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Abstract

We derive a new lower bound pc > 0:8107 for the critical value of Mandelbrot's

dyadic fractal percolation model. This is achieved by taking the random fractal set (to

be denoted A1) and adding to it a countable number of straight line segments, chosen

in a certain (non-random) way as to simplify greatly the connectivity structure. We

denote the modi�ed model thus obtained by C1, and write Cn for the set formed

after n steps in its construction. Now it is possible, using an iterative technique, to

compute the probability of percolating through Cn for any parameter value p and

any �nite n. For p = 0:8107 and n = 360 we obtain a value less than 10�5; using

some topological arguments it follows that 0.8107 is subcritical for C1 and hence

(since C1 dominates A1) for A1.

1 A new lower bound via a new model

The dyadic fractal percolation model [5] can be described informally as follows. Fix 0 �
p � 1. Divide the unit square I = [0; 1]2 into 4 equal smaller squares, and in the natural

way retain each of these squares with probability p, or else remove it with probability 1�p.
Iterate this procedure (suitably scaled) of subdivision and random removal on each of the

retained squares; in this way we obtain a nested sequence A0(� I), A1, A2; : : : of random

(compact) subsets of I. The intersection of this sequence, which we shall denote A1, is

a random fractal set. For 0 � n � 1 let �n = �n(p) denote the probability that there is

a left-right crossing of An in I, that is, that there is a connected component of An that

intersects both the left side f0g � [0; 1] and the right side f1g � [0; 1] of the unit square.

It is well known (see [1], [3]) that there is a critical value pc, with 0 < pc < 1, such that

�1(p) is zero if and only if p < pc. In particular, �1(p) is discontinuous at pc.
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Figure 1: The set F (not in full detail).

It has so far proved intractable to �nd the exact value of pc. In this article we introduce

a deterministic set F � I, such that the random fractal process Cn = An [ F has a

critical value p0c that can actually be computed with the help of a fairly simple computer

program, giving the value p0c = 0:811 (to three decimal places). As far as rigorous proofs

are concerned, we prove (with the aid of the computer) that p0c > 0:8107; moreover, since

Cn dominates An for all n, it will follow that 0.8107 is a lower bound for the classical

critical point pc. This improves on the previous lower bound of 1=
p
2 � 0:7071 [1].

A precise de�nition of F is postponed to Section 3, and for now the reader is simply

referred to Figure 1. Observe that there are exactly 5 connected components of F that

intersect the boundary @I of the unit square. (See Section 3 for a justi�cation of this

statement.) Since for all n = 0; : : :1 Cn � F , it follows that the number of connected

components of Cn that intersect @I is less than or equal to �ve; we shall say that Cn is

wired if this number is strictly less than �ve. Thus when Cn is wired, connections have

been formed in An so that some of the �ve boundary components of F become linked. For

given 0 � p � 1 and n <1, write �0n = �0n(p) for the probability that Cn is wired. Since

An � Cn, if there is a left-right crossing in An then Cn is certainly wired, so �0n(p) � �n(p)

for all p and all �nite n. Moreover the sequence (Cn) is nested, so �0n(p) is nonincreasing

in n and we may de�ne �01(p) = limn!1 �0n(p).

A note on probability measures: we prefer to think of our underlying probability space

in such a way that the underlying probability measure itself depends on the parameter p, so
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the sequence (An) depends on p only through its induced measure (or law). The law of (An)

will be denoted Pp. Thus �0n(p) = Pp(Cn is wired) for n �nite, and �01(p) = limn!1Pp(Cn

is wired).

We have found it convenient to take what might be called a physicist's approach, in

de�ning �01 without direct reference to the in�nite model C1. A more common approach

for a mathematician might have been to de�ne �01(p) to be Pp(C1 is wired), in analogy

with the de�nition of �1(p) above. In fact, the two approaches are equivalent, as we see

from the following proposition.

Proposition 1 We have fC1 is wiredg =
T
n�0fCn is wiredg. In particular, for all 0 �

p � 1, Pp(Cn is wired) converges to Pp(C1 is wired) as n!1.

The corresponding result for the An is well-known, being a simple consequence of the

An being nested compact sets [6], and indeed yields �1(p) = limn!1 �n(p). The Cn are

however not in general compact, and the proof of Proposition 1 involves a considerable

amount of topological work. As the proposition will in any case not be used in this paper

we omit the proof (but see [7]).

On the other hand, the next proposition (proved in Section 5) will be crucial to what

follows.

Proposition 2 Suppose 0 < p < 1 with �01(p) > 0. Then

�01(p) �
p�n � 3

22n+3

for all n � 1.

An important consequence of Proposition 2 is

Proposition 3 There is a �rst order phase transition in �01, that is, there exists p0c with

0 < p0c < 1 such that �01(p) is zero if and only if p < pc.

Proof By a simple coupling argument, �0n(p) is nondecreasing in p and nonincreasing in n;

moreover, �0n is continuous when n is �nite, since Cn depends on only �nitely manyBernoulli

random variables. It therefore follows that �01 is nondecreasing and right-continuous.

Set p0c = inffp : �01(p) > 0g = supfp : �01(p) = 0g. Since

�01(p) = lim
n!1

�0n(p) � lim
n!1

�n(p) = �1(p);
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we have p0c � pc < 1. On the other hand, by elementary branching process theory A1 = ;
(Pp-a.s.) for p � 1=4, so it follows that p0c � 1=4 > 0. Finally, �01(p

0
c) > 0 since from

Proposition 2 and right-continuity we have �01(p
0
c) > 2�2n�3(p0�nc � 3) for all n. 2

To make calculations about (Cn) we shall want to be able to express �0n+1 as a function

of �0n. This cannot be done directly: �rst we need to break down the event `Cn is wired'

into various sub-events, in other words, to be more speci�c about the di�erent ways the

event `Cn is wired' can occur. Label the �ve connected components of F \ @I by S1; : : : S5
as in Figure 2. For 0 � n � 1 we de�ne the (random) equivalence relation

n� on the

numbers 1 to 5 by saying that i
n�j if and only if Si and Sj are contained in the same

connected component of Cn. Thus Cn is wired when there exist i 6= j such that i
n�j; that

is, fCn is wiredg = f n� 6= equalityg. Hence,
�0n(p) = 1 �Pp(

n� = equality): (1)

Note that not all equivalence relations are geometrically realisable: for example, there

is no realisation of Cn for which
n� is the relation with equivalence classes f1; 2; 4g, f3; 5g

(see Figure 2).

Let E be the set of all possible equivalence relations on the numbers 1 to 5. For n � 0

and 0 � p � 1, let �n(p) be the probability vector indexed by E with �en(p) = Pp(
n� = e).

In Section 4 we give a constructive proof of the following:

Proposition 4 There exists a function fp : [0; 1]E ! [0; 1]E with the property that �n(p) =

fp(�n�1(p)) for all �nite n � 1. This function can be written down explicitly.

The explicit formulation of fp is extremely complicated so for reasons of space will not

be given here.

For di�erent values of p, we used Mathematica to iterate fp a large number (360) of

times starting from �0(p). (Since A0 � I, �0(p) is the vector with unit mass on the

total equivalence relation, that is, on the relation with one equivalence class f1; : : : 5g.)
Using (1) we were thus able to compute �0360(p). Of particular interest are the values

�0360(0:8107) = 2:179� 10�6 and �0360(0:8115) = 0:9659. These results strongly suggest that

p0c = 0:811 (to three decimal places), however we have yet found no way of proving that

�0n(0:8115) remains bounded away from zero for all n.

To prove that �0n(0:8107) does converge to zero is straightforward: applying Proposi-

tion 2 with p = 0:8107 and n = 6 we see that p0c < 0:8107 implies �01(0:8107) > 1:595�10�5;
but this would be in contradiction with the computed value of �0360(0:8107).
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Since (from the proof of Proposition 3) p0c � pc, we have therefore proved

Theorem 5 0.8107 is a lower bound for pc and p0c.

The computational results above have been double-checked by Kenery Oron, a student

at the University of Utrecht, who independently implemented the algorithms described here

in JAVA, without reference to the author's original Mathematica programs. Listings of the

Mathematica programs, together with complete details of the function fp, are available in

Notebook form from the author on request.

The rest of this paper is concerned with covering the three points left undone in Sec-

tion 1: a precise de�nition of the set F , and proofs of Propositions 2 and 4. In Section

2 we �rst discuss a toy model that incorporates in a fairly elementary way most of the

important ideas we shall need later on, at the same time introducing some useful notation.

These ideas will then be built on in Section 3, where we give a precise de�nition of the

set F and discuss some of its consequences for self-similarity properties in the new model

(Cn). Having clearly de�ned F we are then in a position to prove Propositions 2 and 4:

Proposition 4 is proved in Section 4 and Proposition 2 in Section 5.

2 A simple example

Before de�ning the model (Cn) itself, we brie
y discuss a toy model that incorporates in a

fairly elementary way most of the important ideas concerning (Cn).

A�cianados of fractal percolation will probably be well acquainted with the `primitive'

fractal percolation model called Diamond Percolation [2, 4]. This is usually de�ned as

follows. Begin with a graph consisting of four bonds, as in Figure 3. We call this graph a

diamond. Now perform independent bond percolation with parameter p on the diamond,

and let �}1 (p) = Pp(there is an open path in the diamond from point L to point R) =

2p2�p4. Next, replace each open bond with a new diamond, and iterate the whole process

(see Figure 4). In diamond percolation we are interested in the probability �}n (p) that there

is an open path from L to R after n iterations of the process. It is not di�cult to see that

these probabilities satisfy the recursion

�}n (p) = 2(p �}n�1(p))
2 � (p �}n�1(p))

4: (2)

This enables us easily to compute the value of �}n (p) for any given p and n < 1. Using

elementary methods (see for example Lemma 3.4 of [3]) we can even arrive at an expression
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Figure 2: The �ve components S1; : : : S5 of F \ @I. In this diagrammatic representation

of a realisation of Cn (for some n) we see that S1, S2 and S4 all lie in the same connected

component of Cn and thus 1
n�2 n�4. Note that it would not be possible for

n� to have

equivalence classes f1; 2; 4g and f3; 5g: if A;A0 are connected subsets of Cn with A �
S1 [ S2 [ S4 and A0 � S3 [ S5, then A \ A0 is nonempty.

. .RL

Figure 3: A diamond is a simple graph with two vertices distinguished as shown.
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for the critical point of the model

p}c = supfp : �}n (p)! 0 as n!1g = 3

4

s
3

2
� 0:9186:

It is possible to formulate the diamond percolation model in terms of Mandelbrot's

fractal percolation process (An), as we shall now explain. First, a little notation. For

0 � n < 1, we say Q � I is a level-n square if Q is of the form [a2�n; (a + 1)2�n] �
[b2�n; (b + 1)2�n] for some nonnegative integers a; b < 2n. Thus An is always a union

of some level-n squares. Q is a dyadic square if Q is a level-n square for some n. For

�1 � i <1, set Di = fx 2 [0; 1] : 2ix 2 Zg, and let D =
S1
�1Di be the set of all dyadic

numbers in [0; 1]. We de�ne � : D ! Z by �(x) = minfn � �1 : x 2 Dng. Thus for

example �(0) = �1, �(1) = 0, �(5=8) = 3.

Now consider the `grid'

G := (D� [0; 1]) [ ([0; 1]�D):

This set exhibits a lot of self-similarity, indeed, for any dyadic square I?, G\I? is similar to

G. It would however be of little interest to consider the random set An[G as a percolation

model, since this is connected for every realisation of An. Instead, we take the following

approach. Partition G into a set made up of vertical line segments

V = (D� [0; 1]) n f(x; y) 2 D2 : �(x) � �(y)g

and a set made up of horizontal line segments

H = ([0; 1]�D) n f(x; y) 2 D2 : �(x) < �(y)g

(see Figure 5). De�ne now a new random set

�n = (An [ V ) nH

for 0 � n �1, and for n <1 de�ne

��n (p) = Pp(there is a left-right crossing of �n in I):

�n has a useful property which enables us to express ��n (p) in terms of simple events

de�ned on the level-1 squares I1; : : : I4 (as given in Figure 6). For all n,

(0; 1)� f1=2g � H � �c
n (3)
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L R

Figure 4: A possible realisation of the diamond percolation process after three iterations.

The solid lines represent open bonds and the broken lines closed bonds.

Figure 5: Part of the sets H (in solid lines) and V (in broken lines).

II

I I

12

3 4

Figure 6: The four level-1 squares I1; : : : I4.
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and

f1=2g � ((0; 1=2) [ (1=2; 1)) � V � �n: (4)

This implies that

��1 (p) = Pp(I1 [ I2 � A1 or I3 [ I4 � A1) = 2p2 � p4

and in general that there is a left-right (L-R) crossing of �n in I if and only if either (i)

there is a L-R crossing of �n \ I1 in I1 and of �n \ I2 in I2 or (ii) there is a L-R crossing

of �n \ I3 in I3 and of �n \ I4 in I4. (Note that it would not be possible to write down

a similar characterisation in the classical model (An) { see Figure 7.) By self-similarity in

�n we see that Pp(L-R crossing of �n \ Ii in Ii) = p��n�1 for all n � 1 and i = 1; : : : 4,

hence, ��n satis�es the recursion

��n (p) = 2(p ��n�1(p))
2 � (p ��n�1(p))

4: (5)

Of course this comes down to the same calculation as in the �rst paragraph of this section.

Thus ��n � �}n for all n. In particular, the critical point for our model (�n) is known

explicitly, having the value p�c = 3
4

q
3
2 .

3 The model

The model (Cn) is de�ned using the dyadic grid G and the function �, in a way reminiscent

of the de�nition of �n in the previous section. Let

K = f(0; 0)g [ f(x; y) 2 D2 : j�(x)� �(y)j = 1g

and set F = G nK. (See Figure 1.) We now de�ne Cn = An [ F for 0 � n � 1.

Before proceeding, a brief remark on connected components of F : notice that the lines

y = 2x and y = x=2 do not intersect F , so F is certainly disconnected. Indeed, the set Y

of Figure 8, made up of ten straight line segments of slope 2�1, satis�es Y \ F = ;. By

inspection, it follows that there are exactly �ve connected components of F that intersect

@I, as was stated in Section 1.

We shall see that Cn and �n have many similarities, but note one crucial di�erence.

Since �n is obtained from An by adding some lines and removing others, in general we

have neither �n � An nor An � �n, and so no direct comparison is possible between p�c

and pc. On the other hand, as we saw in Section 1, An is a subset of Cn and therefore the

critical point for the Cn, p0c, forms a lower bound for pc.
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Figure 7: In this realisation of An (for a given �nite n), the existence of a left-right crossing

is guaranteed by complicated interconnections across the boundaries of the level-1 squares.

To write down all possible ways such interconnections can occur is practically speaking

impossible.

1/2

1/2

1

0 1

Figure 8: The set Y (in broken lines) does not intersect F (solid lines).
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An important similarity between Cn and �n is the way connection probabilities are

expressable in terms of fairly simple events de�ned on the level-1 squares I1; : : : I4. We have

seen already how this property in �n can be used to obtain a simple recursion equation

for ��n : the same idea will be used (in a more sophisticated way) to prove Proposition 4 in

Section 4.

In this section however we concentrate on another point in common between Cn and

�n: what might be called stochastic self-similarity. This was rather skirted over in our

treatment of �n, but for Cn a more detailed discussion will be necessary. Stochastic self-

similarity in �n resulted from the simple stochastic self-similarity of the classical process

An together with geometric self-similarities in the deterministic sets H and V ; for Cn we

will again need the properties of An, now combined with self-similarities in the set F .

The situation for An is quite simple: it is easy to see that for any positive m, n < 1
and any level-m square I?, the law of An+m \ I? conditioned on fI? � Amg (i.e. on `I? is

retained') is identical to the law of An (after scaling). Furthermore this law is invariant

under rotation by any multiple of �=2.

Turn now to F . Looking at Figure 1 we see straightaway that the pattern formed by

F within any level-1 square is remarkably similar to the set F itself. To formalise this

somewhat, de�ne J = f(1; 1); (0; 1=2); (1=2; 0)g and observe that (F n J) \ Ii is an exact

copy of F for i = 1; : : : 4, after the application of a similarity mapping �i consisting of a

scaling and a rotation through a multiple of �=2. (We omit a proof of this observation but

it is not di�cult, using the de�nitions at the beginning of this section.) By induction, we

deduce that for any m with 1 � m <1 and any level-m square I?, there is a J? � F \ gI?

and a similarity mapping �? : I? ! I such that �?((F n J?) \ I?) = F . (Here gI? denotes

the set consisting of the four corners of I?.)

We can now combine these two paragraphs to obtain a stochastic self-similarity property

for Cn. If J0 is any �nite subset of F , for n < 1 we de�ne CJ0
n to be the random set

An [ (F n J0), thus C;n � Cn. For a level-1 square Ii (i = 1; : : : 4) we then see that the law

of �i(C
J
n+1 \ Ii) conditioned on fIi � A1g is the same as that of Cn. In the general set-up

above of a level-m square I? we have that �?(C
J?
n+m \ I?) on fI? � Amg has the same law

as Cn. Let us say that CJ0
n is wired in I? if there is a connected component of CJ0

n \ I? that
contains at least two distinct components of (F n J0) \ @I?. Then

Pp(C
J?
n+m is wired in I?jI? � Am) = �0n(p): (6)

This result will be important in the proof of Proposition 2 in Section 5.
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4 The iteration function

We now prove Proposition 4, that is, we show how to �nd a function fp : [0; 1]E ! [0; 1]E

such that �n(p) = fp(�n�1(p)) for all �nite n � 1.

Using the terminology of Section 3, let
n� be the random equivalence relation on 1, : : :5

whereby i
n�j if and only if ��11 (Si) and ��11 (Sj) lie in the same connected component of

CJ
n \ I1. Then by self-similarity,

Pp(
n� = e jI1 � A1) = Pp(

n�1� = e) = �en�1(p)

for all �nite n � 1 and e 2 E. Since fI1 6� A1g � f n� = equalityg, we therefore have

Pp(
n� = e) = p�en�1(p) + (1� p)1(e = equality): (7)

Consider now the set Cn\ I1, and let �n
12 E be de�ned by i �n

1 j if and only if ��11 (Si)

and ��11 (Sj) lie in the same connected component of Cn \ I1. We note that (1; 1) 2 F and

that ��11 (S3) [ f(1; 1)g [ ��11 (S4) is a connected set; so the sets ��11 (S3) and ��11 (S4) are

always linked through Cn\I1, that is, 3 �n
1 4 surely. Indeed, Cn\I1 = (CJ

n \I1)[f(1; 1)g;
so the connected components of Cn \ I1 are the same as for CJ

n \ I1 except in the case

when a join is made through the point (1,1). That is, the equivalence classes of �n
1 consist

of any classes of
n� that contain neither 3 or 4, together with the class fi : i n�3 or i

n�4g.
This de�nes a function � : E ! E such that �n

1= �(
n�), and we have

Pp(�n
1= e) =

X
e0: �(e0)=e

Pp(
n� = e): (8)

The above discussion can also be applied with I2, I3 or I4 replacing I1, to obtain random

equivalence relations �n
i that describe the connectivity properties of Cn \ Ii for i = 2; 3; 4

(see Figure 9). With equations similar to (7) and (8), we can express the law of �n
i as a

function of the probability vector �n�1. Note moreover that �n
i depends only on the Cantor

set construction within the subsquare Ii, therefore �n
1 ;�n

2 ;�n
3 and �n

4 are independent.

We now claim that it is possible to write
n� as a function � of �n

1 ;�n
2 ;�n

3 and �n
4 . It

follows that

�en(p) =
X

v2E4: �(v)=e

Pp(�n
1= v1;�n

2= v2;�n
3= v3;�n

4= v4) ;

since the �n
i are independent, and we can express each term Pp(�n

i= vi) as a function of

�n�1, this gives rise to the desired function f satisfying �n = f(�n�1).
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To justify the above claim, let us consider the set L = @(I1)[ : : :[@(I4) (see Figure 10).
This set is crucial in determining how events on the level-1 squares relate to each other,

as any interconnection across the boundaries of the level-1 squares must pass through L.

For example: in the toy model of Section 2 (formulae 3, 4) we saw that L is contained

in H [ V , where V is (surely) a subset of �n for all n, and H � �c
n. Thus L \ �n is a

deterministic set; we have seen that this enables us to set up a recursion (5) for ��n . On

the other hand, we saw in Figure 7 that such a simple idea could not be applied in the

classical model An, as here interconnections across the boundaries of the level-1 squares

can occur in very complicated ways: for large n, L \An is a complicated random set.

Here, the existence of our function � relies on the fact that the relationship between

Cn and L is fairly simple. Namely, we can write L � F [ (K \ L), knowing that F

is contained in Cn (surely for all n) and K \ L is a simple �nite set (as given in �gure

10). Let the eight connected components of F \ L be labelled U1; : : : U8 as in Figure 9.

These components are always contained in Cn; because together they cover the crucial

set L (except for a few special points), we see that connections between them in Cn are

completely determined by connection events on the four level-1 squares. Formally, we

de�ne the random equivalence relation Z on 1, : : : 8 with i Z j if and only if Ui and Uj are

contained in the same connected component of Cn: it is possible to write Z as a function

of �n
1 ;�n

2 ;�n
3 and �n

4 . This completes our argument, as
n� is simply the restriction of Z

to f1; : : : 5g. (See Figure 9.)
To write down fp we would need explicit expressions for �, �, and also for the versions

of � corresponding to I2, I3 and I4. In each case, the procedure is a straightfoward matter

of processing through the combinatorial structure implied by F . Although the size of E is

too great for us realistically to do all this by hand (particularly � is infeasible), it is quite

straightforward to translate the above argument into a computer algorithm that can be

implemented in Mathematica.

5 A bound on �
0
1

It remains only to prove Proposition 2. To begin with: three preliminary lemmas.

We de�ne a path to be a continuous injective map from [0; 1] to I. If J0 is a �nite subset

of F and I? is a dyadic square, we shall say that CJ0
n = An [ (F n J0) is path-wired in I? if

there is a path in CJ0
n \ I? linking at least two distinct components of (F n J0) \ @I?.
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Figure 9: The eight connected components of F \ L are labelled U1; : : :U8. Shown

is a representation of a possible realisation of Cn whereby the equivalence classes

of the �i
n are given by �n

1 : f1g, f2g, f3; 4g, f5g; �n
2 : f1,2,3,4,5g; �n

3 : f1,2,3g, f4,5g;
�n

4 : f1,5g, f2,3,4g. From this we can deduce that the equivalence classes of
n� are f1g,

f2,3g, f4,5g.

.

.
.

.

.

. .

.

.
0

1

1

Figure 10: The straight line segments together form the set L; L \K consists of the nine

points marked.
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Lemma 6 For any �nite J0 � F and any dyadic square I?, we have

Pp(Cn is wired in I?) = Pp(Cn is path-wired in I?)

for all 0 � n <1 and 0 � p � 1.

Proof First �x I? = I and let �
n(p) = Pp(Cn is path-wired in I); we want to show that

�0n � �
n. Now C0 = I surely, so we know �00 � �
0 � 1. To express �
n in terms of �
n�1 we

can proceed in the same way as in Section 4: in fact the combinatorial arguments for �
n

will be exactly the same as they were for �0n and therefore we will obtain exactly the same

iteration function f ; hence it follows that �0n � �
n for all �nite n.

The lemma for general I? can be proved by applying the argument of section 4 to Cn\I?
and the four sub-squares into which I? divides. 2

Lemma 7 Fix n � 1 and a realisation Cn, and suppose Q is some level-n square. Then

for every connected component � of Cn \Q, � \ @Q is path-connected.

Proof If Q � An then the result is trivial (the only connected component of Cn \ Q

is Q itself) so suppose Q 6� An. It follows that Cn \ int(Q) � F (where int(Q) denotes

the interior of Q). But from the discussion at the beginning of Section 3, the following is

certainly clear: for every connected component � of F , �\ @I either is empty or equals Si

for some i = 1; : : : 5, and therefore is path-connected. Self-similarity of F now completes

the proof. 2

Lemma 8 Given positive �nite integers m and n and any level m-square I?,

Pp(Cn+m is wired in I?jI? � Am) � �n(p):

Proof In the light of the discussion at the end of Section 3, the statement of the lemma

is equivalent to

Pp(Cn+m wired in I?jI? � Am) � Pp(C
J?
n+m wired in I?jI? � Am): (9)

But on fI? 6� Amg, neither Cn+m nor CJ?
n+m is wired in I?, so (9) is the same as

Pp(Cn+m wired in I?) � Pp(C
J?
n+m wired in I?):

By Lemma 6 this is equivalent to

Pp(Cn+m path-wired in I?) � Pp(C
J?
n+m wired in I?):

15



So suppose Cn+m is path-wired in I?, that is, there is a path 
 in Cn+m \ I? linking

two distinct components of F \ @I?. It will be su�cient for us to show that this implies

the existence of a path 
0 satisfying the same conditions as on 
 and in addition with


0 \ J? = ;.
By considering a sub-path of 
 if necessary, we can assume 
 intersects J? only at its

end-points 
0 and 
1, if at all. (Recall that J? � gI?, that is, J? contains only corners of

I?; so by construction of F , distinct points of J? are in distinct components of F \ @I?.)
Suppose �rst that 
0 2 J? and 
1 62 J?. Then 
0 2 gI?, so there is a unique level-(n+m)

square Q with 
0 2 Q � I?; moreover there is a point 
Q on 
, with 
Q 2 Q n f
0g, such
that the sub-path from 
0 as far as 
Q is contained in Q; by continuity of 
 we may assume


Q 2 @Q. Now 
0 and 
Q are contained in the same connected component of Cn+m \Q, so
by Lemma 7 there is a path 
? in Cn+m \ @Q from 
0 to 
Q. Since 
0 2 gI? we can �nd an

x0 on 
? such that x0 2 @I? n J?; let 
0 be the path from x0 to 
1 obtained by concatening

the sub-path of 
? from x0 to 
Q with the sub-path of 
 from 
Q to 
1.

This completes the case 
0 2 J?, 
1 62 J?. The three other cases are now simple to

handle. If neither end-point of 
 is in J?, we take 
0 = 
; if 
0 62 J? and 
1 2 J? we apply

the previous argument to 
1 instead of 
0; if both end-points are in J? we be apply the

previous argument to 
0 and 
1. 2

We now proceed to prove Proposition 2, which for convenience is re-stated here.

Proposition 2 Suppose 0 < p � 1 with �01(p) > 0. Then

�01(p) �
p�n � 3

22n+3

for all n � 1.

Proof Fix m, n with 1 � m;n <1. Consider a realisation of the process for which Cm+n

is wired. Then by inspection of Figure 8, it follows that there exists some level-n square

I? with int(I?) \ Y 6= ;, such that Cm+n is wired in I?. Indeed, there exist at least two

such squares, I? and I 0?, unless I? lies at one of the three corners (0,1), (1,0) or (0,0) of I.

Hence, for all 0 � p � 1,

�0m+n(p) = Pp(Cm+n is wired)

� X
Pp(Cm+n is wired in I?)

+
X

Pp(Cm+n is wired in I? and in I 0?); (10)
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where the �rst sum is over the three level-n squares I? containing either (0,1), (1,0) or

(0,0), and the second sum is over all distinct pairs of level-n squares I?, I 0? whose interiors

have nonempty intersection with Y .

Consider the case where I? and I 0? are distinct. Conditioned on fI? [ I 0? � Ang, the
event fCm+n is wired in I?g depends only on the Cantor set construction within I? (and

similarly within I 0?), therefore

Pp(Cm+n is wired in I? and in I? j I? [ I 0? � An)

= Pp(Cm+n is wired in I? j I? � An)Pp(Cm+n is wired in I 0? j I 0? � An)

� (�0m(p))
2;

the inequality being an application of Lemma 8. Hence,

Pp(Cm+n is wired in I? and in I 0?)

= Pp(I? [ I 0? � An)Pp(Cm+n is wired in I? and in I 0? j I? [ I 0? � An)

� pn(�0m(p))
2:

Applying Lemma 8 also to the �rst summation in (10) we obtain

�0m+n(p) � 3pn�0m(p) +

0
@ 2n+2

2

1
A pn(�0m(p))2

� 3pn�0m(p) + 22n+3pn(�0m(p))
2:

Taking the limit m!1 we have

�01(p) � 3pn�01(p) + 22n+3pn(�01(p))
2

which is equivalent to the statement of the lemma when p and �1(p) are nonzero. 2
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