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Abstract� In this article� we discuss a parallel implementation of e�cient
algorithms for computation of Legendre polynomial transforms and other or�
thogonal polynomial transforms� We develop an approach to the Driscoll�
Healy algorithm using polynomial arithmetic and present experimental results
on the accuracy� e�ciency� and scalability of our implementation� The algo�
rithms were implemented in ANSI C using the BSPlib communications library�
We also present a new algorithm for computing the cosine transform of two
vectors at the same time�

�� Introduction

Discrete Legendre transforms are widely used tools in applied science� commonly
arising in problems associated with spherical geometries� Examples of their appli�
cation include spectral methods for the solution of partial di�erential equations�
e�g�� in global weather forecasting ��� �	� shape analysis of molecular surfaces ��
	�
statistical analysis of directional data ���	� and geometric quality assurance ���	�

A direct method for computing a discrete orthogonal polynomial transform such
as the discrete Legendre transform for N data values requires a matrix�vector mul�
tiplication of O
N�� arithmetic operations� though several authors ��� ��	 have
proposed faster algorithms based on approximate methods� In ����� Driscoll and
Healy introduced an exact algorithm that computes such transforms inO
N log�N �
arithmetic operations ���� ��	� They implemented the algorithm and analyzed its
stability� which depends on the speci�c orthogonal polynomial sequence used�

Discrete polynomial transforms are computationally intensive� so for large prob�
lem sizes the ability to use multiprocessor computers is important� and at least two
reports discussing the theoretical parallelizability of the algorithm have already
been written ���� ��	� We are� however� unaware of any parallel implementation of
the Driscoll�Healy algorithm at the time of writing�

In this paper� we derive a new parallel algorithm that has a lower theoreti�
cal time complexity than those of ���� ��	� and present a full implementation of
this algorithm� Another contribution is the method used to derive the algorithm�
We present a method based on polynomial arithmetic to clarify the properties of
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orthogonal polynomials used by the algorithm� and to remove some unnecessary
assumptions made in ���	 and ���	�

The remainder of this paper is organized as follows� In Section �� we describe
some important properties of orthogonal polynomials and orthogonal polynomial
transforms� and present a derivation of the Driscoll�Healy algorithm� In Section ��
we introduce the bulk synchronous parallel 
BSP� model� and describe a basic par�
allel algorithm and its implementation� In Section 
� we re�ne the basic algorithm
by introducing an intermediate data distribution that reduces the communication
to a minimum� In Section �� we present results on the accuracy� e�ciency� and
scalability of our implementation� We conclude with Section � and two appendices
describing a generalization of the algorithm and the precomputation of the data
needed by the algorithm�

�� The Driscoll�Healy algorithm

First� we brie�y review some basic concepts from the theory of orthogonal poly�
nomials� that we use in the derivation of the Driscoll�Healy algorithm�

���� Orthogonal polynomials� A sequence of polynomials p�� p�� p�� � � � is said
to be an orthogonal polynomial sequence on the interval ���� �	 with respect to the
weight function �
x�� if deg pi � i� andZ �

��
pi
x�pj
x��
x�dx � �� for i �� j�Z �

��
pi
x�

��
x�dx �� �� for i � ��

The weight function �
x� is usually nonnegative and continuous on 
��� ���
Given an orthogonal polynomial sequence pi� a positive integer N � and two se�

quences of numbers x�� � � � � xN�� and w�� � � � � wN�� called sample points and sam�

ple weights� respectively� we may de�ne the discrete orthogonal polynomial trans�

form of a data vector 
f�� � � � � fN��� to be the vector of sums 
 �f�� � � � � �fN���� where

�fl � �f 
pl� �
N��X
j��

fjpl
xj�wj�
����

This computation may also be formulated as the multiplication of the matrix with
elements pl
xj�wj in position 
l� j� by the column vector 
f�� � � � � fN����

There are at least four distinct transforms that may be associated with an or�
thogonal polynomial sequence�

�� Given a sequence of function values fj � f
xj� of a polynomialf of degree less
than N � compute the coe�cients of the expansion of f in the basis pk� This
expansion transform can also be viewed as a matrix�vector multiplication�

�� Given the coe�cients of a polynomial f in the basis pk� evaluate f at the
points xj � This is the inverse of ��

�� The transpose of �� In matrix terms� this is de�ned by the multiplication of
the transpose matrix of � and the input vector�


� The inverse transpose of ��

The discrete orthogonal polynomial transform 
���� is equivalent to transform 

provided the weights wj are identically ��

�



Example ��� 
Legendre polynomials�� The Legendre polynomials are orthogonal
with respect to the uniform weight function � on ���� �	� and may be de�ned re�
cursively by

Pl��
x� �
�l � �

l � �
x � Pl � l

l � �
Pl��� P�
x� � �� P�
x� � x�
����

The Legendre polynomials are one of the most important examples of orthogonal
polynomials� as they occur as zonal polynomials in the spherical harmonic expan�
sion of functions on the sphere� Our parallel implementation of the Driscoll�Healy
algorithm� to be described later� focuses on the case of Legendre polynomials� For
e�ciency reasons� we sample these polynomials at the Chebyshev points� which will
be de�ned below� In this paper� we call the discrete orthogonal polynomial trans�
form for the Legendre polynomials� with sample weights �

N and with the Chebyshev
points as sample points� the discrete Legendre transform 
DLT��

Example ��� 
Discrete cosine transform and Chebyshev transform�� The Cheby�
shev polynomials of the �rst kind are the sequence of orthogonal polynomials de�
�ned recursively by

Tk��
x� � �x � Tk
x� � Tk��
x�� T�
x� � �� T�
x� � x�
����

These are orthogonal with respect to the weight function �
x� � ���
�� x���
�
� �

The discrete cosine transform 
DCT� or DCT�II in the terminology of ���	� of size
N is the discrete orthogonal polynomial transform for the Chebyshev polynomials�
with sample weights �� and sample points

xNj � cos

�j � ���

�N
� j � �� � � � � N � ��
��
�

which are called the Chebyshev points� and are the roots of TN � The DCT is
numbered 
 in the list above�

The Chebyshev transform is the expansion transform 
numbered � above� for
the Chebyshev polynomials at the Chebyshev points� The Chebyshev transform
is the inverse transpose of the DCT de�ned above� but the relationship between
Chebyshev points and Chebyshev polynomials implies that the cosine and Cheby�
shev transforms are even more closely related� Speci�cally� the coe�cient of Tk in
the expansion of a polynomial f with degree less than N and with function values
fj � f
xNj �� � � j � N � is �k

N
�f 
Tk�� where

�k �

�
� if k � ��

� if k � ��

����

Thus� to compute the Chebyshev transform� we can use a DCT and multiply the
k�th coe�cient by �k

N � We denote the Chebyshev transform by a tilde� Therefore�
we write

�fk �
�k
N

N��X
j��

fjTk
x
N
j � �

�k
N

N��X
j��

fj cos

�j � ��k�

�N
� k � �� � � � � N � ��
����

The inverse Chebyshev transform� numbered � above� is

fj �
N��X
k��

�fkTk
x
N
j � �

N��X
k��

�fk cos

�j � ��k�

�N
� j � �� � � � � N � ��
����

�



A cosine transform can be carried out in O
N logN � arithmetic operations using
an FFT ��� ��	� or using the recent algorithm of Steidl and Tasche ���	� Such an
O
N logN � algorithm is called a fast cosine transform 
FCT�� This also provides
us with a fast Chebyshev Transform 
FChT�� We use an upper bound of the form
�N log�N � 	N for the number of �oating point operations 
�ops� for one FChT
of size N � or its inverse� The lower order term is included because we are often
interested in small size transforms� for which this term may be dominant�

One of the important properties of orthogonal polynomials we will use is�

Lemma ��� 
Gaussian quadrature�� Let fpkg be an orthogonal polynomial sequence

for a nonnegative weight function �
x�� and zN� � � � � � z
N
N�� be the roots of pN � Then

there exist numbers wN
� � � � � � w

N
N�� � �� such that for any polynomial f of degree

less than �N we have Z �

��
f
x��
x�dx �

N��X
j��

wN
j f
z

N
j ��

The numbers wN
j are unique� and are called the Gaussian weights for the sequence

fpkg�
Proof� See e�g� ��� Theorem ���	�

Example ���� The Gaussian weights for the Chebyshev polynomials with weight
function ���
� � x���

�
� are wN

j � �
N � So� for any polynomial f of degree less
than �N we have

�

�

Z �

��

f
x�dxp
�� x�

�
�

N

N��X
j��

f
xNj ��
����

where xNj � cos ��j����
�N are the Chebyshev points�

Another property of orthogonal polynomials that we will need is the existence
of a three�term recurrence relation� such as 
���� for the Legendre polynomials and

���� for the Chebyshev polynomials�

Lemma ��� 
Three�term recurrence�� Let fpkg be an orthogonal polynomial se�

quence for a nonnegative weight function� Then fpkg satis�es a three�term recur�

rence relation

pk��
x� � 
Akx�Bk�pk
x� � Ckpk��
x��
����

where Ak� Bk� Ck are real numbers with Ak �� � and Ck �� ��

Proof� See e�g� ��� Theorem 
��	�

The Clebsch�Gordan property follows from� and is similar to� the three�term
recurrence�

Corollary ��� 
Clebsch�Gordan�� Let fpkg be an orthogonal polynomial sequence

with a nonnegative weight function� Then for any polynomial Q of degree m we

have

pl �Q � spanRfpl�m� � � � � pl�mg�
Proof� Rewrite the recurrence 
���� in the form x � pl � A��

l 
pl�� �Blpl �Clpl����
and use induction on m�

	



Iterating the three�term recurrence also gives a more general recurrence between
polynomials in an orthogonal polynomial sequence� De�ne the associated poly�

nomials Ql�m� Rl�m for the orthogonal polynomial sequence fplg by the following
recurrences on m� which are shifted versions of the recurrence for pl� See e�g� �
� �	�

Ql�m
x� � 
Al�m��x�Bl�m���Ql�m��
x� �Cl�m��Ql�m��
x��

Ql��
x� � �� Ql��
x� � Alx� Bl�

Rl�m
x� � 
Al�m��x�Bl�m���Rl�m��
x� � Cl�m��Rl�m��
x��

Rl��
x� � �� Rl��
x� � Cl�


�����

Lemma ��� 
Generalized three�term recurrence�� The associated polynomials sat�

isfy degQl�m � m� degRl�m � m � �� and for l � � and m � ��

pl�m � Ql�m � pl � Rl�m � pl���
�����

Proof� Equation 
����� follows by induction on m� with the case m � � being the
original three�term recurrence 
�����

In the case where the pl are the Legendre polynomials� the associated polynomials
should not be confused with the associated Legendre functions� which in general
are not polynomials�

���� Derivation of the Driscoll	Healy algorithm� The Driscoll�Healy algo�
rithm ���	 allows one to compute orthogonal polynomial transforms at any set of
N sample points� in O
N log�N � arithmetic operations� The core of this algorithm
consists of an algorithm to compute orthogonal polynomial transforms in the spe�
cial case where the sample points are the Chebyshev points� and the sample weights
are identically �

N
� For simplicity we restrict ourselves to this special case� and fur�

thermore we assume that N is a power of �� In Appendix A� we sketch extensions
to more general problems�

Our derivation of the Driscoll�Healy algorithm relies on the interpretation of the
input data fj of the transform 
���� as the function values of a polynomial f of
degree less than the problem size N � Thus f is de�ned to be the unique polynomial
of degree less than N such that

f
xNj � � fj� j � �� � � � � N � ��
�����

Using this notation and the relation

f � pl�m � Ql�m � 
f � pl� �Rl�m � 
f � pl���
�����

derived from the three�term recurrence 
������ we may formulate a strategy for
computing all the polynomials f � pl� � � l � N � in log�N stages�

� At stage �� compute f � p� and f � p��
� At stage �� use 
����� with l � � and m � N

� � � or m � N
� � to compute

f � pN
�
� Q��N� �� � 
f � p�� � R��N� �� � 
f � p�� and

f � pN
� ��

� Q��N�
� 
f � p�� �R��N�

� 
f � p���
� In general� at each stage k� � � k � log�N � similarly as before use 
����� with
l � �q
N
�k� � �� � � q � �k��� and m � N
�k � �� N
�k� to compute the
polynomial pairs

f � p N
�k
� f � p N

�k
��� f � p �N

�k
� f � p �N

�k
��� � � � � f � p ��k���N

�k

� f � p ��k���N

�k
��
�






The problem with this strategy is that computing a full representation of each
polynomial f � pl generates much more data� at each stage� than is needed to com�
pute the �nal output� To overcome this problem the Driscoll�Healy algorithm uses
Chebyshev truncation operators to discard unneeded information at the end of each
stage� Let f �

P
k�� bkTk be a polynomial� of any degree� written in the basis

of Chebyshev polynomials� and let n be a positive integer� Then the truncation
operator Tn applied to f is de�ned by

Tnf �
n��X
k��

bkTk�
���
�

The important properties of Tn are given in Lemma ����

Lemma ��
� Let f and Q be polynomials� Then� the following holds�

�� T�f �
R �
�� f
x��
x�dx� where �
x� � ���
�� x���

�
� �

�� If M � K� then TMTK � TM �

�� If degQ � m � K� then TK�m
f �Q� � TK�m�
TKf� �Q	�
Proof� Part � follows from the orthogonality of Chebyshev polynomials� as T�f is
just the constant term of f in its expansion in Chebyshev polynomials� Part � is a
trivial consequence of the de�nition of truncation operators� For part � we assume
that f �

P
k�� bkTk is a polynomial� and that degQ � m � K� By Corollary ����

Tk � Q is in the linear span of Tk�m� � � � � Tk�m� so TK�m
Tk � Q� � � for k � K�
Therefore

TK�m
f �Q� � TK�m

�
�X
k��

bkTk �Q
�
A � TK�m

�
K��X
k��

bkTk �Q
�
� TK�m�
TKf� �Q	

As a corollary of part � of Lemma ���� we see how we can retrieve the discrete
orthogonal polynomial transform from the f � pl�s computed by the strategy above�
by a simple truncation�

Corollary ���� Let f be the unique polynomial of degree less than N such that

f
xNj � � fj � � � j � N � Then

�fl � T�
f � pl�� � � l � N�

where the �fl form the discrete orthogonal polynomial transform of f of size N �

Proof� This follows from the de�nition of discrete orthogonal polynomial trans�
forms� the Gaussian quadrature rule 
���� for Chebyshev polynomials applied to
the function f � pl� and Lemma ����

�fl �
�

N

N��X
j��

f
xNj �pl
x
N
j � �

�

�

Z �

��

f
x�pl
x�p
�� x�

dx � T�
f � pl��

The key property of the truncation operators Tn is the �aliasing� property 
���
which states that we may use a truncated version of f when computing a truncated
product of f and Q� For example� if we wish to compute the truncated product

�



T�
f � pl� with l� deg f � N then� because deg pl � l� we may apply part � of
Lemma ��� with m � l and K � l � � to get

�fl � T�
f � pl� � T��
Tl��f� � pl	�
Thus� we only need to know the �rst l � � Chebyshev coe�cients of f to compute
�fl�
The Driscoll�Healy algorithm follows the strategy described above� but computes

truncated polynomials

ZK
l � TK
f � pl�

for various values of l and K� instead of the original polynomials f � pl� The input
is the polynomial f and the output is �fl � T�
f � pl� � Z�

l � � � l � N �
Each stage of the algorithm uses truncation operators to discard unneeded in�

formation� which keeps the problem size down� Instead of using the generalized
three�term recurrence 
����� directly� each stage uses truncated versions� Speci��
cally� 
����� and part � of Lemma ��� imply the following recurrences for the ZK

l �

ZK�m
l�m � TK�m�ZK

l �Ql�m � ZK
l�� �Rl�m	�
�����

ZK�m
l�m�� � TK�m�ZK

l �Ql�m�� � ZK
l�� �Rl�m��	�
�����

for K � m� We will use the special case with �K instead of K and m � K�

ZK
l�K � TK �Z�K

l �Ql�K � Z�K
l�� �Rl�K 	�
�����

ZK
l�K�� � TK �Z�K

l �Ql�K�� � Z�K
l�� �Rl�K��	�
�����

The algorithm proceeds in log�N � � stages� as shown in Algorithm ����

Algorithm ��� The Driscoll�Healy algorithm� 
Polynomial version��

INPUT �f�� � � � � fN���� Polynomial de�ned by fj � f�xNj �� N is a power of ��

OUTPUT � �f�� � � � � �fN���� Transformed polynomial with �fl � T��f � pl� � Z�
l �

STAGES

	� Compute ZN
� � f � p� and ZN

� � TN �f � p���

k� for k � 
 to log�N � 
 do
K � N

�k

for l � 
 to N � �K � 
 step �K do

�a� Use recurrence ���
�� and ���

� to compute new polynomials�

ZK
l�K � TK

�
Z�K
l �Ql�K � Z�K

l�� �Rl�K

�

ZK
l�K�� � TK

�
Z�K
l �Ql�K�� � Z�K

l�� �Rl�K��

�

�b� Truncate old polynomials�
ZK
l � TKZ

�K
l

ZK
l�� � TKZ

�K
l��

log�N � for l � 	 to N � 
 do
�fl � Z�

l

The organization of the computation is illustrated in Fig� �� The vertical lines
indicate the truncated polynomials ZK

l and their height indicates the number of
Chebyshev coe�cients initially appearing� At each stage the polynomials computed
are truncated at the height indicated by the grayscales�

�




 � �
stage 
� output

stage �

stage �

stage �

stage �

�




�

�

��

K

� � l�� �� �


Figure �� The computation of ZK
l for N � ���

���� Data representation and recurrence procedure� The description of the
Driscoll�Healy algorithm we have given is incomplete� We still need to specify how
to represent the polynomials in the algorithm� and describe the methods used to
multiply two polynomials and to apply the truncation operators TK� This is done
in the following subsections�

������ Chebyshev representation of polynomials� Truncation of a polynomial re�
quires no computation if the polynomial is represented by the coe�cients of its
expansion in Chebyshev polynomials� Therefore we use the Chebyshev coe�cients
zln de�ned by

ZK
l �

K��X
n��

zlnTn�
�����

to represent all the polynomials ZK
l appearing in the algorithm� Such a represen�

tation of a polynomial is called the Chebyshev representation�
The input polynomial f of degree less than N is given as the vector f �


f�� � � � � fN��� of values fj � f
xNj �� This is called the point value representation

of f � In stage �� we must convert ZN
� � TN 
f � p�� � f � p� and ZN

� � TN 
f � p��
to their Chebyshev representation� For f � p� this can be done by a Chebyshev
transform on the vector of function values� with the input values multiplied by the
constant p�� For f � p� we also use a Chebyshev transform of size N � though f � p�
may have degree N � rather than N � �� This poses no problem� because applying
part 
 of Lemma ���� from the next subsection with h � f � p� and K � N proves
that f � p� agrees with ZN

� at the sampling points xNj � Stage � becomes�

Stage 	� Compute the Chebyshev representation of ZN
� and ZN

� �
�a� �z��� � � � � z

�
N���� Chebyshev�f�p�� � � � � fN��p��

�b� �z��� � � � � z
�
N���� Chebyshev�f�p��x

N
� �� � � � � fN��p��x

N
N����

Stage � takes a total of ��N log�N � �	N � �N �ops� where the third term
represents the �N �ops needed to multiply f with p� and p��






������ Recurrence using Chebyshev transforms� To apply the recurrences 
����� and

����� e�ciently� we do the following�

�� Apply inverse Chebyshev transforms of size �K to bring the polynomials
Z�K
l��� Z

�K
l into point value representation at the points x�Kj � � � j � �K�

�� Perform the multiplications and additions�
�� Apply a forward Chebyshev transform of size �K to bring the result into

Chebyshev representation�

� Truncate the results to degree less than K�

This procedure replaces the polynomial multiplications in the recurrences 
�����
and 
����� by a slightly di�erent operation� Because the multiplications are made
in only �K points whereas the degree of the resulting polynomial could be �K � ��
we must verify that the end result is the same� To describe the operation formally�
we introduce the Lagrange interpolation operators SK � for positive integers K� For
any polynomial h� the Lagrange interpolation polynomial SKh is the polynomial of
degree less than K which agrees with h at the points xK� � � � � � x

K
K��� The important

properties of SK are given in Lemma �����

Lemma ����� Let g and h be polynomials� Then� the following holds�

�� If deg h � K� then SKh � h�
�� SK
g � h� � SK

SKg� � 
SKh���
�� Let K � m� If deg h � K �m� then TK�mh � TK�mSKh�

� If deg h � K� then SKh � TKh�

Proof� Parts � and � are easy� To prove part � assume that deg h � K�m� By long
division� there is a polynomial Q of degree at most m such that h � SKh�TK �Q�
Applying TK�m� and using part � of Lemma ���� we obtain

TK�mSKh � TK�mh� TK�m�TK �Q	 � TK�mh� TK�m�
TKTK� �Q	 � TK�mh�

since TKTK � �� For part 
 we note that deg SKh � K� and use part � with m � �
to get SKh � TKSKh � TKh�

From the recurrences 
����� and 
����� and part � of Lemma���� with �K instead
of K and m � K it follows that

ZK
l�K � TK �S�K
Z�K

l �Ql�K� � S�K
Z�K
l��� �Rl�K�	
�����

ZK
l�K�� � TK �S�K
Z�K

l �Ql�K��� � S�K
Z�K
l�� �Rl�K���	�
�����

These equations are exactly the procedure described above� The inner loop of stage
k of Algorithm ��� becomes�

�a� Compute the Chebyshev representation of ZK
l�K and ZK

l�K���
�zl�K� � � � � � zl�KK��� z

l�K��
� � � � � � zl�K��

K�� �

� RecurrenceKl �z
l
�� � � � � z

l
�K��� z

l��
� � � � � � zl���K���

�b� Compute the Chebyshev representation of ZK
l and ZK

l���
Discard �zlK� � � � � z

l
�K��� and �zl��K � � � � � zl���K����

Algorithm��� describes in detail the recurrence procedure� which takes 

� � �K log� �K�
	 � �K� � ��K � ��K log�K � 
��� �	 � ���K �ops�

�



Algorithm ��� Recurrence procedure using the Chebyshev transform�

CALL RecurrenceKl � �f�� � � � � �f�K��� �g�� � � � � �g�K����

INPUT �f � � �f�� � � � � �f�K��� and �g � ��g�� � � � � �g�K���� First �K Chebyshev coe�cients

of input polynomials Z�K
l and Z�K

l��� K is a power of ��

OUTPUT �u � ��u�� � � � � �uK��� and �v � ��v�� � � � � �vK���� First K Chebyshev coe�cients

of output polynomials ZK
l�K and ZK

l�K���

STEPS


� Transform �f and �g to point�value representation�

�f�� � � � � f�K���� Chebyshev��� �f�� � � � � �f�K���
�g�� � � � � g�K���� Chebyshev����g�� � � � � �g�K���

�� Perform the recurrence�
for j � 	 to �K � 
 do

uj � Ql�K�x�Kj � fj � Rl�K�x�Kj � gj
vj � Ql�K���x

�K
j � fj �Rl�K���x

�K
j � gj

�� Transform u and v to Chebyshev representation�
��u�� � � � � �u�K���� Chebyshev�u�� � � � � u�K���
��v�� � � � � �v�K���� Chebyshev�v�� � � � � v�K���

�� Discard ��uK � � � � � �u�K��� and ��vK� � � � � �v�K����

��
� Early termination� At late stages in the Driscoll�Healy algorithm� the work
required to apply the recursion amongst the ZK

l is larger than that required to
�nish the computation using a naive matrix�vector multiplication� It is then more
e�cient to take linear combinations of the vectors ZK

l computed so far to obtain
the �nal result�

Let qnl�m and rnl�m denote the Chebyshev coe�cients of the polynomialsQl�m and
Rl�m respectively� so that

Ql�m �
mX
n��

qnl�mTn� Rl�m �
m��X
n��

rnl�mTn�
�����

The problem of �nishing the computation at the end of stage k � log�
N
M � when

K � M � is equivalent to �nding �fl � zl�� for � � l � N � given the data zln� z
l��
n �

� � n � M � l � ��M � �� �M � �� � � � � N �M � �� Our method of �nishing the
computation is to use part � of Lemma ����� which follows� The second part of
this lemma can be used to halve the number of computations� in the common case
where the polynomial recurrence 
���� has a coe�cient Bk � � for all k�

Lemma ����� �� If l � � and � � m � M � then

�fl�m �
mX
n��

�

�n

zlnq

n
l�m � zl��n rnl�m��
�����

�� If pl satis�es a recurrence of the form pl��
x� � Alxpl
x� � Clpl��
x�� then

qnl�m � �� if n�m is odd� and

rnl�m � �� if n�m is even�

Proof� By 
����� with K � M � �fl�m � Z�
l�m is the constant term of the Cheby�

shev expansion of ZM
l �Ql�m � ZM

l�� �Rl�m� To �nd this constant term in terms of
��



the Chebyshev coe�cients of ZM
l � ZM

l�� and of Ql�m� Rl�m� we substitute the ex�
pansions 
����� and 
������ and rewrite the product of sums by using the identity
Tj �Tk � �

� 
Tjj�kj�Tj�k�� For the second part� we assume that pl satis�es the given
recurrence� Then Ql�m is odd or even according to whether m is odd or even� and
Rl�m is even or odd according to whether m is odd or even� which can be veri�ed by
induction on m� This implies that the Chebyshev expansion of Ql�m must contain
only odd or even coe�cients� respectively� and the reverse must hold for Rl�m�

Assuming that the assumptions of the second part of the lemma are valid� i�e��
each term of 
����� has either qnl�m � � or rnl�m � �� and that the factor �
�n is
absorbed in the precomputed values qnl�m and rnl�m� the total number of �ops to

compute �fl�m is �m� ��

���� Complexity of the algorithm� Algorithm ��� gives the Driscoll�Healy al�
gorithm in its �nal form� The total number of �ops can be computed as follows�
Stage � takes ��N log�N � 
�	 � ��N �ops� Stage k invokes N

�K� times the
recurrence procedure� which has cost ��K log�K � 
��� �	 � ���K �ops� so that
the total cost of that stage is 
�N log�K �

��
	���N �ops� Adding the costs
for K � N
�� � � � �M gives ��N �log��N � log��M 	�
���
	���N �log�N � log�M 	
�ops� In the last stage� output values have to be computed for m � �� � � � �M � ��

for each of the N
M values of l� This gives a total of N
M

PM��
m�� 
�m��� � NM��N

�ops� Summing the costs gives

TDriscoll�Healy �N ���
log��N � log��M � � 

�� 
	 � �� log�N �

��� 
	 � �� log�M �M � �		�


���
�

Algorithm ��� Driscoll�Healy algorithm� 
Final version��

INPUT f � �f�� � � � � fN���� Real vector with N a power of ��

OUTPUT �f � � �f�� � � � � �fN���� Discrete orthogonal polynomial transform of f �

STAGES

	� Compute the Chebyshev representation of ZN
� and ZN

� �
�a� �z��� � � � � z

�
N���� Chebyshev�f�p�� � � � � fN��p���

�b� �z��� � � � � z
�
N���� Chebyshev�f�p��x

N
� �� � � � � fN��p��x

N
N�����

k� for k � 
 to log�
N
M
do

K � N

�k

for l � 
 to N � �K � 
 step �K do

�a� Compute the Chebyshev representation of ZK
l�K and ZK

l�K���
�zl�K� � � � � � zl�KK��� z

l�K��
� � � � � � zl�K��

K�� �

� RecurrenceKl �zl�� � � � � z
l
�K��� z

l��
� � � � � � zl���K���

�b� Compute the Chebyshev representation of ZK
l and ZK

l���
Discard �zlK� � � � � z

l
�K��� and �zl��K � � � � � zl���K����

log�
N
M

� 
� Compute remaining values�
for l � 
 to N �M � 
 step M do

�fl�� � zl���
�fl � zl�
for m � 
 to M � � do

�fl�m � zl�q
�
l�m � zl��� r�l�m � �

�

Pm

n���z
l
nq

n
l�m � zl��n rnl�m�

��



The optimal stage at which to halt the Driscoll�Healy algorithm and complete
the computation using Lemma ���� depends on � and 	 and can be obtained
theoretically� The derivative of 
���
� according to M equals zero if and only if

M ln� �� 
� lnM � 
��� 
	 � �� ln��
�����

In our implementation � � ����� and 	 � �� thus the minimum is M � ����
In practice� the optimal choice of M may also depend on the architecture of the
machine used�

�� The basic parallel algorithm and its implementation

We designed our parallel algorithm using the BSP model which gives a simple
and e�ective way to produce portable parallel algorithms� It does not depend on a
speci�c computer architecture� and it provides a simple cost function that enables
us to choose between algorithms without actually having to implement them�

In the following subsections� we give a brief description of the BSP model and
then we present the framework in which we develop our parallel algorithm� including
the data structures and data distributions used� This leads to a basic parallel
algorithm� From now on we concentrate on the Legendre transform� instead of the
more general discrete orthogonal polynomial transform�

���� The bulk synchronous parallelmodel� In the BSP model ���	� a computer
consists of a set of p processors� each with its own memory� connected by a com�
munication network that allows processors to access the private memories of other
processors� In this model� algorithms consist of a sequence of supersteps� In the
variant of the model we use� a superstep is either a number of computation steps�
or a number of communication steps� in each case followed by a global synchroniza�
tion� Using supersteps imposes a sequential structure on parallel algorithms� and
this greatly simpli�es the design process�

A BSP computer can be characterized by four global parameters�

� p� the number of processors�
� s� the computing speed in �op�s�
� g� the communication time per data element sent or received� measured in
�op time units�

� l� the synchronization time� also measured in �op time units�

Algorithms can be analyzed by using the parameters p� g� and l� the parameter s
just scales the time� In this work� we are able to avoid all synchronizations at the
end of computation supersteps� Therefore� the time of a computation superstep
is simply w� the maximum amount of work 
in �ops� of any processor� The time
of a communication superstep is hg � l� where h is the maximum number of data
elements sent or received by any processor� The total execution time of an algorithm

in �ops� can be obtained by adding the times of the separate supersteps� This
yields an expression of the form a � bg � cl� For further details and some basic
techniques� see ��� ��	� The second reference describes BSPlib� a standard library
de�ned in May ���� which enables parallel programming in BSP style�

���� Data structures and data distributions� Each processor in the BSP model
has its own private memory� so the design of a BSP algorithm requires choosing
how to distribute the elements of the data structures used in it over the processors�

��



At each stage k� � � k � log�
N
M � the number of intermediate polynomial pairs

doubles as the number of expansion coe�cients halves� Thus� at every stage of
the computation� all the intermediate polynomials can be stored in two arrays of
size N � We use an array f to store the Chebyshev coe�cients of the polynomials
Z�K
l and an array g to store the coe�cients of Z�K

l�� � for l � �� �K� � � � � N � �K�

with K � N
�k in stage k� We also need some extra work space to compute the
coe�cients of the polynomials Z�K

l�K and Z�K
l�K��� For this we use two auxiliary

arrays� u and v� of size N �
The data �ow of the algorithm� see Fig� �� suggests that we distribute all the

vectors by blocks� i�e�� we assign one block of consecutive vector elements to each
processor� This works well if p is a power of two� which we will assume from now
on� Formally� the block distribution is de�ned as follows�

De
nition ��� 
Block Distribution�� Let f be a vector of size N � We say that
f is block distributed over p processors if� for all j� the element fj is stored in
Proc
j div b� and has local index j� � j mod b� where b � dN
pe is the block size�

Since both N and p in De�nition ��� are powers of two� the block size is b � N
p�

copy copy copy copy

PA
R

A
L

L
E

L
SE

Q
U

E
N

T
IA

L

�

�

�

�

�

�

�

�

�

�

�

�

ZN
N��

Z
N��
�

Z
N��
N��

Z
N��
�

Z
N��
� Z

N��
N��

Z
N��
N��

Z
N��
�N��

Z
N��
�N��

Z
N��
�N��

Z
N��
�N��

Z
N��
	N��

Z
N��

N��

Z
N��
�N��

Z
N��
�N��

Z
N��
	N��

Z
N��
�N��

Z
N��
N��

Z
N��
�N��

Z
N��
�N��

Z
N��
N��


Z
N��
�N��


Z
N��
	N��


Z
N��
�N��


Z
N��
��N��


Z
N��
��N��


Z
N��
�	N��


Z
N��
�N��


ZN�

communicate communicate

Z
N��
N��

communicate communicate

Proc��� Proc���Proc��� Proc���Stage

�

�

�

	 f

u

u

f

u

f

u

f

Vector

Figure �� Main data structure and data distribution in the paral�
lel FLT algorithm for p � 
� Arrays f and g contain the Chebyshev
coe�cients of the polynomials Z�K

l and Z�K
l��� which are already

available at the start of the stage� Arrays u and v contain Z�K
l�K

and Z�K
l�K��� which become available at the end of the stage� Ar�

rays g and v are not depicted� Each array is divided into four local
subarrays by using the block distribution�

������ Distribution of the precomputed data� The precomputed data required to
perform the recurrence of stage k are stored in two two�dimensional arrays Q and

��



R� each of size � log�
N
M � N � Each pair of rows in Q stores data needed for one

stage k� by

Q��k � �� l � j	 � Ql���K
x
�K
j ��

Q��k � �� l � j	 � Ql���K��
x�Kj ��

����

for l � �� �K� � � � � N � �K� j � �� �� � � � � �K � �� where K � N
�k� Thus� poly�
nomials Ql���K are stored in row �k� � and polynomials Ql���K�� in row �k� ��
This is shown in Fig� �� The polynomials Rl���K and Rl���K�� are stored in the
same way in array R� Note that the indexing of the implementation arrays starts
at zero� Each row of R and Q is distributed by the block distribution� so that
R�i� j	�Q�i� j	 � Proc
j div N

p �� and the recurrence is a local operation�

K�K � �k
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�

Proc��� Proc��� Proc���Proc���
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Figure �� Data structure and distribution of the precomputed
data needed in the recurrence with N � �
� M � �� and p � 
�
Data are stored in two two�dimensional arrays Q and R� Each
pair of rows in an array stores the data needed for one stage k�

The termination coe�cients qnl�m and rnl�m� for l � ��M��� �M��� � � � � N�M���
m � �� �� � � � �M � �� and n � �� �� � � � �m are stored in a two�dimensional array T
of size N
M � 
M 
M � ��
�� ��� The coe�cients for one value of l are stored in
row 
l � ��
M of T� Each row has the same internal structure� the coe�cients are
stored in increasing order of m� and coe�cients with the same m are ordered by
increasing n� This format is similar to that commonly used to store lower triangular
matrices� By the second part of Lemma ����� either qnl�m � � or rnl�m � � for each n
and m� so we only need to store the value that can be nonzero� Since this depends
on whether n � m is even or odd� we obtain an alternating pattern of qnl�m�s and
rnl�m�s� Fig� 
 illustrates this data structure�

The termination stage is local if M � N
p� so that the input and output vectors
are local� This means that each row of T must be assigned to one processor� namely
to the processor that holds the subvectors for the corresponding value of l� The
distribution T�i� j	 � Proc
i div N

pM
� achieves this� As a result� the N
M rows of

T are distributed in consecutive blocks of rows�

���� The basic parallel algorithm� In order to formulate our basic parallel al�
gorithm we introduce the following conventions�

� Processor identi
cation� The total number of processors is p� The pro�
cessor identi�cation number is s� with � � s � p�

� Supersteps� The labels on the left�hand side indicate a superstep and its
type� 
Cp� computation superstep� 
Cm� communication superstep� 
CpCm�
subroutine containing both computation and communication supersteps� Each
communication superstep ends with an explicit synchronization� Supersteps
inside loops are executed repeatedly� though they are numbered only once�

�	
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Figure �� Data structure and distribution of the precomputed
data for termination with N � �
� M � �� and p � 
� The
coe�cients qnl�m and rnl�m are stored in a two�dimensional array T�
In the picture� qn denotes qnl�m and rn denotes rnl�m�

� Indexing� All the indices are global� This means that array elements have a
unique index which is independent of the processor that owns it� This enables
us to describe variables and gain access to arrays in an unambiguous manner�
even though the array is distributed and each processor has only part of it�

� Vectors and subroutine calls� All vectors are indicated in boldface� To
specify part of a vector we write its �rst element in boldface� e�g�� fj� the
vector size is explicitly written as a parameter�

� Communication� Communication between processors is indicated using

gj 	 Put
pid� n� fi��

The Put operation puts n elements of vector f � starting from element i� into
processor pid and stores them there in vector g starting from element j�

� Copying a vector� The operation

gj 	 Copy
n� fi�

denotes the copy of n elements of vector f � starting from element i� to a vector
g starting from element j�

� Subroutine name ending in �� Subroutines with a name ending in �
perform an operation on � vectors instead of one� For example


fi�gj�	 Copy�
n�uk�vl�

is an abbreviation for

fi 	 Copy
n�uk�
gj 	 Copy
n�vl�

� Fast Chebyshev transform� The subroutine

BSP FChT
s�� s�� p�� sign� n� f �

replaces the input vector f of size n by its Chebyshev transform if sign � �
or by its inverse Chebyshev transform if sign � ��� A group of p� processors
starting from Proc
s�� work together� s� with � � s� � p� denotes the local
processor number within the group� For a group size p� � �� this subroutine
reduces to the sequential fast Chebyshev transform algorithm�

�




� Truncation� The operation

f 	 BSP Trunc
s�� s�� p�� b�K�u�

denotes the truncation of all the N

�K� polynomials stored in f and u by
copying the �rst K Chebyshev coe�cients of the polynomials stored in u into
the memory space of the last K Chebyshev coe�cients of the corresponding
polynomials stored in f � A group of p� processors starting from Proc
s�� work
together to truncate one polynomial� s� with � � s� � p� denotes the local
processor number within the group� When p� � � the block size b � N

p is

larger than K� and one processor is in charge of the truncation of one or more
polynomials� Algorithm ��� gives a description of this operation� In Fig� ��
this operation is depicted by arrows�

Algorithm ��� Truncation using the block distribution�

CALL f � BSP Trunc�s	� s
� p
� b�K�u��

DESCRIPTION

s� s	 � s

if p
 � 
 then

for l � s � b to �s� 
�b� �K step �K do

fl�K � Copy�K�ul�
else

if s
 � p�
� then

fs�b�K � Put�s� p�
� � b�us�b�

The basic template for the fast Legendre transform is presented as Algorithm ����
At each stage k � log�

N
M � there are �k�� independent problems� one for each l� For

k � log� p� there are more processors than problems� so that the processors will have
to work in groups� Each group of p� � p
�k�� � � processors handles one subvector
of size �K� K � N
�k� each processor handles a block of �K
p� � N
p vector
components� In this case� the l�loop has only one iteration� namely l � s��N
p� and
the j�loop has N
p iterations� starting with j � s��N
p� so that the indices l�j start
with 
s��s��N
p � s �N
p� and end with 
s��s��N
p�N
p�� � 
s���N
p���
Inter�processor communication is needed� but it occurs only in two instances�

� Inside the parallel FChTs 
in supersteps �� �� ��� see Section 
�
� At the end of each stage 
in supersteps �� ���

For k � log� p� the length of the subvectors involved becomes �K � N
p� In
that case� p� � �� s� � s� and s� � �� and each processor has one or more
problems to deal with� so that the processors can work independently and without
communication� Note that the index l runs only over the local values sN
p� sN
p�
�K� � � � � 
s� ��N
p� �K� instead of over all values of l�

The original stages � and � of Algorithm ��� are combined into one stage and
then performed e�ciently� as follows� First� in superstep �� the polynomials ZN

� �
ZN
N�� and ZN

N���� are computed directly from the input vector f � This is possible

because the point�value representation of ZN
� � TN 
f � P�� � TN 
f � x� needed

by the recurrences is the vector of fj � xNj � � � j � N � see Subsection ������ The

values R�i� j	 � Q�i� j	xNj for i � �� � can be precomputed and stored so that the
recurrences only require one multiplication by fj � In superstep �� polynomials
ZN
� � f � ZN

� � g� ZN
N�� � u� and ZN

N���� � v are transformed to Chebyshev

��



Algorithm ��� Basic parallel template for the fast Legendre transform�

CALL BSP FLT�s� p�N�M� f��

ARGUMENTS

s� Processor identi�cation �	 � s � p��
p� Number of processors �p is a power of � with p � N����
N � Transform size �N is a power of � with N � ���
M � Termination block size �M is a power of � with M � min�N���N�p���
f � �Input� f � �f�� � � � � fN���� Real vector to be transformed�

�Output� f � � �f�� � � � � �fN���� Transformed vector�
Block distributed� fj � Proc�j div N

p
��

STAGE 
�
�
Cp� for j � sN

p
to �s�
�N

p
� 
 do

gj � xNj fj
uj � �R�	� j� �Q�	� j�xNj �fj
vj � �R�
� j� �Q�
� j�xNj �fj

��CpCm� BSP FChT��	� s� p� 
�N� f �g�
BSP FChT��	� s� p� 
�N�u�v�

��Cm� �f �g�� BSP Trunc��	� s� p� N
p
� N� �u�v�

STAGE k�
for k � � to log�

N
M
do

��Cp� K � N

�k

p
� max� p

�k��
� 
�

s	� �s div p
�p

s
� s mod p

�u

s
N
p
�v

s
N
p
�� Copy��N

p
� f
s
N
p
�g

s
N
p
�

for l � s	N
p
to �s	 � 
�N

p
� �K

p� step �K
p� do

��CpCm� BSP FChT��s	� s
� p
��
� �K�ul�vl�
��Cp� for j � s
N

p
to s
N

p
� �K

p� � 
 do

a
� R��k � �� l � j�ul�j �Q��k � �� l� j�vl�j
a�� R��k � 
� l � j�ul�j �Q��k � 
� l� j�vl�j
ul�j � a

vl�j � a�

��CpCm� BSP FChT��s	� s
� p
� 
� �K�ul�vl�
�
Cm� �f �g�� BSP Trunc��s	� s
� p
� N

p
�K�u�v�

STAGE log�
N
M

� 
�
��Cp� for l � sN

p
to �s�
�N

p
�M step M do

fl � Terminate�l�M� fl�gl�

representation� then� in superstep �� they are truncated to obtain the input for
stage ��

The main loop works as follows� In superstep 
� the polynomials Z�K
l � with

K � N
�k and l � �� �K� � � � � N��K� are copied from the array f into the auxiliary
array u� where they are transformed into the polynomials Z�K

l�K � in supersteps � to

�� Similarly� the polynomials Z�K
l�� are copied from g into v and then transformed

into the polynomials Z�K
l�K�� � Note that u corresponds to the lower value of l� so

that in the recurrence the components of u must be multiplied by values from R�
In superstep �� all the polynomials are truncated by copying the �rst K Chebyshev

��



coe�cients of Z�K
l�K into the memory space of the last K Chebyshev coe�cients of

Z�K
l �
The termination procedure� superstep ��� is a direct implementation of Lemma

���� using the data structure T described in Subsection ������ Superstep �� is a
computation superstep� provided the condition M � N
p is satis�ed� This usually
holds for the desired termination block size M � In certain situations� however�
one would like to terminate even earlier� with a block size larger than N
p� This
extension will be discussed in Subsection 
�
�


� Improvements of the parallel algorithm


��� Fast Chebyshev transform of two vectors� FChT�� The e�ciency of
the FLT algorithm depends strongly on the FCT algorithm used to perform the
Chebyshev transform� There exists a substantial amount of literature on this topic
and many implementations of sequential FCTs are available� see e�g� ��� ��� �
� ��	�
Parallel algorithms or implementations have been less intensively studied� see ���	
for a recent discussion�

In the FLT algorithm� the Chebyshev transforms always come in pairs� which led
us to develop an algorithm that computes two Chebyshev transforms at the same
time� The new algorithm is based on the FCT algorithm 
�
�� of Van Loan ���	
and the standard algorithm for computing the FFTs of two real input vectors at
thematr same time 
see e�g� ���	��

The use of an FFT�based algorithm is advantageous because the bulk of the
computation is in the FFT and because good FFT implementations are ubiquitous�
Since the FFT is separate module� it can easily be replaced� for instance by a new�
more e�cient� FFT subroutine�

The Chebyshev transform is computed as follows� Let x and y be the input
vectors of length N � We view x and y as the real and imaginary part of a complex
vector 
x� i y�� The algorithm is divided in � phases� Phase �� the packing of the
input data into an auxiliary complex vector z of length N � is a simple permutation��

zj � 
x�j � i y�j��

zN�j�� � 
x�j�� � i y�j���� � � j � N
��


���

In phase �� the complex FFT creates a complex vector Z of length N�

Zk �
N��X
j��

zje
��ijk
N � � � k � N�

���

This phase takes 
���N log�N �ops if we use a radix�
 algorithm ���	� Finally� in
phase � we obtain the Chebyshev transform by��	

�

�xk �

�k
�N

Re
�
e
�ik
�N 
Zk � ZN�k�

�
�

�yk �
�k
�N

Im
�
e
�ik
�N 
Zk � ZN�k�

�
� � � k � N�



���

where �k
N is the normalization factor needed to get the Chebyshev transform from

the cosine transform� This phase is e�ciently performed by computing the compo�
nents k and N � k together and using symmetry properties� The cost of phase �
is ��N �ops� The total cost of the FChT� algorithm is thus 
���N log�N � ��N �
giving an average � � ����� and 	 � � for a single transform�

�




The veri�cation that 

����

��� indeed produce the Chebyshev transforms is
best made in two steps� First� we prove that

�

�

Zk � ZN�k� �

N��X
j��

Re
zj�e
��ijk
N �

N����X
j��

�
x�je

��ijk
N � x�j��e

� ��i�j
��k
N

�
�

�
�

and

� i

�

Zk � ZN�k� �

N��X
j��

Im
zj�e
��ijk
N �

N����X
j��

�
y�je

��ijk
N � y�j��e

� ��i�j
��k
N

�
�



���

Second� we substitute 

�
� and 

��� into 

��� to obtain the desired equality 
�����
Note that 

��� requires that ZN be de�ned� and therefore we extend de�nition 

���
to any integer k� Because the extended de�nition is N �periodic� we can obtain any
value Zk from the computed values Z�� � � � � ZN���

The inverse Chebyshev transform is obtained by inverting the procedure de�
scribed above� The phases are performed in the reverse order� and the operation of
each phase is replaced by its inverse� Phase � is inverted by packing �x and �y into
the auxiliary complex vector Z��	



Z� � N 
�x� � i �y���

Zk �
N

�
e�

�ik
�N 

�xk � i �yk� � i
�xN�k � i �yN�k�� � � � k � N�



���

To invert phase �� an inverse complex FFT is computed�

zk �
�

N

N��X
j��

Zje
� ��ijk

N � � � k � N�

���

The inverse of phase � is again a permutation��
x�j � Re
zj��

x�j�� � Re
zN�j����

y�j � Im
zj��

y�j�� � Im
zN�j���� � � j � N
��


���

The cost of the inverse FChT algorithm is the same as that of the FChT algorithm�
provided the scalings of 

��� and 

��� are combined�

An e�cient parallelization of this algorithm involves breaking open the paral�
lel FFT inside the FChT� and merging parts of the FFT with the surrounding
computations� In the following subsection we explain the parallelization process�


��� Parallel FFT within the scope of the parallel FChT�� The FFT is a
well�known method for computing the discrete Fourier transform 

��� of a complex
vector of length N in O
N logN � operations� It can concisely be written as a
decomposition of the Fourier matrix FN �

FN � AN � � �A
A	A�PN �

���

where FN is an N � N complex matrix� PN is an N � N permutation matrix
corresponding to the so�called bit reversal permutation� and the N � N matrices
AK are de�ned by

AK � IN�K 
 BK � K � �� 
� �� � � � � N�

����

��



which is shorthand for a block�diagonal matrix diag
BK � � � � � BK� with N
K copies
of the K �K matrix BK on the diagonal� The matrix BK is known as the K �K
butter�y matrix�

This matrix decomposition naturally leads to the radix�� FFT algorithm ����
��	� In a radix�� FFT of size N � the input vector z is permuted by PN and then
multiplied successively by all the matrices AK � The multiplications are carried out
in log�N stages� each with N
K times a butter�y computation� One butter�y
computation modi�es K
� pairs 
zj � zj�K��� at distance K
� by adding a multiple
of zj�K�� to zj and subtracting the same multiple�

Parallel radix�� FFTs have already been discussed in the literature� see e�g� ���	�
For simplicity� in our exposition we restrict ourselves to FFT algorithms where
p � p

N � This class of algorithms uses the block distribution to perform the
short distance butter�ies with K � N
p and the cyclic distribution to perform the
long distance butter�ies with K � N
p� Figure �a gives an example of the cyclic
distribution which is formally de�ned as follows�

De
nition ���� 
Cyclic distribution�� Let z be a vector of size N � We say that
z is cyclically distributed over p processors if� for all j� the element zj is stored in
Proc
j mod p� and has local index j� � j div p�

Using such a parallel FFT algorithm� we obtain a basic parallel FChT� algorithm
for two vectors x and y of size N �

�� PACK vectors x and y as the auxiliary complex vector z by permuting them
using 

����

�� TRANSFORM vector z using an FFT of size N �

a� Perform a bit reversal permutation in z�

b� Perform the short distance butter�ies of size K � �� 
� � � � � N
p�

c� Permute z to the cyclic distribution�

d� Perform the long distance butter�ies of size K � �N
p� 
N
p� � � � � N �

e� Permute z to the block distribution�

�� EXTRACT the transforms from vector z and store them in vectors x and y�

a� Permute z to put components j and N � j in the same processor�

b� Compute the new values of z using 

����

c� Permute z to block distribution and store the result in vectors x and y�

The time complexity of this basic algorithm will be reduced by a sequence of
improvements as detailed in the following subsections�


����� Combining permutations� By breaking open the FFT phase inside the par�
allel FChT� algorithm� we can combine the packing permutation 
�� and the bit
reversal 
�a�� thus saving one complete permutation of BSP cost �Np g � l� The

same can be done for 
�e� and 
�a��


����� Increasing the symmetry of the cyclic distribution� We can eliminate permu�
tation 
�e��
�a� completely by restricting the number of processors slightly further

to p � p
N
�� and permuting the vector z in phase 
�c� from block distribution

to a slightly modi�ed cyclic distribution� the zig�zag cyclic distribution� shown in
Fig� �b� and formally de�ned as follows�

De
nition ���� 
Zig�zag cyclic distribution�� Let z be a vector of size N � We say
that z is zig�zag cyclically distributed over p processors if� for all j� the element zj

��
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Figure �� 
a� Cyclic distribution and 
b� zig�zag cyclic distribu�
tion for a vector of size �� distributed over 
 processors�

is stored in Proc
j mod p� if j mod �p � p and in Proc
�j mod p� otherwise� and
has local index j� � j div p�

In this distribution� both the components j and j�K
� needed by the butter�y
operations with K � N
p and the components j and N � j needed by the extract
operation are in the same processor� thus we avoid the permutation 
�e��
�a� above�
saving another �Np g � l in BSP costs�


����� Reversing the stages for the inverse FFT� To be able to apply the same ideas
to the inverse transform we perform the inverse FFT by reversing the stages of the
FFT and inverting the butter�ies� instead of taking the more common approach of

using the same FFT algorithm� but replacing the powers of e
��i
N by their conjugates�

Thus� we save �N
p
g � �l� both in the Chebyshev transform and its inverse�


���
� Reducing the number of �ops� Wherever possible we take pairs of stages
A�KAK together and perform them as one operation� The butter�ies have the
form B�K
I� 
BK �� which is a �K � �K matrix consisting of 
� 
 blocks� each a
K
��K
� diagonal submatrix� This matrix is a symmetrically permuted version
of the radix�
 butter�y matrix ���	� This approach gives the e�ciency of a radix�

FFT algorithm� and the �exibility of treating the parallel FFT within the radix��
framework� for example� it is possible to redistribute the data after any number of
stages� and not only after an even number� This reduces � from ��� to ������

Since we do not use the upper half of the Chebyshev coe�cients computed in
the forward transform� we can alter the algorithm to avoid computing them� This
saves 
N �ops in 

����


��� Optimization of the main loop� Here we show how to reduce the commu�
nication even further by giving up the block distribution in the main loop of the
FLT algorithm� This discussion is only relevant in the parallel part of the main
loop� i�e�� stages k � log� p� so we will restrict ourselves to these stages� Note that
in these stages a group of p� � p
�k�� � � processors handles only one subproblem
of size �K � �N
�k corresponding to l � s�Np � Because the operations executed on

f and u are also executed on vectors g and v� we omit g and v from our discussion�


����� Modifying the truncation operation� It is possible to reorganize the main loop
of the FLT algorithm such that the end of stage k and the start of stage k � � are
merged into one more e�cient procedure� The following sequence of operations will
then be replaced by a new procedure�

� permute from zig�zag cyclic to block distribution in stage k�
� truncate at the end of stage k�
� copy at the beginning of stage k � ��
� permute from block to zig�zag cyclic distribution in stage k � ��

��



In the new approach� we assume that the last K elements of fl and ul have
already been discarded� so that fl and ul are in the zig�zag cyclic distribution of K

instead of �K� elements over p� processors� Note that for ul these elements have
not even been computed� see Subsection 
���
� The new procedure follows�

�� Keep the data needed at stage k � ��

a� Copy vector ul of size K into vector ul�K�

b� Copy vector fl of size K into vector ul�

�� Redistribute the data needed at stage k � ��

a� Vector fl receives the �rst K
� elements of vector ul redistributed by the

zig�zag cyclic distribution over the �rst p�
� processors�


b� Vector fl�K receives the �rst K
� elements of vector ul�K redistributed
by the zig�zag cyclic distribution over the next p�

� processors�

The new procedure is illustrated in Fig� �� This approach reduces the BSP cost of
the truncation�copy operation from �N

p
g� �l to N

p
g� 
The synchronization can be

saved by merging the communication superstep with the following redistribution��

copy copy

communicate communicate

Proc
��

Proc
�� Proc
��

Proc
��

f� f�

f�f�

f� f�	

f�	


�b�


�a�


�a�

fl

ul

fl fl�K


�b�

ul�K

Figure �� Truncation�copy operation of vectors fl and ul forK �
�� and p� � 
� The numbers between brackets denote the phases
of the procedure�

As a result� vectors ul and ul�K contain all the data needed at stage k � �
and vectors fl and fl�K contain half the the data needed at stage k � � 
stage
k � � will produce the other half�� We now show that the operations of stage
k � � immediately following the truncation�copy remain local and hence do not
require communication� These operations alter ul and ul�K by operation 

���
of the inverse FChT and the long distance butter�ies of the inverse FFT� The
restriction p �

p
N
� implies p� � p

K� so that both the pairs 
ul�j � ul�K�j�
and 
ul�K�j � ul��K�j�� with j � �� � � � �K
� � �� needed by operation 

��� of
the inverse FChT and the pairs 
ul�j � ul�j�H��� and 
ul�K�j � ul�K�j�H���� with
K � H � 
K
p� � �K

p�
�� and j � �� � � � �H
���� needed by the long distance
butter�ies of the inverse FFT are in the same processor� Note that the long distance
butter�ies are those of stage k � �� where p� is halved�


����� Moving bit reversal to precomputation� Another major optimization is to
completely avoid the packing�bit reversal permutation 
���
�a� in the FChT� just
following the recurrence and its inverse preceding the recurrence� thus saving an�
other 
Np g � �l in communication costs� This is done by storing the recurrence

coe�cients permuted by the packing�bit reversal permutation� This works because
��



one permutation is the inverse of the other� so that the auxiliary vector z is in the
same ordering immediately before and after the permutations�

After all the optimizations� the total communication and synchronization cost

is approximately
�
�N
p
log� p

�
g � 
� log� p� l� Only two communication supersteps

remain� the zig�zag cyclic to block redistribution inside the inverse FFT� which
can be combined with the redistribution of the truncation� and the block to zig�zag
cyclic redistribution inside the FFT� To obtain this complexity� we ignored lower
order terms and special cases occurring at the start and the end of the algorithm�

The total cost of the optimized algorithm without early termination is�

TFLT�par � 
���
N

p
log��N �



�
N

p
log� p

�
g � 
� log� p� l�

����


�
� Parallel termination� Sometimes� it is useful to be able to perform the
termination procedure of the Driscoll�Healy algorithm in parallel� In particular�
this would enable the use of direct methods of O
N�� complexity� such as the so�
called semi�naive method ���	� which may be faster for small problem sizes� The
termination as expressed by Lemma ���� is similar to the multiplication of a dense
lower triangular matrix and a vector�


�
��� Lower triangular matrix�vector multiplication� Let us �rst consider how to
multiply an n�n lower triangular matrixL by a vector x of length n on p processors�
giving y � Lx� Assume for simplicity that p is square� A parallel algorithm for
matrix�vector multiplication was proposed in ��	� This algorithm is based on a two�
dimensional distribution of the matrix over the processors� which are numbered
Proc
s� t�� � � s � p�� � � t � p�� where p � p�p�� Often� it is best to choose
p� � p� �

p
p� This scheme assigns matrix rows to processor rows Proc
s� ��� and

matrix columns to processor columns� Vectors are distributed in the same way as
the matrix diagonal�

Since our matrix is lower triangular� we cannot adopt the simplest possible dis�
tribution method in this scheme� which is distributing the matrix diagonal� and
hence the vectors� by blocks over all the processors� The increase of the row size
with the row index would then lead to severe load imbalance in the computation�
A better method is to distribute the diagonal cyclically over the processors� Trans�
lated into a two�dimensional numbering this means assigning matrix element Lij
to Proc
i mod

p
p� 
j div

p
p� mod

p
p�� The rows of the matrix are thus cyclically

distributed� and blocks of
p
p columns are also cyclically distributed� The algo�

rithm �rst broadcasts input components xj to Proc
�� 
j div
p
p� mod

p
p�� then

computes and accumulates the local contributions Lijxj and sends the resulting
local partial sum to the processor responsible for yi� this processor then adds the

partial sums to compute yi� The cost of the algorithm is about n�

p � � np
pg � �l�


�
��� Application to termination� We assume that a suitable truncation has been
performed at the end of the main loop of the FLT algorithm� This truncation
halves the group size p� and redistributes the data to the input distribution of the
termination� We assume� for simplicity of exposition� that p� is square� We adapt
the lower triangular matrix�vector multiplication algorithm to the context of the
termination� as follows� Let l � � be �xed� We replace n by M � � and p by p��
and de�ne L using Lemma ����� for instance Lij � qjl�i
� for i � j� i � j even�

��
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Figure 	� Data structure and distribution of the precomputed
data needed for parallel termination with M � �� The picture
shows the data needed for one value of l� which is handled by
p� � 
 processors� The coe�cients qn � qnl�m and rn � rnl�m are
stored in a lower triangular matrix fashion�

and j � �� Here� we include the trivial case i � �� The two�dimensional processor
numbering is created by the identi�cation Proc
s� t� 
 Proc
s� � s� t

p
p��� where

the o�set s� denotes the �rst processor of the group that handles the termination
for l� Figure � illustrates the data distribution� In the �rst superstep� zlj is sent
by its owner to the processor column that needs it� but only to half the processors�
namely those that store qjl�i�s� The value z

l��
j is sent to the other half� There is no

need to redistribute the output vector� because it can be accumulated directly in
the desired distribution� which is by blocks�

The total time of the parallel termination is about

Tterm� par � MN

p
�

�
p
MNp
p

g � �l�

����

�� Experimental results

In this section� we present results on the accuracy and scalability of the im�
plementation of the Legendre transform algorithm for various sizes N � We also
investigate the optimal termination block size M �

We implemented the algorithm in ANSI C using the BSPlib communications
library ���	� Our programs are completely self�contained� and we did not rely on
any system�provided numerical software such as BLAS� FFTs� etc� We tested the
accuracy of our implementation on a SUN Ultra � workstation which has IEEE
��
 �oating point arithmetic� The accuracy of double precision 
�
�bit� arithmetic
is ���� ������ The e�ciency and scalability test runs were made on a Cray T�E
with up to �
 processors� each having a theoretical peak speed of ��� M�op�s�
To make a consistent comparison of the results� we compiled all test programs us�
ing the bspfront driver with options �O� �flibrary�level � �bspfifo �����

�fcombine�puts and measured the elapsed execution times on exclusively dedi�
cated CPUs using the bsp time�� function��

�We also wrapped our sequential programs as parallel ones� The reason is that our sequential
programs compiled on the CRAY T�E with cc �O� are four times slower� It seems that the option
�flibrary�level � of bspfront also improves the execution time of sequential programs on the
CRAY T�E�

�	



���� Accuracy� We tested the accuracy of our implementation by measuring the
error obtained when transforming a random input vector f with elements uniformly
distributed between � and �� The relative error is de�ned as jj�f���f jj�
jj�fjj�� where
�f� is the FLT and �f is the exact DLT 
computed by 
����� using the stable three�
term recurrence 
���� and quadruple precision�� jj � jj� indicates the L��norm�

Table � shows the relative errors of the sequential algorithm for various prob�
lem sizes using double precision except in the precomputation of the third column�
which is carried out in quadruple precision� The results show that the error of the
FLT algorithm is comparable with the error of the DLT provided that the precom�
puted values are accurate� They also show that our precomputation algorithm is
somewhat less accurate for large N � Therefore it is best to perform the precom�
putation in increased precision� This can be done at little extra cost� because the
precomputation is done only once and its cost can be amortized over many FLTs�
We believe that it is possible to improve the accuracy of the precomputation by
exploiting the symmetries of the associated polynomials 
that are either odd or
even�� As an additional advantage the sizes of the arrays Q and R can be halved�
We will not address this issue here� See ���� ��	 for a discussion of other techniques
that can be used to get more accurate results� The errors of the parallel implemen�
tation are of the same order as in the sequential case� The only part of the parallel
implementation that di�ers from the sequential implementation in this respect is
the FFT� and then only if the butter�y stages cannot be paired in the same way�
Varying the termination block size between � and ��� also does not signi�cantly
change the magnitude of the error�

N DLT FLT FLT�QP
��� ���� ����	 
��� ����� ���� ����	

���
 ���� ����� ���� ����� ���� �����

���� ���� ����� ���� ���� ���� �����

����� ���� ����� ��
� ���
 ���� �����

Table �� Relative errors for the FLT algorithm� 
QP indicates
that the precomputation is carried out in quadruple precision��

���� E�ciency of the sequential implementation� We measured the e�ciency
of our FLT algorithm by comparing its execution time with the execution time of
the direct DLT algorithm 
i�e�� a matrix�vector multiplication�� Table � shows
the times obtained by the direct algorithm and the FLT with various termination
values� M � � yields the pure FLT algorithm without early termination� M � �

is the empirically determined value that makes the algorithm perform best 
this
value is close to the theoretical optimum M � ���� see Section ��
�� M � N
� is
the maximum termination value that our program can handle� and the resulting
algorithm is similar to the semi�naive algorithm ���	�

The results indicate that the pure FLT algorithm becomes faster than the DLT
algorithm at N � ���� Choosing M � �
 
or M as large as possible if N � ����
further decreases the break�even point�

Though we opened the modules of the FLT algorithm� in principle it is still
possible to use highly optimized or even machine speci�c� assembler coded� FFT

�




N DLT FLT FLT FLT
M � N
� M � �
 M � �

�� ����

 ������ � ������
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Table �� Execution time 
in ms� of various Legendre transform
algorithms on one processor of a CRAY T�E�

subroutines in both the sequential and the parallel versions� This would yield an
even faster program�

���� Scalability of the parallel implementation� We tested the scalability of
our optimized parallel implementation using our optimized sequential implementa�
tion as basis for comparison�

Table � shows the timing results obtained for the sequential and parallel versions
executed on up to �
 processors� with p � pN
�� for M � � and M � �
� These
results can best be analyzed in terms of absolute speedups� Sabs � T 
seq�
T 
p��
i�e�� the time needed to run the sequential program divided by the time needed to
run the parallel program on p processors� Our goal is to achieve ratios as close to
p as possible� Figure � shows the performance ratios obtained for various input
sizes with M � � on up to �
 processors� The speedups for M � �
 
not shown�
are somewhat lower than for M � � because early termination does not reduce the
parallel overhead of the algorithm� it improves only the computation part�

M N seq p � � p � � p � 
 p � � p � �� p � �� p � �

� ��� ���� ���� ���� ���� ���� ���� � �

���
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Table �� Execution times 
in ms� for the FLT on a Cray T�E�

It is clear that for a large problem size 
N � ������ the speedup is close to ideal�
e�g�� Sabs � �� on �
 processors with M � �� For smaller problems� reasonable
speedups can be obtained using � or �� processors� but beyond that the communi�
cation time becomes dominant� The superlinear speedup observed for N � �����
is a well known phenomenon related to cache size�

�� Conclusions and future work

As part of this work� we developed and implemented a sequential algorithm
for the discrete Legendre transform� based on the Driscoll�Healy algorithm� This
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� Scalability of the FLT on a Cray T�E�

implementation is competitive for large problem sizes� Its complexity O
N log�N �
is considerably lower than the O
N�� matrix�vector multiplication algorithmswhich
are still much in use today for the computation of Legendre transforms� Its accuracy
is similar� provided the precomputation is performed in increased precision� The
new algorithm is a promising approach for compute�intensive applications such as
weather forecasting�

The main aim of this work was to develop and implement a parallel Legendre
transform algorithm� Our experimental results show that the performance of our
parallel algorithm scales well with the number of processors� for medium to large
problem sizes� The overhead of our parallel program consists mainly of commu�
nication� and this is limited to two redistributions of the full data set and one
redistribution of half the set in each of the �rst log� p stages of the algorithm� Two
full redistributions are already required by an FFT and an inverse FFT� indicating
that our result is close to optimal� Our parallelization approach was �rst to derive
a basic algorithm that uses block and cyclic data distributions� and then optimize
this algorithm by removing permutations and redistributions wherever possible� To
facilitate this we proposed a new data distribution� which we call the zig�zag cyclic
distribution�

Within the framework of this work� we also developed a new algorithm for the
simultaneous computation of two Chebyshev transforms� This is useful in the con�
text of the FLT because the Chebyshev transforms always come in pairs� but such
a double fast Chebyshev transform also has many applications in its own right�

��



as does the corresponding double fast cosine transform� Our algorithm has the
additional bene�t of easy parallelization�

We view the present FLT as a good starting point for the use of fast Legendre
algorithms in practical applications� However� to make our FLT algorithm directly
useful in such applications further work must be done� an inverse FLT must be
developed� the FLT must be adapted to the more general case of the spherical har�
monic transform where associated Legendre functions are used 
this can be done by
changing the initial values of the recurrences of the precomputed values� and mul�
tiplying the results by normalization factors�� and alternative choices of sampling
points must be made possible� Driscoll� Healy� and Rockmore ���	 have already
shown how a variant of the Driscoll�Healy algorithm may be used to compute such
transforms at any set of sample points� though the set of points chosen a�ects the
stability of the algorithm�
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Appendix A� Related transforms and algorithms

The derivation of the Driscoll�Healy algorithm given in Section � has the fea�
ture that it only depends on the properties of truncation operators TK given in
Lemma ���� and on the existence of an e�cient algorithm for applying the trun�
cation operators� In particular� Lemma ��� and Lemma ���� hold as stated when
the weight function �
x� � ���
�� x��

�
� is changed� the truncation operators are

de�ned using a polynomial sequence which is orthogonal with respect to the new
weight function and starts with the polynomial �� and the Lagrange interpolation
operators are de�ned using the roots of this sequence� In theory� this can be used to
develop new algorithms for computing orthogonal polynomial transforms� though
with di�erent sample weights wj � In practice� however� the existence of e�cient
Chebyshev and cosine transform algorithms makes these the only reasonable choice
in the de�nition of the truncation operators� This situation may change with the
advent of other fast transforms�

Theoretically� the basic algorithm works� with minor modi�cations� in the fol�
lowing general situation� We are given operators T K

M � for � �M � K� such that

�� T K
M is a mapping from the space of polynomials of degree less than �K to the

space of polynomials of degree less than M �
�� If M � L � K then T L

MT K
L � T K

M �
�� If degQ � m � K � L then T L

K�m
f �Q� � T K
K�m

��T L
K f
� �Q��

The problem now is� given an input polynomial f of degree less than N � to compute
the quantities T N

� 
f � pl� for � � l � N � where fplg is a sequence of orthogonal
polynomials�

This problemmay be treated using the same algorithms as in Section �� but with
the truncation operators TM replaced by T K

M � where K � N depends on the stage
of the algorithm� Using K � N retrieves our original algorithm� The generalized
algorithm uses the quantities ZK

l � T N
K 
f � pl�� and the recurrences in this context

�




are

ZK�m
l�m � T K

K�m
�
ZK
l �Ql�m � ZK

l�� �Rl�m

�
�

ZK�m
l�m�� � T K

K�m
�
ZK
l �Ql�m�� � ZK

l�� �Rl�m��
�
�


A���

Cf� 
����� and 
������
This generalization of the approach we have presented may be used to derive the

original algorithm of Driscoll and Healy ���	� which uses the cosine transforms in
the points cos j�K �

Driscoll� Healy� and Rockmore ���	 described another variant of the Driscoll�
Healy algorithm that may be used to compute the Legendre transform of a polyno�
mial sampled at the Gaussian points� i�e�� at the roots of the Legendre polynomial
PN � Their method replaces the initial Chebyshev transform used to �nd polynomial
ZN
� in Chebyshev representation� by a Chebyshev transform taken at the Gauss�

ian points� Once ZN
� has been found in Chebyshev representation� the rest of the

computation is the same�
The Driscoll�Healy algorithm can also be used for input vectors of arbitrary size�

not only powers of two� Furthermore� at each stage� we can split the problem
into an arbitrary number of subproblems� not only into two� This requires that
Chebyshev transforms of suitable sizes are available�

Appendix B� The precomputed data

In this appendix we describe algorithms for generating the point values ofQl�m� Rl�m

used in the recurrence of Algorithm ���� and for generating the coe�cients qnl�m� r
n
l�m

used in the termination stage of Algorithm ����
The precomputation of the point values is based on the following recurrences�

Lemma B��� Let l � �� j � �� and k � �� Then the associated polynomials

Ql�m� Rl�m satisfy the recurrences

Ql�j�k � Ql�k�jQl�k � Rl�k�jQl�k���
Rl�j�k � Ql�k�jRl�k �Rl�k�jRl�k���


B���

Proof� By induction on j� The proof for j � � follows immediately from the
de�nition 
������ since Ql�k��Ql�k�Rl�k��Ql�k�� � � �Ql�k�� � Ql�k and similarly
for Rl�k� The case j � � also follows immediately from the de�nition� For j � ��
we have

Ql�k�jQl�k �Rl�k�jQl�k��
� �Ql�k�j����Ql�k�j�� �Rl�k�j����Ql�k�j��	Ql�k

� �Ql�k�j����Rl�k�j�� � Rl�k�j����Rl�k�j��	Ql�k��
� Ql�k�j���� �Ql�k�j��Ql�k �Rl�k�j��Ql�k��	

�Rl�k�j���� �Ql�k�j��Ql�k �Rl�k�j��Ql�k��	
� Ql�k�j����Ql�k�j�� � Rl�k�j����Ql�k�j��
� Ql�k�j�

where we have used the case j � � to prove the �rst and last equality and the
induction hypothesis for the cases j � �� j � � to prove the third equality� In the
same way we may show that Ql�k�jRl�k � Rl�k�jRl�k�� � Rl�k�j �

This lemma is the basis for the computation of the data needed in the recurrences
of the Driscoll�Healy algorithm� The basic idea of the algorithm is to start with
polynomials of degree �� �� given in only one point� and then repeatedly double

��



the number of points by performing a Chebyshev transform� adding zero terms to
the Chebyshev expansion� and transforming back� and also double the maximum
degree of the polynomials by applying the lemma� with j � K � ��K and k � K�

Algorithm B�� Precomputation of the point values�

INPUT N � a power of ��

OUTPUT Ql�m�x�
k

j �� Rl�m�x�
k

j �� for 
 � k � log�N � 	 � j � �k� m � �k��� �k�� � 
�

and l � 
� �k�� � 
� � � � �N � �k�� � 
�

STAGES

	� for l � 
 to N do

Ql���	�� 
� Rl���	�� 	� Ql���	�� Bl� Rl���	�� Cl

k� for k � 
 to log�N do

K � �k��

for m � K � 
 to K do

for l � 
 to N �K � 
 step K do

�q�l�m� � � � � q
K��
l�m �� Chebyshev�Ql�m�xK� �� � � � �Ql�m�xKK����

�r�l�m� � � � � r
K��
l�m �� Chebyshev�Rl�m�xK� �� � � � �Rl�m�xKK����

�qKl�m� � � � � q
�K��
l�m �� �	� � � � � 	�

if m � K then qKl�m � AlAl�� � � �Al�m����
m��

�rKl�m� � � � � r
�K��
l�m �� �	� � � � � 	�

�Ql�m�x�K� �� � � � �Ql�m�x�K�K����� Chebyshev���q�l�m� � � � � q
�K��
l�m �

�Rl�m�x�K� �� � � � �Rl�m�x�K�K����� Chebyshev���r�l�m� � � � � r
�K��
l�m �

for l � 
 to N � �K � 
 step �K do

for j � 	 to �K � 
 do
Ql��K�x�Kj �� Ql�K�K�x�Kj �Ql�K�x�Kj � �Rl�K�K�x�Kj �Ql�K���x

�K
j �

Rl��K�x�Kj �� Ql�K�K�x�Kj �Rl�K�x�Kj � �Rl�K�K�x�Kj �Rl�K���x
�K
j �

Ql��K���x
�K
j �� Ql�K�K���x

�K
j �Ql�K�x�Kj � � Rl�K�K���x

�K
j �Ql�K���x

�K
j �

Rl��K���x
�K
j �� Ql�K�K���x

�K
j �Rl�K�x�Kj � �Rl�K�K���x

�K
j �Rl�K���x

�K
j �

Note that deg Rl�m � m � �� so the Chebyshev coe�cients rnl�m with n � m are
zero� which means that the polynomial is fully represented by its �rst m Chebyshev
coe�cients� In the case of the Ql�m� the coe�cients are zero for n � m� If n � m�
however� the coe�cient is unequal to zero� and this is a problem if m � K� The
K�th coe�cient which was set to zero must then be corrected and set to its true
value� which can be computed easily by using 
����� and 
�����

The point values needed can be retrieved as follows� Algorithms ��� and ���
require the numbers

Ql�K
x
�K
j �� Ql�K��
x�Kj �� Rl�K
x

�K
j �� Rl�K��
x�Kj �� � � j � �K�

for l � r � �K � �� � � r � N
�K � for all K with M � K � N
�� After the m�loop in

stage k � log�K�� of Algorithm B��� we have obtained these values for l � rK���
� � r � N
K� We only need the values for even r� so the others can be discarded�
The algorithm must be continued until K � N
�� i�e�� k � log�N �

The total number of �ops of the precomputation of the point values is

Tprecomp� point � ��N log��N � 
��� ��	 � ���N log�N�
B���

Comparing with the cost 
���
� of the Driscoll�Healy algorithm itself� and consider�
ing only the highest order term� we see that the precomputation costs about three
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times as much as the Driscoll�Healy algorithm without early termination� This
one�time cost� however� can be amortized over many subsequent executions of the
algorithm�

Parallelizing the precomputation of the point values can be done most easily
by using the block distribution� This is similar to our approach in deriving a
basic parallel version of the Driscoll�Healy algorithm� In the early stages of the
precomputation� each processor handles a number of independent problems� one
for each l� At the start of stage k� such a problem involves K points� In the
later stages� each problem is assigned to one processor group� The polynomials
Ql�K � Ql�K��� Rl�K � Rl�K��� and Ql�K�K � Ql�K�K��� Rl�K�K � Rl�K�K�� are all
distributed in the same manner� so that the recurrences are local� The Chebyshev
transforms and the addition of zeros may require communication� For the addition
of zeros� this is caused by the desire to maintain a block distribution while doubling
the number of points� The parallel precomputation algorithm can be optimized
following similar ideas as in the optimized main algorithm� We did not do this
yet� because optimizing the one�time precomputation is much less important than
optimizing the Driscoll�Healy algorithm itself�

The precomputation of the coe�cients qnl�m� r
n
l�m required to terminate the Driscoll�

Healy algorithm early� as in Lemma ����� is based on the following recurrences�

Lemma B��� Let l � � and m � �� The coe�cients qnl�m satisfy the recurrences

qnl�m �
�

�
Al�m��
qn��l�m�� � qn��l�m��� �Bl�m��qnl�m�� � Cl�m��qnl�m��� for m � ��

q�l�m � Al�m��
q�l�m�� �
�

�
q�l�m��� �Bl�m��q�l�m�� � Cl�m��q�l�m���

q�l�m �
�

�
Al�m��q�l�m�� �Bl�m��q�l�m�� � Cl�m��q�l�m���

subject to the boundary conditions q�l�� � �� q�l�� � Bl� q
�
l�� � Al� and qnl�m � �

for n � m� The rnl�m satisfy the same recurrences� but with boundary conditions

r�l�� � Cl and rnl�m � � for n � m�

Proof� These recurrences are the shifted three�term recurrences 
����� rewritten
in terms of the Chebyshev coe�cients of the polynomials by using the equations
x � Tn � 
Tn�� � Tn���
� for n � � and x � T� � T��

For a �xed l� we can compute the qnl�m and rnl�m by increasing m� starting with
the known values for m � �� � and �nishing with m �M � �� For each m� we only
need to compute the qnl�m with n � m� and the rnl�m with n � m� The total number
of �ops of the precomputation of the Chebyshev coe�cients in the general case is

Tprecomp� term � �M� � ��M � ���
B���

When the initial values Bl are identically zero� the coe�cients can be packed in
alternating fashion into array T� as shown in Fig� 
� In that case the cost is
considerably lower� namely ���M� � ���M � ���

The precomputed Chebyshev coe�cients can be used to save the early stages in
Algorithm B��� If we continue the precomputation of the Chebyshev coe�cients
two steps more� and �nish with m � M � instead of m � M � �� we can then switch
directly to the precomputation of the point values at stage K � M � just after the
forward Chebyshev transforms�

��



Parallelizing the precomputation of the Chebyshev coe�cients is straightforward�
since the computation for each l is independent� Therefore� if M � N
p� both the
termination and its precomputation are local operations�
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