However this interpretation is only valid under additional assumptions. Specifically, if we
can add to A2

A2': Causal graph. AkJ_(Yg,Li_I_l, cors L) | Ly, Ag—1 on Ay = g(Lp—1)

then one can prove it by an argument on the same lines as that which proves (1).

It is important to note that we do not need assumption A2" in proving (1), and hence
that (1) can be valid without its obvious probabilistic interpretation B1 being correct. Note
A2 would hold in a sequential randomized trial. However, in an observational study, A2
may be true but A2' false. For example, Robins (1997, pp. 81-83) describes a substantively
plausible data-generating mechanism which depends on further unobserved variables U,,,
and under which, for certain choices of ¢, assumption A2 is true but assumption A2 is
false, once the U,, have been integrated out. We are convinced by such examples that
(1) should not be regarded as the definition of Pr(Y¥9 € -) but rather needs to be derived



from the more primitive conditions Al to A3. We believe that these conditions are both
meaningful and as weak as possible. Hence our programme to generalise to continuous
variables is also important.

The proof of (1) is as follows. Consider the right hand side of (1). By assumption
A1l we may replace Y by Y9 in the conditional probability which is the integrand of this
expression. Now repeatedly carry out the following operations: using A2 drop the last
conditioning variable “Ax = ax” from the integrand. Next integrate out over [, so that
the K’th term in the product of conditional distributions disappears and the conditioning
on L =l in the integrand is also dropped. Now the right hand side of (1) (but with Y9
in place of Y') has been transformed into the same expression with K replaced by K — 1.
Repeat these steps of dropping the last a; and integrating out the last [ another K — 1
times and finally the left hand side of (1) is obtained.

Note that this proof of (1) only uses assumptions A1l and A2. Assumption A3 can
be used (in a similarly easy argument) to show that the right-hand side of (1) is uniquely
defined, i.e., independently of choice of conditional probabilities given zero probability
events. But where are the problems in going to the continuous case? Our proof of (1)
using A1 and A2 seemed to be perfectly general.

The problem is that when the treatments A are continuously distributed, the set of
(I, @) which are of the form (I3, g, (lx)) for a particular g will be a zero probability set
for (L, Az). Hence the events referred to in Al and A2 are zero probability events in
the continuous case, and the conditional distributions on the right-hand side of (1) are
only needed on these zero probability events. They can be chosen arbitrarily, making the
right-hand side of (1) more or less arbitrary. Perhaps they can be chosen in order to make
(1) correct, but then we need to know how to pick the right versions. Thus A1 and A2 need
to be strengthened somehow for a meaningful theory. As it stands, Condition A3 is empty
in the continuous case, but a reformulation of it in terms of supports of the distributions
involved will turn out to do the same job.

In this paper we will make some natural continuity assumptions which give us a
preferred choice of conditional distributions. Then we answer the questions: is equation
(1) correct, and is the right-hand side uniquely determined by the joint distribution of the
factuals? The three assumptions Al to A3 will be reformulated to take account of the new
context, and the proof of (1) will no longer be a completely trivial exercise though it still
follows the same line as given above.

We go on to investigate whether the key theorems in Robins’ (1986, 1987, 1989, 1997)
theory of causal inference for complex longitudinal data remain valid in the new context.

A further type of question we want to consider is the following: given factual variables
(L, A,Y) can one construct a variable Y9 satisfying A1-A2? If this were not the case, then
the assumption of existence of the counterfactuals places restrictions on the distribution
of the data. If on the other had it is true, then the often heated discussion about whether
or not counterfactual reasoning makes sense loses a major part of its sting: as a thought
experiment we can always suppose the counterfactuals exist. If this leads us to useful
statistical models and analysis techniques, that is fine.

We emphasize that the correctness of (1), and the uniqueness of (the right-hand side)
of (1), are two different issues. It is possible to construct simple examples where there are



two different counterfactual variables Y9 and Y'Y, with different marginal distributions,
both satisfying A1-A2, but with different versions of conditional distributions; in each
case the right-hand side of (1) gives the ‘right’ answer if the ‘right’ choice of conditional
distributions is taken. Here is such an example with &' = 1; L4 trivial; so there are only two
factual variables A = A; and Y under consideration. Let the sample space €2 be the unit
interval with the uniform probability distribution on it, but with an extra point (of zero

probability) %I immediately after the point 1. Let A(w) = w (with A(3) = A(%/) =1,

and let Y(w) =0 for w < 3, Y(w) =1 for w > %/. Let the treatment g be the fixed value
a =%, and let Y9 =1 except that Y9(1) = 0; let Y9 = 0 except that Y’g(%/) = 1. Note
that Y9 =Y’ =Y on 1, %I} = {A = 1}. Furthemore, Y9 and Y’ both have degenerate
distributions so are trivially independent of A. Thus conditions A1 and A2 hold for both Y9
and Y'g. Choosing the conditional distribution of Y given A = % either to be degenerate
at 1 or degenerate at 0 produces the ‘right’ answer for each of the two counterfactuals.
What is going on here is that the distribution of the data cannot possibly tell us what the
result of the treatment a = % should be. We have two equally plausible counterfactuals Y9
and Y'Y satisfying all our conditions but with completely different distributions. The law
of Y given A = % could reasonably be taken to be almost anything. However the law of Y
given other values of A seems more well-defined. In fact it can be chosen to be continuous
in a (except at a = % and the choice subject to continuity seems compelling.

Our approach will be to assume that the conditional distributions involved can be
chosen in a continous way—continuous, in the sense of weak convergence, as the values
of the conditioning variables vary throughout their support. It then turns out that if one
chooses versions of conditional distributions subject to continuity, there is in fact no choice:
the continuous version is uniquely defined. Formula (1) will now be uniquely defined, under
a natural restatement of A3, and when choosing the conditional distributions appearing in
the formula subject to continuity. The question whether or not it gives the right answer
requires parallel continuity assumptions concerning the distribution of the counterfactual
outcome given factual variables.

At the end of the paper we will pay some attention to an alternative approach. We
replace the idea of a treatment plan assigning a fixed amount of treatment given the past,
by a plan where the amount of treatment given the past stays random. This seems very
natural since even if a treatment plan nominally calls for a certain exact quantity of some
drug to be administered, in practice the amount administered will not be precisely constant.
The uniqueness question is very easily solved under a natural restatement of A3. However
whether or not the answer is the right answer turns out to be a much more delicate issue
and we give a positive answer under a rather different kind of regularity condition, not
assuming continuity any more but instead making non-distributional assumptions on the
underlying probability space. This approach raises some interesting open problems.



2. Facts on conditioning.

Conditional distributions. We assume without further mention from now on that all
variables take values in Polish spaces (i.e., complete separable metric spaces). This ensures,
among other things, that conditional distributions of one set of variables given values of
other sets exist, in other words, letting X and Y denote temporarily two groups of these
variables, joint distributions can be represented as

Pr(X edz,Y edy) =Pr(X eda | Y =y)Pr(Y € dy). (2)

When we talk about a version of the law of X given Y we mean a family of laws Pr(X €
- | Y = y) satisfying (2).

Repeated conditioning. Given versions of the law of X given Y and Z, and of Y given
7, one can construct a version of the law of X given Z as follows:

/Pr(XE-|Y:y,Z:z)Pr(Y€dy|Z:z):Pr(XE-|Z:z).

Fact 4 below shows that if the two conditional distributions on the left hand side are
chosen subject to a continuity property, then the result on the right hand side maintains
this property.

Conditional independence. When we say that X | Y | Z we mean that there is a
version of the joint laws of (X,Y") given Z = z according to which X and Y are independent
for every value z. It follows that any version of the law of X given Z = z supplies a version
of the law of X given Y = y, Z = 2. Conversely, if it is impossible to choose versions of
law(X | Y, Z) which for each z do not depend on y, then X Y Y | Z.

Support of a distribution. We define a support point of the law of X as a point x such
that Pr(X € B(z,6)) > 0 for all 6 > 0, where B(xz,6) is the open ball around z of radius
0. We define the support of X to be the set of all support points. As one might expect, it
does support the distribution of X, i.e., it has probability one (Fact 1 below).

The following four facts will be needed. The first two are well-known but they are given
here including proofs for completeness. The reader may like to continue reading in the
next section and only come back here for reference.

Fact 1. The support of X, Supp(X), is closed and has probability 1.

Proof. Any point not in the support is the centre of an open ball of probability zero. All
points in this ball are also not support points. The complement of the support is therefore
open. By separability it can be expressed as a countable union of balls of probability zero,
hence it has probability zero. O

It follows that one can also characterise the support of X as the smallest closed set con-
taining X with probability 1.



Fact 2. Suppose law (X | Y = y) can be chosen continuous in y € Supp(Y') (with respect
to weak convergence). Then subject to continuity it is uniquely defined there, and equals
limgs)olaw (X | Y € B(y,9)).

Proof. Choose versions of law (X | Y = y) subject to continuity. Fix a point yg € Supp(Y)
and let f be a bounded continuous function. Then

BUO|Y € Bno) = [ BUOIY =y)Pr(Y €dy|Y € Bluo.o)
B(yo,6)NSupp(Y)
where E(f(X) | Y = y) inside the integral on the right hand side is computed according
to the chosen set of conditional laws. By continuity (with respect to weak convergence)

of these distributions, it is a continuous and bounded function of y. Since law(Y | Y €
B(yo,06)) — 6y, as 6 | 0, the right hand side converges to E(f(X)|Y =yp) asé | 0. O

Fact 3. Suppose law(X | Y = y) can be chosen continuous in y € Supp(Y). Then for
y € Supp(Y), Supp(X | Y = y) x {y} C Supp(X,Y).

Proof. For y € Supp(Y) and = € Supp(X | Y = y) we have for all § > 0 since B(y, ) is
open
0<Pr(XeB(x,0)|Y=y)< liml%)anr(X € B(x,6) | Y € B(y,¢)).

So for arbitrary § and then small enough ¢, Pr(X € B(x,6) | Y € B(y,¢)) > 0, but also
Pr(Y € B(y,¢)) > 0. But

Pr((X,Y) € B(x,6) x B(y,6)) > Pr(Y € B(y,e))Pr(X € B(z,6) | Y € B(y,¢))

for all £ < ¢, which is positive for small enough . O

One might expect that the union over y € Supp(Y’) of the sets Supp(X | Y = y) x {y} is
precisely equal to Supp(X,Y’) but this is not necessarily the case. The resulting set can
be strictly contained in Supp(X,Y’) though it is a support of (X,Y") in the sense of having
probability one. Its closure equals Supp(X,Y).

Fact 4. Suppose Pr(X € - | Y =y, Z = z) is a family of conditional laws of X given Y
and Z, jointly continuous in (y, z) € Supp(Y, Z). Suppose Pr(Y € - | Z = z) is continuous
in z € Supp(Z). Then

Pr(X€-|Z:z):/Pr(X€-|Y:y,Z:z)Pr(Y€dy|Z:z)

Yy
18 continuous in z.

Proof. Let f be a bounded continuous function, let zy be fixed and in the support of Z.
We want to show that

/E(f(X)|Y:y,Z:z)Pr(Y6dy|Z:z)

—>/E(f(X)|Y:y,Z:z0)Pr(Y€dy|Z:zo)
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as z — zg, 2 € Supp(Z). Suppose without loss of generality that | f| is bounded by 1. The
function ¢g(y,2) = E(f(X) |Y =y, Z = z), is continuous in (y, z) € Supp(Y, Z) which is
a closed set. By the classical Tietze-Urysohn extension theorem it can be extended to a
function continuous everywhere and still taking values in [—1,1]. In the rest of the proof
when we write E(f(X) |Y =y, Z = z) we will always mean this continuous extension.

Without loss of generality restrict z, zp to a compact set of values of z, and choose
a compact set K of values of y such liminf. .. Pr(Y € K | Z = z) > 1 — ¢ where ¢ is
arbitrarily small. Write

/E(f(X)|Y:y,Z:z)Pr(Y€dy|Z:z)

— | BU(X)|Y=pZ=:)P(Y edy|Z=2)
yeK

+/ E(f(X)| Y=y, Z=2)Pr(Y edy | Z = z).
yEKR

The second term on the right-hand side is smaller than ¢ for z close enough to zg (and for
z = zp). In the first term on the right-hand side, the integrand E(f(X) | Y =y, Z = 2)
is a continuous function of (y,z), which varies in a product of two compact sets. It
is therefore uniformly continuous in (y, z), and hence continuous in z, uniformly in y.
Therefore for z close enough to zo, [E(f(X) | Y =y, Z = 2)Pr(Y e dy | Z = 2) is
within 2¢ of [ E(f(X)|Y =y,Z = 2)Pr(Y € dy | Z = z). Again for z close enough
to 2o, this is within 3e of [E(f(X)|Y =y, Z = z)Pr(Y € dy | Z = z). Since the
integrand here is a fixed bounded continuous function of y, for 2 — 2y this converges
to [E(f(X)|Y =y, Z = z)Pr(Y € dy | Z = z). Thus for z close enough to z,
JE(f(X)|Y =y, Z=2)Pr(Y €dy | Z = z) is within 4 of [E(f(X)|Y =y,Z =
20)Pr(Y edy | Z =2). O

3. The g-computation formula for continuous variables.

We will solve the uniqueness problem before tackling the more difficult correctness issue.
First we present a natural generalisation of condition A3:

A3*: Evaluability. For any @), = g(I) and (I, ar_1) € Supp((Ly, Ax_1)), it follows that
(Ik @x) € Supp((Lk, Ag)).

As with the original version of A3, the condition calls a plan g evaluable if, whenever at
some stage there was an opportunity to use the plan, it was indeed implemented on some
proportion of the patients. If all variables are actually discrete then A3* reduces to the
original A3.

Next we summarize appropriate continuity conditions concerning the factual variables.

C: Continuity. The distributions law(Y" | fﬁ =i, Ax =g ) can be chosen continuous
n (l[(,a[(), and 1aW(Lk | Ly =lp_1,A_1 = ak—l) n (lk_l,ak_l), on the (jOiIlt)
supports of the conditioning variables.



Theorem 1. Suppose conditions A3* and C hold. Then the right-hand side of (1) is
unique when the conditional distributions on the right-hand side are chosen subject to
continuity.

Proof. The right-hand of (1) has the probabilistic interpretation that first a value [; is
generated according to law(Ly), then ay is specified by a; = g1(l1), then a value [, is
generated from law(Ly | L1 = I3, A1 = a1), and so on. Suppose that at the end of the
kth step we have obtained (I,@x) € Supp(Lg, Ax). Then [, will with probability one
be generated, according to a uniquely determined probability distribution, in Supp(Ly1 |
Ly = lp, Ap = @), thus (Iy41,ar) € Supp(Lis1, Ar) by Fact 3. By condition A3*, this
leads to (Ixy1,@r41) € Supp(Lyry1, Axr1). By induction, with probability one all values
of I, (and in the last step, of y), are generated from uniquely determined conditional
distributions. 0O

We now have conditions under which the functional b(g;law(L, A,Y)) on the right-
hand side of (1) is well-defined. We next want to investigate when it equals law(Y9). For
that we need supplementary continuity conditions on its conditional laws given the factual
variables, and then appropriately reformulated versions of assumptions A1l and A2. We
first state suitable supplementary continuity conditions Cg.

Cg: Continuity for counterfactuals. The distributions law(Y¢ | Lpi1, Ar) and
law(Y9 | L, Ay) can for all k all be chosen continuous in the values of the condi-
tional variables on their supports.

Continuity assumptions C and Cg imply that conditional distributions selected according
to continuity are uniquely defined on the relevant supports. In the the sequel, in particular
in the following alternative versions of assumptions A1l and A2, all conditional distributions
are taken to be precisely those prescribed by continuity:

A1*: Consistency. law(YY | [ = LA=a) =law(Y | L = [,A = a) for (I,a) €
Supp(L, A) and ¢(I) = a.

A2%*; Randomisation. law(Y9 | L = Z,QZ,C = @y,) does not depend on ay for @, [ €
Supp(Ly, Ax) and satisfying ax_1 = g(lx_1)-

Theorem 2. Suppose conditions C and Cg hold, and moreover assumptions A1*-A3*
hold. Then equation (1) is true.

Proof. Writing out A1*, we have that
PI‘(Yg € - | EK = ZK,ZK = EK) = PI‘(Y SR | EK = ZK,ZK = a]() (3)

for (Ix,ax) € Supp(Lk, Ax) and g(Ix) = @
uniquely determined by continuity. Now let (
ing g(lp_1) = ar_1 be fixed. Consider

, where both conditional distributions are

K
Zk—laak—l) € Supp(zk_l,zk_l) and satisfy-

/ PI’(YQ € - | fk = Zk,Zk = ﬁk)
1 €Supp(Lg|Lp—1=lp—1,Ap 1=k —1);ar=gx (Ix) (4)
Pr(Ly € dly | L1 =lp_1,Ap_1 = ap_1)-
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Since Iy € Supp(Ly, | Ly = lp_1, Axg_1 = Gx_1) we have (I, a@x_1) € Supp(Ly, Ax_1) by
Fact 3. By assumption A3* and Fact 3 again, this gives us (I, @) € Supp(Lg, Ay ). Hence
all conditional distributions in (4) are well defined. By A2* we can delete the condition
Ap = ap, in Pr(Y9 € - | Ly = Iy, Ay, = @y). The integrand now does not depend on a;, and
integrating out [, shows that (4) is equal to a version of

PI‘(Yg € - |Zk_1 = Zk_l,Zk_l = ak_l). (5)

However it is not obvious, that this is the same version indicated by continuity. Fact
4 however states that continuously mixing over one parameter, a family of distibutions
continuous in two parameters, results in a continuous family. Consequently (5) is the
version selected by continuity.

The theorem is now proved exactly as in the discrete case by repeating the step which
led from (4) to (5) for k = K, K —1,...,1 on the right hand side of (1) (after replacing Y
by Y9), at the end of which the left hand side of (1) results. O

In view of Fact 4, the continuity condition Cg would be a lot more simple if we could
assume not only, from condition C, that law(Ly | L, = lg, Ag—1 = Qk—1) is continuous in
(lp—1,ar—1), but also

Ca: Continuity of factual treatment distribution. law(Ay | L = g, Ap_1 = Gp_1)
is continuous in (lx, ax_1).

Then for Cg it suffices to assume that law(Y9 | Ly = [, Ax = @) is continuous
in (g, @) since by mixing it alternately with respect to the conditional laws of Ay and
Ly, k= K,K —1,...,1 maintains at each stage, according to Fact 4 with Ca and Cg
respectively, the continuity in the remaining conditioning variables.

When the covariates and treatments are discrete condition A2* reduces to the original
A2. Assumption A1* on the other hand is then weaker than A1. One might prefer stronger
continuity assumptions and a stronger version of A1* which would reduce to Al with
discrete variables; for instance assume that law((Y,Y9) | L, A) can be chosen continuous
in the conditioning variables on their support, and assume that with respect to this version,
Pr(Y =Y9|L=1A=a)=1fora=g(l). Informally this says that ¥ and Y9 coincide
with larger and larger probability, the closer the plan g has been adhered to.

It would be interesting to show, without any continuity assumptions at all, that the
g-computation formula is correct for almost all plans g, where we have to agree on an
appropriate measure on the space G of all plans ¢g. So far we were not able to settle this
question. It arises again in when we consider the alternative approach based on randomised
plans in section 6.
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4. Characterizing the null-hypothesis.

The g-computation formula plays a major role in the Robins’ (1986, 1987, 1989, 1997)
theory of causal inference for complex longitudinal data, through the proofs of some the-
orems giving necessary and sufficient conditions for the “g”-null hypothesis Hy that the
right hand side of (1) is the same for all evaluable treatment plans g; by this we now mean
a plan ¢ satisfying the evaluability assumption A3*. These theorems concern various func-
tionals of the distribution of the factual variables only. We will therefore only assume
the continuity conditions C. Under the further conditions making (1) not only unique but
also correct, the “g”-null hypothesis is equivalent to the more interesting g-null hypothesis
that the distribution of the outcome under any evaluable plan ¢ is the same, and hence
treatment indeed has no effect on outcome.

We call a treatment plan static if it does not depend in any way on the covariate
values [, in other words, it is just a fixed sequence of treatment values ai,...,ax to be
assigned at each time point irrespective of covariate values measured then or previously.
A dynamic plan is just a plan which is not static.

Some of the results use the concept of a baseline treatment plan. In the literature this
has been usually taken to be the static plan ¢ = 0 = (0,...,0) where 0 is a special value in
each Ax’s sample space. However, already in the discrete case, complications arise if this
plan, and plans built up from another plan g by switching from some time point from the
plan ¢ to the plan 0, are not evaluable. (Thanks to Judith Lok for bringing this to our
attention).

We will say that a plan ¢° is an admissible baseline plan if for all evaluable plans ¢
and all k = 0,..., K, the plan ¢*° (follow plan g up to and including time point k — 1,
follow plan go from time point k& onwards) is also evaluable. We assume that an admissible
baseline plan exists. It is possible to construct examples where none exists; and certainly
easy to construct examples where no static admissible baseline plan exists. The problem
is that even if x is a support point of the law of a random variable X, there need not exist
any y such that (x,y) is a support point of the law of (X,Y). Admissible baseline plans
exist if condition Ca holds, by appeal to Fact 3; and they exist if the sample space for each
treatment is compact.

For a given plan g, for given k, and given (I, @,—_1), introduce the quantity

b(g; b, ap—1) = / .../Pr(Y €-|Lg =k, A =ag)

leg1 lrx

H Pr(Ly € dlpr | Lir—1 = lpr—1, Apr—1 = Qpr—1)
k' =k+1
where ay, . ..,ax on the right hand side are taken equal to gi(Ix), ..., gx(Ix). Similarly

to Theorem 1, this is a well-defined functional of the joint law of the factual variables
when (Ij,@_1) lies in the support of (L, Ax_1), when g(Ix—1) = @r_1, and when g is
evaluable, if conditional distributions are chosen subject to continuity in distribution on
the support of the conditioning variables. In fact the expression (6) does not depend on
g at time points prior to the k’th, so it is well-defined more generally than this. Let us
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say that a plan g is k-evaluable relatively to a given (Zk,ak_l) if for all m > k, any
(L s @m—1) E_Supp(Lm,Am_l) with initial segments coinciding with I, and @x_; and

satisfying ¢;(l;) = a; for j = k,...,m — 1, we have (l,,, @) € Supp(Ly, An) where
of course g (1) = G-

Similarly to Theorem 2 one has under appropriate conditions that b(g;lx, Gx_1) =
law(Y9 | Ly = Iy, Ax—1 = Gx—1), but this interpretation plays no role in the sequel.

The theorems we want to prove are the following:

Theorem 3. Assume condition C. Under Hy, for any k and (Ig,@p—1) in the support of
(Li, Ag—1), the expression b(g;lx, ar—1) does not depend on g for any k-evaluable plans g.

Theorem 4. Assume condition C. Suppose an admaissible baseline plan q° exists. Then if
b(g*tE0 Iy, @r_1) does not depend on ay, = gi(Ix,) for all (I, ay) in the support of (L, Ax),
then Hy is true.

Note in Theorem 4 that b(g’“+1:0;7k,ﬁk_1) only depends on ¢ through the value aj of
9 (lk).

Theorem 5. Assume condition C. Suppose an admissible baseline plan ¢° exists. Then

Hy holds if and only if Y L Ay, | Ly, Ax—y for all k.

Theorem 6. Assume condition C and suppose an admissible baseline plan ¢° exists. Sup-
pose the functions v, = Vi (y;lx, @) can be found satisfying the following: if a random
variable Y* has the distribution b(g*t1% Iy, @r_1) where gr(lp) = ap then vx(Y*; 1y, ay))
is distributed as b(g*0; 1y, @r_1). Define Y& =Y and then recursively define Y*~1 =
Ye(Y*; Ly, Ag). Then YO satisfies YO L Ag|Ly, Ax, for all k.

If Y is real-valued and continuously distributed then the obvious choice for the functions
v% in Theorem 6 is the QQ-transform between the specified distributions.

Combining theorems 3 and 4 we obtain two further ‘if and only if’ results: assum-
ing condition C and that an admissible baseline plan ¢° exists, Hy is true if and only
if b(g;lg,ar—_1) does not depend on g for any k-evaluable plans g, and if and only if
b(g; Iy, @r—1) does not depend on g for any plan of the special form ¢*+1:°, In particular,
if go = 0 is an evaluable baseline plan, then Hy holds if and only if b(g; [y, @r_1) does not
depend on g for any static plan g.

Theorem 5 shows that testing of the null-hypothesis does not require one to actu-
ally estimate and compute (1) for all plans g, and resolves the problem that, were one
to estimate the component conditional distributions of (1) using parametric models (non-
saturated), then typically no combination of parameter values could even reproduce the
null-hypothesis (Robins, 1997; Robins and Wasserman, 1997). Theorem 4 and Theorem 6
are the starting point of a new parametrization in which one models the effect v, (y; Iz, @)
of one final ‘blip’ of treatment aj at time-point k before reverting to the base-line treatment
g°. Parametric models for these effects, which Robins (1989, 1997) refers to as structural
nested models, do enable one to cover the null-hypothesis in a simple way and lead to
estimation and testing procedures which are mututally consistent and robust to misspeci-
fication, at least, at the null hypothesis. Briefly, the variable Y° constructed in Theorem
6 can be used as a surrogate for V9. One can estimate parameters of the blip-down func-
tions 7, by testing the hypotheses that Y0 1 Ag|Ly, Ar. This method of estimation is
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discussed in detail in Robins (1997) under the rubric of g-estimation of structural nested
models.

Proof of Theorem 3. Suppose Hj is true. Consider two plans g' and ¢2. We want to
prove equality of b(gi;iz,ag_l) for i = 1,2, where the superscript 0 is used to distinguish
the fixed values given in the theorem from later variable ones. Since b does not depend on
either plan ¢° before time k, without loss of generality suppose that these two plans assign
treatments af, ..., a?_, statically over the first k¥ — 1 time-points. Fix ¢ > 0 and define
the plan ¢ to be identical to plan ¢! except that for m > k and [,, for which I}, is in
an epsilon ball about 72, it is identical to go. Consider the equality of the two probability
distributions b(g!) and b(g?) on any given event in the sample space for Y. As we integrate
over all l1,...,[x we are integrating identical integrands except for [, in the epsilon ball
about 72 which is precisely where g' and ¢ differ; denote this set B(Zg,e). Deleting the
integrals over the complement of this set we obtain the equality, for ¢ = 1,2, of the two
quantities

k

[ bl ad o) [ Pr(Ly € dly | Tja = o0, A1 = a)_y). (7)
LB ,¢) |

Now by our continuity assumptions and repeated use of Fact 4, b(g%; Iy, @%_,) is a contin-
Eous fun_ction _of I. Divide (7) by the normalising quantity fhe B@.o) H]f Pr(L; € di; |
L1 =1;_1,A;_1 = 6?_1); the same for both ¢+ = 1,2. Now the equality expresses the
equality of the expectations of b(gi;fi,ag_l) for i = 1,2 where ZZ lies with probability
. -0 .. _ .
one in B(l,,s). As ¢ — 0, by continuity of b(g;;-,a}_,), the expectations converge to
-0 _
b(gi3 L, Tp—y)- D
Proof of Theorem 4. Let g be a given evaluable plan. Recall that ¢*° denotes the
modification of the plan obtained by making all treatments from time k onward follow the
baseline plan ¢°. Let ¢*:¢0 denote the modification of the given plan g obtained by making
the k’th treatment equal to the fixed amount a) and all subsequent treatments follow the
baseline plan. We show by downwards induction on k that b(g; lx, @x_1) = b(g*%; I, Tr_1)
for all k. This statement for k = 0 is the required conclusion. To initialise the induction
note that b(g; lx, Gx—1) = b(gB ™10 I, @r—1) = b(g™ % I, ar—1), where the first equality
is trivial and the second is the assumption of the theorem for £ = K. Next, in general,
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write

b(g;zkaak—l) = l b(g;zlﬂ-l,ak) PI‘(L]H_l € dlk_|_1 | Zk = Zk,Zk = Ek)
k41
= /l b(gFTE0 1, @) Pr(Lyyy € Alpyy | i = li, A = @)
- (by the induction hypothesis)
= b(g" 0 I, Tp1)
= b(gk:gk(ik)’o;zkﬁkq)

(by inspection)

- b(gkov 7167 ak—l)
(by the assumption of the theorem)

which establishes the induction step. O

Proof of Theorem 5. We prove first the backwards implication. Given that Y 1 Ay |
L., Ap_1 we see that Y itself satisfies the assumptions Cg, A1* and A2* concerning Y9,
for any particular evaluable g, of Theorem 2. Thus its law is given by the g-computation
formula (1) which is therefore the same for all g.

For the forward implication, we show that Y Y Ay | Li, Ar_; for some k implies
the existence of some k and evaluable plans g for which b(g; Iy, @._1) depends on g. First
of all, note there must be a last k, say k = ko, for which the conditional independence
does not hold. Now in the g-computation formula (1), for £ = K, K — 1,..., ko + 1 we
can repeatedly a) drop the last aj in the integrand, by conditional independence, and b)
integrate out the last [;. Thus the g-computation formula holds with K replaced by ko,
and we can replace K by kg in all subsequent results. But now we see by inspection that
b(g; lry, @ry—1), which is nothing but the conditional law of Y given Ly, , Ax,, depends on
aro = Gk (Ir,) and by Theorem 5 we are done. 0O

Proof of Theorem 6. By downwards induction one verifies that for each k, Y* has
the conditional distribution b(g*T¥0;1,, @, given Ly = Iy, Ay = @, where gp(Ix) = ag.
Given (Ly, Ap_1), Y is a deterministic function of Y*=! = 4 (Y*; Ly, Ay). So it suffices
to verify that v (Y*; Ly, Ax) L Ap|Ly, Ap_1. This follows by the characterizing property
of 71, and the just stated conditional distribution of Y*. O
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5. Construction of counterfactuals.

Suppose we start with a given law(L, A,Y). Can we build on a new sample space the
same random variables (i.e., variables with the same joint distribution) together with
counterfactuals Y9 for all g, satisfying conditions A1-A3 (or their strengthened versions)?
The answer will be yes. This means that in whatever sense counterfactuals exist or do not
exist, it is harmless to pretend that they do exist and to investigate the consequences of
that assumption—we do not hereby impose ‘hidden’ restrictions on the distribution of the
data.

The solution we give to this problem works in the reverse direction: we construct the
counterfactual world first, then build the factual world on top of it. However once we have
constructed all variables together with the required properties, including the factuals with
their given distribution, we can now derive the conditional distribution of all counterfactu-
als given all factuals, and hence we can extend a sample space supporting just the factual
variables with all the counterfactuals as well, just by using auxiliary randomization.

Fix a collection of versions of laws of each L, A and Y given all their predecessors
(in the usual order Ly, Ay, ..., Lg, Ak, Y). A plan go is called static if it does not
depend on [; i.e., it is just a single sequence of treatments a; to be applied irrespective
of the measured covariate values. Let Gy denote the collection of static plans; it can be
identified with the collection of all a.

First we build random variables L7, Y9 for all go € Go. Generate Ly from its marginal

law. For all gg, LY® = Ly. Next, for each value of a; generate a random variable Llj"“

from the law of Ly given Ly = Iy, Ay = ay. For all g with (go)1 = a1, define L3® = Llj’al
on LY® = [;. Proceed in the same way finishing with a collection of variables Y1:a1:--lx ax
drawn from the laws of Y given L = [, A = @ and define Y9 = Yarlxsan on 190 =]
ooy LY =lk; (g0)1 = a1, - ., (90)k = ax. Note that the definition of L{® only depends
on the values of (g9)1,.-.,(90)k—1-

For definiteness, we could use at each stage a single independent uniform-[0, 1] variable
Uy to generate all L7°.

Now we can define counterfactuals Y9, L7 for the dynamic plans g by using the
recursive consistency rule: L = L{° where (go)r—1 = gk—l(fi_1>7 and similarly Y9 =
V9 where (go)x = gi(Ly). Note that when for instance we set LY = L% values of
(90)1s---,(g0)k—2 have already been determined and only the next value (gg)x—1 is still
unknown, for which we use the rule (go)r—1 = ge—1(Lp_;).

On top of the counterfactual world we now define the ‘real world’, the factuals L, A, Y.
To build these variables we use a new sequence of independent uniform random variables
successively as follows: L, = L7 where (go)r—1 = Ar—1; A is drawn from the prespecified
law of Ay given fk = Zk,Zk_l — Qy_1 on the event fk = Zk,Zk_l =ap_1. Finally Y = Y9
where (go)x = Ak. As before successive values of gy are generated as they are needed.
One should check that the resulting L, A, Y do indeed have the intended joint distribution.

The consistency assumption A1 holds by construction. The randomisation assumption
A2 holds in the very strong form (Y9 : g € G) L Ay | Ly, Ap_1 where G is the set of all
treatment plans. This follows since given all Y9 and given (L, Ax_1), we used a single
independent uniform [0, 1] variable and the values of (L, A,_1) only in order to construct
Aj. Whether or not the evaluability condition A3 holds depends of course on which plan ¢
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is being considered. The collection of conditional distributions we used to start with is not
uniquely defined in the continuous case, and also not uniquely defined in the discrete case
if not all values of L, A have positive probability. However under the continuity conditions
C, if we have chosen all conditional distributions subject to continuity on the supports of
the conditioning variables, then our construction satisfies the stronger conditions Cg, A1*
and A2%*,

6. A G-computation formula for randomised plans.

In this section we present an alternative solution to the problems posed at the beginning
of the paper. Instead of assuming continuity of conditional distributions, is to assume
a kind of continuity of the treatment plan g relative to the factual plan. Our problems
before arose because the deterministic plan g was not actually implemented with positive
probability, when covariates are continuously distributed. Suppose we allow plans by which
the amount of treatment allocated at stage k, given the past, has some random variation.
In practice this actually is the often the case, for instance, it may be impossible to exactly
deliver a certain amount of a drug, or to exactly measure a covariate. Note that in the
theory below the variables A, and L are the actually administered drug quantity, and
the true value of the covariate; thus from a statistical point of view our theory may not
be of direct use since these variables will in practice not be observed. Imagine that all
variables are measured precisely and random treatments can be given according to any
desired probability distribution.

A randomised treatment plan now denoted by G consists of a sequence of conditional
laws Pr(A$ € - | If = Zk,Zf_l = Gi—1). (The random variables Ag,fg and Zf_l here
are counterfactuals corresponding to plan G being adhered to from the start).

The G-computation formula now becomes

PI‘(YG € dy) = / / .. / / PI‘(Y € dy | ZK = ZK,ZK = EK)
1 Jay lg Jag
K

H Pr(Ly € dly | Ly—1 = lp—1, Ap—1 = @) (8)
k=1

-G = =G _
Pr(AY e day | Ly, =1n, Ay, = Gi—1).

Again questions of uniqueness and correctness arise. Uniqueness of the right-hand side
of (8), denoted b(G;law(L, A,Y)) is easy to check under the following generalization of
assumption A3:

G

A3**: Evaluability. For each k, law(A¢ | If =1y, Ay_, = Ax_1) is absolutely continu-

ous with respect to law(Ay | Ly = I, Ax_1 = Gx_1) for almost all (I, @_1) from the
law of Lk, Ak—l-
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Theorem 6. Under A3**, b(G;law(L, A,Y)) is uniquely defined by the right-hand side of
(8).

Proof. Consider the expression

/ / .. / / PI‘(Y e dy | EK = ZK,ZK = EK)'
lh Jay lx Jak
P

d -G s —G —
AC|L] =1, A, =a,_ — - — _ 9
| | P . _k _k_k P Pr(Lp €dly, | Tey = Tp—1, A1 = Gpy)- (9)
k=1 Ap|Lp=lp,Ap_1=01_1

PI‘(Ak € day, | Zk = Zk,Zk_l = Ek_l).

The successive integrations with repect to the conditional laws of L, and Ay could be
rewritten as a single integration with respect to the joint law of (Lg, Ax). Moreover (9)
does not depend on choice of Radon-Nikodym derivatives nor on choice of the conditional
law of Y, since all are almost surely unique and by A3** finite on the support of Ly, Ax.
Now in (9) we can successively, for k = K, K — 1,...,1 merge the kth Radon-Nikodym
derivative and integration with respect to the conditional law of A, replacing it by inte-
gration with respect to the conditional law of A{. This transforms (9) into the right-hand
side of (8), showing that (8) too does not depend on choice of Radon-Nikodym derivatives
or conditional distributions. O

Condition A3** can be weakened; we only need the absolute continuity along paths
I, G which can actually be realised.

Does (8) also give the correct answer? This requires introducing a counterfactual Y¢
and relating it to Y9 and Y.

Suppose a plan G is to be implemented by, at each stage, generating Ag from the
specified conditional law by a transformation of an independent uniform variable U,. We
could generate the U, in advance, and thereby generate a candidate Ag for all possible

intermediate values of (ff,Zf_l); call it a¥ (I, @x—1;uy). Tracking through all possi-
ble values of all Lg, we see that the randomised plan G is exactly equivalent to choos-
ing in advance, by a randomisation depending only on Uy,...,Uy, a non-randomized
plan g = ggz. A little thought shows that the right-hand side of (6) can be rewritten as
[ ... [blgmlaw(L, A, Y))duy ...dug. So if we make the additional consistency assump-
tion Y = Y9 on G = g, then (8) gives a correct expression for law(Y“) as long as (1) is
correct for all (or at least, almost all) g.

Now we know already that the right-hand side of (8) is unique. So if versions of all
conditional laws could be chosen simultaneously making (1) correct for almost all ¢, then
by taking those choices, and averaging (1) over g, produces not only the unique but also
the correct expression (8). However it is not clear if this can be done.

If we are going to make assumptions concerning all Y9 simultaneously, other routes
become available. Rather than working via (1) for each g separately, we can try directly
to establish (8). But in order to be able to work with joint conditional laws of all Y9
simultaneously, we have to assume a lot of regularity. We will do it here by assuming
that the probability space on which all random variables are defined is nice enough (one

17



could say, small enough), that conditional probability measures or so-called disintegrations
(see Chang and Pollard, 1997) over this space exist. This will have the further advantage
that we can once and for all choose versions of all conditional probability measures in a
mutually consistent way; we automatically obtain the correct version of a given conditional
probability measure when mixing over one of the conditioning variables.

AO0**: Sample space regularity. The underlying probability space (Q,F,Pr) is a
complete separable metric space with the Borel o-algebra.

Fix a disintegration of Pr with respect to Ly, then fix disintegrations of Pr(- | L1 = [;)
with respect to Ay, and so on. We now have, everywhere on (2,

/ PI‘(- | Zk = Zk,Zk = ak)PI‘(Ak € day | fk = Zk,Zk_l = ak—l)
ap
=Pr(- | Ly, = lj, Ap—1 = Tp—1)

and similarly

/ Pr(- | Ly =, Ag—1 = Gp—1) Pr(Ly, € dly | L1 = lp—1, Ap—1 = Qp—1)

Uy

=Pr(- | Ly = le—1, Akt = r1).

The conditional probability measures here are measures on €2, concentrated on the condi-
tioning event.

We are going to talk about conditional joint laws of all Y¢ simultaneously; denoting
by G the set of all plans g let Y9 denote this collection of random variables. By its law or
conditional law we mean the restriction of Pr or appropriate conditional distribution, to
the sub-c-algebra of F generated by all Y.

Consider the following versions of A1 and A2.

A1**: Consistency. Y¥ = Y9 on G = g and, for each g, Y9 =Y on g(L) = A.
A2**; Randomisation. Y9 | Ay | Ly, Ap_1.
Theorem 7. Under A0**~A3**, formula (8) is correct.

Proof. By A2**, for almost all I, a@x_1, law(YY | Ly = [y, Ay =
ay, for almost all a;, with respect to Pr(Ay € - | Ly = Iy, Ap_1
over A from its conditional law, we find that laW(Yg | Ly, = I,
law(YY | Ly = Iy, Ax_1 = Gr_1) for almost all I, @y

These ‘almost all’ statements refer to the factual law of L, A, but by A3** they also

hold almost everywhere with respect to the integrating measure in (8). Now (8) can be

rewritten as
/ // /Pr T=1A=7)
Iy

. H Pr(Ly€dly | L1 =lp_1, A1 =ap_1)
k=1

{duq ... dug

ay) does not depend on
1 = Ak 1). So by mixing
Aj, = ay,) coincides with

(10)
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where ap = a¥ (I, @r_1;ug), k = 1,..., K. We can successively simplify (10) as follows.
First, by A1** we can replace Y by Y9 where ¢ = ¢gz. Here we use the fact that we
have disintegrations, so that if Y = Y9 on a certain event the conditional laws of these
variables are the same given this same event. Next by A2** for k = K, we can delete
the conditioning Ax = ar in Pr(Y9 € - | L = [, A = @), at least, for almost all I, @.
The exceptions do not however change the value of the integral. Moreover we can do this
irrespective of the value of ¢ = gz. Now we may mix over the conditional law of L,
reducing (10) to

/ . / / / Pr(YY € - | Li_1 = Z](_l,Z[g'_l =ar_1)
uy ur J1 lg—1
K-—1

. H Pr(Ly € dly, | Ly—1 = lp—1, Ag—1 = Tp—1)
k=1

-dug .. .dug

where ap, = a¥ (Ig,@r_1;ur) k =1,...,K — 1 and g = g5. Repeat a further K — 1 times
and we finally obtain

/ / Pr(Y9% € -)duy ...dug = Pr(Y“ € ).
Ul UK

The above theory is not just a distributional theory. We have assumed specific facts
about the underlying sample space, involving events of zero probability. In particular the
consistency assumption is back in its original form for discrete variables.
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