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ON THE EFFICIENT PARALLEL COMPUTATION OF
LEGENDRE TRANSFORMS

MARCIA A. INDA, ROB H. BISSELING, AND DAVID K. MASLEN

ABSTRACT. In this article, we discuss a parallel implementation of efficient
algorithms for computation of Legendre polynomial transforms and other or-
thogonal polynomial transforms. We develop an approach to the Driscoll-
Healy algorithm using polynomial arithmetic and present experimental results
on the accuracy, efficiency, and scalability of our implementation. The algo-
rithms were implemented in ANSI C using the BSPlib communications library.
We also present a new algorithm for computing the cosine transform of two
vectors at the same time.

1. INTRODUCTION

Discrete Legendre transforms are widely used tools in applied science, commonly
arising in problems associated with spherical geometries. Examples of their appli-
cation include spectral methods for the solution of partial differential equations,
e.g., in global weather forecasting [3, 8], shape analysis of molecular surfaces [14],
statistical analysis of directional data [15], and geometric quality assurance [16].

A direct method for computing a discrete orthogonal polynomial transform such
as the discrete Legendre transform for N data values requires a matrix-vector mul-
tiplication of O(N?) arithmetic operations, though several authors [2, 22] have
proposed faster algorithms based on approximate methods. In 1989, Driscoll and
Healy introduced an exact algorithm that computes such transforms in O(N log? N)
arithmetic operations [12, 13]. They implemented the algorithm and analyzed its
stability, which depends on the specific orthogonal polynomial sequence used.

Discrete polynomial transforms are computationally intensive, so for large prob-
lem sizes the ability to use multiprocessor computers is important, and at least two
reports discussing the theoretical parallelizability of the algorithm have already
been written [17, 26]. We are, however, unaware of any parallel implementation of
the Driscoll-Healy algorithm at the time of writing.

In this paper, we derive a new parallel algorithm that has a lower theoreti-
cal time complexity than those of [17, 26], and present a full implementation of
this algorithm. Another contribution is the method used to derive the algorithm.
We present a method based on polynomial arithmetic to clarify the properties of

1991 Mathematics Subject Classification. 20C15; Secondary 65T10.

Key words and phrases. orthogonal polynomials, Legendre polynomials, BSP, parallel compu-
tation, computational harmonic analysis.

Parts of this work appeared in preliminary form in the proceedings of the ECMWEF Workshop
“Towards TeraComputing - The Use of Parallel Processors in Meteorology”, Nov. 1998, Reading,
UK, World Scientific Publishing Co, 1999.

Inda supported by a doctoral fellowship from CAPES, Brazil. Computer time on the Cray
T3E of HPaC, Delft, funded by NCF, The Netherlands.

1


https://core.ac.uk/display/39699312?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

orthogonal polynomials used by the algorithm, and to remove some unnecessary
assumptions made in [12] and [13].

The remainder of this paper is organized as follows. In Section 2, we describe
some important properties of orthogonal polynomials and orthogonal polynomial
transforms, and present a derivation of the Driscoll-Healy algorithm. In Section 3,
we introduce the bulk synchronous parallel (BSP) model, and describe a basic par-
allel algorithm and its implementation. In Section 4, we refine the basic algorithm
by introducing an intermediate data distribution that reduces the communication
to a minimum. In Section b, we present results on the accuracy, efficiency, and
scalability of our implementation. We conclude with Section 6 and two appendices
describing a generalization of the algorithm and the precomputation of the data
needed by the algorithm.

2. THE DRISCOLL-HEALY ALGORITHM

First, we briefly review some basic concepts from the theory of orthogonal poly-
nomials, that we use in the derivation of the Driscoll-Healy algorithm.

2.1. Orthogonal polynomials. A sequence of polynomials pg, p1, p2, ... is said
to be an orthogonal polynomial sequence on the interval [—1, 1] with respect to the
weight function w(z), if degp; = ¢, and

/_ pi(z)p;(z)w(z)de =0, fori# j,

1
1
/ pi(x)zw(x)dx #0, fori>0.
-1

The weight function w(x) is usually nonnegative and continuous on (—1,1).
Given an orthogonal polynomial sequence p;, a positive integer N, and two se-

quences of numbers xg,...,xxy_1 and wy, ..., wy_1 called sample points and sam-
ple weights, respectively, we may define the discrete orthogonql polynAomial trans-
form of a data vector (fo,..., fn—1) to be the vector of sums (fo, ..., fx—1), where
N-1
(2.1) fi=1fp) = Z fip(xj)w;.
j=0

This computation may also be formulated as the multiplication of the matrix with
elements p;(x;)w; in position (I, j) by the column vector (fo, ..., fzv=1).

There are at least four distinct transforms that may be associated with an or-
thogonal polynomial sequence:

1. Given a sequence of function values f; = f(z;) of a polynomial f of degree less
than NV, compute the coefficients of the expansion of f in the basis pg. This
expansion transform can also be viewed as a matrix-vector multiplication.

2. Given the coefficients of a polynomial f in the basis pg, evaluate f at the
points z;. This is the inverse of 1.

3. The transpose of 1. In matrix terms, this is defined by the multiplication of
the transpose matrix of 1 and the input vector.

4. The inverse transpose of 1.

The discrete orthogonal polynomial transform (2.1) is equivalent to transform 4
provided the weights w; are identically 1.
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Example 2.1 (Legendre polynomials). The Legendre polynomials are orthogonal
with respect to the uniform weight function 1 on [—1, 1], and may be defined re-
cursively by

%x P — H—Llpl_l’ Py(z) =1, Pi(x)=x.

The Legendre polynomials are one of the most important examples of orthogonal
polynomials, as they occur as zonal polynomials in the spherical harmonic expan-
sion of functions on the sphere. Our parallel implementation of the Driscoll-Healy
algorithm, to be described later, focuses on the case of Legendre polynomials. For
efficiency reasons, we sample these polynomials at the Chebyshev points, which will
be defined below. In this paper, we call the discrete orthogonal polynomial trans-
form for the Legendre polynomials, with sample weights % and with the Chebyshev
points as sample points, the discrete Legendre transform (DLT).

(22)  P) =

Example 2.2 (Discrete cosine transform and Chebyshev transform). The Cheby-
shev polynomials of the first kind are the sequence of orthogonal polynomials de-
fined recursively by

(2.3) Tiy1(2) =22 - Tx(2) — Ti—1(z), To(x) =1, Ti(z) ==

These are orthogonal with respect to the weight function w(z) = 7~'(1 — 22)~ 2.

The discrete cosine transform (DCT, or DCT-IT in the terminology of [29]) of size
N is the discrete orthogonal polynomial transform for the Chebyshev polynomials,
with sample weights 1, and sample points

(2.4) xj\f = cos %,
which are called the Chebyshev points, and are the roots of Tx. The DCT is
numbered 4 in the list above.

The Chebyshev transform is the expansion transform (numbered 1 above) for
the Chebyshev polynomials at the Chebyshev points. The Chebyshev transform
is the inverse transpose of the DCT defined above; but the relationship between
Chebyshev points and Chebyshev polynomials implies that the cosine and Cheby-
shev transforms are even more closely related. Specifically, the coefficient of T} in
the expansion of a polynomial f with degree less than N and with function values
fi= f(xjv), 0<j<N,is Eﬁkf(Tk), where

1 itk =
(2.5) ek:{ k=0,

=0,...,N—1,

2 ifk>0.

Thus, to compute the Chebyshev transform, we can use a DCT and multiply the
k-th coefficient by %. We denote the Chebyshev transform by a tilde. Therefore,
we write

€ N € v (27 + Dknm
s k N k
(2.6)  fre=— > [Te@))=2 fjeos o ——, k=0,...,N—1
N = N = 2N
The inverse Chebyshev transform, numbered 2 above, is
N-1 N-1 .
- ~ 25+ 1)km .
(2.7) szkaij»V):kacos%, j=0,.. N-1L
k=0 k=0
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A cosine transform can be carried out in O(N log N) arithmetic operations using
an FFT [1, 29], or using the recent algorithm of Steidl and Tasche [27]. Such an
O(N log N) algorithm is called a fast cosine transform (FCT). This also provides
us with a fast Chebyshev Transform (FChT). We use an upper bound of the form
aNlog, N + N for the number of floating point operations (flops) for one FChT
of size N, or its inverse. The lower order term is included because we are often
interested in small size transforms, for which this term may be dominant.

One of the important properties of orthogonal polynomials we will use is:

Lemma 2.3 (Gaussian quadrature). Let {py} be an orthogonal polynomial sequence

for a nonnegative weight function w(z), and 2%, . . ., zﬁ;_l be the roots of pn. Then
there erist numbers w ..., w%_l > 0, such that for any polynomual f of degree

less than 2N we have

/_1 fx)w(x)dz = Z_: wjvf(zjv)

The numbers w are unique, and are called the Gaussian weights for the sequence

J
{pe}-
Proof. See e.g. [9, Theorem 6.1]. O

Example 2.4. The Gaussian weights for the Chebyshev polynomials with weight

N = 1/N. So, for any polynomial f of degree less

. N 1
function 7=1(1 — 2%)=2 are w;

than 2N we have

(2.8) Y it

where xjv = cos %ﬁ are the Chebyshev points.

Another property of orthogonal polynomials that we will need is the existence
of a three-term recurrence relation, such as (2.2) for the Legendre polynomials and
(2.3) for the Chebyshev polynomials.

Lemma 2.5 (Three-term recurrence). Let {pp} be an orthogonal polynomial se-
quence for a nonnegative weight function. Then {py} salisfies a three-term recur-
rence relation

(2.9) pry1(2) = (Apa + Bi)pr () + Crpr-1(x),
where Ay, By, Ci, are real numbers with Ay # 0 and Cy #£ 0.
Proof. See e.g. [9, Theorem 4.1]. O

The Clebsch-Gordan property follows from, and is similar to, the three-term
recurrence.

Corollary 2.6 (Clebsch-Gordan). Let {pi} be an orthogonal polynomial sequence
with a nonnegative weight function. Then for any polynomial Q) of degree m we
have

pr - Q € spang{pi—m, ..., Pi4m}-

Proof. Rewrite the recurrence (2.9) in the form « - p; = Al_l(pH_l — Bipi— Cipi—1),
and use induction on m. O
4



Iterating the three-term recurrence also gives a more general recurrence between
polynomials in an orthogonal polynomial sequence. Define the associated poly-
nomials Qi m, Rim for the orthogonal polynomial sequence {p;} by the following
recurrences on m, which are shifted versions of the recurrence for p;. See e.g. [4, 5].

Qim(2) = (Aigm-12 + Bigm-1)Qi.m-1(2) + Crpm-1Qi m—2(2),

(2.10) Qio(x) =1, Qui(r)=Ax+ B,
. Rl,m ($) = (Al+m—1x + Bl+m—1)Rl,m—1(x) + Cl+m—1Rl,m—2(x)a
Rlyo(l‘) = 0, Rlyl(l‘) = Cl.

Lemma 2.7 (Generalized three-term recurrence). The associated polynomials sat-
isfy deg Q= m, deg Ry <m —1, and for! > 1 and m > 0,

(2.11) Prym = Qum - pr+ Rim - pr-1.

Proof. Equation (2.11) follows by induction on m, with the case m = 1 being the
original three-term recurrence (2.9). O

In the case where the p; are the Legendre polynomials, the associated polynomials
should not be confused with the associated Legendre functions, which in general
are not polynomials.

2.2. Derivation of the Driscoll-Healy algorithm. The Driscoll-Healy algo-
rithm [12] allows one to compute orthogonal polynomial transforms at any set of
N sample points, in O(N log2 N) arithmetic operations. The core of this algorithm
consists of an algorithm to compute orthogonal polynomial transforms in the spe-
cial case where the sample points are the Chebyshev points, and the sample weights
are identically % For simplicity we restrict ourselves to this special case, and fur-
thermore we assume that N is a power of 2. In Appendix A, we sketch extensions
to more general problems.

Our derivation of the Driscoll-Healy algorithm relies on the interpretation of the
input data f; of the transform (2.1) as the function values of a polynomial f of
degree less than the problem size N. Thus f is defined to be the unique polynomial
of degree less than N such that

(2.12) fEXy=1f, j=0,....N—1
Using this notation and the relation
(213) f'pl+m :Ql,m '(f'pl)'i'Rl,m '(f'pl—l)

derived from the three-term recurrence (2.11), we may formulate a strategy for
computing all the polynomials f-p;, 0 <[ < N, in log, N stages:
o At stage 0, compute f - pg and f - p;.
o At stage 1, use (2.13) withl=1land m=%5 —1orm =
f 'p% = Q17%_1 : (f 'pl) + Rl,%—l : (f 'Po) and
fopyp=Quu-(f-p)+ R x-(fpo)
o In general, at each stage k,1 < k < log, N, similarly as before use (2.13) with
[ =2¢(N/2¥) 4+ 1,0 < ¢ < 2871 and m = N/2% — 1, N/2* to compute the
polynomial pairs
Fovas Fopyqns Joprege, Frpgegs o ;f~p<2k_k1)N,f~p<2k_k1)N

1\3|2

%, to compute

+1°
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The problem with this strategy is that computing a full representation of each
polynomial f - p; generates much more data, at each stage, than is needed to com-
pute the final output. To overcome this problem the Driscoll-Healy algorithm uses
Chebyshev truncation operators to discard unneeded information at the end of each
stage. Let f = >, bxTx be a polynomial, of any degree, written in the basis
of Chebyshev polynomials, and let n be a positive integer. Then the truncation
operator 7, applied to f is defined by

n—1

(2.14) Tof = bxTh.
k=0

The important properties of 7, are given in Lemma 2.8.

Lemma 2.8. Let f and Q be polynomials. Then, the following holds.
1. Tif = f_ll f(x)w(z)dz, where w(z) = 7711 — xz)_%.
2. If M <K, then Ty T = Tu-
3. IfdegQ <m < K, then Tk _m(f - Q) = Tk—m[(TK f) - Q]

Proof. Part 1 follows from the orthogonality of Chebyshev polynomials, as 77 f is
just the constant term of f in its expansion in Chebyshev polynomials. Part 2 1s a
trivial consequence of the definition of truncation operators. For part 3 we assume
that f =5, b0sTk is a polynomial, and that deg @ < m < K. By Corollary 2.6,
Ty - Q is in the linear span of T _pm, ..., Thim, 30 Tk—m(Tk - Q) = 0 for k > K.
Therefore

K-1
Tek-m(f Q) =Tk-m Zkak Q| =Tk-m (Z b1 'Q) =Te-m|(Txf) - Q]

E>0 k=0

O

As a corollary of part 1 of Lemma 2.8, we see how we can retrieve the discrete
orthogonal polynomial transform from the f - p;’s computed by the strategy above,
by a simple truncation.

Corollary 2.9. Let [ be the unique polynomial of degree less than N such that
f(xjv) =f,0<j<N. Then

fi=Tif m), 0<I<N,
where the fl form the discrete orthogonal polynomial transform of f of size N.

Proof. This follows from the definition of discrete orthogonal polynomial trans-
forms, the Gaussian quadrature rule (2.8) for Chebyshev polynomials applied to
the function f - p;, and Lemma 2.8,

1 N-1

_ N Ny L ! f@p(e)
1= Zf(l‘j Jpi(x;') = ;/_lﬁdﬂﬁ—ﬂ(f']?l)~

>

7=0

O

The key property of the truncation operators 7y, is the ‘aliasing’ property (3),
which states that we may use a truncated version of f when computing a truncated
product of f and ). For example, if we wish to compute the truncated product

6



Ti(f - pi) with {,deg f < N then, because degp; = [, we may apply part 3 of
Lemma 2.8 with m =1 and K =141 to get

fr=Tif -m) = Tl(Teen ) - pi).
I‘hus, we only need to know the first [ + 1 Chebyshev coefficients of f to compute
Ji-
The Driscoll-Healy algorithm follows the strategy described above, but computes
truncated polynomials

25 =T (f -m)

for various values of [ and K, instead of the original polynomials f - p;. The input
is the polynomial f and the output is f; = Ti(f-m)=2},0<I<N.

Each stage of the algorithm uses truncation operators to discard unneeded in-
formation, which keeps the problem size down. Instead of using the generalized
three-term recurrence (2.13) directly, each stage uses truncated versions. Specifi-
cally, (2.13) and part 3 of Lemma 2.8 imply the following recurrences for the ZX:

(2.15) ZET = Tie-ml 20 Qum + 251 - Riml,

(2.16) ZEm = T-mlZ - Qum—1 + Z5, - Rim_i],

for K > m. We will use the special case with 2K instead of K and m = K|
(2.17) Zlik = T2t Qe + 225 Rik),

(2.18) Zh w1 = Te[ZH%  Quk—1+ Z25 - Ry k1]

The algorithm proceeds in log, N 4 1 stages, as shown in Algorithm 2.1.

Algorithm 2.1 The Driscoll-Healy algorithm. (Polynomial version.)

INPUT (fo,...,fnv—1): Polynomial defined by f; = f(xjv) N is a power of 2.
ouTPUT (on7 ce fN_l): Transformed polynomial with f; = Ti(f-m) =27}
STAGES
0. Compute Z3" « f-po and Z{¥ « Tw(f - p1).
k. for k=1tolog, N —1do
K+ X
forl=1to N —2K + 1 step 2K do
(a) Use recurrence (2.17) and (2.18) to compute new polynomials.
le.\j:K — T (ZfK SQui + 785 - Rl,K)
ZZI_‘;K_l — T (ZfK CQur—1 + 2 - Rl,K—l)
(b) Truncate old polynomials.
Z2 — Tezt™
ZE |« T Z38
log, N. forl=0to N —1do
fl — 7

The organization of the computation is illustrated in Fig. 1. The vertical lines
indicate the truncated polynomials ZlK and their height indicates the number of
Chebyshev coefficients initially appearing. At each stage the polynomials computed
are truncated at the height indicated by the grayscales.
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F1GURE 1. The computation of ZlK for N = 16.

2.3. Data representation and recurrence procedure. The description of the
Driscoll-Healy algorithm we have given is incomplete. We still need to specify how
to represent the polynomials in the algorithm, and describe the methods used to
multiply two polynomials and to apply the truncation operators 7Tg. This is done
in the following subsections.

2.3.1. Chebyshev representation of polynomials. Truncation of a polynomial re-
quires no computation if the polynomial is represented by the coefficients of its
expansion in Chebyshev polynomials. Therefore we use the Chebyshev coefficients

2! defined by

K-1
(2.19) zE =34,

n=0

to represent all the polynomials ZlK appearing in the algorithm. Such a represen-
tation of a polynomial is called the Chebyshev representation.
The input polynomial f of degree less than N is given as the vector f =

(fo,..., fv—1) of values f; = f(xjv) This is called the point value representation

of f. In stage 0, we must convert 7' = Tn(f - po) = f-po and Z = Tn(f - p1)
to their Chebyshev representation. For f - py this can be done by a Chebyshev
transform on the vector of function values, with the input values multiplied by the
constant py. For f - p; we also use a Chebyshev transform of size NV, though f - py
may have degree N, rather than N — 1. This poses no problem, because applying
part 4 of Lemma 2.10 from the next subsection with A = f - p; and K = N proves
that f - p; agrees with Z{¥ at the sampling points xjv Stage 0 becomes:

Stage 0. Compute the Chebyshev representation of Z&" and Z{'.
(a) (29,...,2%_1) « Chebyshev(fopo, ..., fn—1po)

(b) (,zé7 cee, zjlv_l) — Chebyshev(fopl(a:(J)V)7 ey fN_lpl(x%_l))

Stage 0 takes a total of 2aNlog, N 4+ 26N + 2N flops, where the third term
represents the 2N flops needed to multiply f with py and p;.
8



2.3.2. Recurrence using Chebyshev transforms. To apply the recurrences (2.17) and
(2.18) efficiently, we do the following.

1. Apply inverse Chebyshev transforms of size 2K to bring the polynomials
7K 72K into point value representation at the points x?K, 0<j<2K.

2. Perform the multiplications and additions.

3. Apply a forward Chebyshev transform of size 2K to bring the result into
Chebyshev representation.

4. Truncate the results to degree less than K.

This procedure replaces the polynomial multiplications in the recurrences (2.17)
and (2.18) by a slightly different operation. Because the multiplications are made
in only 2K points whereas the degree of the resulting polynomial could be 3K — 1,
we must verify that the end result is the same. To describe the operation formally,
we introduce the Lagrange interpolation operators Sg , for positive integers K. For
any polynomial h, the Lagrange interpolation polynomial Sk h is the polynomial of
degree less than K which agrees with h at the points z& ..., xﬁ_l. The important

properties of Sk are given in Lemma 2.10.

Lemma 2.10. Let g and h be polynomials. Then, the following holds.

1. Ifdegh < K, then Sxh = h.
3. Let K >m. Ifdegh < K 4+ m, then Tk_mh = Tk—mSKkh.
4. Ifdegh = K, then S h = Txh.

Proof. Parts 1 and 2 are easy. To prove part 3 assume that deg h < K4+ m. By long
division, there is a polynomial @) of degree at most m such that h = Sxgh+ Tk - Q.
Applying Tk _m, and using part 3 of Lemma 2.8, we obtain

TkemSrkh =Tr—mh — Tk-m[Tk - Q] = Tk—mh — Tk —m[(Tk Tk ) - Q) = T —mh,

since T Tk = 0. For part 4 we note that deg Sxh < K, and use part 3 with m =0
to get Sgkh = TgSxh =Txh. O

From the recurrences (2.17) and (2.18) and part 3 of Lemma 2.10 with 2K instead
of K and m = K it follows that

(2.20) Ik = Tr(Sox (27" - Qui) + Sox (275, -Ri k)]
(2.21) ZlI_I(_K_l = T [Sox (ZFE - Qi r—1) + Sox (Z7F% - Rix—1)].

These equations are exactly the procedure described above. The inner loop of stage
k of Algorithm 2.1 becomes:

(a) Compute the Chebyshev representation of ZlI'_‘;K and ZlI'_‘;K_l.
(2K LKL K- LHK—1y
S (G T IREEES (gut)
Kol l -1 -1
+ Recurrence;® (20, ... , 23515 Zo 5.+ 1255 _1)
(b) Compute the Chebyshev representation of Z{* and Z{& .

. l ! -1 -1
Discard (zg,...,225—1) and (557, ..., 25c 1)

Algorithm 2.2 describes in detail the recurrence procedure, which takes 4(o - 2K log, 2K+
B-2K)+ 12K =8aK logy K 4+ (8a+ 85 + 12) K flops.
9



Algorithm 2.2 Recurrence procedure using the Chebyshev transform.

CALL Recu1('1['encell"(f~07 oo for—1 do, ..  G2r—1).
INPUT f = (f~o7 ce f~2K_1) and & = (go,...,J2x—1): First 2K Chebyshev coeflicients

of input polynomials Z2% and Z2%. K is a power of 2.

OUTPUT u = (ao,...,ux-1) and Vv = (%o, ...,0x—1): First K Chebyshev coeflicients
of output polynomials le_]_ 7 and le_]_ 1~
STEPS

1. Transform f and g to point-value representation.
(fo7 RN f2]\"_1) — Chebyshev_l(fo, RN f~2](_1)
(go,-- -1 g2r—1) Chebyshev_1(§(()7 ey g2K—1)

2. Perform the recurrence.
for j=0to 2K —1do

uj Qlyf\"(xiK) fi+ Rl,f\"(xiK) 9;
v; & Qur—1(x3%) £+ Ruk—1(23%) gy
3. Transform u and v to Chebyshev representation.

(ttg, ..., 025 —1) < Chebyshev(ug,...,usx_1)
(%o, ...,025—-1) < Chebyshev(vg,...,v2x—_1)
4. Discard (ax, ..., %2x—1) and (Ox, ..., U2k —1).

2.4. Early termination. At late stages in the Driscoll-Healy algorithm, the work
required to apply the recursion amongst the ZX is larger than that required to
finish the computation using a naive matrix-vector multiplication. It is then more
efficient to take linear combinations of the vectors ZlK computed so far to obtain
the final result.

Let ¢f*,, and r’,, denote the Chebyshev coefficients of the polynomials @); ,,, and
Rim resf)ectively,y so that

m m—1
(2.22) Qum = @'wTns RBim= D 1'nTa
n=0 n=0

The problem of finishing the computation at the end of stage & = log, %, when
K = M 18 equivalent to finding fl = 2}, for 0 <1 < N, given the data 2!, z/=1
0O<n<MI=1M+12M+1,...,.N — M + 1. Our method of finishing the
computation is to use part 1 of Lemma 2.11, which follows. The second part of
this lemma can be used to halve the number of computations, in the common case

where the polynomial recurrence (2.9) has a coefficient By = 0 for all k.

Lemma 2.11. 1. Ifl>1and 0 <m < M, then
£ - 1 n -1,n
(2.23) Jigm = Z :(ZLQI,m + 2, 17°l,m)~
n=0 "

2. If pi satisfies a recurrence of the form piy1(x) = Ajep(x) + Cipi—1(z), then
U =0, tfn—misodd, and

i , ,
Tim =0, fn—mseven.

Proof. By (2.15) with K = M, frgm = Zl1+m is the constant term of the Cheby-

shev expansion of ZlM “Qum + le‘fl - Ry . To find this constant term in terms of
10



the Chebyshev coefficients of ZM, ZM, and of Qi,m, Ri,m, we substitute the ex-
pansions (2.19) and (2.22), and rewrite the product of sums by using the identity
T -1 = %(le—kl +Tj4x). For the second part, we assume that p; satisfies the given
recurrence. Then ., is odd or even according to whether m is odd or even, and
Ry m 18 even or odd according to whether m is odd or even, which can be verified by
induction on m. This implies that the Chebyshev expansion of }; »,, must contain
only odd or even coefficients, respectively, and the reverse must hold for R;,,. O

Assuming that the assumptions of the second part of the lemma are valid, i.e.,
each term of (2.23) has either ¢f',, = 0 or r,, = 0, and that the factor 1/e, is
absorbed in the precomputed values ¢f',, and r] , the total number of flops to

compute fH_m s 2m + 1.

2.5. Complexity of the algorithm. Algorithm 2.3 gives the Driscoll-Healy al-
gorithm in its final form. The total number of flops can be computed as follows.
Stage 0 takes 2aN log, N + (283 + 2)N flops. Stage k invokes N/(2K) times the
recurrence procedure, which has cost 8a K log, K 4+ (8 + 83 + 12) K flops, so that
the total cost of that stage is 4aN log, K + (4da+ 45+ 6) N flops. Adding the costs
for K = N/2,..., M gives 2aN[logs N —logi M]+ (2a +43+6)Nlog, N —log, M]
flops. In the last stage, output values have to be computed for m=1,... M — 2,
for each of the N/M values of [. This gives a total of £~ Z%;lz(Qm—l— 1) =NM-2N
flops. Summing the costs gives

Thriscoll—Healy =N[2(logy N — loga M) + (4o + 43 + 6) logy N —

(2.24)
(2004 483 + 6) logy, M + M + 24).

Algorithm 2.3 Driscoll-Healy algorithm. (Final version.)

INPUT f = (fo,...,f~v—1): Real vector with N a power of 2.
OUTPUT f = (on7 e fN_l): Discrete orthogonal polynomial transform of f.
STAGES
0. Compute the Chebyshev representation of Z& and Z}.
(a) (29,...,2%_1) & Chebyshev(fopo, ..., fn—1po)-
(b) (28,...,2%_1) & Chebyshev(fop1(s), ..., froipi(eN_1)).

k. for k =1 to log, == do
K+ X
forl=1to N —2K + 1 step 2K do

(a) Compute the Chebyshev representation of ZlI'_‘;K and ZlI'_‘;K_l.

(PR ST
« Recurrencef (zb, ..., 2bpe_y; 2574, o0 2 )
(b) Compute the Chebyshev representation of Z;* and Z,.
Discard (24, ..., 25 _1) and (2571, 0 20 ).

log, % + 1. Compute remaining values.
forl=1to N - M + 1 step M do
fl—l — Zé_l
i 2
form=1to M — 2 do
Jrim 2@ + 207 D+ 5 (20 + 20 )

11



The optimal stage at which to halt the Driscoll-Healy algorithm and complete
the computation using Lemma 2.11 depends on « and § and can be obtained
theoretically. The derivative of (2.24) according to M equals zero if and only if

(2.25) MIn®2 —4aln M = (2a + 48 + 6)In2.

In our implementation o« = 2.125 and § = 5, thus the minimum is M = 128.
In practice, the optimal choice of M may also depend on the architecture of the
machine used.

3. THE BASIC PARALLEL ALGORITHM AND ITS IMPLEMENTATION

We designed our parallel algorithm using the BSP model which gives a simple
and effective way to produce portable parallel algorithms. It does not depend on a
specific computer architecture, and it provides a simple cost function that enables
us to choose between algorithms without actually having to implement them.

In the following subsections, we give a brief description of the BSP model and
then we present the framework in which we develop our parallel algorithm, including
the data structures and data distributions used. This leads to a basic parallel
algorithm. From now on we concentrate on the Legendre transform, instead of the
more general discrete orthogonal polynomial transform.

3.1. The bulk synchronous parallel model. In the BSP model [28], a computer
consists of a set of p processors, each with its own memory, connected by a com-
munication network that allows processors to access the private memories of other
processors. In this model, algorithms consist of a sequence of supersteps. In the
variant of the model we use, a superstep 1s either a number of computation steps,
or a number of communication steps, in each case followed by a global synchroniza-
tion. Using supersteps imposes a sequential structure on parallel algorithms, and
this greatly simplifies the design process.
A BSP computer can be characterized by four global parameters:

e p, the number of processors;

e s, the computing speed in flop/s;

e ¢, the communication time per data element sent or received, measured in

flop time units;

e [ the synchronization time, also measured in flop time units.
Algorithms can be analyzed by using the parameters p, g, and [; the parameter s
just scales the time. In this work, we are able to avoid all synchronizations at the
end of computation supersteps. Therefore, the time of a computation superstep
is simply w, the maximum amount of work (in flops) of any processor. The time
of a communication superstep is hg + [, where h 1s the maximum number of data
elements sent or received by any processor. The total execution time of an algorithm
(in flops) can be obtained by adding the times of the separate supersteps. This
yields an expression of the form a + bg + ¢l. For further details and some basic
techniques, see [7, 19]. The second reference describes BSPlib, a standard library
defined in May 1997 which enables parallel programming in BSP style.

3.2. Data structures and data distributions. Each processor in the BSP model

has its own private memory, so the design of a BSP algorithm requires choosing

how to distribute the elements of the data structures used in 1t over the processors.
12



At each stage k, 1 < k <log, %, the number of intermediate polynomial pairs
doubles as the number of expansion coefficients halves. Thus, at every stage of
the computation, all the intermediate polynomials can be stored in two arrays of
size N. We use an array f to store the Chebyshev coefficients of the polynomials
leK and an array g to store the coefficients of lefl, forl = 0,2K,... , N — 2K,
with K = N/2% in stage k. We also need some extra work space to compute the
coefficients of the polynomials ZlZfK and lefKH' For this we use two auxiliary
arrays, u and v, of size .

The data flow of the algorithm, see Fig. 2, suggests that we distribute all the
vectors by blocks, i.e., we assign one block of consecutive vector elements to each
processor. This works well if p 1s a power of two, which we will assume from now
on. Formally, the block distribution is defined as follows.

Definition 3.1 (Block Distribution). Let f be a vector of size N. We say that
f is block distributed over p processors if, for all j, the element f; is stored in
Proc(j div) and has local index j' = j mod b, where b = [N/p] is the block size.

Since both N and p in Definition 3.1 are powers of two, the block size is b = N/p.

Stage Vector Proc(0) Proc(1) Proc(2) Proc(3)
1 f zy
u Z%ﬂ d
communicate communicate =
N/ ~/ =
2 2
2 f Zg ZNYa &
N/2 N/2
u 274 Z3N/4
N/4 N/4 N/a N/a
3 f Zg ZN7a ZoN/4 Z3N/4
N/4 N/a N/4 N/a
u 278 Z3N/8 Z5N/8 Z7N/8
e
4 f N/8 N/8 N/8 N/8 N/8 N/8 N/8 N/8 Z
Zy 278 ZaN/8 3N/s | ZaN/s sn/s | ZeNys Z7N/8 o
N/8 N/8 N/8 N/8 N/8 N/8 N/8 N/s8 (o4
u ZNJ16 3N/16 sn/16 | 27N/ on/16 | Z1in/16 | Z1anyie | Zisnyie H

Ficure 2. Main data structure and data distribution in the paral-
lel FLT algorithm for p = 4. Arrays f and g contain the Chebyshev
coefficients of the polynomials ZlZK and lefl, which are already
available at the start of the stage. Arrays u and v contain ZlZfK
and lefK_I_l, which become available at the end of the stage. Ar-
rays g and v are not depicted. Each array is divided into four local
subarrays by using the block distribution.

3.2.1. Distribution of the precomputed data. The precomputed data required to
perform the recurrence of stage k are stored in two two-dimensional arrays Q and
13



R, each of size 2log, % x N. Each pair of rows in Q stores data needed for one
stage k, by

Q[2k = 2,1+ j] = Quyr & (255),

Q@2k - 1,1+j] = Ql+1,K—1($?K)a

forl = 0,2K,...,N —2K, j =0,1,...,2K — 1, where K = N/2%. Thus, poly-
nomials 11,k are stored in row 2k — 2 and polynomials Q41 x—1 in row 2k — 1.
This is shown in Fig. 3. The polynomials R;41 x and Rj4q x—1 are stored in the
same way in array R. Note that the indexing of the implementation arrays starts

at zero. Each row of R and Q is distributed by the block distribution, so that
R[7, j], Q[é, j] € Proc(j div %), and the recurrence is a local operation.

(3.1)

k K, K—1 Proc(0) Proc(1) Proc(2) Proc(3)
1 32 =0
31 —0,...,63
2 16 = ! 32
15 j=0,...,31 j=0,...,31
3 8 =0 =16 =32 I =48
7 j=0,...,15 j=0,...,15 j=0,...,15 j=0,...,15

FicURE 3. Data structure and distribution of the precomputed
data needed in the recurrence with N = 64, M = 8, and p = 4.
Data are stored in two two-dimensional arrays Q and R. Each
pair of rows in an array stores the data needed for one stage k.

The termination coefficients ¢, and v, forl =1, M+1,2M+1,..., N—-M+1,

I,m

m=12... M—2 and n = 0,71, ...,m are stored in a two-dimensional array T
of size N/M x (M(M —1)/2 —1). The coefficients for one value of [ are stored in
row ({ —1)/M of T. Each row has the same internal structure: the coefficients are
stored in increasing order of m, and coefficients with the same m are ordered by
increasing n. This format is similar to that commonly used to store lower triangular
matrices. By the second part of Lemma 2.11, either ¢;',, = 0 or 1, = 0 for each n
and m, so we only need to store the value that can be nonzero. Since this depends
on whether n — m is even or odd, we obtain an alternating pattern of ¢, ’s and
'y, s Fig. 4 illustrates this data structure. 7

The termination stage is local if M < N/p, so that the input and output vectors
are local. This means that each row of T must be assigned to one processor, namely
to the processor that holds the subvectors for the corresponding value of . The
distribution T[7, j] € Proc(¢ div Z%) achieves this. As a result, the N/M rows of

T are distributed 1n consecutive blocks of rows.

3.3. The basic parallel algorithm. In order to formulate our basic parallel al-
gorithm we introduce the following conventions:

e Processor identification. The total number of processors is p. The pro-
cessor 1dentification number is s, with 0 <'s < p.

e Supersteps. The labels on the left-hand side indicate a superstep and its
type: (Cp) computation superstep, (Cm) communication superstep, (CpCm)
subroutine containing both computation and communication supersteps. Each
communication superstep ends with an explicit synchronization. Supersteps
inside loops are executed repeatedly, though they are numbered only once.

14



17

=25

33

=41
= 49
= 57

m=1m=2 m =3 m =4 m =25 m =6

rD ql qD rl q2 rD ql r2 q3 qD rl q2 r3 q4 rD ql r2 q3 r4 q5 qD rl q2 r3 q4 r5 qG
rD ql qD rl q2 rD ql r2 q3 qD rl q2 r3 q4 rD ql r2 q3 r4 q5 qD rl q2 r3 q4 r5 qG
rD ql qD rl q2 rD ql r2 q3 qD rl q2 r3 q4 rD ql r2 q3 r4 q5 qD rl q2 r3 q4 r5 qG
0 ql qD rl q2 0 ql r2 q3 qD rl q2 r3 q4 0 ql r2 q3 A q5 qD rl q2 r3 q4 r5 qG
rD ql qD rl q2 rD ql r2 q3 qD rl q2 r3 q4 rD ql r2 q3 r4 q5 qD rl q2 r3 q4 r5 qG
rD ql qD rl q2 rD ql r2 q3 qD rl q2 r3 q4 rD ql r2 q3 r4 q5 qD rl q2 r3 q4 r5 qG
r0 ql qD rl q2 0 ql r2 q3 qD rl q2 pc ] q4 0 ql r2 q3 e q5 qD rl q2 pc ] q4 7B qG
rD ql qD rl q2 rD ql r2 q3 qD rl q2 r3 q4 rD ql r2 q3 r4 q5 qD rl q2 r3 q4 r5 qG

FiGure 4. Data structure and distribution of the precomputed
data for termination with N = 64, M = 8, and p = 4. The
coefficients ¢f*,, and r  are stored in a two-dimensional array T.
In the picturé, q" denotes i and 7" denotes -

Indexing. All the indices are global. This means that array elements have a
unique index which is independent of the processor that owns it. This enables
us to describe variables and gain access to arrays in an unambiguous manner,
even though the array is distributed and each processor has only part of it.
Vectors and subroutine calls. All vectors are indicated in boldface. To
specify part of a vector we write its first element in boldface, e.g., fj; the
vector size 1s explicitly written as a parameter.

Communication. Communication between processors is indicated using

g; < Put(pid, n, ;).

The Put operation puts n elements of vector f, starting from element ¢, into
processor ptd and stores them there in vector g starting from element j.
Copying a vector. The operation

g; < Copy(n,f;)

denotes the copy of n elements of vector f, starting from element ¢, to a vector
g starting from element j.

Subroutine name ending in 2. Subroutines with a name ending in 2
perform an operation on 2 vectors instead of one. For example

(fi, g5) < Copy2(n, uk, v1)
is an abbreviation for
f; « Copy(n,uk)
g; < Copy(n,v1)
Fast Chebyshev transform. The subroutine
BSP_FChT(s0, s1, pl, sign,n, 1)

replaces the input vector f of size n by its Chebyshev transform if sign = 1
or by its inverse Chebyshev transform if stign = —1. A group of pl processors
starting from Proc(s0) work together; s1 with 0 < s1 < pl denotes the local
processor number within the group. For a group size pl = 1, this subroutine
reduces to the sequential fast Chebyshev transform algorithm.
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e Truncation. The operation
f « BSP_Trunc(s0, s1,pl,b, K, u)

denotes the truncation of all the N/(2K) polynomials stored in f and u by
copying the first K' Chebyshev coefficients of the polynomials stored in u into
the memory space of the last K Chebyshev coefficients of the corresponding
polynomials stored in f. A group of pl processors starting from Proc(s0) work
together to truncate one polynomial; s1 with 0 < s1 < pl denotes the local
processor number within the group. When pl = 1 the block size b = % is
larger than K, and one processor is in charge of the truncation of one or more
polynomials. Algorithm 3.1 gives a description of this operation. In Fig. 2,

this operation is depicted by arrows.

Algorithm 3.1 Truncation using the block distribution.

CALL f + BSP_Trunc(s0, s1,pl, b, K, u).
DESCRIPTION
s ¢+ s0 + sl
if p1 = 1 then
forl=s-bto (s+1)b— 2K step 2K do
f1+K — COpy(I(7 ll])

else
if s1 < 1’2—1 then
fs~b-|-K — Put(s + p2—1, b, us.b)

The basic template for the fast Legendre transform is presented as Algorithm 3.2.
At each stage k <log, %, there are 2°~! independent problems, one for each I. For
k < log, p, there are more processors than problems, so that the processors will have
to work in groups. Each group of pl = p/2*~! > 1 processors handles one subvector
of size 2K, K = N/2*; each processor handles a block of 2K/pl = N/p vector
components. In this case, the [-loop has only one iteration, namely { = s0-N/p, and
the j-loop has N/piterations, starting with j = s1-N/p, so that the indices [+ start
with (sO0+s1)N/p = s-N/p, and end with (sO0+s1)N/p+N/p—1=(s+1)N/p—1.
Inter-processor communication is needed, but it occurs only in two instances:

e Inside the parallel FChTs (in supersteps 2, 5, 7), see Section 4.

o At the end of each stage (in supersteps 3, 8).

For k > log, p, the length of the subvectors involved becomes 2K < N/p. In
that case, pl = 1, s0 = s, and sl = 0, and each processor has one or more
problems to deal with, so that the processors can work independently and without
communication. Note that the index [ runs only over the local values sN/p, sN/p+
2K,...,(s+ 1)N/p— 2K, instead of over all values of {.

The original stages 0 and 1 of Algorithm 2.3 are combined into one stage and
then performed efficiently, as follows. First, in superstep 1, the polynomials 77",
ZJJ\\,T/2 and ZJJ\\,T/Q_I_1 are computed directly from the input vector f. This is possible
because the point-value representation of Z{ = Tn(f - P1) = Tn(f - =) needed
by the recurrences is the vector of f; ~x§\7, 0 < j < N, see Subsection 2.3.1. The
values RJ[i, j] + Q[Z,j]l‘j\f for i = 0,1 can be precomputed and stored so that the
recurrences only require one multiplication by f;. In superstep 2, polynomials
ZN = £,z = g,ZJJ\\,T/2 = u, and ZJJ\\,T/Q_I_1 = v are transformed to Chebyshev
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Algorithm 3.2 Basic parallel template for the fast Legendre transform.

CALL BSP_FLT(s,p, N, M,f).
ARGUMENTS

s: Processor identification (0 < s < p).
p: Number of processors (p is a power of 2 with p < N/2).
N: Transform size (N is a power of 2 with N > 4).
M: Termination block size (M is a power of 2 with M < min(N/2, N/p)).
f: (Input) £ = (fo,..., fv—1): Real vector to be transformed.
(Output) f = (on7 ce fN_l): Transformed vector.
Block distributed: f; € Proc(y div %)

STAGE 1:
C - __ N N
(1%P)  for j=s t]\? (s+1)4 —1do
g] — x] f] . .
u; + (R[0, 5]+ Q[0, 5]} ) f;
vy (R[L 1+ Q[L, ]y f;
(26P“™) BSP_FChT2(0,s,p, 1, N,f,g)
BSP_FChT2(0,s,p, 1, N,u,v)
(3°™)  (f,g) « BSP_Trunc2(0, s, p, %, Lou,v)

STAGE k:
for k =2 to log, % do
(4°P) K+ &
pl « max(2,€L_17 1)
50 « (s div pl)pl
s1 < smod pl
(ugn, v n)  Copy2(2,fin, 8 )
®p ®p PR Eh .
for [ = 50% to (s0+ 1)% — £ step 21%1‘ do
(5°PCm) BSP_FChT2(s0, s1,pl, —1,2K,u1, v1)
(6°P) for j =17 to s1%+%—1do }
al « R[2k — 2,1 4 jluiy; + Q[2k — 2,1+ jlory;
a2 « R[2k — 1,1 + Jluit; + Q[2k — 1,1 + j]vi4;
ury; ¢ al
vigj a2
(76PCm) BSP_FChT2(s0, s1,pl,1,2K, ui, vi)
(85™) (f,g) « BSP_Trunc2(s0, s1, p1, %, K,u,v)

STAGE log, &+ + 1:
(9°P)  forl= s% to (s—l—l)% — M step M do

fi « Terminate(l, M, fi, g1)

representation; then, in superstep 3, they are truncated to obtain the input for

stage 2.

The main loop works as follows. In superstep 4, the polynomials Z?% with
K =N/2¥ andl =0,2K,..., N—2K, are copied from the array f into the auxiliary
array u, where they are transformed into the polynomials le_lf(K, in supersteps 5 to

7. Similarly, the polynomials lefl are copied from g into v and then transformed

into the polynomials lefK_I_l. Note that u corresponds to the lower value of [, so
that in the recurrence the components of u must be multiplied by values from R..
In superstep 8, all the polynomials are truncated by copying the first X' Chebyshev

17



coeflicients of ZlZfK into the memory space of the last ' Chebyshev coefficients of
7K,

The termination procedure; superstep 10, is a direct implementation of Lemma
2.11 using the data structure T described in Subsection 3.2.1. Superstep 10 is a
computation superstep, provided the condition M < N/p is satisfied. This usually
holds for the desired termination block size M. In certain situations, however,
one would like to terminate even earlier, with a block size larger than N/p. This
extension will be discussed in Subsection 4.4.

4. IMPROVEMENTS OF THE PARALLEL ALGORITHM

4.1. Fast Chebyshev transform of two vectors, FChT2. The efficiency of
the FLT algorithm depends strongly on the FCT algorithm used to perform the
Chebyshev transform. There exists a substantial amount of literature on this topic
and many implementations of sequential FCTs are available, see e.g. [1, 23, 24, 27].
Parallel algorithms or implementations have been less intensively studied, see [25]
for a recent discussion.

In the FLT algorithm, the Chebyshev transforms always come in pairs, which led
us to develop an algorithm that computes two Chebyshev transforms at the same
time. The new algorithm is based on the FCT algorithm 4.4.6 of Van Loan [29]
and the standard algorithm for computing the FFTs of two real input vectors at
thematr same time (see e.g. [23]).

The use of an FFT-based algorithm is advantageous because the bulk of the
computation is in the FFT and because good FFT implementations are ubiquitous.
Since the FFT is separate module, it can easily be replaced, for instance by a new,
more efficient, FFT subroutine.

The Chebyshev transform i1s computed as follows. Let x and y be the input
vectors of length N. We view x and y as the real and imaginary part of a complex
vector (x+¢y). The algorithm is divided in 3 phases. Phase 1, the packing of the
input data into an auxiliary complex vector z of length N, is a simple permutation,

{ zj = (@95 + 1 ya25),

4.1 . .
(41) ZN—jo1 = (Z2j41 + 1 Y2i41), 0<j<N/2

In phase 2, the complex FFT creates a complex vector Z of length N,
N-Loo
(4.2) Zy=> zie ™, 0<k<N.
7=0
This phase takes 4.25N log, N flops if we use a radix-4 algorithm [29]. Finally, in
phase 3 we obtain the Chebyshev transform by

Zp = ;—;Re (6%(Zk +7N—k)) ;

(4.3) } x ik _
i = 5oclm (e (2, — ZN_k)) . 0<k<N,
where % is the normalization factor needed to get the Chebyshev transform from

the cosine transform. This phase is efficiently performed by computing the compo-
nents £ and N — k together and using symmetry properties. The cost of phase 3
is 10N flops. The total cost of the FChT2 algorithm is thus 4.25N log, N + 10N
giving an average o = 2.125 and # = 5 for a single transform.
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The verification that (4.1)-(4.3) indeed produce the Chebyshev transforms is
best made in two steps. First, we prove that

N-1 N/2-1
1 — 2mijk 2mijk _2mi(i41)k
(4.4) §(Zk—|—ZN_k): ZRe(zj)e N = Z (xzje N 4 xoj41€ N ),
7=0 7=0
and
(4.5)
7 — Nl 2mijk N2 2mijk 2mi(i+1)k
—§(Zk—ZN_k):ZIm(Zj)6_N = > (ije N4 ygigreT N )
Jj= 7=0

Second, we substitute (4.4) and (4.5) into (4.3) to obtain the desired equality (2.6).
Note that (4.3) requires that Zn be defined, and therefore we extend definition (4.2)
to any integer k. Because the extended definition is N-periodic, we can obtain any
value 7, from the computed values Zy, ..., Zn_1.

The inverse Chebyshev transform is obtained by inverting the procedure de-
scribed above. The phases are performed in the reverse order, and the operation of
each phase is replaced by its inverse. Phase 3 is inverted by packing x and y into
the auxiliary complex vector Z:

Zo = N(%o +1 %),
(4.6) N _zix - . ..
ZkZ;@ N (T4 1) +i(@Nek + 1 ON=k)), 1<k<N.

To invert phase 2, an inverse complex FFT i1s computed,

N-1
1 2mij
(4.7) = 2 Zie N 0<k<N.
=0

The inverse of phase 1 1s again a permutation,

(4.8) w25 = Re(z)), yaj = Im(z;),

' Toj41 = Re(zn—j-1), y2j+1 =Im(zy—j—1), 0<j < N/2.
The cost of the inverse FChT algorithm is the same as that of the FChT algorithm,
provided the scalings of (4.6) and (4.7) are combined.

An efficient parallelization of this algorithm involves breaking open the paral-

lel FFT inside the FChT2 and merging parts of the FFT with the surrounding
computations. In the following subsection we explain the parallelization process.

4.2. Parallel FFT within the scope of the parallel FChT2. The FFT is a
well-known method for computing the discrete Fourier transform (4.2) of a complex
vector of length N in O(N log N) operations. It can concisely be written as a
decomposition of the Fourier matrix Fl,

(4.9) Fny = AN - AsAs Ay Py,

where Fiy 1s an N x N complex matrix, Py is an N x N permutation matrix
corresponding to the so-called bit reversal permutation, and the N x N matrices

Apg are defined by
(4.10) Ag =Ink ©®Bx, K=248,... N,

19



which is shorthand for a block-diagonal matrix diag(Bg, ... , Bx) with N/K copies
of the K x K matrix Bg on the diagonal. The matrix By is known as the K x K
butterfly matriz.

This matrix decomposition naturally leads to the radiz-2 FFT algorithm [10,
29]. In a radix-2 FFT of size N, the input vector z is permuted by Py and then
multiplied successively by all the matrices Ag. The multiplications are carried out
in log, N stages, each with N/K times a butterfly computation. One butterfly
computation modifies K/2 pairs (z;, zj4k/2) at distance K/2 by adding a multiple
of 254 k/2 to z; and subtracting the same multiple.

Parallel radix-2 FFTs have already been discussed in the literature, see e.g. [21].
For simplicity, in our exposition we restrict ourselves to FFT algorithms where
p < V/N. This class of algorithms uses the block distribution to perform the
short distance butterflies with K < N/p and the cyclic distribution to perform the
long distance butterflies with K > N/p. Figure ba gives an example of the cyclic
distribution which is formally defined as follows.

Definition 4.1. (Cyclic distribution). Let z be a vector of size N. We say that
z is cyclically distributed over p processors if, for all j, the element z; is stored in
Proc(j mod p) and has local index j' = j div p.

Using such a parallel FFT algorithm, we obtain a basic parallel FCh'T2 algorithm
for two vectors x and y of size N.

1. PACK vectors x and y as the auxiliary complex vector z by permuting them
using (4.1).
2. TRANSFORM vector z using an FFT of size N.
(a) Perform a bit reversal permutation in z.
) Perform the short distance butterflies of size K = 2,4,..., N/p.
Permute z to the cyclic distribution.

)
) Perform the long distance butterflies of size K = 2N/p,4N/p,...,N.
)

bl

Permute z to the block distribution.
3. EXTRACT the transforms from vector z and store them in vectors x and y.

(b
(c
(d
(e

(a) Permute z to put components j and N — j in the same processor.
(b) Compute the new values of z using (4.3).
(c) Permute z to block distribution and store the result in vectors x and y.

The time complexity of this basic algorithm will be reduced by a sequence of
improvements as detailed in the following subsections.

4.2.1. Combining permutations. By breaking open the FFT phase inside the par-
allel FChT2 algorithm, we can combine the packing permutation (1) and the bit
reversal (2a), thus saving one complete permutation of BSP cost Q%g + 1. The
same can be done for (2¢) and (3a).

4.2.2. Increasing the symmetry of the cyclic distribution. We can eliminate permu-
tation (2e)/(3a) completely by restricting the number of processors slightly further
to p < \/N/2, and permuting the vector z in phase (2¢) from block distribution
to a slightly modified cyclic distribution, the zig-zag cyclic distribution, shown in
Fig. bb, and formally defined as follows.

Definition 4.2. (Zig-zag cyclic distribution). Let z be a vector of size N. We say
that z is zig-zag cyclically distributed over p processors if, for all j, the element z;
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F1GURE 5. (a) Cyclic distribution and (b) zig-zag cyclic distribu-
tion for a vector of size 32 distributed over 4 processors.

is stored in Proc(j mod p) if j mod 2p < p and in Proc(—j mod p) otherwise, and
has local index 7/ = j div p.

In this distribution, both the components j and j+ K /2 needed by the butterfly
operations with K > N/p and the components j and N — j needed by the extract
operation are in the same processor; thus we avoid the permutation (2e)/(3a) above,
saving another Q%g +{ in BSP costs.

4.2.3. Reversing the stages for the inverse FFT. To be able to apply the same ideas
to the inverse transform we perform the inverse FFT by reversing the stages of the
FFT and inverting the butterflies, instead of taking the more common approach of
using the same FFT algorithm, but replacing the powers of e T by their conjugates.
Thus, we save G%g + 3{, both in the Chebyshev transform and its inverse.

4.2.4. Reducing the number of flops. Wherever possible we take pairs of stages
Asxg Ag together and perform them as one operation. The butterflies have the
form Bag (12 ® Bg), which is a 2K x 2K matrix consisting of 4 x 4 blocks, each a
K/2 x K/2 diagonal submatrix. This matrix is a symmetrically permuted version
of the radix-4 butterfly matrix [29]. This approach gives the efficiency of a radix-4
FFT algorithm, and the flexibility of treating the parallel FFT within the radix-2
framework; for example, it is possible to redistribute the data after any number of
stages, and not only after an even number. This reduces o from 2.5 to 2.125.

Since we do not use the upper half of the Chebyshev coefficients computed in
the forward transform, we can alter the algorithm to avoid computing them. This
saves 4N flops in (4.3).

4.3. Optimization of the main loop. Here we show how to reduce the commu-
nication even further by giving up the block distribution in the main loop of the
FLT algorithm. This discussion is only relevant in the parallel part of the main
loop, i.e., stages k < log, p, so we will restrict ourselves to these stages. Note that
in these stages a group of pl = p/2*~1 > 1 processors handles only one subproblem
of size 2K = 2N /2% corresponding to [ = 50%. Because the operations executed on
f and u are also executed on vectors g and v, we omit g and v from our discussion.

4.3.1. Modifying the truncation operation. It is possible to reorganize the main loop
of the FLT algorithm such that the end of stage & and the start of stage £ + 1 are
merged into one more efficient procedure. The following sequence of operations will
then be replaced by a new procedure.

permute from zig-zag cyclic to block distribution in stage k;

truncate at the end of stage &;

copy at the beginning of stage & + 1;

permute from block to zig-zag cyclic distribution in stage k& + 1.
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In the new approach, we assume that the last K elements of fj and u; have
already been discarded, so that f; and u; are in the zig-zag cyclic distribution of K
(instead of 2K) elements over pl processors. Note that for u; these elements have
not even been computed, see Subsection 4.2.4. The new procedure follows.

1. Keep the data needed at stage k + 1:
(a) Copy vector uj of size K into vector ui4k.
(b) Copy vector f; of size K into vector uy.
2. Redistribute the data needed at stage k + 2:
(a) Vector fj receives the first K /2 elements of vector uj redistributed by the
zig-zag cyclic distribution over the first %1 processors.
(b) Vector fi;k receives the first K/2 elements of vector w4k redistributed
by the zig-zag cyclic distribution over the next %1 processors.

The new procedure is illustrated in Fig. 6. This approach reduces the BSP cost of
the truncation/copy operation from G%g + 3l to %g. (The synchronization can be
saved by merging the communication superstep with the following redistribution.)

f Hll l Illll l I [] Eroc(f) [ ] Eroc(?)
(10) o (12) oopy [ Proc(1) [ Proc(3)

(2 a) i communicate (Qb)i communicate

i fo [ ][] ]l fr.xc EEHEN

F1GURE 6. Truncation/copy operation of vectors fj and uj for K =
16 and pl = 4. The numbers between brackets denote the phases
of the procedure.

As a result, vectors u; and w4k contain all the data needed at stage & + 1
and vectors fi and fi;x contain half the the data needed at stage k 4+ 2 (stage
k + 1 will produce the other half). We now show that the operations of stage
k + 1 immediately following the truncation/copy remain local and hence do not
require communication. These operations alter w; and wyyx by operation (4.6)
of the inverse FChT and the long distance butterflies of the inverse FFT. The
restriction p < /N/2 implies pl < /K, so that both the pairs (Wigj, wiyr—j)
and (Wtr4j, wyok—j), with j = 1,...,K/2 — 1, needed by operation (4.6) of
the inverse FChT and the pairs (uiy;, wipjym/2) and (wiyg4j, Wik 4j+m/2), With
K >H>4K/pl =2K/(pl/2)and j =0,..., H/2—1, needed by the long distance
butterflies of the inverse FFT are in the same processor. Note that the long distance
butterflies are those of stage & + 1, where pl is halved.

4.3.2. Moving bit reversal to precomputation. Another major optimization is to

completely avoid the packing/bit reversal permutation (1)/(2a) in the FChT2 just

following the recurrence and its inverse preceding the recurrence, thus saving an-

other 4%g 4+ 2/ in communication costs. This is done by storing the recurrence

coefficients permuted by the packing/bit reversal permutation. This works because
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one permutation is the inverse of the other, so that the auxiliary vector z is in the
same ordering immediately before and after the permutations.
After all the optimizations, the total communication and synchronization cost

is approximately (5% log, p) g+ (2log, p)l. Only two communication supersteps

remain: the zig-zag cyclic to block redistribution inside the inverse FFT, which

can be combined with the redistribution of the truncation, and the block to zig-zag

cyclic redistribution inside the FFT. To obtain this complexity, we ignored lower

order terms and special cases occurring at the start and the end of the algorithm.
The total cost of the optimized algorithm without early termination is:

N N
(4.11) TrLT par A 4.25; logs N + (5? log, p) g+ (2log, p) L.

4.4. Parallel termination. Sometimes, it is useful to be able to perform the
termination procedure of the Driscoll-Healy algorithm in parallel. In particular,
this would enable the use of direct methods of O(N?) complexity, such as the so-
called semi-naive method [11], which may be faster for small problem sizes. The
termination as expressed by Lemma 2.11 is similar to the multiplication of a dense
lower triangular matrix and a vector.

4.4.1. Lower triangular matriz-vector multiplication. Let us first consider how to
multiply an n xn lower triangular matrix L by a vector x of length n on p processors,
giving y = Lx. Assume for simplicity that p is square. A parallel algorithm for
matrix-vector multiplication was proposed in [6]. This algorithm is based on a two-
dimensional distribution of the matrix over the processors, which are numbered
Proc(s,t), 0 < s < pp, 0 <t < p1, where p = popy. Often, it is best to choose
po = p1 = /p. This scheme assigns matrix rows to processor rows Proc(s, *), and
matrix columns to processor columns. Vectors are distributed in the same way as
the matrix diagonal.

Since our matrix is lower triangular, we cannot adopt the simplest possible dis-
tribution method in this scheme, which is distributing the matrix diagonal, and
hence the vectors, by blocks over all the processors. The increase of the row size
with the row index would then lead to severe load imbalance in the computation.
A better method is to distribute the diagonal cyclically over the processors. Trans-
lated into a two-dimensional numbering this means assigning matrix element L;;
to Proc(i mod /p, (j div y/p) mod /p). The rows of the matrix are thus cyclically
distributed, and blocks of |/p columns are also cyclically distributed. The algo-
rithm first broadcasts input components x; to Proc(x, (j div \/p) mod ,/p), then
computes and accumulates the local contributions L;;z; and sends the resulting
local partial sum to the processor responsible for y;; this processor then adds the
partial sums to compute y;. The cost of the algorithm is about ’;—2 + Q%g + 21.

4.4.2. Application to termination. We assume that a suitable truncation has been
performed at the end of the main loop of the FLT algorithm. This truncation
halves the group size pl and redistributes the data to the input distribution of the
termination. We assume, for simplicity of exposition, that pl is square. We adapt
the lower triangular matrix-vector multiplication algorithm to the context of the
termination, as follows. Let I > 1 be fixed. We replace n by M — 1 and p by pl,
and define I using Lemma 2.11, for instance L;; = ‘le,i/Q for ¢ > j, 1 — j even,
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FicURE 7. Data structure and distribution of the precomputed
data needed for parallel termination with M = 8. The picture
shows the data needed for one value of [/, which is handled by
pl = 4 processors. The coefficients ¢” = ¢, and r” = r'  are
stored 1n a lower triangular matrix fashion. 7 7

and j > 0. Here, we include the trivial case ¢ = 0. The two-dimensional processor
numbering is created by the identification Proc(s,t) = Proc(s0 + s + ¢y/p1), where
the offset sO denotes the first processor of the group that handles the termination
for [. Figure 7 illustrates the data distribution. In the first superstep, zé 1s sent
by its owner to the processor column that needs it, but only to half the processors,
namely those that store ‘TZ,/S The value z;»_l is sent to the other half. There is no
need to redistribute the output vector, because it can be accumulated directly in
the desired distribution, which is by blocks.
The total time of the parallel termination is about

MN  2/MN
(412) ﬂerm, par R —— +——9+ 2.

p VP

5. EXPERIMENTAL RESULTS

In this section, we present results on the accuracy and scalability of the im-
plementation of the Legendre transform algorithm for various sizes N. We also
investigate the optimal termination block size M.

We implemented the algorithm in ANSI C using the BSPlib communications
library [19]. Our programs are completely self-contained, and we did not rely on
any system-provided numerical software such as BLAS, FFTs, etc. We tested the
accuracy of our implementation on a SUN Ultra 1 workstation which has TEEE
754 floating point arithmetic. The accuracy of double precision (64-bit) arithmetic
is 2.2 x 10715, The efficiency and scalability test runs were made on a Cray T3E
with up to 64 processors, each having a theoretical peak speed of 600 Mflop/s.
To make a consistent comparison of the results, we compiled all test programs us-
ing the bspfront driver with options -03 -flibrary-level 2 -bspfifo 10000
-fcombine-puts and measured the elapsed execution times on exclusively dedi-
cated CPUs using the bsp_time() function.?

I'We also wrapped our sequential programs as parallel ones. The reason is that our sequential
programs compiled on the CRAY T3E with cc -03 are four times slower. It seems that the option
-flibrary-level 2 of bspfront also improves the execution time of sequential programs on the

CRAY T3E.
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5.1. Accuracy. We tested the accuracy of our implementation by measuring the
error obtained when transforming a random input vector f with elements uniformly
distributed between 0 and 1. The relative error is defined as |[f* —f|o/||f||2, where
f* is the FLT and f is the exact DLT (computed by (2.1), using the stable three-
term recurrence (2.2) and quadruple precision); || - ||z indicates the L%-norm.

Table 1 shows the relative errors of the sequential algorithm for various prob-
lem sizes using double precision except in the precomputation of the third column,
which is carried out in quadruple precision. The results show that the error of the
FLT algorithm is comparable with the error of the DLT provided that the precom-
puted values are accurate. They also show that our precomputation algorithm is
somewhat less accurate for large N. Therefore it is best to perform the precom-
putation in increased precision. This can be done at little extra cost, because the
precomputation is done only once and its cost can be amortized over many FLTs.
We believe that it is possible to improve the accuracy of the precomputation by
exploiting the symmetries of the associated polynomials (that are either odd or
even). As an additional advantage the sizes of the arrays Q and R can be halved.
We will not address this issue here. See [17, 18] for a discussion of other techniques
that can be used to get more accurate results. The errors of the parallel implemen-
tation are of the same order as in the sequential case. The only part of the parallel
implementation that differs from the sequential implementation in this respect is
the FFT, and then only if the butterfly stages cannot be paired in the same way.
Varying the termination block size between 2 and 128 also does not significantly
change the magnitude of the error.

N DLT FLT FLT-QP
512 [ 7.7 x 1071* [ 4.3 x 10712 [ 1.5 x 10~ 1*
1024 | 3.0 x 10713 | 3.1 x 107 | 2.3 x 10713
8192 | 1.3 x 1071 | 35 x 1077 [ 1.3 x 107!
65536 | 2.7 x 10710 | 9.4 x 1078 | 1.6 x 1071

TABLE 1. Relative errors for the FLT algorithm. (QP indicates
that the precomputation is carried out in quadruple precision.)

5.2. Efficiency of the sequential implementation. We measured the efficiency
of our FLT algorithm by comparing its execution time with the execution time of
the direct DLT algorithm (i.e., a matrix-vector multiplication). Table 2 shows
the times obtained by the direct algorithm and the FLT with various termination
values: M = 2 yields the pure FLT algorithm without early termination; M = 64
is the empirically determined value that makes the algorithm perform best (this
value is close to the theoretical optimum M = 128, see Section 2.4); M = N/2 is
the maximum termination value that our program can handle, and the resulting
algorithm is similar to the semi-naive algorithm [11].

The results indicate that the pure FLT algorithm becomes faster than the DLT
algorithm at N = 128. Choosing M = 64 (or M as large as possible if N < 128)
further decreases the break-even point.

Though we opened the modules of the FLT algorithm, in principle it is still
possible to use highly optimized or even machine specific, assembler coded, FFT
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N | DLT FLT FLT FLT
M=N/2 M=64 M=2

161 0.0044  0.0095 - 0.0259
32 10.0167  0.0181 - 0.0572
64 | 0.0709  0.0391 - 0.1376

128 | 0.3660  0.0949 0.0949  0.3195
256 | 1.7249  0.3759 0.3171  0.7528
512 | 6.8738  1.4613 0.9540  1.8020

TABLE 2. Execution time (in ms) of various Legendre transform
algorithms on one processor of a CRAY T3E.

subroutines in both the sequential and the parallel versions. This would yield an
even faster program.

5.3. Scalability of the parallel implementation. We tested the scalability of
our optimized parallel implementation using our optimized sequential implementa-
tion as basis for comparison.

Table 3 shows the timing results obtained for the sequential and parallel versions
executed on up to 64 processors, with p < \/N/2 for M = 2 and M = 64. These
results can best be analyzed in terms of absolute speedups, S%* = T(seq)/T(p),
i.e., the time needed to run the sequential program divided by the time needed to
run the parallel program on p processors. Our goal is to achieve ratios as close to
p as possible. Figure 8 shows the performance ratios obtained for various input
sizes with M = 2 on up to 64 processors. The speedups for M = 64 (not shown)
are somewhat lower than for M = 2 because early termination does not reduce the
parallel overhead of the algorithm; it improves only the computation part.

M N se¢q p=1 p=2 p=4 p=8 p=16 p=32 p==64
2 512 1.80 1.96 1.16 0.72  0.53 0.59 -
1024 4.19 4.50 2.54 1.47  0.95 0.75 - -
8192 59.00 59.91 31.00 16.20  8.59 4.93 3.26 3.21
65536 | 1210.— 1220.— 623.— 322.— 157.— 6990 36.30 19.70
64 512 0.95 1.11 0.76 - - - - -
1024 2.47 2.71 1.71 1.04 0.71 - - -
8192 | 43.00 4470 23.30 1250  6.76 4.13 2.81 -
65536 | 983.— 994.— blb.— 263.— 128.— 5550 29.60 16.60

TABLE 3. Execution times (in ms) for the FLT on a Cray T3E.

It is clear that for a large problem size (N = 65536) the speedup is close to ideal,
e.g., S = 61 on 64 processors with M = 2. For smaller problems, reasonable
speedups can be obtained using 8 or 16 processors, but beyond that the communi-
cation time becomes dominant. The superlinear speedup observed for N = 65536
is a well known phenomenon related to cache size.

6. CONCLUSIONS AND FUTURE WORK

As part of this work, we developed and implemented a sequential algorithm
for the discrete Legendre transform, based on the Driscoll-Healy algorithm. This
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FLT speedups on the CRAY T3E (M=2)
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F1GURE 8. Scalability of the FLT on a Cray T3E.

implementation is competitive for large problem sizes. Tts complexity O(N log2 N)
is considerably lower than the O(N?) matrix-vector multiplication algorithms which
are still much in use today for the computation of Legendre transforms. Its accuracy
is similar, provided the precomputation is performed in increased precision. The
new algorithm is a promising approach for compute-intensive applications such as
weather forecasting.

The main aim of this work was to develop and implement a parallel Legendre
transform algorithm. Our experimental results show that the performance of our
parallel algorithm scales well with the number of processors, for medium to large
problem sizes. The overhead of our parallel program consists mainly of commu-
nication, and this is limited to two redistributions of the full data set and one
redistribution of half the set in each of the first log, p stages of the algorithm. Two
full redistributions are already required by an FFT and an inverse FFT, indicating
that our result is close to optimal. Our parallelization approach was first to derive
a basic algorithm that uses block and cyclic data distributions, and then optimize
this algorithm by removing permutations and redistributions wherever possible. To
facilitate this we proposed a new data distribution, which we call the zig-zag cyclic
distribution.

Within the framework of this work, we also developed a new algorithm for the
simultaneous computation of two Chebyshev transforms. This is useful in the con-
text of the FLT because the Chebyshev transforms always come in pairs, but such
a double fast Chebyshev transform also has many applications in its own right,
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as does the corresponding double fast cosine transform. Our algorithm has the
additional benefit of easy parallelization.

We view the present FLT as a good starting point for the use of fast Legendre
algorithms in practical applications. However, to make our FLT algorithm directly
useful in such applications further work must be done: an inverse FLT must be
developed; the FLT must be adapted to the more general case of the spherical har-
monic transform where associated Legendre functions are used (this can be done by
changing the initial values of the recurrences of the precomputed values, and mul-
tiplying the results by normalization factors); and alternative choices of sampling
points must be made possible. Driscoll, Healy, and Rockmore [13] have already
shown how a variant of the Driscoll-Healy algorithm may be used to compute such
transforms at any set of sample points, though the set of points chosen affects the
stability of the algorithm.
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APPENDIX A. RELATED TRANSFORMS AND ALGORITHMS

The derivation of the Driscoll-Healy algorithm given in Section 2 has the fea-
ture that it only depends on the properties of truncation operators 7Tx given in
Lemma 2.8, and on the existence of an efficient algorithm for applying the trun-
cation operators. In particular, Lemma 2.8 and Lemma 2.10 hold as stated when
the weight function w(z) = 7~ (1 — #2)% is changed, the truncation operators are
defined using a polynomial sequence which is orthogonal with respect to the new
weight function and starts with the polynomial 1, and the Lagrange interpolation
operators are defined using the roots of this sequence. In theory, this can be used to
develop new algorithms for computing orthogonal polynomial transforms, though
with different sample weights w;. In practice, however, the existence of efficient
Chebyshev and cosine transform algorithms makes these the only reasonable choice
in the definition of the truncation operators. This situation may change with the
advent of other fast transforms.

Theoretically, the basic algorithm works, with minor modifications, in the fol-
lowing general situation. We are given operators 75, for 1 < M < K, such that

1. T{f is a mapping from the space of polynomials of degree less than 2K to the
space of polynomials of degree less than M.

2. f M < L <K then T5TE =TE.

3. Ifdeg@ <m < K < Lthen T_ (f-Q) =TE . [(TE£S) Q).

The problem now is, given an input polynomial f of degree less than N, to compute
the quantities 7N (f - p;) for 0 < [ < N, where {p;} is a sequence of orthogonal
polynomials.

This problem may be treated using the same algorithms as in Section 2, but with
the truncation operators 73s replaced by 7}{;, where K < N depends on the stage
of the algorithm. Using K = N retrieves our original algorithm. The generalized
algorithm uses the quantities ZlK =T (f - m), and the recurrences in this context
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are

2l = T (2 Quon + 21 - Rim]
Zﬁ_;@n_ﬁbl = T}?_m [ZlK : Ql,m—l + leil : Rl,m—l] .
Cf. (2.15) and (2.16).

This generalization of the approach we have presented may be used to derive the
original algorithm of Driscoll and Healy [12], which uses the cosine transforms in

(A.1)

the points cos Z=.

Driscoll, Healy, and Rockmore [13] described another variant of the Driscoll-
Healy algorithm that may be used to compute the Legendre transform of a polyno-
mial sampled at the Gaussian points, i.e., at the roots of the Legendre polynomial
Ppn. Their method replaces the initial Chebyshev transform used to find polynomial
Z& in Chebyshev representation, by a Chebyshev transform taken at the Gauss-
ian points. Once Z has been found in Chebyshev representation, the rest of the
computation 1s the same.

The Driscoll-Healy algorithm can also be used for input vectors of arbitrary size,
not only powers of two. Furthermore, at each stage, we can split the problem
into an arbitrary number of subproblems, not only into two. This requires that
Chebyshev transforms of suitable sizes are available.

APPENDIX B. THE PRECOMPUTED DATA

In this appendix we describe algorithms for generating the point values of Q ., Rim
used in the recurrence of Algorithm 2.2, and for generating the coefficients ¢f*,,, 7,
used in the termination stage of Algorithm 2.3. 7 7

The precomputation of the point values is based on the following recurrences.

Lemma B.1. Let ! > 1, 5 > 0, and k > 1. Then the associated polynomials
Qi,m, Ri,m satisfy the recurrences

Qujrrk = Quyr ;Qu i + Rigr jQr k-1,

B.1
(B-1) Rijore = QuynjRir + Rigr jRip—1.

Proof. By induction on j. The proof for j = 0 follows immediately from the
definition (2.10), since Qi+x,0@Q1 % + Ritr,0Q1 k-1 = 1-Qrrx+0 = Qi and similarly
for R . The case j = 1 also follows immediately from the definition. For j > 1,
we have
Qusk jQui + Rivr jQur—1
= [Quykti—11Qutk j—1 + Ritrtj—1,1Qu+k,j—2] Qur
+ [Qurktj—1,1Ritk j—1 + Rithtj—1,1Rign j—2] Qui—1
= Quih+j-1,1 [Quak,j—1Quk + Rign j—1Q1 k—1]
+ Riphtj—1,1 [Quak,j—2Quk + Rigr j—2Q1 k—1]
= Quah+i-1,1Q1k+j—1 + Bigrgj—11Q1 ktj—2

= Ql,k-l—ja
where we have used the case j = 1 to prove the first and last equality and the
induction hypothesis for the cases j — 1,5 — 2 to prove the third equality. In the
same way we may show that Quir ;R r + Rigr jRie—1 = Rigtj- O

This lemmais the basis for the computation of the data needed in the recurrences
of the Driscoll-Healy algorithm. The basic idea of the algorithm is to start with
polynomials of degree 0,1, given in only one point, and then repeatedly double

29



the number of points by performing a Chebyshev transform, adding zero terms to
the Chebyshev expansion, and transforming back, and also double the maximum
degree of the polynomials by applying the lemma, with j = K — 1, K and k = K.

Algorithm B.1 Precomputation of the point values.

INPUT N: a power of 2.

OUTPUT Qi (2] ) Rim (23 ),for1§k§10g2N,0§j<2k,m:2k_1,2k_1—1,
andl=1,2""141,... N — 2" 1+1.
STAGES
0. for/=1to N do
Qio(0) + 1, Rio(0) 0, Qi1(0)« B, Ri1(0)«
k. for k=1 to log, N do
K« 2kt

for m=K —1to K do
forl=1to N - K +1step K do

(@ms -2 G ) < Chebyshev(Qum(x3), -, Qum (¥R 1))
(P9 s+ 715 1) = Chebyshev(Rym (28), ..., Rim (5 1))
(@ ai ™) < (0,...,0)

if m = K then ¢/, « AiAip1- Aigm_1/277"

(r{ﬁm ey 7"127{:;_1) «(0,...,0)
(Qum(3™), ..., Qum(x35_1)) « Chebyshev ™ (q} -y~
(Rim(28%), ..., Rum(225_))) + Chebyshev™! (r?ym, R 7"127{:1_1

forl=1to N —2K + 1 step 2K do
for y =0 to 2[&—1d0

)
)

Qiax(#37) « Qurr x(237)
Rior(23%) & Quyr x(237)
Qu2x—1(23%) « Qupr,e—1(
Ripr—1(27%) «+ Quyr,w—1(w

K

K
(27"

Qi

I\)

)
(
<

(@) + Ripk r(x 21")Ql r—1(23%)
+

Riyre, k(YR g1 (237

x? )+ Rl+I\ x—1(z 2{")Ql,1\—1(:ﬁ
xik) + Rl+I\ K— 1( ?I\)Rlng_l(x

2
J
2
J

")
K )

Note that deg R, < m — 1, so the Chebyshev coefficients rl with n > m are
zero, which means that the polynomlal is fully represented by its first m Chebyshev
coefﬁc1ents. In the case of the @), the coefficients are zero for n > m. If n = m,
however, the coefficient is unequal to zero, and this is a problem if m = K. The
K-th coefficient which was set to zero must then be corrected and set to its true
value, which can be computed easily by using (2.10) and (2.3).

The point values needed can be retrieved as follows. Algorithms 2.2 and 2.3
require the numbers

QlK(l‘Z'K), QlK—1(l‘2'K), RlK(l‘Z'K), R g_1(x ZK),

forl=r-2K+1,0<r< 2K, for all K with M < K < N/2. After the m-loop in
stage k = log, K41 of Algorithm B.1, we have obtained these values forl = r K41,
0<r< N/K. We only need the Values for even 7, so the others can be discarded.
The algorithm must be continued until K = N/2, i.e., k =log, N

The total number of flops of the precomputation of the point values is

(B.2) Tyrecomp, point = 6N logi N + (2a + 128 4+ 12) N log, N

Comparing with the cost (2.24) of the Driscoll-Healy algorithm itself, and consider-
ing only the highest order term, we see that the precomputation costs about three
30
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times as much as the Driscoll-Healy algorithm without early termination. This
one-time cost, however, can be amortized over many subsequent executions of the
algorithm.

Parallelizing the precomputation of the point values can be done most easily
by using the block distribution. This is similar to our approach in deriving a
basic parallel version of the Driscoll-Healy algorithm. In the early stages of the
precomputation, each processor handles a number of independent problems, one
for each [. At the start of stage %k, such a problem involves K points. In the
later stages, each problem is assigned to one processor group. The polynomials
Qur, Qur-1, ik, Bix_1, and Qiyx i, Quyrx k-1, Riyr x, Riyrx k-1 are all
distributed in the same manner, so that the recurrences are local. The Chebyshev
transforms and the addition of zeros may require communication. For the addition
of zeros, this is caused by the desire to maintain a block distribution while doubling
the number of points. The parallel precomputation algorithm can be optimized
following similar ideas as in the optimized main algorithm. We did not do this
yet, because optimizing the one-time precomputation is much less important than
optimizing the Driscoll-Healy algorithm itself.

The precomputation of the coefficients ¢}, , r*,, required to terminate the Driscoll-
Healy algorithm early, as in Lemma 2.11, is based on the following recurrences.

Lemma B.2. Letl > 1 and m > 2. The coefficients qf',, satisfy the recurrences

1 _
erfm = 5A1+m—1(q;f;;1_1 + qzml_l) + Bl+m—1qﬁm_1 + Cl+m—1q17?m_2a fOT m Z 2;

1
B = Atgm-1(@f 1 + §Qﬁm_1) + Biym-14im_1 + Clam—14 m_o;

1
B = §Al+m—1ql1,m_1 + Biym-10m_1 + Clam-14 m_2;

subject to the boundary conditions ¢0, = 1,47, = Bi,q}, = A, and ¢, = 0
forn > m. The rf',, satisfy the same recurrences, but with boundary conditions
rl, =Cpand ', =0 forn>m.

Proof. These recurrences are the shifted three-term recurrences (2.10) rewritten
in terms of the Chebyshev coefficients of the polynomials by using the equations
2 -Tp = (The1+Th-1)/2forn>0and x - Ty =T7. O

For a fixed [, we can compute the ¢, and 7, by increasing m, starting with
the known values for m = 0,1 and ﬁnisfling with'm = M — 2. For each m, we only
need to compute the ¢, with n < m, and the v, with n < m. The total number
of flops of the precompﬁtation of the Chebyshevycoefﬁcients in the general case is

(B3) Tprecomp, term — 7M2 —16M — 15.

When the initial values B; are identically zero, the coefficients can be packed in
alternating fashion into array T, as shown in Fig. 4. In that case the cost is
considerably lower, namely 2.5M7% — 3.5M — 12.

The precomputed Chebyshev coefficients can be used to save the early stages in
Algorithm B.1. If we continue the precomputation of the Chebyshev coefficients
two steps more, and finish with m = M, instead of m = M — 2, we can then switch
directly to the precomputation of the point values at stage K = M, just after the
forward Chebyshev transforms.
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Parallelizing the precomputation of the Chebyshev coefficients is straightforward,
ce the computation for each [ is independent. Therefore, if M < N/p, both the

termination and its precomputation are local operations.
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