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Abstract�

We extend Robins� theory of causal inference for complex longitudinal data to the case
of continuously varying as opposed to discrete covariates and treatments� In particular
we establish versions of the key results of the discrete theory� the g�computation formula
and a collection of powerful characterizations of the g�null hypothesis of no treatment
e�ect� This is accomplished under natural continuity hypotheses concerning the conditional
distributions of the outcome variable and of the covariates given the past�

�� The problem�

Robins 	��
�� ��

� ��
�� ���
� introduced the following framework for describing a lon�
gitudinal observational study in which new treatment decisions are repeatedly taken on
the basis of accumulating data� Suppose a patient will visit a clinic at K time points� At
visit k � �� � � � � K� medical tests are done yielding some data Lk� The data L�� � � � � Lk��

from earlier visits is still available� The doctor gives a treatment Ak 	this could be the
quantity of a certain drug�� Earlier treatments A��� � � �Ak�� are also known� Of interest
is some response Y � to be thought of as representing the state of the patient after the
complete treatment� Thus in time sequence the complete history of the patient results in
the alternating sequence of covariates 	or responses� and treatments

L�� A�� � � � � LK � AK� Y�

Any of the variables may be vectors and may take values in di�erent spaces� The notation
Lk for covariate and Ak for treatment was inspired by AIDS studies where Lk is lymphocyte
count 	white blood corpuscles� and Ak is the dose of the drug AZT at the k�th visit to the
clinic� Robins� approach generalizes the time�independent point�treatment counterfactual
approach of Neyman 	����� and Rubin 	��
�� ��

� ��
�� to the setting of longitudinal
studies with time�varying treatments and covariates� Robins 	����� ���
� discusses the
relationship between his theory and causal theories based on directed acyclic graphs and
non�parametric structural equation models due to Pearl 	����� and Spirtes� Glymour� and
Scheines 	������

The study typically yields values of an i�i�d� sample of this collection of random vari�
ables� On the basis of this data we want to decide whether treatment in�uences the �nal
outcome Y � and if so� how� In this paper we do not however consider statistical issues�
but concentrate on identi�cation and modelling questions� We take the joint probability

�
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distribution of the data 	L�� A�� � � � � LK � AK � Y � as being given and ask whether the e�ect
of treatment is identi�ed� when this distribution is known�

Note that we are considering an observational study� not a planned clinical trial� The
treatment decision at the k�th visit is not determined by a speci�ed protocol but is the result
of the doctor�s personal decision at that moment� In di�erent instances the treatment Ak

given at the kth visit will vary even though the available information L�� A�� � � � � Ak��� Lk
is the same� Indeed� it is precisely this variation which will allow us to study the e�ect of
treatment on outcome�

In Robins� theory 	some parts of which are presented below� the covariates and treat�
ments take values in discrete spaces� Our aim here is to extend the theory to the general
case� One might argue that in practice all data is discrete� but still in practice one will
often want to work with continuous models� Our original motivation was to rigorously
develop Robins� 	���
� outline of a theory of causal inference when treatments and covari�
ates can be administered and observed continuously in time� Here again it is necessary to
face up to the same questions� if the theory is to be given a �rm mathematical foundation�

Write Lk � 	L�� � � � � Lk�� Ak � 	A�� � � � � Ak�� we abbreviate LK and AK to L and
A� Values of the random variables are denoted by the corresponding lower case letters�
The aim is to decide how a speci�ed treatment regime would a�ect outcome� A treatment
regime or plan� denoted g� is a rule which speci�es treatment at each time point� given
the data available at that moment� In other words it is a collection 	gk� of functions gk�
the k�th de�ned on sequences of the �rst k covariate values� where ak � gk	lk� is the
treatment to be administered at the k�th visit given covariate values lk � 	l�� � � � � lk� up
till then� Following the notational conventions already introduced� we de�ne gk	lk� �
	g�	l��� g�	l�� l��� � � � � gk	l�� � � � � lk�� and g	l� � gK	lK�� However for brevity we often ab�
breviate gk or g simply to g when the context makes clear which function is meant� as in
ak � g	lk� or a � g	l��

Robins� approach is to assume that for given g is de�ned� alongside of the �factual�
	L�A� Y �� another so�called counterfactual random variable Y g� the outcome which would
have been obtained if the patient had actually been treated according to the regime g� His
strategy is to show that the probability distribution of the counterfactual Y g can be recov�
ered from that of the factual 	L�A� Y � under some assumptions on the joint distribution
of 	L�A� Y � and Y g� Assuming all variables are discrete� his assumptions are�

A�� Consistency� Y � Y g on A � g	L��

A�� Randomization� Ak�Y
g j Lk� Ak�� on Ak�� � g	Lk����

A�� Evaluability� For each k and ak� lk with ak � g	lk�� Pr	Lk � lk� Ak�� � ak��� �
�� Pr	Lk � lk� Ak � ak� � ��

The consistency assumption A� states that if a patient coincidentally is given the same
sequence of treatments as the plan g would have prescribed� then the outcome is the same
as it would have been under the plan� The randomisation assumption A� states that the
k�th assignment of treatment� given the information available at that moment� does not
depend on the future outcome under the hypothetical plan g� This assumption would be
true if treatment was actually assigned by randomization as in a controlled sequential trial�
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On the other hand it would typically not be true if the doctor�s treatment decisions were
based on further variables than those actually measured which gave strong indications of
the patient�s underlying health status 	and hence likely outcome under di�erent treatment
plans�� The evaluability condition A� states that the plan g was in a sense actually tested in
the factual experiment� when there was an opportunity to apply the plan� that opportunity
was at least sometimes taken�

Under these conditions the distribution of Y g can be computed by the g�computation
formula�

Pr	Y g � �� �

Z

l��a��g��l��

� � �

Z

lK �aK�gK�lK�

Pr	Y � � j LK � lK � AK � aK�

KY
k��

Pr	Lk � dlk j Lk�� � lk��� Ak�� � ak����

	��

Moreover� the right�hand side is a functional of the joint distribution of the factual vari�
ables only and of the chosen treatment plan g� and we sometimes refer to it as b	g� or
b	g� law	L�A� Y ��� In particular� it does not involve conditional probabilities for which the
conditioning event has zero probability� We indicate the proof in a moment� it is rather
straightfoward formula manipulation� First we discuss some interpretational issues�

In practice computation of the right hand side of 	�� could be implemented by a Monte�
Carlo experiment� as follows� An asterix is used to denote the simulated variables� First
set L�� � l�� drawn from the marginal distribution of L�� Then set A

�
� � a�� � g�	l

�
��� Next

set L�� � l�� drawn from the conditional distribution of L� given L� � l��� A� � a��� and so

on� Finally set Y � � y� drawn from the conditional distribution of Y given L � l
�
� A � a��

This probabilistic reading of 	�� begs a subject�matter interpretation in terms of further
counterfactual variables� the outcomes Lgk of the k�th covariate� when patients are treated
by plan g� It seems as if we believe that

B�� the distribution of Lgk given the 	counterfactual� past� is the same as that of Lk given
the same values of the factual variables�

However this interpretation is only valid under additional assumptions� Speci�cally� if we
can add to A�

A�y� Causal graph� Ak�	Y
g� L

g
k��� � � � � L

g
K� j Lk� Ak�� on Ak�� � g	Lk���

then one can prove it by an argument on the same lines as that which proves 	���
It is important to note that we do not need assumption A�y in proving 	��� and hence

that 	�� can be valid without its obvious probabilistic interpretation B� being correct� Note
A�y would hold in a sequential randomized trial� However� in an observational study� A�
may be true but A�y false� For example� Robins 	���
� pp� 
��
�� describes a substantively
plausible data�generating mechanism which depends on further unobserved variables Um�
and under which� for certain choices of g� assumption A� is true but assumption A�y is
false� once the Um have been integrated out� We are convinced by such examples that
	�� should not be regarded as the de�nition of Pr	Y g � �� but rather needs to be derived
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from the more primitive conditions A� to A�� We believe that these conditions are both
meaningful and as weak as possible� Hence our programme to generalise to continuous
variables is also important�

The proof of 	�� is as follows� Consider the right hand side of 	��� By assumption
A� we may replace Y by Y g in the conditional probability which is the integrand of this
expression� Now repeatedly carry out the following operations� using A� drop the last
conditioning variable �AK � aK� from the integrand� Next integrate out over lK � so that
the K�th term in the product of conditional distributions disappears and the conditioning
on LK � lK in the integrand is also dropped� Now the right hand side of 	�� 	but with Y

g

in place of Y � has been transformed into the same expression with K replaced by K � ��
Repeat these steps of dropping the last ak and integrating out the last lk another K � �
times and �nally the left hand side of 	�� is obtained�

Note that this proof of 	�� only uses assumptions A� and A�� Assumption A� can
be used 	in a similarly easy argument� to show that the right�hand side of 	�� is uniquely
de�ned� i�e�� independently of choice of conditional probabilities given zero probability
events� But where are the problems in going to the continuous case� Our proof of 	��
using A� and A� seemed to be perfectly general�

The problem is that when the treatments A are continuously distributed� the set of
	lk� ak� which are of the form 	lk� gk	lk�� for a particular g will be a zero probability set
for 	Lk� Ak�� Hence the events referred to in A� and A� are zero probability events in
the continuous case� and the conditional distributions on the right�hand side of 	�� are
only needed on these zero probability events� They can be chosen arbitrarily� making the
right�hand side of 	�� more or less arbitrary� Perhaps they can be chosen in order to make
	�� correct� but then we need to know how to pick the right versions� Thus A� and A� need
to be strengthened somehow for a meaningful theory� As it stands� Condition A� is empty
in the continuous case� but a reformulation of it in terms of supports of the distributions
involved will turn out to do the same job�

In this paper we will make some natural continuity assumptions which give us a
preferred choice of conditional distributions� Then we answer the questions� is equation
	�� correct � and is the right�hand side uniquely determined by the joint distribution of the
factuals� The three assumptions A� to A� will be reformulated to take account of the new
context� and the proof of 	�� will no longer be a completely trivial exercise though it still
follows the same line as given above�

We go on to investigate whether the key theorems in Robins� 	��
�� ��

� ��
�� ���
�
theory of causal inference for complex longitudinal data remain valid in the new context�

A further type of question we want to consider is the following� given factual variables
	L�A� Y � can one construct a variable Y g satisfying A��A�� If this were not the case� then
the assumption of existence of the counterfactuals places restrictions on the distribution
of the data� If on the other had it is true� then the often heated discussion about whether
or not counterfactual reasoning makes sense loses a major part of its sting� as a thought
experiment we can always suppose the counterfactuals exist� If this leads us to useful
statistical models and analysis techniques� that is �ne�

We emphasize that the correctness of 	��� and the uniqueness of 	the right�hand side�
of 	��� are two di�erent issues� It is possible to construct simple examples where there are
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two di�erent counterfactual variables Y g and Y �g� with di�erent marginal distributions�
both satisfying A��A�� but with di�erent versions of conditional distributions� in each
case the right�hand side of 	�� gives the �right� answer if the �right� choice of conditional
distributions is taken� Here is such an example withK � �� L� trivial� so there are only two
factual variables A � A� and Y under consideration� Let the sample space � be the unit
interval with the uniform probability distribution on it� but with an extra point 	of zero

probability� �
�

�
immediately after the point �

� � Let A	�� � � 	with A	�� � � A	��
�
� � �

� ��

and let Y 	�� � � for � � �
� � Y 	�� � � for � �

�
�

�
� Let the treatment g be the �xed value

a � �
� � and let Y

g � � except that Y g	 �� � � �� let Y
�g � � except that Y �g	��

�
� � �� Note

that Y g � Y �g � Y on �
� �

�
�

�
g � fA � �

�g� Furthemore� Y
g and Y �g both have degenerate

distributions so are trivially independent of A� Thus conditions A� and A� hold for both Y g

and Y �g� Choosing the conditional distribution of Y given A � �
�
either to be degenerate

at � or degenerate at � produces the �right� answer for each of the two counterfactuals�
What is going on here is that the distribution of the data cannot possibly tell us what the
result of the treatment a � �

� should be� We have two equally plausible counterfactuals Y
g

and Y �g satisfying all our conditions but with completely di�erent distributions� The law
of Y given A � �

� could reasonably be taken to be almost anything� However the law of Y
given other values of A seems more well�de�ned� In fact it can be chosen to be continuous
in a 	except at a � �

� and the choice subject to continuity seems compelling�
Our approach will be to assume that the conditional distributions involved can be

chosen in a continous way�continuous� in the sense of weak convergence� as the values
of the conditioning variables vary throughout their support� It then turns out that if one
chooses versions of conditional distributions subject to continuity� there is in fact no choice�
the continuous version is uniquely de�ned� Formula 	�� will now be uniquely de�ned� under
a natural restatement of A�� and when choosing the conditional distributions appearing in
the formula subject to continuity� The question whether or not it gives the right answer
requires parallel continuity assumptions concerning the distribution of the counterfactual
outcome given factual variables�

At the end of the paper we will pay some attention to an alternative approach� We
replace the idea of a treatment plan assigning a �xed amount of treatment given the past�
by a plan where the amount of treatment given the past stays random� This seems very
natural since even if a treatment plan nominally calls for a certain exact quantity of some
drug to be administered� in practice the amount administered will not be precisely constant�
The uniqueness question is very easily solved under a natural restatement of A�� However
whether or not the answer is the right answer turns out to be a much more delicate issue
and we give a positive answer under a rather di�erent kind of regularity condition� not
assuming continuity any more but instead making non�distributional assumptions on the
underlying probability space� This approach raises some interesting open problems�
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�� Facts on conditioning�

Conditional distributions� We assume without further mention from now on that all
variables take values in Polish spaces 	i�e�� complete separable metric spaces�� This ensures�
among other things� that conditional distributions of one set of variables given values of
other sets exist� in other words� letting X and Y denote temporarily two groups of these
variables� joint distributions can be represented as

Pr	X � dx� Y � dy� � Pr	X � dx j Y � y� Pr	Y � dy�� 	��

When we talk about a version of the law of X given Y we mean a family of laws Pr	X �
� j Y � y� satisfying 	���

Repeated conditioning� Given versions of the law of X given Y and Z� and of Y given
Z� one can construct a version of the law of X given Z as follows�

Z
Pr	X � � j Y � y� Z � z� Pr	Y � dy j Z � z� � Pr	X � � j Z � z��

Fact � below shows that if the two conditional distributions on the left hand side are
chosen subject to a continuity property� then the result on the right hand side maintains
this property�

Conditional independence� When we say that X � Y j Z we mean that there is a
version of the joint laws of 	X�Y � given Z � z according to which X and Y are independent
for every value z� It follows that any version of the law of X given Z � z supplies a version
of the law of X given Y � y� Z � z� Conversely� if it is impossible to choose versions of
law	X j Y� Z� which for each z do not depend on y� then X 	� Y j Z�

Support of a distribution� We de�ne a support point of the law of X as a point x such
that Pr	X � B	x� ��� � � for all � � �� where B	x� �� is the open ball around x of radius
�� We de�ne the support of X to be the set of all support points� As one might expect� it
does support the distribution of X� i�e�� it has probability one 	Fact � below��

The following four facts will be needed� The �rst two are well�known but they are given
here including proofs for completeness� The reader may like to continue reading in the
next section and only come back here for reference�

Fact �� The support of X� Supp	X�� is closed and has probability ��

Proof� Any point not in the support is the centre of an open ball of probability zero� All
points in this ball are also not support points� The complement of the support is therefore
open� By separability it can be expressed as a countable union of balls of probability zero�
hence it has probability zero� tu

It follows that one can also characterise the support of X as the smallest closed set con�
taining X with probability ��
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Fact �� Suppose law 	X j Y � y� can be chosen continuous in y � Supp	Y � �with respect
to weak convergence�� Then subject to continuity it is uniquely de�ned there� and equals
lim��� law 	X j Y � B	y� ����

Proof� Choose versions of law 	X j Y � y� subject to continuity� Fix a point y� � Supp	Y �
and let f be a bounded continuous function� Then

E	f	X� j Y � B	y�� ��� �

Z

B�y�����Supp�Y �

E	f	X� j Y � y� Pr	Y � dy j Y � B	y�� ���

where E	f	X� j Y � y� inside the integral on the right hand side is computed according
to the chosen set of conditional laws� By continuity 	with respect to weak convergence�
of these distributions� it is a continuous and bounded function of y� Since law	Y j Y �
B	y�� ���
 �y� as � � �� the right hand side converges to E	f	X� j Y � y�� as � � �� tu

Fact �� Suppose law	X j Y � y� can be chosen continuous in y � Supp	Y �� Then for
y � Supp	Y �� Supp	X j Y � y�� fyg 
 Supp	X�Y ��

Proof� For y � Supp	Y � and x � Supp	X j Y � y� we have for all � � � since B	y� �� is
open

� � Pr	X � B	x� �� j Y � y� � lim inf
���

Pr	X � B	x� �� j Y � B	y� ����

So for arbitrary � and then small enough �� Pr	X � B	x� �� j Y � B	y� ��� � �� but also
Pr	Y � B	y� ��� � �� But

Pr		X�Y � � B	x� ��� B	y� ��� � Pr	Y � B	y� ��� Pr	X � B	x� �� j Y � B	y� ���

for all � � �� which is positive for small enough �� tu

One might expect that the union over y � Supp	Y � of the sets Supp	X j Y � y�� fyg is
precisely equal to Supp	X�Y � but this is not necessarily the case� The resulting set can
be strictly contained in Supp	X�Y � though it is a support of 	X�Y � in the sense of having
probability one� Its closure equals Supp	X�Y ��

Fact �� Suppose Pr	X � � j Y � y� Z � z� is a family of conditional laws of X given Y

and Z� jointly continuous in 	y� z� � Supp	Y� Z�� Suppose Pr	Y � � j Z � z� is continuous
in z � Supp	Z�� Then

Pr	X � � j Z � z� �

Z
y

Pr	X � � j Y � y� Z � z� Pr	Y � dy j Z � z�

is continuous in z�

Proof� Let f be a bounded continuous function� let z� be �xed and in the support of Z�
We want to show thatZ

E	f	X� j Y � y� Z � z� Pr	Y � dy j Z � z�




Z
E	f	X� j Y � y� Z � z�� Pr	Y � dy j Z � z��






as z 
 z�� z � Supp	Z�� Suppose without loss of generality that jf j is bounded by �� The
function g	y� z� � E	f	X� j Y � y� Z � z�� is continuous in 	y� z� � Supp	Y� Z� which is
a closed set� By the classical Tietze�Urysohn extension theorem it can be extended to a
function continuous everywhere and still taking values in ���� ��� In the rest of the proof
when we write E	f	X� j Y � y� Z � z� we will always mean this continuous extension�

Without loss of generality restrict z� z� to a compact set of values of z� and choose
a compact set K of values of y such lim infz�z� Pr	Y � K j Z � z� � � � � where � is
arbitrarily small� Write

Z
E	f	X� j Y � y� Z � z� Pr	Y � dy j Z � z�

�

Z
y�K

E	f	X� j Y � y� Z � z� Pr	Y � dy j Z � z�

 

Z
y ��K

E	f	X� j Y � y� Z � z� Pr	Y � dy j Z � z��

The second term on the right�hand side is smaller than � for z close enough to z� 	and for
z � z��� In the �rst term on the right�hand side� the integrand E	f	X� j Y � y� Z � z�
is a continuous function of 	y� z�� which varies in a product of two compact sets� It
is therefore uniformly continuous in 	y� z�� and hence continuous in z� uniformly in y�
Therefore for z close enough to z��

R
E	f	X� j Y � y� Z � z� Pr	Y � dy j Z � z� is

within �� of
R
K
E	f	X� j Y � y� Z � z�� Pr	Y � dy j Z � z�� Again for z close enough

to z�� this is within �� of
R
E	f	X� j Y � y� Z � z�� Pr	Y � dy j Z � z�� Since the

integrand here is a �xed bounded continuous function of y� for z 
 z� this converges
to
R
E	f	X� j Y � y� Z � z�� Pr	Y � dy j Z � z��� Thus for z close enough to z��R

E	f	X� j Y � y� Z � z� Pr	Y � dy j Z � z� is within �� of
R
E	f	X� j Y � y� Z �

z�� Pr	Y � dy j Z � z��� tu

�� The g�computation formula for continuous variables�

We will solve the uniqueness problem before tackling the more di!cult correctness issue�
First we present a natural generalisation of condition A��

A��� Evaluability� For any ak � g	lk� and 	lk� ak��� � Supp		Lk� Ak����� it follows that
	lk� ak� � Supp		Lk� Ak���

As with the original version of A�� the condition calls a plan g evaluable if� whenever at
some stage there was an opportunity to use the plan� it was indeed implemented on some
proportion of the patients� If all variables are actually discrete then A�" reduces to the
original A��

Next we summarize appropriate continuity conditions concerning the factual variables�

C� Continuity� The distributions law	Y j LK � lK � AK � aK� can be chosen continuous
in 	lK � aK�� and law	Lk j Lk�� � lk��� Ak�� � ak��� in 	lk��� ak���� on the 	joint�
supports of the conditioning variables�






Theorem �� Suppose conditions A�� and C hold� Then the right	hand side of �
� is
unique when the conditional distributions on the right	hand side are chosen subject to
continuity�

Proof� The right�hand of 	�� has the probabilistic interpretation that �rst a value l� is
generated according to law	L��� then a� is speci�ed by a� � g�	l��� then a value l� is
generated from law	L� j L� � l�� A� � a��� and so on� Suppose that at the end of the
kth step we have obtained 	lk� ak� � Supp	Lk� Ak�� Then lk�� will with probability one
be generated� according to a uniquely determined probability distribution� in Supp	Lk�� j
Lk � lk� Ak � ak�� thus 	lk��� ak� � Supp	Lk��� Ak� by Fact �� By condition A�"� this
leads to 	lk��� ak��� � Supp	Lk��� Ak���� By induction� with probability one all values
of lk 	and in the last step� of y�� are generated from uniquely determined conditional
distributions� tu

We now have conditions under which the functional b	g� law	L�A� Y �� on the right�
hand side of 	�� is well�de�ned� We next want to investigate when it equals law	Y g�� For
that we need supplementary continuity conditions on its conditional laws given the factual
variables� and then appropriately reformulated versions of assumptions A� and A�� We
�rst state suitable supplementary continuity conditions Cg�

Cg� Continuity for counterfactuals� The distributions law	Y g j Lk��� Ak� and
law	Y g j Lk� Ak� can for all k all be chosen continuous in the values of the condi�
tional variables on their supports�

Continuity assumptions C and Cg imply that conditional distributions selected according
to continuity are uniquely de�ned on the relevant supports� In the the sequel� in particular
in the following alternative versions of assumptions A� and A�� all conditional distributions
are taken to be precisely those prescribed by continuity�

A��� Consistency� law	Y g j L � l� A � a� � law	Y j L � l� A � a� for 	l� a� �
Supp	L�A� and g	l� � a�

A��� Randomisation� law	Y g j Lk � lk� Ak � ak� does not depend on ak for ak� lk �
Supp	Lk� Ak� and satisfying ak�� � g	lk����

Theorem �� Suppose conditions C and Cg hold� and moreover assumptions A
��A��
hold� Then equation �
� is true�

Proof� Writing out A�"� we have that

Pr	Y g � � j LK � lK � AK � aK� � Pr	Y � � j LK � lK � AK � aK� 	��

for 	lK � aK� � Supp	LK � AK� and g	lK� � aK � where both conditional distributions are
uniquely determined by continuity� Now let 	lk��� ak��� � Supp	Lk��� Ak��� and satisfy�
ing g	lk��� � ak�� be �xed� ConsiderZ

lk�Supp�LkjLk���lk���Ak���ak����ak�gk�lk�

Pr	Y g � � j Lk � lk� Ak � ak�

Pr	Lk � dlk j Lk�� � lk��� Ak�� � ak����

	��

�



Since lk � Supp	Lk j Lk�� � lk��� Ak�� � ak��� we have 	lk� ak��� � Supp	Lk� Ak��� by
Fact �� By assumption A�" and Fact � again� this gives us 	lk� ak� � Supp	Lk� Ak�� Hence
all conditional distributions in 	�� are well de�ned� By A�" we can delete the condition
Ak � ak in Pr	Y

g � � j Lk � lk� Ak � ak�� The integrand now does not depend on ak and
integrating out lk shows that 	�� is equal to a version of

Pr	Y g � � j Lk�� � lk��� Ak�� � ak���� 	��

However it is not obvious� that this is the same version indicated by continuity� Fact
� however states that continuously mixing over one parameter� a family of distibutions
continuous in two parameters� results in a continuous family� Consequently 	�� is the
version selected by continuity�

The theorem is now proved exactly as in the discrete case by repeating the step which
led from 	�� to 	�� for k � K�K � �� � � � � � on the right hand side of 	�� 	after replacing Y
by Y g�� at the end of which the left hand side of 	�� results� tu

In view of Fact �� the continuity condition Cg would be a lot more simple if we could
assume not only� from condition C� that law	Lk j Lk � lk� Ak�� � ak��� is continuous in
	lk��� ak���� but also

Ca� Continuity of factual treatment distribution� law	Ak j Lk � lk� Ak�� � ak���
is continuous in 	lk� ak����

Then for Cg it su!ces to assume that law	Y g j LK � lK � AK � aK� is continuous
in 	lK � aK� since by mixing it alternately with respect to the conditional laws of Ak and
Lk� k � K�K � �� � � � � � maintains at each stage� according to Fact � with Ca and Cg
respectively� the continuity in the remaining conditioning variables�

When the covariates and treatments are discrete condition A�" reduces to the original
A�� Assumption A�" on the other hand is then weaker than A�� One might prefer stronger
continuity assumptions and a stronger version of A�" which would reduce to A� with
discrete variables� for instance assume that law		Y� Y g� j L�A� can be chosen continuous
in the conditioning variables on their support� and assume that with respect to this version�
Pr	Y � Y g j L � l� A � a� � � for a � g	l�� Informally this says that Y and Y g coincide
with larger and larger probability� the closer the plan g has been adhered to�

It would be interesting to show� without any continuity assumptions at all� that the
g�computation formula is correct for almost all plans g� where we have to agree on an
appropriate measure on the space G of all plans g� So far we were not able to settle this
question� It arises again in when we consider the alternative approach based on randomised
plans in section ��
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�� Characterizing the null�hypothesis�

The g�computation formula plays a major role in the Robins� 	��
�� ��

� ��
�� ���
�
theory of causal inference for complex longitudinal data� through the proofs of some the�
orems giving necessary and su!cient conditions for the �g��null hypothesis H� that the
right hand side of 	�� is the same for all evaluable treatment plans g� by this we now mean
a plan g satisfying the evaluability assumption A�"� These theorems concern various func�
tionals of the distribution of the factual variables only� We will therefore only assume
the continuity conditions C� Under the further conditions making 	�� not only unique but
also correct� the �g��null hypothesis is equivalent to the more interesting g�null hypothesis
that the distribution of the outcome under any evaluable plan g is the same� and hence
treatment indeed has no e�ect on outcome�

We call a treatment plan static if it does not depend in any way on the covariate
values l� in other words� it is just a �xed sequence of treatment values a�� � � � � aK to be
assigned at each time point irrespective of covariate values measured then or previously�
A dynamic plan is just a plan which is not static�

Some of the results use the concept of a baseline treatment plan� In the literature this
has been usually taken to be the static plan g � � � 	�� � � � � �� where � is a special value in
each Ak�s sample space� However� already in the discrete case� complications arise if this
plan� and plans built up from another plan g by switching from some time point from the
plan g to the plan �� are not evaluable� 	Thanks to Judith Lok for bringing this to our
attention��

We will say that a plan g� is an admissible baseline plan if for all evaluable plans g
and all k � �� � � � � K� the plan gk	� 	follow plan g up to and including time point k � ��
follow plan g� from time point k onwards� is also evaluable� We assume that an admissible
baseline plan exists� It is possible to construct examples where none exists� and certainly
easy to construct examples where no static admissible baseline plan exists� The problem
is that even if x is a support point of the law of a random variable X� there need not exist
any y such that 	x� y� is a support point of the law of 	X�Y �� Admissible baseline plans
exist if condition Ca holds� by appeal to Fact �� and they exist if the sample space for each
treatment is compact�

For a given plan g� for given k� and given 	lk� ak���� introduce the quantity

b	g� lk� ak��� �

Z

lk��

� � �

Z

lK

Pr	Y � � j LK � lK � AK � aK�

KY
k��k��

Pr	Lk� � dlk� j Lk��� � lk���� Ak��� � ak����

	��

where ak� � � � � aK on the right hand side are taken equal to gk	lk�� � � � � gK	lK�� Similarly
to Theorem �� this is a well�de�ned functional of the joint law of the factual variables
when 	lk� ak��� lies in the support of 	Lk� Ak���� when g	lk��� � ak��� and when g is
evaluable� if conditional distributions are chosen subject to continuity in distribution on
the support of the conditioning variables� In fact the expression 	�� does not depend on
g at time points prior to the k�th� so it is well�de�ned more generally than this� Let us

��



say that a plan g is k�evaluable relatively to a given 	lk� ak��� if for all m � k� any
	lm� am��� � Supp	Lm� Am��� with initial segments coinciding with lk and ak�� and
satisfying gj	lj� � aj for j � k� � � � �m � �� we have 	lm� am� � Supp	Lm� Am� where
of course gm	lm� � am�

Similarly to Theorem � one has under appropriate conditions that b	g� lk� ak��� �
law	Y g j Lk � lk� Ak�� � ak���� but this interpretation plays no role in the sequel�

The theorems we want to prove are the following�

Theorem �� Assume condition C� Under H�� for any k and 	lk� ak��� in the support of
	Lk� Ak���� the expression b	g� lk� ak��� does not depend on g for any k	evaluable plans g�

Theorem �� Assume condition C� Suppose an admissible baseline plan g� exists� Then if
b	gk��	�� lk� ak��� does not depend on ak � gk	lk� for all 	lk� ak� in the support of 	Lk� Ak��
then H� is true�

Note in Theorem � that b	gk��	�� lk� ak��� only depends on g through the value ak of
gk	lk��

Theorem 	� Assume condition C� Suppose an admissible baseline plan g� exists� Then
H� holds if and only if Y � Ak j Lk� Ak�� for all k�

Theorem 
� Assume condition C and suppose an admissible baseline plan g� exists� Sup	
pose the functions �k � �k	y� lk� ak� can be found satisfying the following� if a random
variable Y k has the distribution b	gk��	�� lk� ak��� where gk	lk� � ak then �k	Y

k� lk� ak��
is distributed as b	gk	�� lk� ak���� De�ne Y K � Y and then recursively de�ne Y k�� �
�k	Y

k�Lk� Ak�� Then Y � satis�es Y � � AkjLk� Ak� for all k�

If Y is real�valued and continuously distributed then the obvious choice for the functions
�k in Theorem � is the QQ�transform between the speci�ed distributions�

Combining theorems � and � we obtain two further �if and only if� results� assum�
ing condition C and that an admissible baseline plan g� exists� H� is true if and only
if b	g� lk� ak��� does not depend on g for any k�evaluable plans g� and if and only if
b	g� lk� ak��� does not depend on g for any plan of the special form gk��	�� In particular�
if g� � � is an evaluable baseline plan� then H� holds if and only if b	g� lk� ak��� does not
depend on g for any static plan g�

Theorem � shows that testing of the null�hypothesis does not require one to actu�
ally estimate and compute 	�� for all plans g� and resolves the problem that� were one
to estimate the component conditional distributions of 	�� using parametric models 	non�
saturated�� then typically no combination of parameter values could even reproduce the
null�hypothesis 	Robins� ���
� Robins and Wasserman� ���
�� Theorem � and Theorem �
are the starting point of a new parametrization in which one models the e�ect �k	y� lk� ak�
of one �nal �blip� of treatment ak at time�point k before reverting to the base�line treatment
g�� Parametric models for these e�ects� which Robins 	��
�� ���
� refers to as structural
nested models� do enable one to cover the null�hypothesis in a simple way and lead to
estimation and testing procedures which are mututally consistent and robust to misspeci�
�cation� at least� at the null hypothesis� Brie�y� the variable Y � constructed in Theorem
� can be used as a surrogate for Y g� � One can estimate parameters of the blip�down func�
tions �k by testing the hypotheses that Y

� � AkjLk� Ak� This method of estimation is

��



discussed in detail in Robins 	���
� under the rubric of g�estimation of structural nested
models�

Proof of Theorem �� Suppose H� is true� Consider two plans g
� and g�� We want to

prove equality of b	gi� l
�

k� a
�
k��� for i � �� �� where the superscript � is used to distinguish

the �xed values given in the theorem from later variable ones� Since b does not depend on
either plan gi before time k� without loss of generality suppose that these two plans assign
treatments a��� � � � � a

�
k�� statically over the �rst k � � time�points� Fix � � � and de�ne

the plan g
 to be identical to plan g� except that for m � k and lm for which lk is in

an epsilon ball about l
�

k� it is identical to g�� Consider the equality of the two probability
distributions b	g�� and b	g
� on any given event in the sample space for Y � As we integrate
over all l�� � � � � lK we are integrating identical integrands except for lk in the epsilon ball

about l
�

k which is precisely where g
� and g
 di�er� denote this set B	l

�

k� ��� Deleting the
integrals over the complement of this set we obtain the equality� for i � �� �� of the two
quantities

Z
lk�B�l

�

k
���

b	gi� lk� a
�
k���

kY
�

Pr	Lj � dlj j Lj�� � lj��� Aj�� � a�j���� 	
�

Now by our continuity assumptions and repeated use of Fact �� b	gi� lk� a
�
k��� is a contin�

uous function of lk� Divide 	
� by the normalising quantity
R
lk�B�l

�

k
���

Qk

� Pr	Lj � dlj j

Lj�� � lj��� Aj�� � a�j���� the same for both i � �� �� Now the equality expresses the

equality of the expectations of b	gi�L
�

k� a
�
k��� for i � �� � where L

�

k lies with probability

one in B	l
�

k� ��� As � 
 �� by continuity of b	gi� �� a
�
k���� the expectations converge to

b	gi� l
�

k� a
�
k���� tu

Proof of Theorem �� Let g be a given evaluable plan� Recall that gk	� denotes the
modi�cation of the plan obtained by making all treatments from time k onward follow the
baseline plan g�� Let gk	ak�� denote the modi�cation of the given plan g obtained by making
the k�th treatment equal to the �xed amount ak and all subsequent treatments follow the
baseline plan� We show by downwards induction on k that b	g� lk� ak��� � b	gk	�� lk� ak���
for all k� This statement for k � � is the required conclusion� To initialise the induction
note that b	g� lK � aK��� � b	gK��	�� lK � aK��� � b	gK	�� lK � aK���� where the �rst equality
is trivial and the second is the assumption of the theorem for k � K� Next� in general�
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write

b	g� lk� ak��� �

Z
lk��

b	g� lk��� ak� Pr	Lk�� � dlk�� j Lk � lk� Ak � ak�

�

Z
lk��

b	gk��	�� lk��� ak� Pr	Lk�� � dlk�� j Lk � lk� Ak � ak�

	by the induction hypothesis�

� b	gk��	�� lk� ak���

� b	gk	gk�lk���� lk� ak���

	by inspection�

� b	gk	�� lk� ak���

	by the assumption of the theorem�

which establishes the induction step� tu

Proof of Theorem 	� We prove �rst the backwards implication� Given that Y � Ak j
Lk� Ak�� we see that Y itself satis�es the assumptions Cg� A�" and A�" concerning Y g�
for any particular evaluable g� of Theorem �� Thus its law is given by the g�computation
formula 	�� which is therefore the same for all g�

For the forward implication� we show that Y 	� Ak j Lk� Ak�� for some k implies
the existence of some k and evaluable plans g for which b	g� lk� ak��� depends on g� First
of all� note there must be a last k� say k � k�� for which the conditional independence
does not hold� Now in the g�computation formula 	��� for k � K�K � �� � � � � k�  � we
can repeatedly a� drop the last ak in the integrand� by conditional independence� and b�
integrate out the last lk� Thus the g�computation formula holds with K replaced by k��
and we can replace K by k� in all subsequent results� But now we see by inspection that
b	g� lk� � ak����� which is nothing but the conditional law of Y given Lk� � Ak� � depends on
ak� � gk�	lk�� and by Theorem � we are done� tu

Proof of Theorem 
� By downwards induction one veri�es that for each k� Y k has
the conditional distribution b	gk��	�� lk� ak�� given Lk � lk� Ak � ak� where gk	lk� � ak�
Given 	Lk� Ak���� Y

� is a deterministic function of Y k�� � �k	Y
k�Lk� Ak�� So it su!ces

to verify that �k	Y
k�Lk� Ak� � AkjLk� Ak��� This follows by the characterizing property

of �k and the just stated conditional distribution of Y
k� tu
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	� Construction of counterfactuals�

Suppose we start with a given law	L�A� Y �� Can we build on a new sample space the
same random variables 	i�e�� variables with the same joint distribution� together with
counterfactuals Y g for all g� satisfying conditions A��A� 	or their strengthened versions��
The answer will be yes� This means that in whatever sense counterfactuals exist or do not
exist� it is harmless to pretend that they do exist and to investigate the consequences of
that assumption�we do not hereby impose �hidden� restrictions on the distribution of the
data�

The solution we give to this problem works in the reverse direction� we construct the
counterfactual world �rst� then build the factual world on top of it� However once we have
constructed all variables together with the required properties� including the factuals with
their given distribution� we can now derive the conditional distribution of all counterfactu�
als given all factuals� and hence we can extend a sample space supporting just the factual
variables with all the counterfactuals as well� just by using auxiliary randomization�

Fix a collection of versions of laws of each Lk� Ak and Y given all their predecessors
	in the usual order L�� A�� � � � � LK � AK � Y �� A plan g� is called static if it does not
depend on l� i�e�� it is just a single sequence of treatments ak to be applied irrespective
of the measured covariate values� Let G� denote the collection of static plans� it can be
identi�ed with the collection of all a�

First we build random variables L
g�
� Y g� for all g� � G�� Generate L� from its marginal

law� For all g�� L
g�
� � L�� Next� for each value of a� generate a random variable Ll��a��

from the law of L� given L� � l�� A� � a�� For all g� with 	g��� � a�� de�ne L
g�
� � L

l��a�
�

on Lg�� � l�� Proceed in the same way �nishing with a collection of variables Y
l��a������lK �aK

drawn from the laws of Y given L � l� A � a and de�ne Y g� � Y l��a������lK �aK on Lg�� � l��
� � � � Lg�K � lK � 	g��� � a�� � � � � 	g��K � aK � Note that the de�nition of L

g�
k only depends

on the values of 	g���� � � � � 	g��k���
For de�niteness� we could use at each stage a single independent uniform���� �� variable

Uk to generate all L
g�
k �

Now we can de�ne counterfactuals Y g� Lgk for the dynamic plans g by using the

recursive consistency rule� Lgk � L
g�
k where 	g��k�� � gk��	L

g

k���� and similarly Y g �

Y g� where 	g��K � gK	L
g

K�� Note that when for instance we set L
g
k � L

g�
k � values of

	g���� � � � � 	g��k�� have already been determined and only the next value 	g��k�� is still
unknown� for which we use the rule 	g��k�� � gk��	L

g

k����

On top of the counterfactual world we now de�ne the �real world�� the factuals L�A� Y �
To build these variables we use a new sequence of independent uniform random variables
successively as follows� Lk � L

g�
k where 	g��k�� � Ak��� Ak is drawn from the prespeci�ed

law of Ak given Lk � lk� Ak�� � ak�� on the event Lk � lk� Ak�� � ak��� Finally Y � Y g�

where 	g��K � AK � As before successive values of g� are generated as they are needed�
One should check that the resulting L�A� Y do indeed have the intended joint distribution�

The consistency assumption A� holds by construction� The randomisation assumption
A� holds in the very strong form 	Y g � g � G� � Ak j Lk� Ak�� where G is the set of all
treatment plans� This follows since given all Y g and given 	Lk� Ak���� we used a single
independent uniform ��� �� variable and the values of 	Lk� Ak��� only in order to construct
Ak� Whether or not the evaluability condition A� holds depends of course on which plan g

��



is being considered� The collection of conditional distributions we used to start with is not
uniquely de�ned in the continuous case� and also not uniquely de�ned in the discrete case
if not all values of L�A have positive probability� However under the continuity conditions
C� if we have chosen all conditional distributions subject to continuity on the supports of
the conditioning variables� then our construction satis�es the stronger conditions Cg� A�"
and A�"�


� A G�computation formula for randomised plans�

In this section we present an alternative solution to the problems posed at the beginning
of the paper� Instead of assuming continuity of conditional distributions� is to assume
a kind of continuity of the treatment plan g relative to the factual plan� Our problems
before arose because the deterministic plan g was not actually implemented with positive
probability� when covariates are continuously distributed� Suppose we allow plans by which
the amount of treatment allocated at stage k� given the past� has some random variation�
In practice this actually is the often the case� for instance� it may be impossible to exactly
deliver a certain amount of a drug� or to exactly measure a covariate� Note that in the
theory below the variables Ak and Lk are the actually administered drug quantity� and
the true value of the covariate� thus from a statistical point of view our theory may not
be of direct use since these variables will in practice not be observed� Imagine that all
variables are measured precisely and random treatments can be given according to any
desired probability distribution�

A randomised treatment plan now denoted by G consists of a sequence of conditional

laws Pr	AG
k � � j L

G

k � lk� A
G

k�� � ak���� 	The random variables AG
k � L

G

k and A
G

k�� here
are counterfactuals corresponding to plan G being adhered to from the start��

The G�computation formula now becomes

Pr	Y G � dy� �

Z
l�

Z
a�

� � �

Z
lK

Z
aK

Pr	Y � dy j LK � lK � AK � aK�

KY
k��

Pr	Lk � dlk j Lk�� � lk��� Ak�� � ak����

�Pr	AG
k � dak j L

G

k � lk� A
G

k�� � ak����

	
�

Again questions of uniqueness and correctness arise� Uniqueness of the right�hand side
of 	
�� denoted b	G� law	L�A� Y �� is easy to check under the following generalization of
assumption A��

A���� Evaluability� For each k� law	AG
k j L

G

k � lk� A
G

k�� � ak��� is absolutely continu�

ous with respect to law	Ak j Lk � lk� Ak�� � ak��� for almost all 	lk� ak��� from the
law of Lk� Ak���
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Theorem 
� Under A���� b	G� law	L�A� Y �� is uniquely de�ned by the right	hand side of
�
��

Proof� Consider the expression

Z
l�

Z
a�

� � �

Z
lK

Z
aK

Pr	Y � dy j LK � lK � AK � aK��

KY
k��

dP
AG
k
jL
G

k
�lk�A

G

k���ak��

dP
AkjLk�lk�Ak���ak��

�Pr	Lk � dlk j Lk�� � lk��� Ak�� � ak����

�Pr	Ak � dak j Lk � lk� Ak�� � ak����

	��

The successive integrations with repect to the conditional laws of Lk and Ak could be
rewritten as a single integration with respect to the joint law of 	LK � AK�� Moreover 	��
does not depend on choice of Radon�Nikodym derivatives nor on choice of the conditional
law of Y � since all are almost surely unique and by A�"" �nite on the support of LK � AK �
Now in 	�� we can successively� for k � K�K � �� � � � � � merge the kth Radon�Nikodym
derivative and integration with respect to the conditional law of Ak� replacing it by inte�
gration with respect to the conditional law of AG

k � This transforms 	�� into the right�hand
side of 	
�� showing that 	
� too does not depend on choice of Radon�Nikodym derivatives
or conditional distributions� tu

Condition A�"" can be weakened� we only need the absolute continuity along paths
lK � aK which can actually be realised�

Does 	
� also give the correct answer� This requires introducing a counterfactual Y G

and relating it to Y g and Y �
Suppose a plan G is to be implemented by� at each stage� generating AG

k from the
speci�ed conditional law by a transformation of an independent uniform variable Uk� We
could generate the Uk in advance� and thereby generate a candidate A

G
k for all possible

intermediate values of 	L
G

k � A
G

k���� call it a
G
k 	lk� ak���uk�� Tracking through all possi�

ble values of all LGk � we see that the randomised plan G is exactly equivalent to choos�
ing in advance� by a randomisation depending only on U�� � � � � UK � a non�randomized
plan g � gu� A little thought shows that the right�hand side of 	�� can be rewritten asR
� � �
R
b	gu� law	L�A� Y ��du� � � �duK � So if we make the additional consistency assump�

tion Y G � Y g on G � g� then 	
� gives a correct expression for law	Y G� as long as 	�� is
correct for all 	or at least� almost all� g�

Now we know already that the right�hand side of 	
� is unique� So if versions of all
conditional laws could be chosen simultaneously making 	�� correct for almost all g� then
by taking those choices� and averaging 	�� over g� produces not only the unique but also
the correct expression 	
�� However it is not clear if this can be done�

If we are going to make assumptions concerning all Y g simultaneously� other routes
become available� Rather than working via 	�� for each g separately� we can try directly
to establish 	
�� But in order to be able to work with joint conditional laws of all Y g

simultaneously� we have to assume a lot of regularity� We will do it here by assuming
that the probability space on which all random variables are de�ned is nice enough 	one
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could say� small enough�� that conditional probability measures or so�called disintegrations
	see Chang and Pollard� ���
� over this space exist� This will have the further advantage
that we can once and for all choose versions of all conditional probability measures in a
mutually consistent way� we automatically obtain the correct version of a given conditional
probability measure when mixing over one of the conditioning variables�

A���� Sample space regularity� The underlying probability space 	��F �Pr� is a
complete separable metric space with the Borel 	�algebra�

Fix a disintegration of Pr with respect to L�� then �x disintegrations of Pr	� j L� � l��
with respect to A�� and so on� We now have� everywhere on ��Z

ak

Pr	� j Lk � lk� Ak � ak� Pr	Ak � dak j Lk � lk� Ak�� � ak���

� Pr	� j Lk � lk� Ak�� � ak���

and similarly
Z
lk

Pr	� j Lk � lk� Ak�� � ak��� Pr	Lk � dlk j Lk�� � lk��� Ak�� � ak���

� Pr	� j Lk�� � lk��� Ak�� � ak����

The conditional probability measures here are measures on �� concentrated on the condi�
tioning event�

We are going to talk about conditional joint laws of all Y g simultaneously� denoting
by G the set of all plans g let Y G denote this collection of random variables� By its law or
conditional law we mean the restriction of Pr or appropriate conditional distribution� to
the sub�	�algebra of F generated by all Y g�

Consider the following versions of A� and A��

A���� Consistency� Y G � Y g on G � g and� for each g� Y g � Y on g	L� � A�

A���� Randomisation� Y G � Ak j Lk� Ak���

Theorem �� Under A����A���� formula �
� is correct�

Proof� By A�""� for almost all lk� ak��� law	Y
G j Lk � lk� Ak � ak� does not depend on

ak� for almost all ak with respect to Pr	Ak � � j Lk � lk� Ak�� � ak���� So by mixing
over Ak from its conditional law� we �nd that law	Y G j Lk � lk� Ak � ak� coincides with
law	Y G j Lk � lk� Ak�� � ak��� for almost all lk� ak�

These �almost all� statements refer to the factual law of L�A� but by A�"" they also
hold almost everywhere with respect to the integrating measure in 	
�� Now 	
� can be
rewritten as Z

u�

� � �

Z
uK

Z
l�

� � �

Z
lK

Pr	Y � � j L � l� A � a�

�
KY
k��

Pr	Lk � dlk j Lk�� � lk��� Ak�� � ak���

�du� � � �duK

	���

�




where ak � aGk 	lk� ak���uk�� k � �� � � � � K� We can successively simplify 	��� as follows�
First� by A�"" we can replace Y by Y g where g � gu� Here we use the fact that we
have disintegrations� so that if Y � Y g on a certain event the conditional laws of these
variables are the same given this same event� Next by A�"" for k � K� we can delete
the conditioning AK � aK in Pr	Y g � � j L � l� A � a�� at least� for almost all l� a�
The exceptions do not however change the value of the integral� Moreover we can do this
irrespective of the value of g � gu� Now we may mix over the conditional law of LK �
reducing 	��� to

Z
u�

� � �

Z
uK

Z
l�

� � �

Z
lK��

Pr	Y g � � j LK�� � lK��� AK�� � aK���

�
K��Y
k��

Pr	Lk � dlk j Lk�� � lk��� Ak�� � ak���

�du� � � �duK

where ak � aGk 	lk� ak���uk� k � �� � � � � K � � and g � gu� Repeat a further K � � times
and we �nally obtain

Z
u�

� � �

Z
uK

Pr	Y g
u � ��du� � � �duK � Pr	Y

G � ���

tu

The above theory is not just a distributional theory� We have assumed speci�c facts
about the underlying sample space� involving events of zero probability� In particular the
consistency assumption is back in its original form for discrete variables�
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