plans

Erik J. Balder and Martijn R. Pistorius

Mathematical Institute, University of Utrecht, Budapestlaan 6, P.O. Box 80.010, 3508 TA Utrecht, the Netherlands (email: balder@math.uu.nl, M.R.Pistorius@math.uu.nl)

Summary. A generalization is presented of the existence results for an optimal consumption problem of Aumann and Perles [4] and Cox and Huang [10]. In addition, we present a very general optimality principle.

Key words and phrases. Optimal consumption and investment, Variational problem, Lyapunovtype optimization problem, Extremum principle, Existence of *p*-integrable optimal solutions, Growth conditions.

JEL Classification Numbers: C61, D11, G11.

1 Introduction

In a seminal paper [4] Aumann and Perles gave existence results for optimal consumption problems with linear inequality and equality constraints that are special cases of two problems, (IC_p) and (EC_p) , to be formulated in section 2. These are variational problems in a space of p-integrable functions, either for p = 0 (0-integrability being interpreted as mere measurability) or for $p \ge 1$, as is the case in [4, 10]. Problem (EC_p) generalizes a problem studied in [4] in the Main Theorem (p. 489) and in Theorem 6.2 (the former has p = 1 and the latter is for p > 1). A version of (IC_1) was considered in [4, Theorem 6.1]. More recently, Cox and Huang continued this work in [10], where they gave existence results for a dynamic consumption-portfolio problem. They did so by using the well-known fact [13] that such problems can be transformed into a static problem of the type (IC_p) , $p \ge 1$, using Ito's calculus. The existence results in [10] show several differences with the results in [4]. As one practical limitation of the version of (IC_p) used in [10] we point out that it only allows for a single consumption good and one inequality constraint. This restriction play an important technical role in [10]. Closer inspection of [10] vis à [4] reveals a number of other substantial technical differences between [4] and [10] that affect certain comparisons with [4] that were claimed in [10]. Next to the already cited fact that [4] deals with a multi-good model, these differences are as follows. (i) In all of [10] the utility function $u(z, \omega)$ is concave in the decision variable z, but it is not so in any of the three above-mentioned existence results in [4]. (ii) On the other hand, in all of [4] the underlying measure space is nonatomic, whereas in [10] it is general. (iii) In all of [10], $u(z, \omega)$ is required to be increasing (by this we mean strictly increasing) in z, but this is not so in [4, Theorem 6.1] (which has no monotonicity requirement at all) and [4, Main Theorem] (which only requires $u(z,\omega)$ to be nondecreasing in z); however, Theorem 6.2 in [4] requires $u(z,\omega)$ to be increasing in z.

For these reasons, the totality of the results in [4] and [10] is intransparent. To subsume all of the cited results in [4] and [10] and to go beyond them, this work presents three central existence results. These offer several considerable improvements, in particular for the utility functions. For p = 0 (and also for p = 1 under additional conditions that turn out to be valid in [4] but not in [10]) our main existence results are Propositions 2.5 and 2.6, respectively for the inequality- and the equality-constrained problems. These propositions are immediate consequences of [6, Corollary 2], a result recapitulated here as Theorem 3.1. A growth property (γ_1) from [8] is used, as well as its logical extension (γ_p). We show that this unifies the different growth conditions used by Aumann and Perles [4] and Cox and Huang [10]. Our main existence result is Theorem 2.8; this is new, but it is obtained along the lines set out by Aumann and Perles in their proof of [4, Theorem 6.2]. First, for (IC_0) the propositions mentioned above yield existence of an optimal solution x_* in a space of measurable functions. Next, in Theorem 3.2 optimality is characterized by a pointwise optimality principle, which comes from [1, 2, 11] (see [4, Theorem 5.1]). It is essential that all Lagrange multipliers of this optimality principle be strictly positive (Corollary 3.3); this forces x_* to be *p*-integrable, as a consequence of the optimality principle and the growth conditions for $u(z, \omega)$. In addition, such strict positivity causes the optimal solutions of (IC_p) and (EC_p) to coincide, because of complementary slackness.

2 Existence results

For p = 0 and $p \ge 1$ we consider the following optimal consumption problem with linear inequality constraints

$$(IC_p) \qquad \sup_{x \in \mathcal{L}_Z^p} \{ U(x) : \int_{\Omega} x(\omega) \cdot \xi_i(\omega) \mu(d\omega) \le \alpha_i, i = 1, \dots, m \}$$

and its equality-constrained counterpart

$$(EC_p) \qquad \sup_{x \in \mathcal{L}_Z^p} \{ U(x) : \int_{\Omega} x(\omega) \cdot \xi_i(\omega) \mu(d\omega) = \alpha_i, i = 1, \dots, m \}.$$

As we shall see in section 5, this model can easily incorporate consumption over time as well. Here $(\Omega, \mathcal{F}, \mu)$ is a finite measure space and \mathcal{L}_Z^p is shorthand for the set of all *p*-integrable consumption functions on $(\Omega, \mathcal{F}, \mu)$ with values in $Z := \mathbb{R}_+^d$. Here *d* is a fixed, given dimension. For p = 0 this definition has to be understood as follows: \mathcal{L}_Z^0 is the set of all *measurable* functions from Ω into \mathbb{R}_+^d . Also, $\alpha_1, \ldots, \alpha_m > 0$ are given constants. Further ξ_1, \ldots, ξ_m are given functions in \mathcal{L}_Z^0 , $\xi_i = (\xi_{i,1}, \ldots, \xi_{i,d})$, with

$$\hat{\xi}(\omega) := \min_{1 \le j \le d} \sum_{i=1}^{m} \xi_{i,j}(\omega) > 0 \text{ for every } \omega \text{ in } \Omega.$$
(1)

By nonnegativity of $x \cdot \xi_i$, the meaning of $\int_{\Omega} x \cdot \xi_i d\mu$ is always clear (the integral is allowed to be $+\infty$).¹ Finally, above we denote

$$U(x):=\int_{\Omega}u(x(\omega),\omega)\mu(d\omega),$$

where $u : \mathbb{R}^d_+ \times \Omega \to [-\infty, \infty)$ is a $\mathcal{B}(\mathbb{R}^d_+) \times \mathcal{F}$ -measurable utility function. Of course, the integrand $\omega \mapsto u(x(\omega), \omega)$ is \mathcal{F} -measurable for every $x \in \mathcal{L}^p_Z$, but it is not necessarily summable. However, growth property (γ_p) that is to follow will hold for all our existence results. This implies that $\int_{\Omega} \max(u(x(\omega), \omega), 0)\mu(d\omega)$ is finite for all $x \in \mathcal{L}^p_Z$, so, by allowing for $U(x) = -\infty$, the meaning of the integral is never in doubt; this means that we interpret the integral in the definition of U(x) as a quasi-integral [15].

Extensions, examples and special cases of this model are discussed in sections 4 and 5. As one particular economic example of (IC_p) one could, for instance, think of a consumer, facing uncertainty about the true state of nature, who consults m experts. Each expert i suggests a random variable $\xi_i \in \mathcal{L}_Z^0$ to describe expert i's best guess for stochastic price behavior: should state ω in Ω arise under μ , then expert i predicts that this results in the price vector $\xi_i(\omega) \in \mathbb{R}^d$. If the consumer takes all expert opinions seriously, he/she could wish to use only state-contingent consumption plans $x \in \mathcal{L}_Z^p$ for which for each i the expectation $\int_{\Omega} \xi_i \cdot x \, d\mu$ does not exceed a certain budget value. As illustrated by Example 4.12, mechanical problems of the type (EC_p) were already studied by Newton.

The following special conditions will sometimes be imposed on $(\xi_{i,j})$. Of these, order-equivalence works in connection with $p \ge 1$, both for (IC_p) and (EC_p) , and diagonal dominance serves to make all problems (EC_p) , p = 0 or $p \ge 1$, automatically feasible.

¹ Thus, we dispense with the condition $\xi_i \in \mathcal{L}^q$ of [10], with q as specified in footnote 2. In retrospect, this justifies Cox and Huang's use of both p = 1 and p > 1 in [10], although their own restriction $\xi_i \in \mathcal{L}^q$ effectively rules out p = 1 (i.e., $q = \infty$) because of their formula (8).

Definition 2.1 (i) The matrix function $(\xi_{i,j})$ is said to be *order-equivalent to* $\hat{\xi}$ if there exists C > 0 such that

$$\max_{1 \le j \le d} \sum_{i=1}^{m} \xi_{i,j}(\omega) \le C\hat{\xi}(\omega) \text{ for a.e. } \omega \text{ in } \Omega.$$

(ii) The matrix function $(\xi_{i,j})$ is said to have diagonal structure if m = d and $\xi_{i,j} \equiv 0$ whenever $i \neq j, i, j = 1, ..., d$.

Observe already that diagonal structure implies $\xi_{i,i} > 0$ for every *i*, in view of (1). Note also that Aumann and Perles [4] use diagonal structure, with ξ_i identically equal to the *i*-th unit vector e_i . Hence, they also have order-equivalence with $\hat{\xi} \equiv 1$. In [10] one simply has m = d = 1, whence $\hat{\xi} = \xi_{1,1}$. The growth condition for *u* mentioned above is as follows; it is an obvious extension to $p \geq 1$ of the property introduced in [8] to unify the three different growth conditions used in [4].

Definition 2.2 *u* has growth property (γ_p) if for every $\epsilon > 0$ there exists $\psi_{\epsilon} \in \mathcal{L}^p_+$ such that for a.e. $\omega \in \Omega$

$$u(z,\omega) \leq \epsilon \hat{\xi}(\omega) |z| + \hat{\xi}(\omega) \psi_{\epsilon}(\omega)$$
 for all $z \in \mathbb{R}^d_+$.

In connection with the existence results for $p \ge 1$ the following nonsatiation condition is important:

Definition 2.3 The function u is said to be essentially nonsatiated with respect to ξ_1, \ldots, ξ_m if there do not exist $j, 1 \leq j \leq m$, and $\lambda_i \geq 0, i \neq j$, for which

$$\operatorname{argmax}_{z \in \mathbb{R}^d_+} [u(z, \omega) - \sum_{i, i \neq j} \lambda_i z \cdot \xi_i(\omega)] \neq \emptyset \text{ for a.e. } \omega \text{ in } \Omega.$$

Remark 2.4 Obviously, if $(\xi_{i,j})$ has diagonal structure, then u in nonsatiated with respect to ξ_1, \ldots, ξ_m if and only if there do not exist $j, 1 \leq j \leq m$, and $\lambda_i \geq 0, i \neq j$, for which

$$\operatorname{argmax}_{z \in \mathbb{R}^d_+} u(z, \omega) - \sum_{i, i \neq j} \lambda_i \xi_{i,i}(\omega) z^i \neq \emptyset \text{ a.e.}$$

So the above certainly holds if for every ω in some non-null subset B of Ω (i.e., $\mu(B) > 0$) and every j the function $u(z, \omega)$ is nonsatiated in each coordinate z^j of z (i.e., $\operatorname{argmax}_{z^j \ge 0} u(z, \omega) = \emptyset$ for every $z^1, \ldots, z^{j-1}, z^{j+1}, \ldots, z^d \ge 0$). In particular, this holds when $u(z, \omega)$ is strictly increasing in each coordinate z^j for all ω in some subset non-null subset of Ω .

Proposition 2.5 (existence of optimal measurable plans) Suppose that $u(z, \omega)$ is upper semicontinuous in z for a.e. ω in Ω . Suppose also that u satisfies growth condition (γ_1) . Then problem (IC_0) , provided that it is feasible, has an optimal solution x_* with $\int_{\Omega} |x_*| \hat{\xi} d\mu < +\infty$.

Proposition 2.6 (existence of optimal measurable plans) Suppose that $u(z, \omega)$ is upper semicontinuous and nondecreasing in z for a.e. ω in Ω and that $(\xi_{i,j})$ has diagonal structure. Suppose also that u satisfies growth condition (γ_1) . Then problem (EC_0) has an optimal solution x_* , with $\int_{\Omega} |x_*| \hat{\xi} d\mu < +\infty$, that is simultaneously an optimal solution of (IC_0) .

Observe that Proposition 2.6 contains no explicit feasibility condition. Here $u(z, \omega)$ is said to be nondecreasing in z if $z' \ge z$ (coordinatewise) in \mathbb{R}^d implies $u(z', \omega) \ge u(z, \omega)$.

Remark 2.7 Of course, if ess $\inf_{\Omega} \xi$, the essential infimum of ξ over Ω , is strictly positive, the additional property $\int_{\Omega} |x_*| \hat{\xi} d\mu < +\infty$ of x_* implies $x_* \in \mathcal{L}^1_Z$, which causes the existence results for (IC_0) and (IC_1) , as well as those for (EC_0) and (EC_1) , to coincide. This observation applies in particular to [4], where $\hat{\xi} \equiv 1$; cf. section 4.

The following theorem is the main result of this work. It gives sufficient conditions for the existence of an optimal solution of (IC_p) and of (EC_p) .

Theorem 2.8 (existence of optimal p-integrable plans) Suppose for $p \ge 1$ that $u(z, \omega)$ is upper semicontinuous in z for a.e. ω in Ω , that $u(z, \omega)$ is concave in z for a.e. ω in the purely atomic part Ω^{pa} of $(\Omega, \mathcal{F}, \mu)$ and that u is essentially nonsatiated with respect to ξ_1, \ldots, ξ_m . Suppose also that u satisfies growth condition (γ_p) , that $(\xi_{i,j})$ is order-equivalent to $\hat{\xi}$ and that there exists some $\tilde{x} \in \mathcal{L}_Z^p$ for which the function $\omega \mapsto u(\tilde{x}(\omega), \omega)/\hat{\xi}(\omega)$ is p-integrable. Then problem (IC_p) , provided that it is feasible, has an optimal solution that is simultaneously an optimal solution of problem (EC_p) .

Recall here [14] that Ω can always be partitioned into a *purely atomic* part Ω^{pa} (this is the union of at most countably many non-null atoms) and a *nonatomic* part Ω^{na} .

Remark 2.9 Suppose that $(\xi_{i,j})$ has diagonal structure with $\hat{\xi}^{-1} \in \mathcal{L}^p$. Then in Theorem 2.8 problem (IC_p) is feasible. By $\hat{\xi}^{-1} \in \mathcal{L}^p$ and $\hat{\xi} \leq \xi_{i,i} \leq C\hat{\xi}$ we have $\hat{\xi}_{i,i}^{-1} \in \mathcal{L}_+^p$ for $i = 1, \ldots, d$. Hence, $(\alpha_1\xi_{1,1}^{-1}, \ldots, \alpha_d\xi_{d,d}^{-1})$ in $(\mathcal{L}_+^p)^d$ defines a feasible solution of (EC_p) , whence of (IC_p) .

Even when m = d = 1 the essential nonsatiation condition that we use constitutes a considerable improvement over [4, Theorem 6.2] and [10], where $u(z, \omega)$ is required to be strictly increasing in each coordinate of z for all (or at least a.e.) ω in Ω . See Examples 4.8 and 4.9 below.

3 Auxiliary results and proofs

The proof of Proposition 2.5 is an immediate application of the following result from [6], where it was shown to extend [8, Proposition 1, p. 155] and the existence results of [3, 5]) to a general underlying measure space (all those references use a nonatomic measure).

Theorem 3.1 ([6, Corollary 2]) Let $g_0, g_1, \ldots, g_{m+1} : \mathbb{R}^d_+ \times \Omega \to (-\infty, +\infty]$ be product measurable functions. Also, let $\beta_1, \ldots, \beta_{m+1}$ be given real numbers. Suppose that $g_1(z, \omega), \ldots, g_m(z, \omega)$ are lower semicontinuous in the variable z and suppose that $g_{m+1}(z, \omega)$ is inf-compact in the variable z and nonnegative. Suppose also that for every $\epsilon > 0$ there exists $\psi_{\epsilon} \in \mathcal{L}^1$ such that for $i = 0, \ldots, m$

$$\max(-g_i(z,\omega),0) \le \epsilon g_{m+1}(z,\omega) + \psi_\epsilon(\omega) \text{ for a.e. } \omega.$$
(2)

Then the optimization problem

$$\inf_{x \in \mathcal{L}_{Z}^{0}} \left\{ \int_{\Omega} g_{0}(x(\omega), \omega) \mu(d\omega) : \int_{\Omega} g_{i}(x(\omega), \omega) \mu(d\omega) \leq \beta_{i}, i = 1, \dots, m+1 \right\}$$

has an optimal solution, provided that this problem is feasible.

In [6, Corollary 2] a more general space is taken instead of \mathbb{R}^d_+ . Above the integrals $\int_{\Omega} g_i(x(\omega), \omega) \mu(d\omega)$, $x \in \mathcal{L}^0_Z$, should be interpreted as quasi-integrals (concretely, they can have values $+\infty$, but not $-\infty$).

PROOF OF PROPOSITION 2.5. Let $\alpha_{m+1} := \sum_i \alpha_i$ and consider the following auxiliary optimization problem:

$$(Q) \qquad \inf_{x \in \mathcal{L}_{Z}^{0}} \{ \int_{\Omega} -u(x(\omega), \omega) \mu(d\omega) : \int_{\Omega} x \cdot \xi_{i} d\mu \leq \alpha_{i}, i = 1, \dots, m, \int_{\Omega} \hat{\xi} |x| d\mu \leq \alpha_{m+1} \}.$$

Let us show that this problem is equivalent with (IC_0) . First, the m + 1-st constraint of the optimization problem is redundant (it is only introduced because it is formally required). To see its redundance, just observe that the elementary inequality $\hat{\xi}|z| \leq \hat{\xi} \sum_j z^j \leq \sum_i \xi_i \cdot z$ for all $z \in \mathbb{R}^d_+$ causes the first m constraints in (Q) to imply the m + 1-st one. Secondly, the change into a minimization problem is explained by the additional minus sign. So (IC_0) is equivalent to (Q); hence, it is enough to prove existence of an optimal solution of (Q). We do this by a direct application of Theorem 3.1, setting $g_0(z, \omega) := -u(z, \omega)$, $g_{m+1}(z, \omega) := \hat{\xi}(\omega)|z|$, $g_i(z, \omega) := z \cdot \xi_i(\omega)$ and $\beta_i := \alpha_i$

for i = 1, ..., m + 1. Before invoking Theorem 3.1 it remains to verify (2). For i = 1, ..., m this is trivial by $g_i \ge 0$ and for i = 0 it is an immediate consequence of (γ_1) . QED

PROOF OF PROPOSITION 2.6. Because of the additional diagonal structure, $(\alpha_1\xi_{1,1}^{-1}, \ldots, \alpha_d\xi_{d,d}^{-1})$ in \mathcal{L}_Z^0 defines a feasible solution of (EC_0) , whence of (IC_0) . So Proposition 2.5 can be applied. This guarantees existence of an optimal solution x_{**} of (IC_0) . Define $x_* \in \mathcal{L}_Z^0$ by

$$x_*^i(\omega) := x_{**}^i(\omega) + (\alpha_i - \alpha_i')\xi_{i,i}^{-1}(\omega),$$
(3)

for $\alpha'_i := \int_{\Omega} x_{**} \cdot \xi_i d\mu = \int_{\Omega} x_{**}^i \xi_{i,i} d\mu \leq \alpha_i$. Then $U(x_*) = U(x_{**})$, which causes x_* to be an optimal solution of both (EC_0) and (IC_0) . The identity holds, because on the one hand x_* is obviously feasible for (EC_0) (whence for (IC_0) , which implies $U(x_*) \leq U(x_{**})$) and on the other hand $x_*(\omega) \geq x_{**}(\omega)$ (coordinatewise), causing $u(x_*(\omega), \omega) \geq u(x_{**}(\omega), \omega)$ for all ω , whence $U(x_*) \geq U(x_{**})$. QED

We now prepare the proof of Theorem 2.8. We shall need the following theorem, which comes from [1, 2, 11]. Essentially, it is based on an application of Lyapunov's theorem (convexity of the range of a nonatomic vector measure) and the separating hyperplane theorem in \mathbb{R}^{m+1} , plus some measurable selection arguments.

Theorem 3.2 (optimality principle) Suppose for any p, p = 0 or $p \ge 1$, that $u(z, \omega)$ is concave in z for for a.e. ω in the purely atomic part Ω^{pa} . Then $x_* \in \mathcal{L}_Z^p$ is an optimal solution of (IC_p) if and only if x_* is feasible for (IC_p) and there exist $\lambda_1, \ldots, \lambda_m \ge 0$ such that the following two conditions hold:

$$\begin{aligned} x_*(\omega) \in \operatorname{argmax}_{z \in \mathbb{R}^d_+} u(z, \omega) - \sum_{i=1}^m \lambda_i z \cdot \xi_i(\omega) \text{ for a.e. } \omega \text{ in } \Omega \text{ (pointwise maximum principle).} \\ \lambda_i (\int_{\Omega} x_* \cdot \xi_i d\mu - \alpha_i) = 0, \ i = 1, \dots, m \text{ (complementary slackness).} \end{aligned}$$

Under additional conditions for ξ_1, \ldots, ξ_m , a similar result can be also given for (EC_p) [1], but for the present paper this is not very relevant.² The following Corollary 3.3 of the above theorem will play an essential role in establishing existence for $p \ge 1$. Its essential nonsatiatedness condition alone is responsible for the (strict) positivity of its multipliers; cf. Examples 4.8 and 4.9.

Corollary 3.3 Suppose for any p, p = 0 or $p \ge 1$, that $u(z, \omega)$ is concave in z for for a.e. ω in Ω^{pa} and that u is essentially nonsatiated with respect to ξ_1, \ldots, ξ_m . Then $x_* \in \mathcal{L}_Z^p$ is an optimal solution of (IC_p) if and only if x_* is feasible for (EC_p) and there exist $\lambda_1, \ldots, \lambda_m > 0$ such that

$$x_*(\omega) \in \operatorname{argmax}_{z \in \mathbb{R}^d_+} u(z, \omega) - \sum_{i=1}^m \lambda_i z \cdot \xi_i(\omega) \text{ for a.e. } \omega \text{ in } \Omega \text{ (pointwise maximum principle)}.$$

In the above corollary any optimal solution of (IC_p) is also an optimal solution of (EC_p) , but the converse implication need not hold:

Example 3.4 Let Ω be the unit interval, equipped with Lebesgue measure μ . Let m = d = 1, $\eta \in [0, 1)$ and define the utility function as follows:

$$u(z,\omega) := \begin{cases} \frac{1}{z} & \text{if } 0 < z \le 1\\ 0 & \text{if } z = 0\\ \infty & \text{if } z > 1 \end{cases}$$

Consider the problems (IC_p) and (EC_p) with $\xi_1 \equiv 1$ and $\alpha_1 = 1$. Then, apart from null sets, $x \equiv 1$ is the only feasible element of (EC_p) for which $U(x) > -\infty$. Hence, $x_* \equiv 1$ is the (essentially) unique optimal solution of (EC_p) . However, (IC_p) clearly has no optimal solution, even though u meets all conditions of Corollary 3.3 (here $\Omega^{pa} = \emptyset$).

² By [1, 4.3.3] an analogous characterization holds for (EC_p) if ξ_1, \ldots, ξ_m are additionally q-integrable, with q := p/(1-p) if p > 1 and $q := \infty$ if p = 0.

PROOF OF THEOREM 3.2. When Ω^{na} is equipped with $\mathcal{F} \cap \Omega^{na}$ and $\mu(\cdot \cap \Omega^{na})$, it forms a nonatomic measure space. Denote by \mathcal{V} [\mathcal{W}] the space of all *p*-integrable functions from Ω^{na} [Ω^{pa}] into \mathbb{R}^d_+ . Every $x \in \mathcal{L}^p_Z$ can be identified with the pair (v, w) in $\mathcal{V} \times \mathcal{W}$, where $v := x \mid_{\Omega^{na}}$ is the restriction of x to the nonatomic part Ω^{na} and where $w := x \mid_{\Omega^{pa}}$ is the restriction of x to the purely atomic part Ω^{pa} . Then x_* is an optimal solution of (IC_p) if and only if (v_*, w_*) , with $v_* := x_* \mid_{\Omega^{na}}$ and $w_* := x_* \mid_{\Omega^{pa}}$, is an optimal solution of the following optimization problem

(L)
$$\inf_{v \in \mathcal{V}, w \in \mathcal{W}} \{-\int_{\Omega^{na}} u(v(\omega), \omega) \mu(d\omega) + a_0(w) : \int_{\Omega^{na}} v \cdot \xi_i d\mu + a_i(w) \le \alpha_i, i = 1, \dots, m\}.$$

Here $a_0(w) := -\int_{\Omega^{pa}} u(w(\omega), \omega)\mu(d\omega)$ is convex in the variable w (by the given concavity property of u). Each $a_i(w) := \int_{\Omega^{pa}} w \cdot \xi_i d\mu$ is also obviously convex in w. In the terminology of [1, 4.3.3], problem (L) is a Lyapunov-type optimization problem. By the main theorem of section 4.3.3 in [1, p. 240-241] it follows that, corresponding to the optimal pair (v_*, w_*) , there exist nonnegative multipliers $\lambda_0, \lambda_1, \ldots, \lambda_m$, not all zero, such that the two minimum principles

$$v_*(\omega) \in \operatorname{argmin}_{z \in \mathbb{R}^d_+} - \lambda_0 u(z, \omega) + \sum_{i=1}^m \lambda_i z \cdot \xi_i(\omega) \text{ for a.e. } \omega \text{ in } \Omega^{na}$$

and

$$w_* \in \operatorname{argmin}_{w \in \mathcal{W}} \sum_{i=0}^m \lambda_i a_i(w),$$

hold, as well as the complementary slackness relationships

$$\lambda_i (\int_{\Omega^{na}} v_* \cdot \xi_i d\mu + a_i(w_*) - \alpha_i) = 0, i = 1, \dots, m$$

Writing out the definition of the $a_i(w)$ immediately gives that the above complementary slackness relationship is equivalent to the one stated in Theorem 3.2. Since $\alpha_1, \ldots, \alpha_m > 0$, a Slater type constraint qualification holds, which causes $\lambda_0 \neq 0$. This can also be seen directly: if λ_0 were 0, then obviously $\sum_i \lambda_i x_*(\omega) \cdot \xi_i(\omega) = 0$ for a.e. ω (set $z = x_*(\omega)/2$ and $z = 2x_*(\omega)$ respectively). This would result in $\sum_i \lambda_i \int_{\Omega} x_* \cdot \xi_i d\mu = 0$. By complementarity, $\sum_i \lambda_i \int_{\Omega} x_* \cdot \xi_i d\mu = \sum_i \lambda_i \alpha_i$, so we would have $\sum_i \lambda_i \alpha_i = 0$. By $\lambda_i \geq 0$ and $\alpha_i > 0$ for all *i*, this would mean that also the multipliers $\lambda_1, \ldots, \lambda_m$ are zero. This gives a contradiction. So $\lambda_0 \neq 0$, and, rather than dividing all λ_i by λ_0 , we can suppose without loss of generality $\lambda_0 = 1$. Also, because Ω^{pa} consists of at most countably many atoms and because each function in \mathcal{W} is a.e. constant on such an atom, it is easy to see that the second minimum principle is equivalent to the following:

$$w_*(\omega) \in \operatorname{argmin}_{z \in \mathbb{R}^d_+} - u(z, \omega) + \sum_{i=1}^m \lambda_i z \cdot \xi_i(\omega) \text{ for a.e. } \omega \text{ in } \Omega^{pa}$$

Combined, the above two minimum principles (with $\lambda_0 = 1$) are precisely equivalent to the pointwise maximum principle that is stated in Theorem 3.2. QED

Some comments should be added to justify the application above of the main theorem of [1, section 4.3.3]. Formally speaking, the conditions of [1] require Ω to be a Lebesgue interval of \mathbb{R} and the functions $u(z, \omega)$ and $z \cdot \xi_i(\omega)$ to be jointly continuous in (z, ω) . However, from the proof in [1] it is evident that the only reason for this is the rather crude Lemma D) on p. 244, which is known to hold in much more general forms for functions $u(z, \omega)$ and $z \cdot \xi_i(\omega)$ that are just jointly measurable in (z, ω) and for a *decomposable* class of measurable functions, such as \mathcal{L}_Z^p . This is the so-called reduction theorem; e.g., see [16, Theorem 3A], [7, Theorem B.1] and [12]. Actually, the approach taken in [1] can already be found in more general terms in [2].

PROOF OF COROLLARY 3.3. Clearly, all that has to be done is to demonstrate that $\lambda_i > 0$ for $i = 1, \ldots, m$ in the pointwise maximum principle of Theorem 3.2 (because complementary slackness then implies feasibility for (EC_p)). If there were j with $\lambda_j = 0$, then the pointwise maximum

principle would imply that $x_*(\omega)$ belongs to $\operatorname{argmax}_{z \in \mathbb{R}^d_+} [u(z, \omega) - \sum_{i,i \neq j} \lambda_i z \cdot \xi_i(\omega)]$ for a.e. ω . But this contradicts the definition of essential nonsatiation. QED

PROOF OF THEOREM 2.8. Since the conditions of Proposition 2.5 clearly hold, we certainly have existence of an optimal solution $x_* \in \mathcal{L}_Z^0$ of (IC_0) . We can apply Corollary 3.3 (for p = 0) to (IC_0) . Observe already that this already gives feasibility of x_* for (EC_0) . Setting $z := \tilde{x}(\omega)$ in the pointwise maximum principle, we obtain

$$u(x_*(\omega),\omega) - \sum_{i=1}^m \lambda_i x_*(\omega) \cdot \xi_i(\omega) \ge u(\tilde{x}(\omega),\omega) - \sum_{i=1}^m \lambda_i \tilde{x}(\omega) \cdot \xi_i(\omega) \text{ a.e.}$$

where $\tilde{x} \in \mathcal{L}_Z^p$ is as postulated in Theorem 2.8. Let $\epsilon := \min_{1 \le i \le m} \lambda_i$; then $\epsilon > 0$ by Corollary 3.3. By using (γ_p) and order-equivalence of $(\xi_{i,j})$ we obtain from the above

$$\frac{\epsilon}{2}\hat{\xi}(\omega)|x_*(\omega)| + \hat{\xi}(\omega)\psi_{\epsilon/2}(\omega) - u(\tilde{x}(\omega),\omega) + C\sqrt{d}\max_i\lambda_i\hat{\xi}(\omega)|\tilde{x}(\omega)| \ge \epsilon\hat{\xi}(\omega)|x_*(\omega)|.$$

Here we use the elementary inequalities $\epsilon |x_*|\hat{\xi} \leq \sum_i \lambda_i x_* \cdot \xi_i \leq C d^{1/2} \max_i \lambda_i \hat{\xi} |x_*|$. After division by $\hat{\xi}(\omega)$, the resulting majorization of $\epsilon |x_*|/2$ by the *p*-integrable expression $\psi_{\epsilon/2} - u(\tilde{x}(\cdot), \cdot)/\hat{\xi} + C d^{1/2} \max_i \lambda_i |\tilde{x}|$ immediately implies the *p*-integrability of $|x_*|$. Finally, (EC_p) -feasibility of x_* now follows simply from our earlier observation about its (EC_0) -feasibility. So x_* is also an optimal solution of problem (EC_p) . QED

4 Applications

In this section we show how the existence results in [4] and [10] all follow from the results developed in section 2. We also give some examples to show that Theorem 2.8 also applies to new situations, not covered by [4, 10]. To begin with, we prepare the conversion of the following growth properties used in [4, 10] for $p \ge 1$:

Definition 4.1 (i) u has growth property (δ_p) if for every $\epsilon > 0$ there exists $\phi_{\epsilon} \in \mathcal{L}^p_+$ such that for a.e. ω

$$u(z,\omega) \le \epsilon \xi(\omega) |z|$$
 for all $z \in \mathbb{R}^d_+$ with $|z| \ge \phi_{\epsilon}(\omega)$.

(ii) u has growth property (δ'_p) if for every $\epsilon > 0$ there exists $\phi'_{\epsilon} \in \mathcal{L}^p_+$ such that for a.e. ω

$$u(z,\omega) \leq \epsilon \tilde{\xi}(\omega) |z|$$
 for all $z \in \mathbb{R}^d_+$ with $\min_{1 \leq i \leq d} z_i \geq \phi'_{\epsilon}(\omega)$.

Because of d = 1, in [10] one has |z| = z for all $z \in \mathbb{R}_+$, which causes the growth properties (δ_p) and (δ'_p) to be indistinguishable. Growth property (δ'_p) , for $p \ge 1$, can already be found in [4], and also property (δ_1) . Growth property (δ'_p) is also used (but just for m = d = 1) in [10, Definition 4.1, Lemma 4.2, ff.], as can be seen by means of the following example.

Example 4.2 (i) Suppose that there exist $b \in (0, 1), \beta_1 \ge 0$ and $\beta_2 > 0$ such that for a.e. ω

$$u(z,\omega) \leq \beta_1 + \beta_2 |z|^{1-b}$$
 for all $z \in \mathbb{R}^d_+$

Suppose also that $\hat{\xi}^{-1}$ belongs to $\mathcal{L}^{p/b}$. Then growth condition (δ_p) holds: similar to [10, Lemma 4.2], we simply observe that $u(z,\omega) \leq \beta_1 + \epsilon \hat{\xi}(\omega)|z|$ for a.e. ω and for all z with $|z| \geq (\epsilon \hat{\xi}(\omega)/\beta_2)^{-1/b}$. Hence, $u(z,\omega) \leq 2\epsilon \hat{\xi}(\omega)|z|$ if $|z| \geq \phi_{2\epsilon}(\omega)$, where $\phi_{2\epsilon} := \max[(\epsilon \hat{\xi}/\beta_2)^{-1/b}, \beta_1 \hat{\xi}^{-1}]$ defines a function in \mathcal{L}_+^p . This shows (δ_p) to hold.

(ii) If $\beta_2 = 0$ in part (i), then condition (γ_p) holds trivially. This implies that condition (δ_p) then holds as well (by Proposition 4.3*a* below), without the above condition for $\hat{\xi}^{-1}$.

Proposition 4.3 a. For any $p \ge 1$, (γ_p) implies (δ_p) implies (δ'_p) . b. Suppose that

 $u(z,\omega)$ is nondecreasing in z for a.e. ω in Ω .

Then for any $p \ge 1$ the three growth properties (γ_p) , (δ_p) and (δ'_p) are equivalent.

PROOF a. $((\gamma_p) \Rightarrow (\delta_p))$: For any $\epsilon > 0$ we have $u(z, \omega)/\hat{\xi}(\omega) \le \epsilon |z|/2 + \psi_{\epsilon/2}(\omega)$ for a.e. ω and all z. Define $\phi_{\epsilon} := 2\epsilon^{-1}\psi_{\epsilon/2} \in \mathcal{L}^p_+$. Then $|z| \ge \phi_{\epsilon}(\omega)$ is easily seen to imply $u(z, \omega)/\hat{\xi}(\omega) \le \epsilon |z|$.

 $((\delta_p) \Rightarrow (\delta'_p))$: This follows simply from the implication $\min_i z_i \ge \phi_{\epsilon}(\omega) \Rightarrow |z| \ge \phi_{\epsilon}(\omega)$.

b. $((\delta'_p) \Rightarrow (\delta_p))$: For any $\epsilon > 0$ let ϕ'_{ϵ} be as in the definition of (δ'_p) . Set $\phi_{\epsilon} := d\phi'_{\epsilon'}$ with $\epsilon' := \epsilon/d^{1/2}$. Then, for any $z \in \mathbb{R}^d_+$, let $z' := (\hat{z}, \ldots, \hat{z})$, where $\hat{z} := \max_i z_i$. Then $|z| \ge \phi_{\epsilon}(\omega) \Rightarrow |z'| = d^{1/2}\hat{z} \ge \phi'_{\epsilon'}(\omega)$, which causes $u(z', \omega)/\hat{\xi}(\omega) \le \epsilon'|z'| = \epsilon \hat{z} \le \epsilon|z|$. Finally, observe that $u(z, \omega) \le u(z', \omega)$ by monotonicity of u, since obviously $z' \ge z$.

 $((\delta_p) \Rightarrow (\gamma_p))$: Define $\psi_{\epsilon} := d^{1/2}(\phi_1 + \phi_{\epsilon}) \in \mathcal{L}_+^p$, with ϕ_1 (for $\epsilon := 1$) and ϕ_{ϵ} as in the definition of condition (δ_p) . Then $\psi_{\epsilon}(\omega) = |z_{\epsilon}(\omega)|$, where $z_{\epsilon}(\omega) \in \mathbb{R}_+^d$ is the vector all of whose components are equal to $\phi_1(\omega) + \phi_{\epsilon}(\omega)$. Observe that $u(z_{\epsilon}(\omega), \omega) \leq \hat{\xi}(\omega)\psi_{\epsilon}(\omega)$ by (δ_p) (for $\epsilon := 1$), in view of $\psi_{\epsilon}(\omega) = |z_{\epsilon}(\omega)| \geq \phi_1(\omega)$. Let $\omega \in \Omega$ be arbitrary and nonexceptional and let $z \in \mathbb{R}_+^d$ be arbitrary. Now either $z \leq z_{\epsilon}(\omega)$ (i.e., componentwise) or not. In the latter case one has $|z| \geq \phi_{\epsilon}(\omega)$ (since at least one coordinate must be greater than $\psi_{\epsilon}(\omega)$), which implies $u(z,\omega) \leq \epsilon \hat{\xi}(\omega)|z|$. In the former case one has $u(z,\omega) \leq u(z_{\epsilon}(\omega),\omega)$ by monotonicity of u, which gives $u(z,\omega) \leq \hat{\xi}(\omega)\psi_{\epsilon}(\omega)$ when it is combined with the earlier inequality for $u(z_{\epsilon}(\omega),\omega)$. We conclude that in either case $u(z,\omega) \leq \epsilon \hat{\xi}(\omega)|z| + \hat{\xi}(\omega)\psi_{\epsilon}(\omega)$. That is to say, (γ_p) has been shown to hold. QED

It is intuitively obvious that the global growth control of u, as excercised by (γ_p) , cannot be maintained under (δ_p) and (δ'_p) , which only exercise such control outside a certain radius from the origin. This is confirmed by the following example, which shows that the implications in Proposition 4.3*a* cannot be reverted without additional conditions such as monotonicity.

Example 4.4 Let d = 1 and consider $\Omega = (0, 1)$ with the Lebesgue measure. Let $u : \mathbb{R}_+ \times \Omega \to \mathbb{R}$ be as follows:

$$u(z,\omega) := \begin{cases} \sqrt{z-1} & \text{if } z \ge 1, \\ \omega^{-1}(1-z) & \text{if } z < 1 \end{cases}$$

Also, let $\xi \equiv 1$. Then (γ_p) cannot hold (since $1/\omega = u(0, \omega) \leq \psi_{\epsilon}(\omega)$ would force non-integrability of ψ_{ϵ}). However, for $z \geq \phi_{\epsilon}(\omega) := \max(1, \epsilon^{-2})$ one has $u(z, \omega) \leq \epsilon |z|$.

We begin to apply our results of section 2 to situations – rather they are generalizations of such situations – considered in [4].

Corollary 4.5 ([4, Main Theorem]) Suppose that $(\xi_{i,j})$ has diagonal structure with ess $\inf_{\Omega} \xi > 0$ and that $u(z, \omega)$ is upper semicontinuous and nondecreasing in z for a.e. ω . Suppose also that u has growth property (δ'_1) . Then problem (EC_1) has an optimal solution that is also an optimal solution of (IC_1) .

PROOF. Proposition 4.3 implies that (γ_1) holds. We may now apply Proposition 2.6, which gives the existence of an optimal solution x_* of (EC_0) , with $\int_{\Omega} x_* \hat{\xi} d\mu < +\infty$, that is optimal for (IC_0) at the same time. By remark 2.7, x_* is also an optimal solution of (EC_1) and (IC_1) . QED

Corollary 4.6 ([4, Theorem 6.1]) Suppose that $u(z,\omega)$ is upper semicontinuous in z for a.e. ω in Ω . Suppose also that ess $\inf_{\Omega} \hat{\xi} > 0$ and that u has growth property (δ_1) , together with the following additional property: for every $\eta \in \mathcal{L}^1_+$ there exists $\zeta \in \mathcal{L}^1_+$ such that $|z| \leq \eta(\omega)$ implies $u(z,\omega) \leq \zeta(\omega)\hat{\xi}(\omega)$. Then problem (IC₁) has an optimal solution.

PROOF. To prove that u has growth property (γ_1) , let $\epsilon > 0$ be arbitrary. By (δ_1) there exists $\phi_{\epsilon} \in \mathcal{L}^1_+$ such that $|z| \geq \phi_{\epsilon}(\omega)$ implies $u(z, \omega)/\hat{\xi}(\omega) \leq \epsilon |z|$. By the additional property

there exists $\zeta_{\epsilon} \in \mathcal{L}^{1}_{+}$ such that $|z| < \phi_{\epsilon}(\omega)$ implies $u(z, \omega)/\hat{\xi}(\omega) \leq \zeta_{\epsilon}(\omega)$. Together, this means that $u(z, \omega)/\hat{\xi}(\omega) \leq \epsilon |z| + \zeta_{\epsilon}(\omega)$ for all z. This proves (γ_{1}) . All conditions of Proposition 2.5 are now fulfilled, so there exists an optimal solution x_{*} of problem (IC_{0}) , with $\int_{\Omega} x_{*}\hat{\xi}d\mu < +\infty$. By Remark 2.7 x_{*} is also an optimal solution of (IC_{1}) . QED

Corollary 4.7 ([4, Theorem 6.2]) Suppose that $(\Omega, \mathcal{F}, \mu)$ is nonatomic, that $u(z, \omega)$ is upper semicontinuous and nondecreasing in z for a.e. ω in Ω and that $u(z, \omega)$ is increasing in z for all ω in some non-null subset of Ω . Suppose also that $(\xi_{i,j})$ has diagonal structure, is order equivalent to $\hat{\xi}$, with $\hat{\xi}^{-1} \in \mathcal{L}^p$. Suppose further that u is nonnegative and has growth property (δ'_p) . Then problem (EC_p) has an optimal solution that is also an optimal solution of (IC_p) .

PROOF. Let us check that the conditions of Theorem 2.8 hold. Here we have $\Omega^{pa} = \emptyset$, so that the concavity condition holds vacuously. Also, by Remark 2.4, u is clearly nonsatiated with respect to $(\xi_{i,j})$. By Proposition 4.3, u has property (γ_p) , since $u(z, \omega)$ is certainly nondecreasing in z. By (γ_p) , we get for $\tilde{x} \equiv 0$ that $0 \leq u(\tilde{x}(\cdot), \cdot)/\hat{\xi} \leq \psi_1$ (take $\epsilon = 1$). By $u \geq 0$, this proves that $u(\tilde{x}(\cdot), \cdot)$ belongs to \mathcal{L}^p . So all conditions of Theorem 2.8 hold. It follows that there exists an optimal solution of (EC_p) that is also an optimal solution of (IC_p) . QED

Even as specializations of Theorem 2.8, the above corollaries still improve the corresponding results in [4] in a number of respects. For instance, Corollaries 4.5 and 4.6 do not require $(\Omega, \mathcal{F}, \mu)$ to be nonatomic, Corollary 4.7 does not require $u(z, \omega)$ to be increasing for a.e. ω and none of the three corollaries requires $\xi_i \equiv e_i$. Besides, they allow for easy improvements that have not been considered in [4]. For instance, in Corollary 4.7 one could also consider a general measure space instead of a nonatomic one by introducing for $\omega \in \Omega^{pa}$ extra concavity for $u(z, \omega)$ in the variable z, just as in Theorem 2.8. Also, in that same corollary, one could omit the nondecreasingness of $u(z, \omega)$ in z for most ω (except for those ω that are in the non-null set mentioned in the statement) by requiring (γ_p) to hold instead of (δ'_p) . This is illustrated by the following examples:

Example 4.8 Let Ω be the unit interval, equipped with Lebesgue measure μ . Let m = d = 1, $\eta \in (0, 1]$ and define the utility function as follows:

$$u(z,\omega) := \begin{cases} -z^2 & \text{if } \omega \le 1-\eta \\ \sqrt{z\omega} & \text{if } \omega > 1-\eta \end{cases}$$

[Here one could think of $1 - \eta$ as some critical value; if the state of nature ω is less than this value, the benefit of consumption is completely reversed.] Consider the problems (IC_p) and (EC_p) with $\xi_1 \equiv 1$. It is obvious that u satisfies growth condition (γ_p) for any $p \ge 1$ and that $u(\tilde{x}(\omega), \omega) = 0$ on Ω for $\tilde{x} \equiv 0$. Even though $u(z,\omega)$ is decreasing in z for $\omega \in [0, 1-\eta]$, the conditions of Theorem 2.8, and in particular essential nonsatiation, are valid. This theorem therefore establishes existence of an optimal solution of (IC_p) and (EC_p) for every $p \ge 1$ (note that (IC_p) always has $x \equiv \alpha_1$ as a feasible solution - cf. Remark 2.9). It is illuminating to inspect this result by a more complete analysis of this example, based on an application of Theorem 3.2 (or Corollary 3.3). By this result the optimal solution x_* of (IC_p) must be feasible and must satisfy $x_*(\omega) \in \operatorname{argmax}_{z>0} u(z,\omega) - \lambda_1 z$ a.e. for some $\lambda_1 \geq 0$. If $\lambda_1 = 0$, then for $\omega > 1 - \eta$ the above "argmax set" would be empty, which would give a contradiction. So the only possibility is $\lambda_1 > 0$ (note that this is in agreement with Corollary 3.3). For a.e. $\omega \in [0, 1-\eta]$ this gives $x_*(\omega) = 0$. For a.e. $\omega \in (1-\eta, 1]$ the above pointwise maximum principle gives $x_*(\omega) = \omega/4\lambda_1^2$. To satisfy complementary slackness we also need $\int_0^1 x_* = \alpha_1$, and this is easily seen to be solved for $\lambda_1 = [(2\eta - \eta^2)/8\alpha_1]^{1/2}$. The sufficiency part of Theorem 3.2 now also guarantees that the above x_* is an optimal solution of (IC_p) . In fact, the above derivation shows that it is essentially (i.e., apart from null sets) the unique optimal solution of (IC_p) and EC_p).

Example 4.9 Let Ω be the unit interval, equipped with Lebesgue measure μ . Let m = d = 1, $\eta \in [0, 1]$ and define the utility function as follows:

$$u(z,\omega) := \begin{cases} \min(z\sqrt{\omega}, 1) & \text{if } \omega \le 1 - \eta\\ \sqrt{z\omega} & \text{if } \omega > 1 - \eta \end{cases}$$

Consider the problems (IC_p) and (EC_p) with $\xi_1 \equiv 1$. It is not hard to check that u satisfies growth condition (γ_p) for any $p \geq 1$ and that $u(\tilde{x}(\omega), \omega) = 0$ on Ω for $\tilde{x} \equiv 0$. However, in Case 1 below the essential satiation condition is violated:

Case 1: $\eta = 0$, $\alpha_1 = 2$. This is precisely the example stated in [4, p. 502]. Although in this case the problem is completely elementary, we give a formal derivation for reasons of comparison with case 2 below. First of all, because $u(z, \omega)$ is nondecreasing in z, any optimal solution of (IC_p) also leads to an optimal solution of (EC_p) (see the proof of Proposition 2.6 – it turns out that this time we cannot use complementary slackness). So it makes sense to start looking for an optimal solution of (IC_p) . By Theorem 3.2, to find an optimal solution x_* of (IC_p) we must find a multiplier $\lambda_1 \ge 0$ such that $x_*(\omega) \in \operatorname{argmax}_{z \ge 0} u(z, \omega) - \lambda_1 z$ a.e. If $\lambda_1 > 0$, then the pointwise maximum principle implies $x_*(\omega) = 0$ if $\sqrt{\omega} < \lambda_1$ and $x_*(\omega) = 1/\sqrt{\omega}$ if $\sqrt{\omega} > \lambda_1$. This clearly violates $\int_0^1 x_* = 2$, which must hold by complementary slackness in this case. So $\lambda_1 > 0$ is impossible, and we are left with $\lambda_1 = 0$. In this case the pointwise maximum principle implies $x_*(\omega) \ge 1/\sqrt{\omega}$ a.e. Together with the feasibility constraint $\int_0^1 x_* \le 2$, this implies $x_*(\omega) = 1/\sqrt{\omega}$ a.e. Observe that $x_* \in \mathcal{L}_Z^1$, but $x_* \notin \mathcal{L}_Z^2$. So, by the sufficiency part of Theorem 3.2, x_* is the essentially unique optimal solution of (IC_0) , $(EC_0), (IC_1)$ and (EC_1) , but not of (IC_2) or (EC_2) . In fact, it follows that (IC_2) does not have an optimal solution at all, since the preceding application of the necessary conditions in Theorem 3.2 gave us the above x_* as its only candidate for optimality. Similar nonexistence can be proven for (EC_2) by considering an analogue of Theorem 3.2, mentioned in footnote 2.

Case 2: $\eta = 0.19$, $\alpha_1 = 5.89875$. This time the essential nonsatiation condition is valid (see Remark 2.4), so Theorem 2.8 applies: we know in advance that there exists an optimal solution of (IC_p) and (EC_p) for any $p \ge 1$. This is confirmed by determining the optimal solution explicitly. Again, by Theorem 3.2, the optimal solution x_* of (IC_p) must be feasible and satisfy $x_*(\omega) \in$ $\operatorname{argmax}_{z>0} u(z,\omega) - \lambda_1 z$ a.e. for some $\lambda_1 \ge 0$. If $\lambda_1 = 0$, then for $\omega > 0.81$ the pointwise maximum principle would be self-contradictory, its "argmax set" being empty. So we are left with $\lambda_1 > 0$. For $\omega > 0.81$, the set $\operatorname{argmax}_{z \ge 0} \sqrt{z\omega} - \lambda_1 z$ is the singleton $\{\omega/4\lambda_1^2\}$ (see Example 4.8). For $\omega \le .81$, the set $\operatorname{argmax}_{z>0} \min(z\sqrt{\omega}, 1) - \lambda_1 z$ is the singleton $\{1/\sqrt{\omega}\}$ if $\lambda_1 < \sqrt{\omega}$, but if $\lambda_1 > \sqrt{\omega}$ it is the singleton {0}. We now distinguish (a) $\lambda_1 \ge 0.9$ and (b) $0 < \lambda_1 < 0.9$. In case (a) we find, by the pointwise maximum principle, $x_*(\omega) = 0$ for a.e. $\omega \leq 0.81$, by $\omega < \lambda_1^2$. In case (b) we find (a.e.), by the same principle, $x_*(\omega) = 0$ if $\omega \in [0, \lambda_1^2)$ and $x_*(\omega) = 1/\sqrt{\omega}$ if $\omega \in (\lambda_1^2, 0.81]$. In both cases the equation $\int_0^1 x_* = 5.89875$ is forced by complementary slackness, since $\lambda_1 > 0$. In case (a) this equation gives immediately $\lambda_1 = 0.0853...$, which is in conflict with the underlying inequality (a). In case (b) that same equation is the cubic equation $1.8 - 2\lambda_1 + 0.0429875\lambda_1^{-2} = 5.89875$, of which $\lambda_1 = 0.1$ is the only root complying with (b). By the sufficiency part of Theorem 3.2, $x_*(\omega) = 0$ if $\omega \in [0, 0.01)$, $x_*(\omega) = 1/\sqrt{\omega}$ if $\omega \in (0.01, 0.81]$ and $x_*(\omega) = 2.5 \omega$ if $\omega \in (0.81, 1]$ is an optimal solution of (IC_p) and (EC_p) for any p = 0 or $p \ge 1$ (observe that $x_* \in \mathcal{L}_Z^p$ for any $p \ge 1$). Moreover, our derivation shows x_* to be the essentially unique optimal solution of (IC_p) and (EC_p) .

Next, we turn to the existence results in [10].

Corollary 4.10 ([10, Proposition 4.2]) Suppose that $u(z,\omega)$ is upper semicontinuous and nondecreasing in z for a.e. ω in Ω and concave in z for a.e. ω in Ω^{pa} . Suppose also that u has growth property (δ'_1) and that $(\xi_{i,j})$ has diagonal structure. Then problem (IC_0) has an optimal solution $x_*, \int_{\Omega} \hat{\xi} |x_*| d\mu < +\infty$, that is also an optimal solution of (EC_0) .

PROOF. Condition (γ_1) holds by Proposition 4.3, since $u(z, \omega)$ is nondecreasing in z. The conditions of Proposition 2.6 are thus fulfilled. This gives the existence result. QED

Corollary 4.11 ([10, Theorems 4.1, 4.2]) Suppose that $u(z, \omega)$ is upper semicontinuous and nondecreasing in z for a.e. ω in Ω , concave in z for a.e. ω in Ω^{pa} and increasing for a.e. ω in some non-null subset of Ω . Suppose also that u has growth property (δ'_p) and that $(\xi_{i,j})$ has diagonal structure and is order-equivalent to $\hat{\xi}$ with $\hat{\xi}^{-1} \in \mathcal{L}^p$. Suppose also that there exists some $\tilde{x} \in \mathcal{L}^p$ for which $\omega \mapsto u(\tilde{x}(\omega), \omega)$ is essentially bounded. Then problem (EC_p) has an optimal solution that is also an optimal solution of (IC_p) . **PROOF.** Again, by Proposition 4.3 u has property (γ_p) in view of the given monotonicity of $u(z,\omega)$ in z. Since $\hat{\xi}^{-1} \in \mathcal{L}^p$, it is evident that $\omega \mapsto u(\tilde{x}(\omega), \omega)/\hat{\xi}(\omega)$ is *p*-integrable. So all the conditions of Theorem 2.8 are valid and the result follows. QED

Observe that, by Example 4.2, the upper bounds for u in Theorems 4.1, 4.2 of [10] both imply the validity of (δ'_p) , as used in the above corollary. Other improvements over the conditions used for the utility u in [10] are also quite evident; for instance, our concavity and monotonicity conditions are considerably weaker. We conclude this section by giving a very historical application of Theorem 2.8:

Example 4.12 Let Ω be the unit interval, equipped with Lebesgue measure μ . The following formulation can be given of Newton's classical problem of least resistance [1, p. 17].

$$\inf_{y \in \mathcal{Y}_p} \{ \int_0^1 \frac{\omega}{1 + \dot{y}^2(\omega)} \mu(d\omega) : y(0) = 0, \, y(1) = \alpha_1, \, \dot{y} \ge 0 \}.$$

Here $\alpha_1 > 0$ and \mathcal{Y}^p stands for the class of all *p*-absolutely continuous functions, i.e., the set of all functions $y : [0,1] \to \mathbb{R}$ for which there exists $y \in \mathcal{L}^p$ such that $y(\omega) = y(0) + \int_0^{\omega} \dot{y} d\mu$ for every $\omega \in \Omega$. In [1] this problem is only studied for p = 1, but we wish to consider it also for $p \ge 1$. By substitution of $x := \dot{y}$, Newton's problem is seen to be precisely of the form (EC_p) , with m = d = 1, $u(z,\omega) := -\omega/(1+z^2)$, $\hat{\xi} = \xi_{1,1} \equiv 1$ (observe that $\int_0^1 x = \int_0^1 \dot{y} = y(1) - y(0) = \alpha_1$). It is easy to check that all conditions of Theorem 2.8 hold in this example for any $p \ge 1$ (use Remark 2.4). Thus, for any $p \ge 1$ the above problem has an optimal solution. See [1, p. 60 ff.] for a complete description of this optimal solution. Just as in Examples 4.8 and 4.9, it could also be derived via Theorem 3.2.

5 Extensions

5.1 State-contingent consumption sets

The fact that $u(z,\omega)$ is allowed to be $-\infty$ can be exploited to absorb pointwise constraints on consumption of the type

$$x(\omega) \in X(\omega)$$
 for a.e. ω in Ω

in a very simple and direct way into the model. Here $X : \Omega \to 2^{\mathbb{R}^d_+}$ denotes a multifunction with a $\mathcal{F} \times \mathcal{B}(\mathbb{R}^d_+)$ -measurable graph. Such absorption comes about very simply by introducing

$$\tilde{u}(z,\omega) := \begin{cases} u(z,\omega) & \text{if } z \in X(\omega) \\ -\infty & \text{if } z \notin X(\omega) \end{cases}$$

Of course now the conditions for X must be such that \tilde{u} can be substituted for u in the various conditions. Observe that for $\tilde{u}(z,\omega)$ to be upper semicontinuous [concave] in the variable z, it is sufficient to have $X(\omega)$ closed [convex]. The reformulation of (γ_p) for \tilde{u} obviously yields a version that is easier to satisfy than the one used previously, and in Definition 2.3 one must simply replace the maximization domain \mathbb{R}^d_+ by $X(\omega)$.

5.2 Optimal consumption over time

Other extensions and applications are to a time-dependent situation. First of all, one can specialize (IC_p) and (EC_p) to deterministic variational problems by setting $\Omega := [0, T]$ and taking \mathcal{F} equal to the Lebesgue σ -algebra and μ equal to the Lebesgue measure on [0, T]. This is the situation of optimal consumption or resource allocation over time, as considered by Aumann and Perles [4] and several others (e.g., see [17]).

Secondly, as in [10], one can *automatically* extend the main results of this paper to a stochastic time-dependent situation, simply by a suitable choice of the underlying measure space. In addition to the space Ω of states of nature, whose distribution is given by the (probability) measure μ ,

there is now also a time interval [0, T] and a filtration $\{\mathcal{F}_t : t \in [0, T]\}$ of information σ -algebras (e.g., this could be the natural filtration with respect to some stochastic process of signals). Equip $\hat{\Omega} := [0, T] \times \Omega$ with the σ -algebra \tilde{F} of progressively measurable sets (i.e., $A \in \tilde{\mathcal{F}}$ if and only if the section of A at t belongs to \mathcal{F}_t for each t). If, moreover, a final wealth term is added to the objective function, then problem (IC_p) gets the following form (of course, the same can be done for (EC_p)):

$$(\tilde{IC}_p) \qquad \sup_{x \in \tilde{\mathcal{L}}_Z^p} \{ \tilde{U}(x) : \int_{\Omega} \int_0^T x_t(\omega) \cdot \xi_{i,t}(\omega) dt \mu(d\omega) \le \alpha_i, i = 1, \dots, m \}.$$

 Here

$$\tilde{U}(x) := \int_{\Omega} \int_{0}^{T} u_{t}(x_{t}(\omega), \omega) dt \mu(d\omega) + \int_{\Omega} u_{T}(x_{T}(\omega), \omega) \mu(d\omega)$$

and $\tilde{\mathcal{L}}_Z^p$ stands for $(\mathcal{L}_+^p(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mu}))^d$, where $\tilde{\mu} := \tilde{\mu}_1 + \tilde{\mu}_2$, with $\tilde{\mu}_1$ the product of the Lebesgue measure on [0, T] and μ , and $\tilde{\mu}_2$ the measure on $[0, T] \times \Omega$ that is entirely concentrated on the subset $\{T\} \times \Omega$ and coincides there with μ (i.e., $\tilde{\mu}_2(A \times B) := 1_A(T)\mu(B)$). Observe that the strip $\{T\} \times \Omega$ has $\tilde{\mu}_1$ -measure zero, which makes it possible to treat the restrictions $x \mid_{[0,T) \times \Omega}$ and $x \mid_{\{T\} \times \Omega}$ as separate functions. The reformulated problem (10) of Cox and Huang [10], an optimal consumption-portfolio problem in static form, is a special case of $(I\tilde{C}_p)$.

References

- Alekseev, V.M., Tichomirov, V.M. and Fomin. S.V.: Optimal Control. New York: Consultants Bureau 1987
- [2] Arkin, V.I. and Levin, V.L. Convexity of values of vector integrals, theorems on measurable choice and variational problems. Russian Mathematical Surveys 27, No. 3 21-85 (1972)
- [3] Artstein, Z. On a variational problem. Journal of Mathematical Analysis and Applications 45, 404-415 (1974)
- [4] Aumann, R.J. and Perles, M. A variational problem arising in economics. Journal of Mathematical Analysis and Applications 11, 488-503 (1965)
- [5] Balder, E.J. On a useful compactification for optimal control problems. Journal of Mathematical Analysis and Applications 72, 391-398 (1979)
- [6] Balder, E.J. A unifying note on Fatou's lemma in several dimensions. Mathematics of Operations Research 9, 267-275 (1984)
- [7] Balder, E.J. On seminormality of integral functionals and their integrands. SIAM Journal of Optimal Control and Optimization 24, 95-121 (1986)
- [8] Berliocchi, H. and Lasry, J.M. Intégrandes normales et mesures paramétrées en calcul des variations. Bulletin de la Société Mathématique de France 101, 129-184 (1972)
- [9] Castaing, C. and M. Valadier. Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics 580. Berlin: Springer-Verlag 1977
- [10] Cox, J.C. and Huang, C.-F. A variational problem arising in financial economics. Journal of Mathematical Economics, 20, 465-487 (1991)
- [11] Gamkrélidzé, R. Theory of time-optimal processes for linear systems (in Russian). Izvestia Akademii Nauk USSR, ser. mat. 22, no. 4, 449-479 (1958)
- [12] Giner, E. Minima sous contrainte, de fonctionelles intégrales. Comptes Rendus de l'Académie des Sciences 321, 429-431 (1995)

- [13] Harrison, M. and Kreps, D. Martingales and multiperiod securities markets. Journal of Mathematical Economics, 20, 381-408 (1979)
- [14] Hildenbrand, W. Core and Equilibria of a Large Economy. Princeton: Princeton University Press 1974
- [15] Neveu, J. Foundations of the Calculus of Probability. San Fransisco: Holden-Day 1965
- [16] Rockafellar, R.T. Integral functionals, normal integrands and measurable selections. In: Nonlinear Operators and the Calculus of Variations (J.P. Gossez et al., eds.) Lecture Notes in Mathematics 543 Berlin: Springer-Verlag 1976, pp. 157-207
- [17] Yaari, M.E. On the existence of an optimal plan in continuous-time allocation process. Econometrica 32, 576-590 (1964)