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Abstract

We show that the hydrogen atom in orthogonal electric and magnetic fields has a
special property of certain integrable classical Hamiltonian systems known as mono-
dromy. The strength of the fields is assumed to be small enough to validate the use of
a normal form Hg,s which is obtained from a two step normalization of the original
system. We consider the level sets of Hgue on the second reduced phase space. For an
open set of field parameters we show that there is a special dynamically invariant set
which is a “doubly pinched 2-torus”. This implies that the integrable Hamiltonian
Hsnt has monodromy. Manifestation of monodromy in quantum mechanics is also
discussed.

PACS: 03.20.+i; 32.60+i
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1 Introduction

This paper studies the hydrogen atom in crossed fields. We consider an in-
tegrable approximation. We give a detailed analysis of the geometry of this
integrable approximation and show that it has a geometric property called
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monodromy. In addition we show that monodromy is visible in the spectrum
of the semiclassical quantization of the crossed fields problem.

1.1 General description

In 1980 Duistermaat [1] introduced the concept of monodromy in the study of
two degree of freedom integrable Hamiltonian systems. Since that time mono-
dromy has been found and analyzed in several integrable systems of classical
mechanics [2-11]. Geometrically, monodromy describes the global twisting of a
family (bundle) of invariant 2-tori parameterized by (over) a circle of regular
values of the energy momentum map of the integrable system. Its presence
is signaled by the existence of a singular fiber of the energy momentum map
which is topologically a “pinched torus” [12]. Loosely speaking, if an integrable
system has monodromy then it is impossible to label the tori in a unique way
by values of the actions.

Since invariant tori are at the foundation of semiclassical Einstein-Brillouin-
Kramers (EBK) quantization of integrable systems, monodromy should mani-
fest itself in the corresponding quantum systems [13-15,10,11]. Because mono-
dromy is quite common in classical integrable systems of two degrees of free-
dom, it should have many important physical implications in quantum mech-
anics.

In this paper we show that monodromy is present in the hydrogen atom in
crossed magnetic and electric fields. To study monodromy, we use a two step
normalization procedure to obtain an integrable approximation. The first step,
called Keplerian normalization, is well known [16-19]. We use the recent com-
putation in [20] as our starting point. The second normalization was introduced
in [21,22] and has not been used before in perturbed hydrogen atom studies. In
this paper we focus on this step and detail a simple averaging procedure which
gives principal terms necessary for the analysis of monodromy. Higher orders
can be obtained by a more elaborate Lie series calculation [23]. Subsequently
we analyze the geometry of the integrable system associated to the integrable
second normal form Hg, in order to show that in an explicitly given open
subset of relative field strengths the Hamiltonian Hg,¢ has monodromy [10].
Finally we should observe that the second normal form can be used for a com-
plete qualitative analysis of the crossed fields system in all possible dynamical
regimes. A complete analysis [23] reveals that for different relative strengths
of the electric and magnetic fields all qualitatively different possible behaviors
envisaged in [21] occur.

In the atom in fields problem our paper has many predecessors. In addition
to the already cited work, we should mention the work on problems with axial



symmetry [24], which implicitly uses the concept of the second reduced phase
space. More importantly, we note [25-27] where the concept of a dynamical
S! symmetry (and its corresponding “third” integral) is visibly present and is
used in an analysis. We will also compare our results with the early quantum
study of Solov’ev [28].

1.2 More detailed description

We continue this introduction with a precise description of the crossed fields
problem and give an outline of the geometry of this system. At the end we
provide an intuitive description of the geometric aspects of monodromy.

1.2.1 Hydrogen atom in orthogonal external fields

The Hamiltonian function of the hydrogen atom in the presence of constant
orthogonal magnetic and electric fields [29,30] is

H= g _ % + Qs+ %G(Qng _Q.P) + %GQ(QS +Q). (1)

with subscripts (1,2,3) equal to (b, e, p) of [20]. The direction of the magnetic
and electric fields are, respectively, 1 and 2; ()’s are the coordinates in physical
3-space, P is the 3-vector of conjugate momenta, and r = |@Q)| is the 3-space
length of Q. The first two terms in the right hand side of (1) represent the
Kepler Hamiltonian, the third is the electrostatic potential describing Stark
effect, and the two last terms describe the linear and quadratic Zeeman effect.
We introduce an “effective charge” C' in order to have the same kind of para-
meters as in (1.1) of [21]. The Hamiltonian in [21] is equivalent to (1) with the
quadratic Zeeman term omitted and thus can be interpreted as a case when
the magnetic field strength G is small.

For F' # 0 and G # 0 the Hamiltonian function H (1) has no strict continuous
symmetry. However, it does have a discrete Zy x Z; symmetry which will be
taken into account in our analysis. More information on the symmetry analysis

can be found in [20,23].

1.2.2  Scheme of the analysis and geometry

To determine whether our Hamiltonian system has monodromy, we normalize
H (1) twice and study the resulting integrable system. First we normalize H
with respect to the Keplerian symmetry. Truncating at order 2 gives the first
normal form Hg,¢ which has the regularized Kepler Hamiltonian Hy = 2N as an



integral of motion. (For our original Hamiltonian system 2N is an approximate
integral of motion). Removing the Keplerian symmetry from the first normal
form gives a two degree of freedom Hamiltonian system on 82/2 X 8721/27 the
product of two 2-spheres of radius n/2. Here n is the value of the Keplerian
integral N. The coordinates used to describe the first reduced phase space
Snj2 X Spye are the Hamiltonian functions corresponding to the vector fields
generating the SO(4) symmetry of Hy.

To perform the second normalization we look at the first order term H; in
Hing- Using the Poisson structure of the 82/2 X 82/2 coordinate functions, we
obtain a Hamiltonian vector field Xy, on 82/2 X 82/2 whose flow generates
an S' symmetry. This is an approximate symmetry of the first normal form.
Averaging Hi,se with respect to the flow of Xy, gives the second normal form
Hent- Note that H; is an integral of the Hamiltonian system corresponding to
the second normal form. Because S' action on M. = Hpg(c) N (Si/2 X 82/2)
defined by the flow of Xy, has fixed points when ¢ = 0, we must use singular
reduction [2] to obtain the second reduced phase space P, .. We then investigate
the geometry of the level sets of the energy momentum mapping

EM : 8721/2 X 8721/2 — R’ p— (Hsnf(p)le(p))

by reducing the S' symmetry to obtain a one degree of freedom system on P, .
We show that for an explicitly given open set of field parameters the (0,0)-level
set of EM (that is, the set of all points in 82/2 X 82/2 where H; and H.,r both
take the value zero), is a doubly pinched 2-torus in 82/2 X 8721/2- It follows that
the energy momentum map €M has monodromy, see [12].

2 Review of monodromy

In the past 20 years since the concept of monodromy was introduced into
the study of integrable Hamiltonian systems, it has not joined the arsenal of
fundamental qualitative ideas used by the physics community. Perhaps the
reason for this is that monodromy uses the still insufficiently familiar ideas
of global differential geometry. We hope that the following intuitive discussion
will explain how one can find and analyze monodromy in an integrable system.

Consider a two degree of freedom Liouville integrable Hamiltonian system. It
has two Poisson commuting integrals: the Hamiltonian H and a momentum .J.
The phase curves of this system lie on a subset of a 4-dimensional phase space
P. Generically, this subset is a 2-dimensional torus T?, but it can also be a
point (which is an equilibrium) or a circle S' (which is a periodic orbit).



To understand the dynamics of our system, we begin by looking at the energy
momentum map

EM:P =R :p— (H(p).J(p)) = (h.]).

Corresponding to each value (h,j) of the map EM is a fiber EM™'(h, ),
which is the set of all points in phase space for which the value of EM is
the given value (h,j). We will assume that (h,j) is a regular value of the
energy momentum map and that the (h, j)-level set of EM is compact and
connected. Then the fiber EM ™' (h, j) is a smooth 2-dimensional torus T(QM).
(This fiber is always a smooth 2-dimensional manifold with no boundary. Since
it is compact, by the Arnol’d-Liouville theorem [31] its connected components
are 2-dimensional tori.)

What we want to do is to describe how these fibers fit together as (h, 7) runs
over a parameterized subset of the set of regular values. Suppose that this set
of regular values is a small open 2-disc D in the range of the energy momentum
map. The action-angle coordinate theorem states that EM ™' (D) (which is the
union of 2-tori T(Qm) where (h, j) runs over D) has the topology of D x T?. In
other words

EMTHD) = D T4, 5 — (h, j)

is a trivial bundle over D with total space EM™'(D), fiber T?, and base space
D.

This simple geometric situation is greatly complicated if the 2-disc D contains
a critical value (h,7)_; and the punctured disc D* = D — {(h,J)_; } lies in
the set of regular values in the image of EM. When we are in this situation we
say that the critical value (h,j)_., is isolated. Under quite general conditions
the singular fiber I = EM ™' ((h,j)..) is a “pinched” 2-torus shown in fig. 1.
Dynamically, a singly pinched 2-torus is a homoclinic connection of stable
and unstable manifolds of the pinch point, whereas a doubly pinched one is a
heteroclinic connection of the stable and unstable manifolds of the two pinch
points.

When the singular fiber F' is a pinched 2-torus, the foliation of €M ~'(D*) by
the 2-tori EM ™ (h, j) with (h,7) € D* is nontrivial [12]. This can be under-
stood by taking a circle I' in D* and looking at the bundle I : EM™(I') — T
over I'. Geometrically every 2-torus bundle over a circle can be obtained by
the following construction. Consider the trivial 2-torus bundle [0,1] x T? over
the closed interval [0,1]. Form a circle in the base of the bundle by identi-
fying the end points of [0,1] to a single point. To obtain a 2-torus bundle
over this circle identify the end 2-tori {0} x T? and {1} x T? by an invertible



Fig. 1. Singly and doubly pinched torus: a homoclinic and heteroclinic connection
of stable and unstable manifolds.

map M : T? — T2, called the monodromy map. This map glues the end tori
together after giving them a twist. For a lower dimensional example of this
twisting construction, think of a cylinder and a Mobius band. Start with a
product of [0,1] and an open interval (which is a trivial bundle over [0, 1]).
A cylinder is formed by gluing the open intervals over the end points by the
identity map, while the Mobius band is formed by using minus the identity as
the gluing map.

We return to considering our 2-torus bundle II over the circle I'. Here is a
theoretical method for computing its monodromy map. Cut the circle I' at a
point p and think of it as an interval whose closure Z has end points pg and p;.
Cover the interval Z by a finite set of pairwise overlapping intervals Z; on which
the local actions given by the action-angle coordinate theorem are defined. On
the overlap Z; N 7,11 adjust the actions so that they agree. As a result of this
construction we have found the values (51, j5') of the actions at py starting with
their values at (j1°,75°) at po by following the curve I' — {p}. Care is needed
because, as functions on the set of regular values of the energy momentum map,
the actions (j1, j2) may be multi-valued. The actions (ji*, j5*) label the 2-torus
EM ™ (p;) for i = 1,2. We think of the 2-torus EM ™' (py) as the space R?/L,,,
where L, is the lattice generated by evaluating the Hamiltonian vector fields
lez’o corresponding to the action 7° at the point po. In other words, two vectors

in R? represent the same point on the 2-torus EM ™' (po) if their coordinates
differ by some integer linear combination of vectors in L, . Similarly, the 2-torus
EM ™ (p1) is R?*/L,,. Consider the invertible linear map M which assigns to
the generators of L,, the generators of L, . The map M is given by an integer
2 x 2 matrix with determinant 1, which maps the 2-torus £M™'(py) onto the
2-torus EM ™' (py). Of course the torus EM™'(p;) is the same as the torus
EM ™ (po). Thus M is the monodromy map of the bundle II. It is a theorem

[32] that M has the form (é lf), where k is the number of pinch points of

the singular fiber F'. From the above discussion it is clear that the monodromy
matrix determines the global geometry of the 2-torus bundle around a pinched
2-torus singular fiber F' of the energy momentum mapping.



3 Review of first normal form

This section reviews the familiar grounds for obtaining the first normal form.
Our treatment follows [20] and explains the details of the field strength scal-
ing. More explanation of the computation of the first normal form, its finite
symmetries and its expression in terms of the SO(4) symmetry generators can

be found in [20,23].
3.1  Regularization and rescaling

In order to perform normalization one needs to regularize the Hamiltonian
(1) so that its bounded orbits are defined for all time. Intuitively speaking,
regularization removes the 1/r singularity from the Kepler Hamiltonian.

First we fix a value I/ < 0 of the energy. Rescale length and momentum by

(Q,P) — (C_IQ, CP) so that the effective charge C' in (1) becomes 1. Then
rescaling time by ¢ — C'*¢, the Hamiltonian (1) becomes

1 1 F
0=-P>— —

K
D7 A

202(Q2P3 Q3P2) 804(Q2 + QS) ( )

Next define a new time scale by dt — — dt. The above expression becomes

IQI

1 —2F F
0=4Q(P“F02)—1+5$Mm+2m(

Q2 +Q3)Q. (2b)

Q23 — Q3 P2)|Q)

804(

We now regularize (2b) using the method of Kustaanheimo and Stiefel (KS).
The KS method lifts the phase space ToR* = (R* —{0}) x R? [with canonical
coordinates (@, P)] to the larger phase space ToR* = (R* — {0}) x R* [with

canonical coordinates (¢, p)] using the mapping

KS: T0R4 — T0R3 :

(g:p) = (Mxs(q), 1

~Mis(p)) = (Q.0, P,0). (3)

91 —92 —43 94

Here Mgs=|" "7 7 [ and r = |Q] = ¢*. In defining the KS map (3)

93 94 41 92

94 —93 42 —q1



we have required that

§ = 1p1 — G2p3 + q3p2 — qap1 = 0. (4)

Using the KS map, equation (2b) becomes

1/1, —2E, F , 1 G 2
L= (' o) + gl = wa)d + 5 plers — o)
+1G—2(2+2)(2+2)2 (5)
31 4y T 44)\q; T 43)q -

After rescaling the variables ¢ and p by (¢,p) — (i pVw), where Jw =

N
2V —2F
o and rescaling time by ¢ — %t, equation (5) becomes
4 H— oo 5 1 . 22 1 . 2
=H=S(p"+¢) + /(016 — 4:91)°¢" + 59(q2ps — gsp2)q
w 2 3 2
1
+ 597+ ada; + g3)q” (6)
Writing the scaled field parameters as
2 \? 2 \?2
f = 3F<m) = 56 and g = G(m) = &«

where o and [ are two dimensionless parameters satisfying

a>0, >0, o’+p3%=1 (7)

and ¢ is a smallness parameter [33], the Hamiltonian H (6) can be written as

1
H{q:p)= 50" +4°) + e(Bqr12 — s 01)* + o 2ps — asp2) ) ¢
1 ,/1
+ 520 (0% (@ + a6 + B))
1
:H0—|—€H1 —|— §€2H2, (8)

which is a perturbation of the 1 : 1 : 1 :1 harmonic oscillator.



3.2  Normalization and reduction

Having written the Hamiltonian (8) as a perturbation of the harmonic oscillator
Hy, we can carry out its normalization using standard Lie series methods. This
normalization procedure gives a canonical coordinate change on TR* for which
the transformed Hamiltonian Poisson commutes with Hy up through second
order terms in €. The truncated normalized Hamiltonian

1
Hint = Ho + cH1 + 5527'[2 (9)

also Poisson commutes with the KS integral ¢ (4) because the normalizing
coordinate change commutes with the S' symmetry of H (8) generated by the

flow of X;. Thus Hgyy is invariant under the T? symmetry generated by Hy
and (.

The algebra of polynomials on TR* which are invariant under this T? action
is generated by

Ki=ip+ @ +p+a— 0 +d)— (0 +d)].
Ky = i(p3p4 — q1q2 — P1P2 T @3G4),
K3= —%(%q:a + G2G4 + p1ps + p2pa),

L= %(Q2p3 — 32 + G1Pa — @ap1),
Ly= %(Q2p4 + ¢sp1 — @1ps — qap2),
Ly= %((hpz + ¢sps — @2p1 — qaps),

together with Hy and (. The vectors K = (K1, Ky, K3) and L = (Ly, Ly, L3)
are nothing but the modified eccentricity [34] and angular momentum vectors
for the Kepler Hamiltonian written in terms of the KS variables (¢, p). The
above TZ%-invariants satisfy the relations

1
K-K+L-L=_H —and K-L=0. (10)

Thus the space of T? orbits on Hy'(2n) N ¢71(0) is defined by

K? 4+ L? = n? and K- -L=0. (11a)

Since (11a) is equivalent to

(K + L)2 =n? and (K — L)2 = n?, (11b)



the T?-orbit space is the product of two 2-spheres 52/2 X 52/2. The Poisson
structure on 52/2 X 52/2 is determined by the so(4) relations

{Li, LJ} = 5ijk[fk7 {[(Z', I(j} = 5ijk[fk7 and {L“ I(j} = 5ijk[(k- (12)

In [20] the first normalized Hamiltonian H,e in (9) is expressed in terms of
T?-invariant polynomials restricted to 82/2 X 8721/2- Rescaling time by ¢t — —in
and dropping the additive constant (3a* — 173%/9)¢/4, we can write He,r as

Hy=2 (13a)
Hl :OéLl —|—ﬁ[(2 (13b)

2
Hy= " [3L2 4212 4 3K — 2K7 +2(L2 — K2)]

4
af ﬁ_z
12

+ ?(7[(2[/1 — Lzl(l) + (17[&722 — 3[/3) (13C)

4 Second normal form

In this section we show how to normalize the Hamiltonian Hi¢ of the first
normal form once again using the S' symmetry generated by H;. We then
reduce this S' symmetry to obtain a one degree of freedom Hamiltonian #,, .
on a possibly singular second reduced phase space P, .. When ¢ = 0 we analyze
the geometry of this one degree of freedom system H, ¢ on the singular space
P, 0. We find an open interval of values of the parameter a such that the energy
momentum map (Hsnt, H1) has monodromy.

4.1 Calculation of the second normal form

In order to calculate the second normal form for H,e in (13), we make its
first order term H; = o Ly + 8 K the first basis element of the so(4) Poisson
algebra (12). To do this we use the fact that a? + 32 = 1 and define a Poisson
automorphism (L, K') — (T,V) with

aly + K, BLy+ aK,

(T, V) == OéLQ — 6[(1 5 Oé[(z — ﬁ[/l . (14)
L3 Ks

10



Of course, the Poisson brackets for the components of T and V' are the same
as in (12) with L and K replaced by T and V respectively. We can also work
directly with the Poisson algebra generated by the components of = %(T—I— V)
and y = 2(T' — V), namely

T+ W Ty + Vo T3+ V3
T = , Ty = , T3 = ; (15&)
2 2 2
T, — V] Ty — V5 T — V-
N = L B 17 Y2 = 22 27 Ys = 32 3' (15b)

In terms of these variables, the first reduced phase space 82/2 X 82/2 is defined
by the Casimirs

2 2

n n
xf+l’§+l‘§=; and yf+y§+y§=? (16)

and the Poisson bracket satisfies the so(3) x so(3) relations

{wizjy=eipre, {viyi} = ijeyn,  and  {wi,y;} = 0. (17)
After dropping the constant Hy = 2, rescaling the time by ¢ — ¢t, and then

changing to variables (x,y), the first normalized Hamiltonian (9) up to first
order becomes

5 5 5
Hent = Hi1 + 57‘[2 =T+ 57—[2 =(z14+w)+ 57—[2, (18a)
where

1 2
Ha= (20" —a® + 7/2)(wf +yi) + ga*(1 = a®) (@ + y3)

3
1 2
-I-gaﬁ(l - 4042)(51?151?2 - ylyz) + gaﬁ(l’z% - 51?1y2)
10
+20%(zoy2 + T3y3) + 3(1 —a®)x 1. (18b)

The vector field

0 0 0 0
Xy, =—T3—+To— — Va— — 1
My 9T, + 25T, ‘/36‘/2 -I-Vzav3 (19a)
0 0 0 0
=—23— + T — — + Y2 (19b)

drs | Pors Py,

11



has flow given by

1 0 0
oz, y) = (R, Ry), R = (0 cost —sint). (20)
0 sint cost

In other words, ¢; defines an S* action on R? x R?® which satisfies p, = id
and leaves the first reduced phase space 82/2 X 82/2 invariant. Thus we may
normalize H,s a second time. This can be done by simple averaging of H,
along the integral orbits of Xy, given by ¢;, namely

2
— 1

Ha(ey) = 5 [ Halulr,y) dr (21)

Thus to first order the second normalized Hamiltonian is

Hsnf — Hl + %ﬂ% (22&)
with

— 1 7 1
(e, y)=5 (200 — 0 + 5 ) (a2 4 2) + 0B (e + 0k + 4+ 42)

10
+ 3529&1% + 2@2(:1?2y2 + x3y3). (22b)

This can be further simplified using (16) and (7) to

I g 2 5T 2 2 n’ 2 92
Ha(z,y)= (a - goz + 6) (1 +y1) + Fa &}
10
+ 3529&1% + 2@2(:1?2y2 + x3y3). (22c¢)

The normal form Hepne retains only those terms m(x,y) of Hz [a homogeneous
polynomial in (x,y) of degree 2] which Poisson commute with #;, that is for

which Xy, (7‘[‘(1‘, y)) = 0. Since H, is constant on the integral curves of Xy,

it follows that H; is a second integral of Xy . Thus (Heus, H1) is a Liouville
integrable system on the first reduced phase space 52/2 X 52/2 with coordinates
(x,y) and Poisson bracket (17). The energy momentum map for this integrable
system is

gM : 8721/2 X 8721/2 — R2 p— (Hsnf(p)le(p)) (23)

12



4.2 Reduction to one degree of freedom

Here we analyze the integrable system (Hans, H1) by reducing the S' symmetry
generated by H; using the method of singular reduction [2,21]. We thereby
obtain a one degree of freedom system.

4.2.1 Second reduced phase space

We first use invariant theory to construct the second reduced space. The al-
gebra of polynomials on R? x R® which are invariant under the S' action
defined by ¢; (20) is generated by

m=x—y =V (24a)
Ty =4(ways + w3ys) =15 + T5 — V) — V¢ (24D)
T3 = 4($3y2 — l’zyg) = Z(TQ‘/S — Tg‘/z) (24C)
ma=x1+y1 =1} (24d)
ms = 4(x5 + 23) (24e)
Te=4(y5 + y3) (24f)
subject to the relation
7T§ + 7T§ =msme, 75 >0, mg > 0. (25)

Equation (25) defines the space of ¢; orbits on R* x R?. To find an explicit
defining relation for the second reduced phase space we note that the c-level
set of Hy, which is given by

Hi=Ti=z14+vy1=¢, | <n, (26)
and (16), is a @s-invariant submanifold M. of 82/2 X 82/2 C R? x R?. The

second reduced phase space P, . is the space of ¢; orbits on M, and is defined
in terms of invariant polynomials (24) by

Ty=cC (27a)
ms=n°— (m + m4)° (27b)
Te=n*— (w4 —m)? (27c¢)
T2 4 T2 =msme, w5 > 0,71 > 0. (27d)

[The first three equations above come from expressing the defining equations
(26) and (16) of M. in terms of invariant polynomials (24). These equations

13



Fig. 2. The second reduced phase space P, o

are complemented by the relation (25).] Using the relations in (27) to eliminate
the variables my, 75, and mg, we see that P, . is the semialgebraic variety defined
in R? with coordinates (my, T2, m3) by

™t =[n—c) = will(n +¢)* — 7], (28a)

The values of 71, e, and 73 in (28a) are subject to the restrictions

ml<n—ld, |ml<n®=c |ml<n’ = (28b)

(The first restriction follows from the fact that for any |¢| < n and |71] < n [use
(16)] the two factors on the right hand side of (28a) cannot be both negative
and hence they should be both positive.) From (28) we can see that when
0 < |¢| < n, the second reduced phase space is a smooth 2-sphere; when |¢| = n
it is a point; when ¢ = 0 it is a topological 2-sphere with two conical singular
points shown in fig. 2. The reason why P, o has two singular points is that the

S! action ¢; on My has two fixed points (z,y) = g(:l:l, 0,0,%1,0,0). [The two
(1,0,0,1,0,0)

n

other fixed points of the ¢; action on 82/2 X 82/2 are (x,y) =+ 5

corresponding to P, 1,. See [20,23] for more details.]

14
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0

Fig. 3. Action of the symmetry operations of the Zy X Z5 finite symmetry group of
the hydrogen atom in orthogonal fields on the vectors of electric and magnetic fields
F and . (Position of GG obtained without momentum reversal which sends G — -G
is shown by the dashed line.)

4.2.2  Reduction of finite symmetries

As discussed in [20], the original Hamiltonian H (1) has two distinct Zs
symmetries: one given by the composition of momentum reversal (Q, P) —
(@, —P) and rotation by 7 around axis Q)3 of the electric field F

g . (va) — (_Q17Q27_Q37P17_P27P3)7

and the other given by a reflection in the plane orthogonal to axis )y of the
magnetic field G

03 (Q, P) = (=Q1,Q2,Q3, — P, Po, P3).

The two Z5 actions commute and the total finite symmetry group of (1) is the
group Zy x Zs of order four. Its third nontrivial operation is

03 . (va) — (QMQ% _Q37 _P17 _P27P3)7

which is the composition of the momentum reversal and reflection in the plane
spanned by the electric and magnetic field vectors. These symmetries are il-
lustrated in fig. 3. Tracing these symmetries through the two reduction steps,
we find that their action on the invariants 7 in (24) (and thus on the second
reduced phase space P, ) is given by

o1:(m, 2, m3) = (=71, M2, T3), (29a)
oy (m, e, m3) = (—m1, M2, —73), (29b)
o5 (M, T2, m3) = (M1, T2, —73). (29¢)
The orbit map (my, g, m3) — (w, ma, m3) of the Zy subgroup generated by (29a)

can be defined as

w = (n - |e])? - 7. (30)
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Fig. 4. The variety V,, o (left) obtained as the orbit space of the Zj action (29a)
on the second reduced phase space P, . Fully symmetry reduced phase space Vn({0
(right) obtained as the orbit space of the Zy x Z3 action (29) on the second reduced
phase space P, ¢ in Fig. 2. Vn({0 is a projection of the variety V,, ¢ (left) on the m3 =0
plane.

Thus the image of P, . under (30) is the semialgebraic variety V;, . defined in
R?® with coordinates (w, 72, 73) by

T + 72 = w(w + 2nlc]), 0<w < (n—|c)* (31)
When 0 < |¢| < n, V.. is a smooth manifold with boundary at w = (n — |¢|)?
which is diffeomorphic to a closed 2-disc; when |¢| = n it is a point; when
¢ = 0, the variety V, o is a topological closed 2-disc with a conical singular

point, see fig. 4. The remaining Zs symmetries (29¢) and (29b) induce a Z
action on V,, . generated by

(11)7 T2, 7T3) — (11)7 T2, _7T3)‘

The orbit space V,°, of this Zy action on V,,. is the {m3 = 0}-slice of V,, . (see

n,c

fig. 4, right), that is,

Vnoﬁ = Vn,c N {7'['3 = 0}

We call the space Vn(fc the full symmetry reduced space of the second normal
form.
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4.2.3  Reduced second normal form

The second normal form and the manifold M, are invariant under the action
©¢ (20). The restriction of Hanr (22) descends to a function H,, . on P, ., called
the reduced second normal form. Furthermore, the function H, . is invariant
with respect to the Zy x Zy symmetry (29) of the problem and can therefore
be regarded as a function ﬁmc on the full symmetry reduced phase space Vn(fc.
In other words, H,, . depends only on Zy x Z, invariant polynomials 7{ (or w)
and my [35]. It follows that all we have to do in order to define the function
ﬁmc on V£C is to express Hant (22) in terms of the invariants my, 71, and my,
then fix the value of m4 = ¢, and change to the symmetry coordinate w in (30).
In this way we find

— 1
Hpe = amy + bw, where a=0a, b=--—a"—a". (32)

Here we have used the relations

1
1’% + yf = —(Wf + WZ), Ty = Z(”Z - Wf)a

2

have rescaled time ¢ — ¢/2, and have dropped the additive constant

2 2
%(6@4 — 4o’ +7) + %(4&4 +8a% —3) + %b.

We note that (to our order of the second normal form) this constant term
contains all the dependence on the values of integrals n and ¢ of the first and
second normal forms. We also note that even at the third order, the second
normal form H,, . remains linear in 72 and w [35).

4.3 Geometric analysis

We now analyze the geometry of the level sets of the second reduced normal
form H, . on the second reduced phase space P, . when ¢ = 0, that is when
P, . is singular. It suffices to understand the h-level sets of 77%0 on the full
symmetry reduced space Vnop. There are two qualitatively different possibilities
which are given in figs. 5 and 6. In these figures we also show the corresponding
sets on the {75 = 0}-slice of P, . This latter representation was used in [21,22].
Furthermore, for the case |b/a| < 1 the same levels can be seen in figs. 4 and
2 on V, o and P, o respectively.

We now determine at what values of the parameter o € [0, 1] the slope |b/q|
is less than 1. In other words we want to have the level set system of the kind
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Fig. 5. Constant level sets of 7—~ln70 on Vgo (left) and on P, N {w3 = 0} (right) in
the case when |b/a| > 1 (without monodromy).

%) 5

W | Y |

0 n2 -n 0 n

Fig. 6. Constant level sets of 7—~ln70 on Vgo (left) and on P, N {w3 = 0} (right) in
the case when |b/a| < 1 (with monodromy). Corresponding levels on V,, o and P, o
are shown in Figs. 4 and 2.

shown in fig. 6 where the 0-level set of ﬁn,O 1s a closed interval one of whose end
points is the singular point (w,m2) = (0,0). Since a = a* > 0, the condition

to be satisfied is —a < b < a. We can now see from (32) that the parameter
a > 0 must satisfy

—o? < —at—a? + 1/2 < o’

The above inequalities become equalities when o = 5 and a® =

18



Hence |b/a| < 1 if and only if

aQEI:(L_—l\/?_) (33)

4.4 Reconstruction and monodromy

We now show how to reconstruct the geometry of the level sets of the second
normal form on My from the geometry of the level sets of the second reduced
Hamiltonian on the second reduced phase space P, o. We will use the reduction
map

H:MO g 52/2 X 52/2 —>Pn70 gRS:
(l',y) — (7‘[‘1(1’,y),ﬂ'g(l’,y),ﬂ'g(l',y)), (34)

whose fiber II7!(p) over a point p in P, ¢ is a unique ¢, orbit on My. If p is a
nonsingular point of P, g, then II7!(p) is a circle (that is, a generic ¢, orbit);
whereas if p is a singular point of P, then II7'(p) is a point, which is fixed
by the action ;.

We carry out our reconstruction only when |b/a| < 1. The treatment of the
other case when |b/a| > 1 is analogous and is omitted. To follow the discussion
please refer to fig. 2 as well as figs. 4 and 6 which illustrate the lift from Vn(f0
to P, 0. We begin by considering the case when the level set of H,, ¢ is a point
p. If pis a nonsingular point of P, o (a point with m; = 0 and |ms| = n), then
after reconstruction we obtain a periodic orbit S' = II7!(p) of Xy, on My
which is also a periodic orbit of Xy . since Hgne and H; Poisson commute.
These periodic orbits are called relative equilibria of X3 _ .. If p is a singular
point of P, o, then after reconstruction we obtain an equilibrium point of Xy,
on My which is also an equilibrium point of Xy_ ..

We now look at the 0-level set of H,, o. This level set contains the two singular
points pg and p; of P, o. If we remove these points, we obtain two curves Cy and
C; which consist of nonsingular points of P, o and which are each topologically
an open interval. Over each point on C; the fiber of the reduction map II (34)
is a circle. Since each C; is contractible in P, o — {po, p1} to a point, it follows
that TI7*(C;) (the set of all points in My which map by II to points of C;)
is diffeomorphic to a cylinder C; x S*. Thus II7Y(C; U {po, p1}) is a cylinder
with each of its ends pinched to a point. The reconstruction H_I(H;})(O)) in
My of the 0-level of H, o on P, is the union of two pinched cylinders with
their end points identified two at a time to two distinct points. In other words,
after reconstruction, the O-level set of the second reduced Hamiltonian on the
second reduced space is a doubly pinched 2-torus in M, (see fig. 1, right).
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Fig. 7. Possible generic deformations of the constant level sets of Hqne (32) when
a/b =~ 1. All cases have an extra Zjy equivalent pair of relative equilibria. In the
leftmost situation (a) the double pinched torus is decomposed into a Z; equivalent
pair of single pinched tori.

This doubly pinched 2-torus is the fiber over the (0,0) point in the range of
the energy momentum map EM of the integrable system (Hgne, H1). Thus the
energy momentum map £ M has monodromy [12] when the values of o? lie in

the interval Z (33).
4.5  Monodromy of the generic second normal form

,TV}(IS careful reader should have noticed that the reduced second normal form
H

wf (32) truncated at order one (which corresponds to second order of the
first normal form Hg,e) is not generic. Indeed, when |a/b| = 1 the level sets

of 7—222 are parallel to one of the edges of V, (and thus the corresponding

level set of 7—[2111% coincides with part of P, o N{ms = 0}), see figs. 5 and 6. In a
generic situation the level sets of Hyys are slightly curved.

The two possible level sets of the generic ﬁsnf are illustrated in fig. 7. The level
sets near the edge |m;| = w of V) can either curve “inward” as in fig. 7 (a) and
(b) or “outward” as in fig. 7 (c) or (d). To find which situation occurs in our
problem, the fourth order of the first normal form Hg,s (which corresponds to

the third order Hii; of the second normal form) should be computed [35]. The

terms a'mimy, O'7 and /73 in Hii; ensure that the level sets of ﬁsnf are curved.
According to our fourth-order analysis [36] both the “inward” and “outward”
cases occur.

When |a/b| & 1 and ¢ = 0 the generic 7—222 has an extra pair of Z*-equivalent
relative equilibria. These correspond to a point of tangency of a level set of
?‘Ziii with one of the edges of V,;. As a/b changes the point of tangency moves
quickly to one of the endpoints of the edge and disappears. There are two
bifurcations involved in this process. At the first, the Z%-equivalent pair of
relative equilibria appear from the singular points my = 0, Vi = +n (that is,
my = w = 0) of the second reduced phase space P, . At the second, this pair
collapses to one of the Zy-symmetric relative equilibria w = |m2| = n. The first
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bifurcation is a S' x Z? -symmetric Hamiltonian Hopf bifurcation [36], whereas
the second is a pitchfork bifurcation.

When |a/b| & 1 and ¢ = 0 [near the limits of the monodromy interval Z (33)]
the topology of the level sets of the generic Hqyr (which lie near |mg| = w)
can be quite complicated. In particular, fig. 7 (a) shows how the zero-level
set which corresponds to the doubly pinched 2-torus in My, see fig. 6, splits
into two singly pinched 2-tori. Even though the topology of the zero-level set of

?‘Ziil is different from the topology of the zero-level set of 3—223,

) )

~(1 ~(3
does not change because Hinf and Hinf on My are smoothly homotopic and

the monodromy

monodromy is a homotopy invariant. Consequently our geometric analysis

~(1
of the nongeneric second normal form Hinl is adequate for determining the
monodromy.

5 Quantum monodromy

Traditionally, manifestations of monodromy in quantum systems have been
analyzed using the quantum analogue of the energy momentum map [13-15].
The EBK quantization conditions for an integrable system select regular se-
quences of invariant tori which correspond to quantum energy levels. The
global structure of energy levels of the quantum analogue of an integrable sys-
tem with monodromy is quite particular and provides a very clear manifest-
ation of monodromy [13,10,11,14]. Locally, the energy levels (and the corres-
ponding tori) form a regular lattice of points in the range of energy momentum
map EM and can be labeled by the values of quantized actions. However, if
monodromy is present, the structure of this lattice in the vicinity of the image
of the pinched torus makes any global labeling impossible.

5.1 Quantum analogue of the normal form

The technique to construct the quantum analogue of the normalized Kepler Ha-
miltonian (of the first reduced Hamiltonian H,e on 82/2 X 8721/2) is well known,

see [37,38]. Thus to construct the quantum analogue Hgy¢ of the second reduced
Hamiltonian Hene(77, 72) (32) we represent the latter in terms of components
of the 3-vectors « and y in (15) and then replace « and y for their quantum
analogues. The Poisson algebra (17) is the algebra su(2) x su(2) of two an-
gular momenta. It corresponds to the algebra of quantum angular momentum
operators

A~ A~

[l'av wb] = igabci'm [Qav gb] = igabCQC7 and [j;av gb] = 07 (35)
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where {abc} = {123} and [A, B] = AB — BA. The Casimirs of this algebra
are z* and y* in (16). They are integrals of the second normal form, so that
in quantum mechanics [Hant, %] = [Hent, %] = 0. The standard angular mo-

mentum quantization gives

1 3
=9 =5+ 1), j:0,§,1,§,.... (36a)

Here j labels the natural su(2) representation of dimension 2j+1. The (25+1)?
quantum states with quantum number j form an n shell of the perturbed
hydrogen atom system with the number of states when expressed in terms of
the principal quantum number

n=20 1) = (T +V)=1,23,..., (36b)

being n%. Consequently,

(37a)

It follows from (16) that

P=gt=j0+1) = = (37b)

and that the classical value of the Kepler integral N is

Nel = 1/ <N2> =vn?—1. (37¢)

At the same time the quantum number m of the integral of motion T} = =14y,
(the projection of the angular momentum T on the axis of the dynamical S*
symmetry) takes all integer values in the interval

A

m=(T1) =mz+m, =-2j,...,2) =—(n—1),....,.n— L. (38)

(Here m, and m, correspond to the projection operators &; and y; respect-
ively.) The classical value ¢ of T} equals m. To find the energies we solve a
simple matrix problem for each value of m at a fixed value of quantum num-
ber n. In the standard spherical harmonic basis |j,m,, my) =Y, Y, with
mg +m, = m, we obtain a Hermitian matrix of dimension 25 4+1—m =n—m
which can be further reduced if the Z, x Z5 symmetry is taken into account. For
the Hamiltonian Hr (32), this matrix is tridiagonal [39]. Thus our calculation
essentially reproduces [37].
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Fig. 8. Quantum and classical energy momentum map for quantum number n = 11
and classical value nq = v/120. In the case with monodromy (left) the position of
the pinched torus is marked by a white circle and the deformation of the local lattice
is shown by a sequence of shaded quadrilaterals.

5.2 Analysis of quantum energy momentum map

Results of our computation for n = 11 and the corresponding classical value of
na = /120 are shown in fig. 8. Black dots in this figure show the eigenvalues
of the matrix of Hyy in the basis with n = 11 and m = —10,...,10, bold
lines represent stationary points of H,, o on P, o with ng = V/120. These lines
limit the range of the classical energy momentum map EM. The case with
monodromy (a/b = 0.4 and a? ~ 0.295) is shown on the left of fig. 8. We

compare and analyze quantum energy momentum map for n = 11 and classical

EM for ngy = +/120.

It can be seen that quantum energies form a 2-lattice in the range of EM.
In the presence of monodromy this lattice has a point defect located at the
value of EM corresponding to the pinched torus. The type of the defect is
related to the number and type of the pinch points. To visualize this defect
we can define an elementary cell of the lattice and transport it along a path
which lies entirely in the domain of regular values of EM and goes around the
defect (fig. 8, left). We can easily follow the evolution of this cell because each
small step to a neighboring cell is unambiguous. However, after making a tour
our final cell does not match the original celll The accumulated deformation is

described by the matrix (é ?) where 2 corresponds to the number of pinch

points of the singular fiber of the energy-momentum map [32]. Thus the lattice
in fig. 8 (left) cannot be labeled globally by two quantum numbers.

For comparison, we show on the right of fig. 8 the results of the same calculation
for a? ~ 0.158. In this case the value of a? lies outside the monodromy interval
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7 and is close to the Stark limit where o = 0. The corresponding energy
level spectrum is quite similar to that in the quadratic Zeeman effect [40].
Two distinct regions in the range of EM are clearly separated by the energy
of an unstable Z, symmetric stationary point of H, .. In the lower region
the quantum lattice corresponds to that of a rotator with angular momentum
quantum number J = n,n—1,.... The upper region corresponds to the double
well 2-oscillator. Over each of the regions (except, perhaps, for a few levels near
their common boundary) there is a straightforward unambiguous labeling with
two quantum numbers. From (32) we can see that b/a > —3/2, and that to the
order used in our second reduced Hamiltonian H,, . the structure at b/a < —1
is qualitatively the same as in fig. 8, right, with the energy axis flipped.

The whole parametric family of EM can be easily imagined if we note that
in the Zeeman limit at a = 0 the Hamiltonian H,, o has an absolute minimum
at the singular points p; and py of P,o. As the value of o? increases, the
value H,0(p1) = Hno(p2) also increases. Thus the double-well region shrinks.
When a? = v/6/2 — 1, H,o(p1) enters the (upper) rotator region. Here the
points p; and py become hyperbolic relative equilibria and their stable and
unstable manifolds connect. After reconstruction they form a double pinched
torus in My. In this region the angular momentum quantization rule breaks
down (fig. 8, left). As H,o(p1) continues to increase, it becomes an absolute
maximum when o? > 1/2/2 (fig. 8, right).

5.3  Comparison with early quantum calculations

Analysis of the quantum crossed fields problem goes back to 1983 when So-
lov’ev [28] analyzed the energy level system using an n-shell second order
perturbation theory. He realized that the first order problem remained degen-
erate (indeed, for a given value of m which Solov’ev calls ¢ = n’ +n”, there are
n — m states with the same first order correction £(71)). He proceeded with
diagonalizing his second order correction on the subspace of n-shell functions
with fixed m (sec. 3 of [28]). His resulting zeroth order equivalent operator A,
(eq. 10 of [28]) is a direct quantum analogue of the second normal form H,, .
(32) obtained by averaging Hi,e along the orbits of Xp,.

Later Solov’ev and Braun [37] calculated quantum energies for A, of [28] in
essentially the same way as we do above. Using the field strength ratio as a
parameter they distinguished three different domains of the parameter values,
including the one which we call the monodromy interval Z (33). The two relative
equilibria corresponding to the singular points on P, o appeared as singularities
of the effective semiclassical “potential” U(k) shown in fig. 5 of [37]. When the
2 was contained in the interval Z, the
authors associated these singular points with a “quasibarrier”.

values of the scaled field parameter «
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When comparing classical and quantum results we should be well aware of the
difficulty presented by the two different parameterization schemes (cf. Secs. [IE
and IVB1 in [20]). In brief, we tend to use energy-scaled field strengths in
classical mechanics and n scaled field strengths in quantum mechanics. In
other words, in the classical problem we work on the same energy level set of
(1), whereas in the quantum problem we compute energies of the states within
the same n-shell. Formally, the energy of our system can be found as follows.
If & is the value of Hoy in (32) (plus a constant) then, taking all our rescalings
properly into account,

c%(mm---:—— = (39)

The above equation can be rewritten as a formal power series in en

1 1
S = (en) — 5(571)20 — gh(en)?’. (39b)
Inverting (39b) gives
2
gy e (Y e
€n—5—|-25 -|-(2—|-8)5—|— . (39¢)

Recalling the discussion in section 3.1 we find that the energy is

2

E:—;—2[1—|—Sc—|—52(h—|-5c)/4—|—---]. (39d)
n

In (39d) the unperturbed hydrogen atom energy is factored out. The smallness
parameter S [33] is a uniform field strength parameter. Its n-shell definition can
be obtained from the energy-scaled formulae in section 3.1 if the KS frequency
w is replaced by 2/n so that

S n\l (%ZQ)Z + (%23)2 (40)

The two definitions are equivalent in the unperturbed Kepler problem. In our
perturbed problem a simple replacement (40) gives the principal order terms
and is sufficient for the present qualitative comparison. A more correct calcu-

lation requires the reparameterization of the first normal form Hg,¢ using the
value of n instead of w in the definition of scaled field strengths.

Figure 9 illustrates the analysis of the energy level system carried out by au-
thors of [37] (cf. their Fig. 4). Since the energy level structure is analyzed separ-
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Fig. 9. Correlation diagram. Thin lines show the evolution of quantum energies
(eigenvalues of the matrix of H, ) with quantum number n = 11 and (73) = 0
between the Zeeman and Stark limits. Bold lines represent the energy of relative
equilibria of H,, . with classical value nq = /120 and ¢ = 0. Dashed lines mark the

monodromy interval Z.

ately each ¢ (or m), monodromy cannot be understood this way. On the other
hand, we can clearly observe the correspondence between the quantum spec-
trum and the energies of relative equilibria shown by bold lines. These latter
give the limits of the quantum spectrum. In addition, they show the threshold
at which doublets of levels (corresponding to the double well 2-oscillator) ap-
pear/disappear near the Stark and the Zeeman limit.

6 Discussion

We have demonstrated explicitly that the problem of hydrogen atom in or-
thogonal (crossed) magnetic and electric fields has the nontrivial property of
monodromy. Qur analysis develops geometric techniques which allow mono-
dromy to be studied in other problems involving the hydrogen atom in fields.
We have paid proper attention to the singularities of the second reduced phase
space.

Our work raises a number of important questions. We have relied on normal-
ization and attempted to extend the phenomenon of monodromy to systems
which are nonintegrable in principle but which still have most of their KAM
tori intact. Since this phenomenon is associated with the global organization
of the whole family of invariant tori, we have assumed that it is stable under
small perturbations and have demonstrated that as such it exists in the hydro-
gen atom in crossed fields. At the same time, more detailed understanding of
monodromy, or rather of its analogue in such systems remains to be achieved.
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In particular, we would be greatly interested in the analysis of local action-
angle variables for the Cantor sets of KAM tori surrounding the heteroclinic
tangle which corresponds to the doubly pinched torus of our integrable ap-
proximation. Since these KAM tori fit together into smooth families of tori,
the monodromy present in the integrable approximation survives perturbation
and as such exists in the hydrogen atom problem in orthogonal electric and
magnetic fields when the parameter « lies in the interval 7.

A different group of questions is associated with “quantum monodromy.” Here
again one should attempt to generalize our methods to quantum systems whose
classical analogues are not integrable, but which can be treated within the
framework of quantum perturbation theory. When applying the ideas of this
paper to quantum systems, one should be aware of differences between the
classical and quantum normal form algorithms [41].

Persistence of quantum monodromy under small perturbations is also a subject
of study on its own. We are, nevertheless, convinced that future studies of the
hydrogen atom in crossed fields will reveal the energy level structure which we
obtained for the quantized integrable approximation and which is characteristic
to all systems with monodromy. Such studies can answer a very interesting
question of how far this structure will persist with increasing perturbation

(energy).

Furthermore, perturbed hydrogen atom and the crossed field system in par-
ticular [42,43] continue to attract considerable interest of experimentalists.
Application of the idea of monodromy in experimental studies depends on how
the above questions are answered. We think that our system will become ex-
perimentally important precisely because it can, ideally, be “tuned” in and out
of the interval Z of field parameter @ where monodromy exists.
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