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‘THE MOTHER OF ALL CONTINUED FRACTIONS’

KARMA DAJANI AND COR KRAAIKAMP

Dedicated to the memory of Anzelm Twanik

ABSTRACT. In this paper we give the relationship between the regular contin-
ued fraction and the Lehner fractions, using a procedure known as insertion.
Starting from the regular continued fraction expansion of any real irrational
z, when the maximal number of insertions is applied one obtains the Lehner
fraction of z. Insertions (and singularizations) show how these (and other)
continued fractions expansions are related. We will also investigate the rela-
tion between the Lehner fractions and the Farey expansion, and obtain the
ergodic system underlying the Farey expansion.

1. INTRODUCTION

In 1994, J. Lehner [L] showed that every irrational number # € [1, 2) has a unique
continued fraction expansion of the form

€9 == [bo;el/blan/bZa"'aen/bna"'];

b2_|_'~. _1_67”
by +

where (b;,e;41) equals either (1,1) or (2,—1). We call these continued fractions
Lehner fractions or Lehner expanstons. Each rational number has two finite Lehner
expansions. Lehner expansions can be generated dynamically by the map L
[1,2) = [1,2), given by

€1

(1) bo +
b +

3

Notice that in this expansion one has for « € [1,2) that

(bi,eH_l) = (1,1) if Ll(l‘) € [2,2),
and
(birei) = (2-1) i L'() €[1,3).

Lehner fractions are examples of the so-called semi-reqular continued fraction ex-
pansions. In general a semi-regular continued fraction expansion (SRCF) is a finite
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or Infinite fraction

(2)  bo +

€1

& = [bo; e1 /b1, ea/ba, -+, en/bn, -],
b +

€n

bo+ o+

by +
with e, = +1; bg € Z; b, € N, for n > 1, subject to the condition
ent1+byp > 1, forn> 1,
and with the restriction that in the infinite case
€nt1 + by > 2, infinitely often.

Moreover we demand that e, 4+ b, > 1 for n > 1.
Finite truncation in (2) yields the SRCF-convergents

An/Bn = [bo; e1/b1, eaf/ba, -+, en/bn],

where it is always assumed that ged(A,, B,) = 1. We say that (2) is a SRCF-
expansion of z in case

z = lim —.
n
The best known example of a SRCF is the so-called regular continued fraction
expansion (RCF); It is well-known that every real irrational number # has a unique

RCF-expansion

(3) a0+ —————— = [ao; a1, az, -],
a; +

as+
where ag € Z is such, that # — ag € [0,1), and a, € N for n € N. Underlying the
RCF is the ergodic system

([0’ 1)’B’I’L’T)’

where B is the collection of Borel sets of [0, 1), p is the Gauss-measure on [0, 1), i.e.,
the measure with density (log2)~!(1 + )~ on [0, 1), and where T : [0,1) — [0, 1)
is defined by
Te = 1 LlJ yx #£0;70:=0.
T T

Putting a1 = ai(z) := |1/(z — ap)] and a, = ap(z) = a1 (T" (2 — ag)), n > 1,
(3) easily follows from the definition of T'. Tt should be noticed that a rational
number has (two) finite RCF-expansions. Denote the RCF-convergents of a real »
by (Pn/Qn)n>1, and define the mediant convergents of by

kPn + Pn—l
an + Qn—l ’

In Section 2 we will see that the set of Lehner-convergents of # equals the set of
RCF-convergents and mediant convergents of . Perhaps a more appropriate name
for the Lehner fractions would be the mother of all semi-reqular continued fractions.
This becomes transparent with the ideas of singularization and insertion, discussed
in Section 2.

1§k’<an+1.
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The map L was implicitly given by J. Lehner [L], and is isomorphic to the map
I:[0,1)—10,1), given by

X 1
T—z° 0<zx< =

Ir =
11—z 1
T o 2

<zr<l.

This map was used by Shunji Tto [I] to generate for every z € [0, 1) the mediant
and RCF-convergents of . However, no semi-regular expansion was associated
with this transformation. Ito studied the ergodic properties of this transformation,
and showed that!

([0,1),B,v,1)

forms an ergodic system, where v is a infinite o-finite invariant measure for I with
density =1 on [0,1). Due to this, one immediately finds that

([1’2)’B’p’L)

forms an ergodic system, where p is a infinite o-finite invariant measure for L
with density (z — 1)™! on [1,2). Ito’s map is also closely related to the additive
continued fraction, and the Farey shift map. For more details on this; see [Rich].
The additive continued fraction yields, like the Lehner fraction, all the RCF- and
mediant convergents of any «. In [G], J. Goldman showed that for any 2 > 0 related
to the additive continued fraction is a so-called unitary continued fraction expansion
of x of the form (2), with (b;,¢;) € {(1,1), (2,—1)} and by = 1. Notice that this
continued fraction expansion (which from now on we will call the Farey-ezpansion
of z) is not a SRCF-expansion of #. Hitherto no map F' was known to generate
these Farey-expansions, but due to the close relation with the Lehner fractions we
were able to find F, show that it is ergodic, and has a o-finite infinite invariant
measure with density (z —1)7! — (2 + 2)~! on [~1, 00), see also Section 3.
Ito also obtained the natural extension

([0,1) x [0,1],B,7,7)

of ([0,1),B,v,I). This system was used by Ito to study the distribution of the
sequences of the first and ‘last’ mediants, and by G. Brown and Q. Yin [BY] to study
any sequence of mediant convergents of @ of a given order. This was also done by W.
Bosma [B], by using the regular system 7. Brown and Yin needed the Ratio Ergodic
Theorem to circumvent the fact that the invariant measure v has infinite mass, but
Bosma only needed the ergodicity of 7. Applying ¢ : [0,1) x [0,1] = [0,1) x [0, 1]
defined by ¢(z,y) = (x + 1,y + 1) to Ito’s natural extension ([0,1) x [0,1], B,7,7)
yields ([1,2) x [1,2], B, p,L) as a version of the natural extension of the ergodic
system ([0, 1), B, p, L) underlying the Lehner fraction. Here L is defined by

1 1
P
2—x Y -

1 1
— 14 = 2« 2
(r—l’ +y)’ 2585

LAll o-algebras considered are the 1-dimensional or 2-dimensional Lebesgue o-algebra on the
appropriate space. We will always use the notation B to denote these various o-algebras, unless
it causes confusion.
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and p has density (22 + 2y — zy — 3)72 on [1,2) x [1,2]. In Section 3 we will
study another natural extension of ([0, 1), B, p, L), which will bring out the relation
between the Lehner fractions and the Farey-expansion in an easy and clear-cut way.
In Section 4 we extend some classical results of the RCF to the Lehner fractions (and
the Farey-expansion). These results can not be obtained from its own underlying
ergodic system ([0, 1), B, p, L), but follow easily from that of the regular.

2. INSERTIONS

There are two operations on the sequence of digits of a SRCF-expansion (2) of
any real 2, which transforms this SRCF-expansion into another one: singularization
and insertion. In this section we will deal only with insertions, singularizations will
be discussed in Section 5. See also [K], which is a general reference for all statements
with respect to singularizations and insertions.

An INSERTION is based upon the identity

1 -1
A+ ——=4+1+
B+¢ L
B—-1+4+¢
Let (2) be a SRCF-expansion of x, and suppose that for some n > 0 one has
bn+1 > 1a Ent1 = 1.

An insertion is the transformation 7, which changes the continued fraction

(4) [bOa 61/b1,,6n/bn,1/bn+1,]
into
[bo; 61/b1,... ,6n/(bn —|— 1), —1/1, 1/(bn+1 — 1),],

which is again a SRCF-expansion of x, with convergents, say, (pr/qx)e>—1. Let
(7&/sk)k>—1 be the sequence of convergents connected with (4). Using some matrix-

identities one easily shows that the sequence of vectors zk is obtained from
k) k>-1
(rk) by inserting the term (r” + r”_l) before the n? term of the latter
Sk ) > _1 Sp + Sn—1

sequence, 1.e.,

23 _ [T To Tp—1 Tn 4+ Tn-1 Tn Tnt1
W) sy \5=1) \S0) T \Sn-1) \Sn +Sn—1) \Sn/) \Sn41/)’
We leave the proof of the following Proposition to the reader.
Proposition 1. Let x € [1,2), with RCF-expansion (3), i.e., ag = 1. Then the
following algorithm yields the Lehner expansion (1) of .
(I) Let n > 0 be the first index for which apy1 > 1. In case n =0 (i.e., ap > 1)
we replace [ag; ay, ... ] by
[2; —=1/2, ..., —1/2, —1/1,1/1, 1/as, ...].
N—— ———
(a1 —2)—times
In case n > 1 we replace
[Clo; 1a ceey 1a An+1, ]

by
Tatangi—10- - (Tagr(mnl[ao; L5 ..., 1, anygr, -2 ])) -00)
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= Lao; 1/1, ... 1/2, =1/2, . =172, =1/1,1/1, 1 /ana, ...].
—_——
(@ny1—2)—times
Denote this new SRCF-expansion of © by [bo; e1/b1, eafba, -+ en/bn, -+ -].

(IT) Let m > n+ 1 be the first index in this new SRCF-expansion of x for which
emt+1 = 1 and b1 > 1. Repeat the procedure from (I) to this new SCRF-
expansion for this value of m.

Due to the insertion-mechanism it follows that every RCF-convergent or mediant
convergent of x is a Lehner-convergent of .

It is well-known that every quadratic irrational z has a RCF-expansion which is
(eventually, i.e., from some point on) periodic. Due to the above algorithm the
following corollary is immediate.

Corollary 1. Let x be a quadratic irrational number, then the Lehner expansion
of @ is (eventually) periodic.

3. FAREY-EXPANSIONS

If we define the map £ : [1,2) x [—1,00) = [1,2) x [-1,00) by

(5) Lz, y) = (x i(g;()x), b(;()ﬁy) , 1<e<2,y> -1,

where o1 1 5

(blz), e(=)) = { Elz 1) a) %Sﬁi‘i 22:
then £ is bijective, apart from a set of Lebesgue measure zero. The first coordinate
map of £ is the Lehner map L, while the second coordinate map yields the ‘past’ of
any ¢ € [1,2) as a Farey expansion. By this we mean the following. Let € [1,2)\Q,
with Lehner fraction (1), and let

(T, V) := L7(2,0) forn >0,

then V, = [0;en/bn_1, -+, e1/bg] for n > 1, and V5 = 0. Thus we see that the
second coordinate of £ is the inverted Farey map F', and ‘re-inverting’ yields that
F:[-1,00) = [-1,00) is given by

-1 2 —1<z<o,
F(z) = 01 x=0,
- =1, x>0,
x
le.,
f(=)
iy = )
where

la). 10)) 5= { |
We have the following theorem.
Theorem 1. The system
(11,2)  [-1,5), B,7, £)

forms an ergodic system, which is the natural extension of ([1,2),B,p,L). Here p
is a o-finite, infinite measure, which is invariant under £, with density (x + y)=?2
on [1,2) x [—-1,00).
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Proof. Let m:[1,2) x [-1,00) = [1,2) be the natural projection on the first coor-
dinate. Then it is easily seen that 7£ = La, and that for any measurable set A in
[1,2),

pr1A) = p(A X [1,00) = p(A)
Further, p is an invariant measure; for this it suffices to show that p((a,b) x (¢, d)) =
p(L((a,b) x (e,d))) forany 1 <a < b<2and —1 < e < d< co. We consider two
cases.

(I) For 1 <a<b< 2, one has

L((a,b) % (¢,d)) = (%%) x ((;—12%) .

An easy calculation shows that
(-1 -1 y -1 -1 ) (a4 d)(b+ )
- = - og | VT
Pla=2b—2 c+2'd+2 & (a+c)(b+d)
= p((a,0) x (¢,d))

(IT) For % < a < b< 2, one has

L((a,b) % (¢,d)) = (ﬁai—J x (ﬁﬁ%) .

Again a straight forward calculation shows that

_ (a+d)(b+0)
b d))) =1 — L.
plE((o,) < (e.d)) = tog (- HU02D
Finally, we show that B = V50 L7~ B. To see this, we define for m, n > 1 for the
Farey map F and the Lehner map L cylinders C,, = Cy (f1/dy, f2/d2, ..., fn/dm)
resp. Dyp = Dy (bo;er/ba, ..., en/) by

Cn(fi/dy,. ., fnfdm) = {x € [-1,00); 0 = [0 fi/dv, -+ fn/dm, o T}
‘free’
and
Dn(boser/bs,... sen/) == {z €[1,2); & = [bo; e1/bz,e2/bs, -~ ,en/ - ]},
~
ree

where (d;, f;) € {(1,1), (2,=1)} for ¢ = 1,...,m and (b;_1,¢;) € {(1,1), (2,-1)}
fori=1,...,n.

Then
DpxCpy = L™ (Dppin (i frn/dm—1, -+, f2/d1, f1/bo,e1 /b1, en/ ) x[=1,00)) .

Since the set of all possible cylinders of the form D, x C), generates B, this gives
the desired result. O

., From Theorem 1 the following corollary is immediate.

Corollary 2. The system
([—I,OO),B, T, F)a
which s the dynamical system underlying the Farey-expansion, forms an ergodic

system. Here T 1s a o-finite, infinite measure, which is invariant under F', with
density (r + 1)1 — (x +2)7! on [—1,00).
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Since natural extensions of a system are isomorphic, the fact that ([1,2), B, p, L)
has two natural extensions (i.e., one with the (inverted) Lehner map L as its second
coordinate map, and the other one with the (inverted) Farey map as its second
coordinate), ‘shows’ that L and 7" must be isomorphic. We have the following
theorem.

Theorem 2. Let © € [—1,00), with Farey-expansion x = [0; f1/dy, fo/da, ---].
Then the map € : [—1,00) = [—1,2) defined by

E(x) = [dis fi/do, f2/ds, -],
is an isomorphism from ([—1,00), B, , F) to ([1,2), B, p, L.
Proof. Clearly ¢ : [—1,00) \ Q = [—1,00) \ © is a bijection, and since
E(F () = &([0; fo/do, f3/ds, ---]) = [do; f2/ds, fo/ds, -]
= L([dy; fi/do, fo/ds, ---]) = L(&(x)),

we only need to show that ¢ is measurable and measure preserving.
For each Farey cylinder C,, = C(f1/d1, fa/da, ..., fn/dy) as defined above, one
has that £(C,) equals the Lehner cylinder Dy, = D, (d1; f1/da, f2/ds, ..., fa/ ), sO

that & is clearly measurable. It remains to show that
7(Cy) = p(Da).

For Dy, = Dy (bo;e1/ba,ea/bs, ... en/) let Df be defined by

Dy = Dy(bp—1;en/bn-2,en—1/bpn_s,...e1/).
From the fact that £ is measure preserving with respect to p one has

T(Cn) = p([1,2) x Cr) = p(L7([1,2) x Cn))
= p(Dy x [=1,00))) = p(D7).

Furthermore, since L is p-preserving, one has

p(Dr) = p(Dy < [1,2)) = p(L" (D5 x [1,2)))

= p([1,2) x Dn) = p(Dn),

and the result follows. O

4. SOME CLASSICAL THEOREMS FOR LEHNER FRACTIONS AND FAREY
EXPANSIONS

In 1935, A.Ya. Khintchine [Kh] obtained the following, classical results on the
means of the RCF-digits of almost all #. His proofs are based on the Theorem of
Gauss-Kusmin, but easier proofs can be obtained via the Ergodic Theorem.
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Theorem 3. (A.Ya. Khintchine) Let x be a real irrational number, with RCF-
expansion (3). Then for almost all® x one has

n—oo — =
ay Ay,
- log k
. _ log2
nh_}n(}o ay - ag - - dy = U<1+kk+2)) =26---,
nh_{%oal+az‘|7'l"'+an - 0.

Notice that Khintchine’s Theorem 3 plus the concept of insertion provide a heuristic
argument why the Lehner system ([0, 1), B, p, L) should be ergodic, with an infi-
nite, o-finite invariant measure p. After all an insertion before the digit ¢ > 1 is
simply building a tower over the RCF-cylinder corresponding to this digit. Since
the Lehner expansion of a number z is obtained by using insertion as many times
as possible in order to ‘shrink away’ any (regular digit) a > 1, it follows that the
thus obtained system must be ergodic (it contains the RCF-system ([0, 1), 8, 4, T)
as an induced system), but due to the third statement in Khintchine’s Theorem 3
it must also have infinite mass.

With respect to Khintchine’s result the situation is quite different for the Lehner ex-
pansion; there does not exist a Gauss-Kusmin Theorem for these continued fraction
expansions, and we can not apply the Ergodic Theorem directly using the Lehner
map L (or the Tto map T), since the underlying dynamical system has an invariant
measure which is infinite. In spite of this we will show that for almost all # these
means do exist, and equal 2. By insertion we know that each RCF-digit corresponds
to a certain block of digits of the Lehner fractions, as given in Proposition 1. We
have the following theorem.

Theorem 4. Let & be a real irrational number, with with RCF-expansion (3) and

Lehner expansion [bo; e1 /b1, ea/ba, -+ en/bn, ---]. Then for almost all x one has
n _
SR S
by by
lim ™ blbzbn = 2,
n—r 00
lim brtbat by oy

n—od

Proof. Let N € N be sufficiently large, there there exist unique integers k& and 7,
such that

N=a+ -+ap,+j, where 0<j<agyr.

In Proposition 1 we saw that each RCF-digit a; 1s replaced by a block of Lehner-
digits of length a;, of the form consisting of a; — 1 2’s followed by a digit 1. Then

11 1 1 i N+k
L4 = = k4= i~ +L =10
+— 4+ +22(a )+2 5

2All almost all statements are with respect to Lebesgue measure.
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This implies that

N 1
L1 T~ T4, ky
Pttty gl )

Since 0 < j < aj41 it follows that

Since all digits in the Lehner fraction of any x are either 1 or 2, and one always has
that

N b+ b R
< Nfby by by < AEP2E N
1 + 1 + .4 1 - - N -
by by bn
see also p. 375-377 in [C], the result follows. O

. From the above theorem and Theorem 2 the following corollary follows.

Corollary 3. Let z be a real irrational number, with with RCF-expansion (3) and

Farey expansion [0; fi/d1, f2/da, -+, fu/dn, ---]. Then for almost all x one has
lim —F—p = 2
n—r 00
dy Tt d,
lim dldzbn = 2,
n—r 00

lim . = 2

Proof. We give only a proof of the second statement; the other two are obtained in
exactly the same way.
Let K be the set of those « € [1,2) for which

lim n\/bo ~b1~~~bn_1 = 2,

n—r 00
where [by; e1/b1, ea/ba, -+ | €4 /by, -+ -] is the Lehner expansion of . Due to The-
orem 4 we have that K¢ i1s a null-set, i.e.; a set of measure zero. But then one has,
that ¢€71(K¢) is also of measure zero. Now let y € £71(K), with Farey expansion
[0; f1/dy, fo/do, -+, fu/dn, ---]. Then for each n > 1 one has that there are as

many 2’s among the first n digits of y as there are 2’s among the first n digits of
r=£(y), ie.,

lim dldzdn = lim n\/b()'bl"'bn_l = 2.
n— 00

n—od
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5. SINGULARIZATIONS

In this section we will discuss the concept of the singularization of a partial
quotient. A singularization is based upon the following identity

[ —€
At ——— = A+1+ ——.
I
L B+1+¢

B¢

To see the effect of a singularization, let
x=[bg; e1/b1, ea/bs,...], by EN n > 0;¢; € {£1},7> 1,

be a SRCF-expansion of z. Finite truncation yields the sequence of convergents
(r&/$k)k>—1. Suppose that for some n > 0 one has

bnii=1;ep42=1,
le.
[bo; 61/b1,...] = [bo;el/al,... s 6n/bn, 6n+1/1, 1/bn+2,...].

The transformation o, which changes this continued fraction into the continued
fraction

(6) [bo, 61/b1, e ,6n/(bn —|—6n+1),—6n+1/(bn+2 + 1), . .],

which is again a continued fraction expansion of x, with convergents, say (px/qr)x>—1,
Pk

is called a SINGULARIZATION. One easily shows that the sequence of vectors
U/ > -1

is obtained from (rk) by removing the term (r”) from the latter. Singular-
5k k>-1 5n

izations, and the underlying ergodic theory of a new class of continued fractions,
have extensively been studied in [K].

By combining the operatons of singularization and insertion one can obtain any
semi-regular continued fraction expansion. In [K] a whole class of semi-regular
continued fractions was introduced via singularizations only (some of these SRCF’s
were new, some classical - like the continued fraction to the nearer integer), and their
ergodic theory studied (the main idea in [K] is that the operation of singularization
is equivalent to having a induced map on the natural extension of the RCF). As
an example of combining the operatons of singularization and insertion we discuss
here the backward continued fraction.

Each irrational number z in the interval [0,1) has a unique continued fraction
expansion of the form

(7) 1_71 = [1; =1/e1, =1/ca, -],

c1 —
Co — ’
where the ¢;’s are all integers greater than one. As with the RCF, there is a

naturally defined transformation B : [0,1) — [0,1) which acts as the shift on the
continued fraction (7), and which is given by

1 1

B(z) = — LﬁJ’ z #0; B(0):=0.

1—x



‘THE MOTHER OF ALL CONTINUED FRACTIONS’ 11

The graph of B can be obtained from that of the RCF-map T by reflecting the

latter in the line x = % It is for this reason that the continue fraction (7) has been

called ‘backward’. Tt was shown by A. Rényi [R] that B is ergodic, and has a o-
finite, infinite invariant measure with density 1/, see also the paper by R.L. Adler
and L. Flatto [AF].

As in the case of Proposition 1, we leave the proof of the following proposition to
the reader.

Proposition 2. Let € [0,1), with RCF-expansion (3), i.e., ag = 0. Then the
following algorithm yields the backward expansion (7) of x.
(I) If a1 = 1, singularize ay to arrive at

[1;=1/(az + 1), 1/asg, ...]

as a new SRCF-expansion of x.
Ifa; > 1, insert —1/1 (a1 — 1)-times before ay to arrive at

[1;—=1/2, ..., =1/2, —1/1, 1/1, 1/as, ...]
N—— ———
(a1 —2)—times
as a new SRCF-expansion of . Now singularize 1/1 appearing at the a;th

position of this new continued fraction expansion of x.

In either case we find as SRCF-expansion of

(8) [1; (=1/2)" 71 =1/ (az + 1), 1/as, ..],
here (=1/2)1=1 4s an abbreviation of —1/2, ..., —1/2.
—_——

(a1—1)—times
(IT) Let m > 1 be the first index in this new SRCF-expansion of x for which
em = 1. Repeat the procedure from (1) to this new SCRF-expansion for this
value of m.

Remark 1. Due to the above insertion/singularization mechanism it follows that
x has as backward expansion

(9) (1 (=1/2)" 71, =1/(a2 +2), (=1/2)" 7", 1/(as +2), ...],

see also Aufgabe 3, p. 131, in [Z]. From (9) it also follows easily that every quadratic
irrational number # has an (eventually) periodic backward expansion.

Again, as for the Lehner fractions, it heuristically follows from Khintchine’s The-
orem 3 and the notion of insertion that the backward continued fraction map B
should be ergodic, with an invariant measure of infinite mass. For the Lehner
fractions is was also intuively clear that almost surely ™+/by -bg----- b, — 2 as
n — 0o, since there are only digits 1 and 2, and ‘there are very few 1’s among the
2’s’ (due to Khintchine’s Theorem). For the backward continued fraction clearly
such an argument does not exist. We have the following theorem.

Theorem 5. Let & be a real irrational number, with with RCF-expansion (3) and
backward expansion (7). Then for almost all x one has

lim "/ci-ca---cp, = 2.

n—od
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Proof. Let N be a sufficiently large positive integer, then from (9) we see that there
exist unique integers k£ > 1 and j, with 0 < j < agx41, such that

N=a+az+ +ag_1+j.

Then,
k

¢ e ey = 28im(anmim i H(a% +2),
i=1
and therefore

1 Y log2 (& 1
N;IOch’ = N (Za2i—1_k+]_1)+N;10g(a2i+2)

i=1

k
Z log(az; + 2)
i=1

k+1 ;
=log2|1- p 4+ p
Zazz’—1 +7J Zazz’—1 +7J
i=1 i=1
Since
k41 1
p + = p — 0 as N — o0,
. 1 j
;ah—l'i'] k’—|—1;a22_1+ k’—|—_1

almost surely, and

k
Z log(azi_l + 2)
i=1

k

Zazz’—1 +7

i=1

— 0 as N — o0,

almost surely, we find that for almost all =

N\/cl~cz~~~~~cN—>2 as N — o0 a.e.

Remark 2. Since ¢; > 2 for all ¢ > 1, it follows that

N
1 1 §2a
— 4.+
C1 CN

and therefore we have by Cauchy’s result [C] that

25&%%§£§2@N CLoczcioN =2
T
le.,
N T : =2 ae
to+—
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