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1 Introduction

In a seminal paper [4] Aumann and Perles gave existence results for optimal consumption problems
with linear inequality and equality constraints that are special cases of two problems, (ICp) and
(ECp), to be formulated in section 2. These are variational problems in a space of p-integrable
functions, either for p = 0 (0-integrability being interpreted as mere measurability) or for p � 1,
as is the case in [4, 10]. Problem (ECp) generalizes a problem studied in [4] in the Main Theorem
(p. 489) and in Theorem 6.2 (the former has p = 1 and the latter is for p > 1). A version of (IC1)
was considered in [4, Theorem 6.1]. More recently, Cox and Huang continued this work in [10],
where they gave existence results for a dynamic consumption-portfolio problem. They did so by
using the well-known fact [13] that such problems can be transformed into a static problem of the
type (ICp), p � 1, using Ito's calculus. The existence results in [10] show several di�erences with
the results in [4]. As one practical limitation of the version of (ICp) used in [10] we point out that
it only allows for a single consumption good and one inequality constraint. This restriction play
an important technical role in [10]. Closer inspection of [10] vis �a [4] reveals a number of other
substantial technical di�erences between [4] and [10] that a�ect certain comparisons with [4] that
were claimed in [10]. Next to the already cited fact that [4] deals with a multi-good model, these
di�erences are as follows. (i) In all of [10] the utility function u(z; !) is concave in the decision
variable z, but it is not so in any of the three above-mentioned existence results in [4]. (ii) On the
other hand, in all of [4] the underlying measure space is nonatomic, whereas in [10] it is general. (iii)
In all of [10], u(z; !) is required to be increasing (by this we mean strictly increasing) in z, but this
is not so in [4, Theorem 6.1] (which has no monotonicity requirement at all) and [4, Main Theorem]
(which only requires u(z; !) to be nondecreasing in z); however, Theorem 6.2 in [4] requires u(z; !)
to be increasing in z.

For these reasons, the totality of the results in [4] and [10] is intransparent. To subsume all of
the cited results in [4] and [10] and to go beyond them, this work presents three central existence
results. These o�er several considerable improvements, in particular for the utility functions. For
p = 0 (and also for p = 1 under additional conditions that turn out to be valid in [4] but not in
[10]) our main existence results are Propositions 2.5 and 2.6, respectively for the inequality- and the
equality-constrained problems. These propositions are immediate consequences of [6, Corollary 2],
a result recapitulated here as Theorem 3.1. A growth property (
1) from [8] is used, as well as its
logical extension (
p). We show that this uni�es the di�erent growth conditions used by Aumann
and Perles [4] and Cox and Huang [10]. Our main existence result is Theorem 2.8; this is new,
but it is obtained along the lines set out by Aumann and Perles in their proof of [4, Theorem 6.2].
First, for (IC0) the propositions mentioned above yield existence of an optimal solution x� in a
space of measurable functions. Next, in Theorem 3.2 optimality is characterized by a pointwise
optimality principle, which comes from [1, 2, 11] (see [4, Theorem 5.1]). It is essential that all
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Lagrange multipliers of this optimality principle be strictly positive (Corollary 3.3); this forces x� to
be p-integrable, as a consequence of the optimality principle and the growth conditions for u(z; !).
In addition, such strict positivity causes the optimal solutions of (ICp) and (ECp) to coincide,
because of complementary slackness.

2 Existence results

For p = 0 and p � 1 we consider the following optimal consumption problem with linear inequality
constraints

(ICp) sup
x2Lp

Z

fU (x) :
Z



x(!) � �i(!)�(d!) � �i; i = 1; : : : ;mg

and its equality-constrained counterpart

(ECp) sup
x2Lp

Z

fU (x) :
Z



x(!) � �i(!)�(d!) = �i; i = 1; : : : ;mg:

As we shall see in section 5, this model can easily incorporate consumption over time as well. Here
(
;F ; �) is a �nite measure space and LpZ is shorthand for the set of all p-integrable consumption
functions on (
;F ; �) with values in Z := R

d
+. Here d is a �xed, given dimension. For p = 0

this de�nition has to be understood as follows: L0Z is the set of all measurable functions from 

into Rd+. Also, �1; : : : ; �m > 0 are given constants. Further �1; : : : ; �m are given functions in L0Z,
�i = (�i;1; : : : ; �i;d), with

�̂(!) := min
1�j�d

mX
i=1

�i;j(!) > 0 for every ! in 
. (1)

By nonnegativity of x � �i, the meaning of
R

 x � �i d� is always clear (the integral is allowed to be

+1).1 Finally, above we denote

U (x) :=

Z



u(x(!); !)�(d!);

where u : Rd+ � 
! [�1;1) is a B(Rd+)�F-measurable utility function. Of course, the integrand
! 7! u(x(!); !) is F-measurable for every x 2 LpZ , but it is not necessarily summable. However,
growth property (
p) that is to follow will hold for all our existence results. This implies thatR

max(u(x(!); !); 0)�(d!) is �nite for all x 2 LpZ , so, by allowing for U (x) = �1, the meaning of
the integral is never in doubt; this means that we interpret the integral in the de�nition of U (x) as
a quasi-integral [15].

Extensions, examples and special cases of this model are discussed in sections 4 and 5. As one
particular economic example of (ICp) one could, for instance, think of a consumer, facing uncertainty
about the true state of nature, who consults m experts. Each expert i suggests a random variable
�i 2 L0Z to describe expert i's best guess for stochastic price behavior: should state ! in 
 arise
under �, then expert i predicts that this results in the price vector �i(!) 2 R

d. If the consumer
takes all expert opinions seriously, he/she could wish to use only state-contingent consumption plans
x 2 LpZ for which for each i the expectation

R

 �i � x d� does not exceed a certain budget value.

As illustrated by Example 4.12, mechanical problems of the type (ECp) were already studied by
Newton.

The following special conditions will sometimes be imposed on (�i;j). Of these, order-equivalence
works in connection with p � 1, both for (ICp) and (ECp), and diagonal dominance serves to make
all problems (ECp), p = 0 or p � 1, automatically feasible.

1Thus, we dispense with the condition �i 2 L
q of [10], with q as speci�ed in footnote 2. In retrospect, this justi�es

Cox and Huang's use of both p = 1 and p > 1 in [10], although their own restriction �i 2 L
q e�ectively rules out

p = 1 (i.e., q = 1) because of their formula (8).
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De�nition 2.1 (i) The matrix function (�i;j) is said to be order-equivalent to �̂ if there exists
C > 0 such that

max
1�j�d

mX
i=1

�i;j(!) � C�̂(!) for a.e. ! in 
.

(ii) The matrix function (�i;j) is said to have diagonal structure if m = d and �i;j � 0 whenever
i 6= j, i; j = 1; : : : ; d.

Observe already that diagonal structure implies �i;i > 0 for every i, in view of (1). Note also that
Aumann and Perles [4] use diagonal structure, with �i identically equal to the i-th unit vector ei.

Hence, they also have order-equivalence with �̂ � 1. In [10] one simply has m = d = 1, whence

�̂ = �1;1. The growth condition for u mentioned above is as follows; it is an obvious extension to
p � 1 of the property introduced in [8] to unify the three di�erent growth conditions used in [4].

De�nition 2.2 u has growth property (
p) if for every � > 0 there exists  � 2 Lp+ such that for a.e.
! 2 


u(z; !) � ��̂(!)jzj+ �̂(!) �(!) for all z 2 Rd+:
In connection with the existence results for p � 1 the following nonsatiation condition is impor-

tant:

De�nition 2.3 The function u is said to be essentially nonsatiated with respect to �1; : : : ; �m if
there do not exist j, 1 � j � m, and �i � 0, i 6= j, for which

argmaxz2Rd
+
[u(z; !)�

X
i;i6=j

�iz � �i(!)] 6= ; for a.e. ! in 
.

Remark 2.4 Obviously, if (�i;j) has diagonal structure, then u in nonsatiated with respect to
�1; : : : ; �m if and only if there do not exist j, 1 � j � m, and �i � 0, i 6= j, for which

argmaxz2Rd
+
u(z; !)�

X
i;i6=j

�i�i;i(!)z
i 6= ; a.e.

So the above certainly holds if for every ! in some non-null subset B of 
 (i.e., �(B) > 0) and every
j the function u(z; !) is nonsatiated in each coordinate zj of z (i.e., argmaxzj�0u(z; !) = ; for every
z1; : : : ; zj�1; zj+1; : : : ; zd � 0). In particular, this holds when u(z; !) is strictly increasing in each
coordinate zj for all ! in some subset non-null subset of 
.

Proposition 2.5 (existence of optimal measurable plans) Suppose that u(z; !) is upper semi-
continuous in z for a.e. ! in 
. Suppose also that u satis�es growth condition (
1). Then problem

(IC0), provided that it is feasible, has an optimal solution x� with
R


jx�j�̂d� < +1.

Proposition 2.6 (existence of optimal measurable plans) Suppose that u(z; !) is upper semi-
continuous and nondecreasing in z for a.e. ! in 
 and that (�i;j) has diagonal structure. Suppose
also that u satis�es growth condition (
1). Then problem (EC0) has an optimal solution x�, withR


jx�j�̂d� < +1, that is simultaneously an optimal solution of (IC0).

Observe that Proposition 2.6 contains no explicit feasibility condition. Here u(z; !) is said to be
nondecreasing in z if z0 � z (coordinatewise) in Rd implies u(z0; !) � u(z; !).

Remark 2.7 Of course, if ess inf
 �̂, the essential in�mum of �̂ over 
, is strictly positive, the
additional property

R

 jx�j�̂d� < +1 of x� implies x� 2 L1Z, which causes the existence results for

(IC0) and (IC1), as well as those for (EC0) and (EC1), to coincide. This observation applies in

particular to [4], where �̂ � 1; cf. section 4.

The following theorem is the main result of this work. It gives su�cient conditions for the
existence of an optimal solution of (ICp) and of (ECp).
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Theorem 2.8 (existence of optimal p-integrable plans) Suppose for p � 1 that u(z; !) is up-
per semicontinuous in z for a.e. ! in 
, that u(z; !) is concave in z for a.e. ! in the purely atomic
part 
pa of (
;F ; �) and that u is essentially nonsatiated with respect to �1; : : : ; �m. Suppose also

that u satis�es growth condition (
p), that (�i;j) is order-equivalent to �̂ and that there exists some

~x 2 LpZ for which the function ! 7! u(~x(!); !)=�̂(!) is p-integrable. Then problem (ICp), provided
that it is feasible, has an optimal solution that is simultaneously an optimal solution of problem
(ECp).

Recall here [14] that 
 can always be partitioned into a purely atomic part 
pa (this is the union of
at most countably many non-null atoms) and a nonatomic part 
na.

Remark 2.9 Suppose that (�i;j) has diagonal structure with �̂�1 2 Lp. Then in Theorem 2.8

problem (ICp) is feasible. By �̂
�1 2 Lp and �̂ � �i;i � C�̂ we have �̂�1i;i 2 Lp+ for i = 1; : : : ; d. Hence,

(�1�
�1
1;1; : : : ; �d�

�1
d;d) in (Lp+)d de�nes a feasible solution of (ECp), whence of (ICp).

Even when m = d = 1 the essential nonsatiation condition that we use constitutes a considerable
improvement over [4, Theorem 6.2] and [10], where u(z; !) is required to be strictly increasing in
each coordinate of z for all (or at least a.e.) ! in 
. See Examples 4.8 and 4.9 below.

3 Auxiliary results and proofs

The proof of Proposition 2.5 is an immediate application of the following result from [6], where
it was shown to extend [8, Proposition 1, p. 155] and the existence results of [3, 5]) to a general
underlying measure space (all those references use a nonatomic measure).

Theorem 3.1 ([6, Corollary 2]) Let g0; g1; : : : gm+1 : R
d
+�
! (�1;+1] be product measurable

functions. Also, let �1; : : : ; �m+1 be given real numbers. Suppose that g1(z; !); : : : ; gm(z; !) are lower
semicontinuous in the variable z and suppose that gm+1(z; !) is inf-compact in the variable z and
nonnegative. Suppose also that for every � > 0 there exists  � 2 L1 such that for i = 0; : : : ;m

max(�gi(z; !); 0) � �gm+1(z; !) +  �(!) for a.e. !. (2)

Then the optimization problem

inf
x2L0

Z

f
Z



g0(x(!); !)�(d!) :

Z



gi(x(!); !)�(d!) � �i; i = 1; : : : ;m+ 1g

has an optimal solution, provided that this problem is feasible.

In [6, Corollary 2] a more general space is taken instead of Rd+. Above the integrals
R

 gi(x(!); !)�(d!),

x 2 L0Z , should be interpreted as quasi-integrals (concretely, they can have values +1, but not �1).

Proof of Proposition 2.5. Let �m+1 :=
P

i �i and consider the following auxiliary opti-
mization problem:

(Q) inf
x2L0

Z

f
Z



�u(x(!); !)�(d!) :
Z



x � �id� � �i; i = 1; : : : ;m;

Z



�̂jxjd� � �m+1g:

Let us show that this problem is equivalent with (IC0). First, the m + 1-st constraint of the
optimization problem is redundant (it is only introduced because it is formally required). To see its

redundance, just observe that the elementary inequality �̂jzj � �̂
P

j z
j � Pi �i � z for all z 2 R

d
+

causes the �rst m constraints in (Q) to imply the m + 1-st one. Secondly, the change into a
minimization problem is explained by the additional minus sign. So (IC0) is equivalent to (Q);
hence, it is enough to prove existence of an optimal solution of (Q). We do this by a direct application

of Theorem 3.1, setting g0(z; !) := �u(z; !), gm+1(z; !) := �̂(!)jzj, gi(z; !) := z � �i(!) and �i := �i
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for i = 1; : : : ;m+ 1. Before invoking Theorem 3.1 it remains to verify (2). For i = 1; : : : ;m this is
trivial by gi � 0 and for i = 0 it is an immediate consequence of (
1). QED

Proof of Proposition 2.6. Because of the additional diagonal structure, (�1�
�1
1;1; : : : ; �d�

�1
d;d)

in L0Z de�nes a feasible solution of (EC0), whence of (IC0). So Proposition 2.5 can be applied. This
guarantees existence of an optimal solution x�� of (IC0). De�ne x� 2 L0Z by

xi�(!) := xi��(!) + (�i � �0i)�
�1
i;i (!); (3)

for �0i :=
R

 x�� � �id� =

R

 x

i
���i;id� � �i. Then U (x�) = U (x��), which causes x� to be an

optimal solution of both (EC0) and (IC0). The identity holds, because on the one hand x� is
obviously feasible for (EC0) (whence for (IC0), which implies U (x�) � U (x��)) and on the other
hand x�(!) � x��(!) (coordinatewise), causing u(x�(!); !) � u(x��(!); !) for all !, whence U (x�) �
U (x��). QED

We now prepare the proof of Theorem 2.8. We shall need the following theorem, which comes
from [1, 2, 11]. Essentially, it is based on an application of Lyapunov's theorem (convexity of the
range of a nonatomic vector measure) and the separating hyperplane theorem in Rm+1, plus some
measurable selection arguments.

Theorem 3.2 (optimality principle) Suppose for any p, p = 0 or p � 1, that u(z; !) is concave
in z for for a.e. ! in the purely atomic part 
pa. Then x� 2 LpZ is an optimal solution of (ICp)
if and only if x� is feasible for (ICp) and there exist �1; : : : ; �m � 0 such that the following two
conditions hold:

x�(!) 2 argmaxz2Rd
+
u(z; !)�

mX
i=1

�iz � �i(!) for a.e. ! in 
 (pointwise maximum principle):

�i(

Z



x� � �id�� �i) = 0; i = 1; : : : ;m (complementary slackness):

Under additional conditions for �1; : : : ; �m, a similar result can be also given for (ECp) [1], but for
the present paper this is not very relevant.2 The following Corollary 3.3 of the above theorem will
play an essential role in establishing existence for p � 1. Its essential nonsatiatedness condition
alone is responsible for the (strict) positivity of its multipliers; cf. Examples 4.8 and 4.9.

Corollary 3.3 Suppose for any p, p = 0 or p � 1, that u(z; !) is concave in z for for a.e. ! in

pa and that u is essentially nonsatiated with respect to �1; : : : ; �m. Then x� 2 LpZ is an optimal
solution of (ICp) if and only if x� is feasible for (ECp) and there exist �1; : : : ; �m > 0 such that

x�(!) 2 argmaxz2Rd
+
u(z; !)�

mX
i=1

�iz � �i(!) for a.e. ! in 
 (pointwise maximum principle):

In the above corollary any optimal solution of (ICp) is also an optimal solution of (ECp), but the
converse implication need not hold:

Example 3.4 Let 
 be the unit interval, equipped with Lebesgue measure �. Let m = d = 1,
� 2 [0; 1) and de�ne the utility function as follows:

u(z; !) :=

8<
:

1
z if 0 < z � 1
0 if z = 0
1 if z > 1

Consider the problems (ICp) and (ECp) with �1 � 1 and �1 = 1. Then, apart from null sets, x � 1
is the only feasible element of (ECp) for which U (x) > �1. Hence, x� � 1 is the (essentially)
unique optimal solution of (ECp). However, (ICp) clearly has no optimal solution, even though u
meets all conditions of Corollary 3.3 (here 
pa = ;).

2By [1, 4.3.3] an analogous characterization holds for (ECp) if �1; : : : ; �m are additionally q-integrable, with
q := p=(1� p) if p > 1 and q :=1 if p = 0.
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Proof of Theorem 3.2. When 
na is equipped with F \ 
na and �(� \ 
na), it forms a
nonatomic measure space. Denote by V [W] the space of all p-integrable functions from 
na [
pa]
into Rd+. Every x 2 LpZ can be identi�ed with the pair (v; w) in V � W, where v := x j
na is the
restriction of x to the nonatomic part 
na and where w := x j
pa is the restriction of x to the purely
atomic part 
pa. Then x� is an optimal solution of (ICp) if and only if (v�; w�), with v� := x� j
na
and w� := x� j
pa , is an optimal solution of the following optimization problem

(L) inf
v2V;w2W

f�
Z

na

u(v(!); !)�(d!) + a0(w) :

Z

na

v � �id�+ ai(w) � �i; i = 1; : : : ;mg:

Here a0(w) := � R
pa u(w(!); !)�(d!) is convex in the variable w (by the given concavity property
of u). Each ai(w) :=

R

pa w � �id� is also obviously convex in w. In the terminology of [1, 4.3.3],

problem (L) is a Lyapunov-type optimization problem. By the main theorem of section 4.3.3 in
[1, p. 240-241] it follows that, corresponding to the optimal pair (v�; w�), there exist nonnegative
multipliers �0; �1; : : : ; �m, not all zero, such that the two minimum principles

v�(!) 2 argminz2Rd
+
� �0u(z; !) +

mX
i=1

�iz � �i(!) for a.e. ! in 
na

and

w� 2 argminw2W

mX
i=0

�iai(w);

hold, as well as the complementary slackness relationships

�i(

Z

na

v� � �id�+ ai(w�) � �i) = 0; i = 1; : : : ;m:

Writing out the de�nition of the ai(w) immediately gives that the above complementary slackness
relationship is equivalent to the one stated in Theorem 3.2. Since �1; : : : ; �m > 0, a Slater type
constraint quali�cation holds, which causes �0 6= 0. This can also be seen directly: if �0 were 0,
then obviously

P
i �ix�(!) � �i(!) = 0 for a.e. ! (set z = x�(!)=2 and z = 2x�(!) respectively).

This would result in
P

i �i
R

 x� � �id� = 0. By complementarity,

P
i �i
R

 x� � �id� =

P
i �i�i, so we

would have
P

i �i�i = 0. By �i � 0 and �i > 0 for all i, this would mean that also the multipliers
�1; : : : ; �m are zero. This gives a contradiction. So �0 6= 0, and, rather than dividing all �i by �0,
we can suppose without loss of generality �0 = 1. Also, because 
pa consists of at most countably
many atoms and because each function in W is a.e. constant on such an atom, it is easy to see that
the second minimum principle is equivalent to the following:

w�(!) 2 argminz2Rd
+
� u(z; !) +

mX
i=1

�iz � �i(!) for a.e. ! in 
pa

Combined, the above two mimimumprinciples (with �0 = 1) are precisely equivalent to the pointwise
maximum principle that is stated in Theorem 3.2. QED

Some comments should be added to justify the application above of the main theorem of [1,
section 4.3.3]. Formally speaking, the conditions of [1] require 
 to be a Lebesgue interval of R and
the functions u(z; !) and z ��i(!) to be jointly continuous in (z; !). However, from the proof in [1] it
is evident that the only reason for this is the rather crude Lemma D) on p. 244, which is known to
hold in much more general forms for functions u(z; !) and z � �i(!) that are just jointly measurable
in (z; !) and for a decomposable class of measurable functions, such as LpZ . This is the so-called
reduction theorem; e.g., see [16, Theorem 3A], [7, Theorem B.1] and [12]. Actually, the approach
taken in [1] can already be found in more general terms in [2].

Proof of Corollary 3.3. Clearly, all that has to be done is to demonstrate that �i > 0 for
i = 1; : : : ;m in the pointwise maximumprinciple of Theorem 3.2 (because complementary slackness
then implies feasibility for (ECp)). If there were j with �j = 0, then the pointwise maximum
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principle would imply that x�(!) belongs to argmaxz2Rd
+
[u(z; !)�Pi;i6=j �iz � �i(!)] for a.e. !. But

this contradicts the de�nition of essential nonsatiation. QED

Proof of Theorem 2.8. Since the conditions of Proposition 2.5 clearly hold, we certainly
have existence of an optimal solution x� 2 L0Z of (IC0). We can apply Corollary 3.3 (for p = 0) to
(IC0). Observe already that this already gives feasibility of x� for (EC0). Setting z := ~x(!) in the
pointwise maximum principle, we obtain

u(x�(!); !) �
mX
i=1

�ix�(!) � �i(!) � u(~x(!); !) �
mX
i=1

�i~x(!) � �i(!) a.e.

where ~x 2 LpZ is as postulated in Theorem 2.8. Let � := min1�i�m �i; then � > 0 by Corollary 3.3.
By using (
p) and order-equivalence of (�i;j) we obtain from the above

�

2
�̂(!)jx�(!)j + �̂(!) �=2(!)� u(~x(!); !) + C

p
dmax

i
�i�̂(!)j~x(!)j � ��̂(!)jx�(!)j:

Here we use the elementary inequalities �jx�j�̂ �
P

i �ix� � �i � Cd1=2maxi �i�̂jx�j. After division
by �̂(!), the resulting majorization of �jx�j=2 by the p-integrable expression  �=2 � u(~x(�); �)=�̂ +
Cd1=2maxi �ij~xj immediately implies the p-integrability of jx�j. Finally, (ECp)-feasibility of x� now
follows simply from our earlier observation about its (EC0)-feasibility. So x� is also an optimal
solution of problem (ECp). QED

4 Applications

In this section we show how the existence results in [4] and [10] all follow from the results developed
in section 2. We also give some examples to show that Theorem 2.8 also applies to new situations,
not covered by [4, 10]. To begin with, we prepare the conversion of the following growth properties
used in [4, 10] for p � 1:

De�nition 4.1 (i) u has growth property (�p) if for every � > 0 there exists �� 2 Lp+ such that for
a.e. !

u(z; !) � ��̂(!)jzj for all z 2 Rd+ with jzj � ��(!).

(ii) u has growth property (�0p) if for every � > 0 there exists �0� 2 Lp+ such that for a.e. !

u(z; !) � ��̂(!)jzj for all z 2 Rd+ with min1�i�d zi � �0�(!).

Because of d = 1, in [10] one has jzj = z for all z 2 R+, which causes the growth properties (�p)
and (�0p) to be indistinguishable. Growth property (�0p), for p � 1, can already be found in [4], and
also property (�1). Growth property (�0p) is also used (but just for m = d = 1) in [10, De�nition 4.1,
Lemma 4.2, �.], as can be seen by means of the following example.

Example 4.2 (i) Suppose that there exist b 2 (0; 1), �1 � 0 and �2 > 0 such that for a.e. !

u(z; !) � �1 + �2jzj1�b for all z 2 Rd+:

Suppose also that �̂�1 belongs to Lp=b. Then growth condition (�p) holds: similar to [10, Lemma4.2],

we simply observe that u(z; !) � �1 + ��̂(!)jzj for a.e. ! and for all z with jzj � (��̂(!)=�2)
�1=b.

Hence, u(z; !) � 2��̂(!)jzj if jzj � �2�(!), where �2� := max[(��̂=�2)
�1=b; �1�̂

�1] de�nes a function
in Lp+. This shows (�p) to hold.

(ii) If �2 = 0 in part (i), then condition (
p) holds trivially. This implies that condition (�p)

then holds as well (by Proposition 4.3a below), without the above condition for �̂�1.
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Proposition 4.3 a. For any p � 1, (
p) implies (�p) implies (�0p).
b. Suppose that

u(z; !) is nondecreasing in z for a.e. ! in 
.

Then for any p � 1 the three growth properties (
p), (�p) and (�0p) are equivalent.

Proof a. ((
p)) (�p)): For any � > 0 we have u(z; !)=�̂(!) � �jzj=2 +  �=2(!) for a.e. ! and

all z. De�ne �� := 2��1 �=2 2 Lp+. Then jzj � ��(!) is easily seen to imply u(z; !)=�̂(!) � �jzj.
((�p)) (�0p)): This follows simply from the implication mini zi � ��(!)) jzj � ��(!).
b. ((�0p) ) (�p)): For any � > 0 let �0� be as in the de�nition of (�0p). Set �� := d�0�0 with

�0 := �=d1=2. Then, for any z 2 R
d
+, let z

0 := (ẑ; : : : ; ẑ), where ẑ := maxi zi. Then jzj � ��(!) )
jz0j = d1=2ẑ � �0�0(!), which causes u(z0; !)=�̂(!) � �0jz0j = �ẑ � �jzj. Finally, observe that
u(z; !) � u(z0; !) by monotonicity of u, since obviously z0 � z.

((�p) ) (
p)): De�ne  � := d1=2(�1 + ��) 2 Lp+, with �1 (for � := 1) and �� as in the de�nition
of condition (�p). Then  �(!) = jz�(!)j, where z�(!) 2 Rd+ is the vector all of whose components

are equal to �1(!) + ��(!). Observe that u(z�(!); !) � �̂(!) �(!) by (�p) (for � := 1), in view of
 �(!) = jz�(!)j � �1(!). Let ! 2 
 be arbitrary and nonexceptional and let z 2 Rd+ be arbitrary.
Now either z � z�(!) (i.e., componentwise) or not. In the latter case one has jzj � ��(!) (since

at least one coordinate must be greater than  �(!)), which implies u(z; !) � ��̂(!)jzj. In the

former case one has u(z; !) � u(z�(!); !) by monotonicity of u, which gives u(z; !) � �̂(!) �(!)
when it is combined with the earlier inequality for u(z�(!); !). We conclude that in either case

u(z; !) � ��̂(!)jzj+ �̂(!) �(!). That is to say, (
p) has been shown to hold. QED

It is intuitively obvious that the global growth control of u, as excercised by (
p), cannot be main-
tained under (�p) and (�0p), which only exercise such control outside a certain radius from the origin.
This is con�rmed by the following example, which shows that the implications in Proposition 4.3a
cannot be reverted without additional conditions such as monotonicity.

Example 4.4 Let d = 1 and consider 
 = (0; 1) with the Lebesgue measure. Let u : R+ �
 ! R

be as follows:

u(z; !) :=

� p
z � 1 if z � 1,

!�1(1� z) if z < 1

Also, let �̂ � 1. Then (
p) cannot hold (since 1=! = u(0; !) �  �(!) would force non-integrability
of  �). However, for z � ��(!) := max(1; ��2) one has u(z; !) � �jzj.

We begin to apply our results of section 2 to situations { rather they are generalizations of such
situations { considered in [4].

Corollary 4.5 ([4, Main Theorem]) Suppose that (�i;j) has diagonal structure with ess inf
�̂ > 0
and that u(z; !) is upper semicontinuous and nondecreasing in z for a.e. !. Suppose also that u has
growth property (�01). Then problem (EC1) has an optimal solution that is also an optimal solution
of (IC1).

Proof. Proposition 4.3 implies that (
1) holds. We may now apply Proposition 2.6, which gives

the existence of an optimal solution x� of (EC0), with
R

 x��̂d� < +1, that is optimal for (IC0)

at the same time. By remark 2.7, x� is also an optimal solution of (EC1) and (IC1). QED

Corollary 4.6 ([4, Theorem 6.1]) Suppose that u(z; !) is upper semicontinuous in z for a.e. !

in 
. Suppose also that ess inf
 �̂ > 0 and that u has growth property (�1), together with the
following additional property: for every � 2 L1+ there exists � 2 L1+ such that jzj � �(!) implies

u(z; !) � �(!)�̂(!). Then problem (IC1) has an optimal solution.

Proof. To prove that u has growth property (
1), let � > 0 be arbitrary. By (�1) there

exists �� 2 L1+ such that jzj � ��(!) implies u(z; !)=�̂(!) � �jzj. By the additional property
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there exists �� 2 L1+ such that jzj < ��(!) implies u(z; !)=�̂(!) � ��(!). Together, this means

that u(z; !)=�̂(!) � �jzj + ��(!) for all z. This proves (
1). All conditions of Proposition 2.5 are

now ful�lled, so there exists an optimal solution x� of problem (IC0), with
R

 x��̂d� < +1. By

Remark 2.7 x� is also an optimal solution of (IC1). QED

Corollary 4.7 ([4, Theorem 6.2]) Suppose that (
;F ; �) is nonatomic, that u(z; !) is upper
semicontinuous and nondecreasing in z for a.e. ! in 
 and that u(z; !) is increasing in z for all !
in some non-null subset of 
. Suppose also that (�i;j) has diagonal structure, is order equivalent to

�̂, with �̂�1 2 Lp. Suppose further that u is nonnegative and has growth property (�0p). Then problem
(ECp) has an optimal solution that is also an optimal solution of (ICp).

Proof. Let us check that the conditions of Theorem 2.8 hold. Here we have 
pa = ;, so that
the concavity condition holds vacuously. Also, by Remark 2.4, u is clearly nonsatiated with respect
to (�i;j). By Proposition 4.3, u has property (
p), since u(z; !) is certainly nondecreasing in z. By

(
p), we get for ~x � 0 that 0 � u(~x(�); �)=�̂ �  1 (take � = 1). By u � 0, this proves that u(~x(�); �)
belongs to Lp. So all conditions of Theorem 2.8 hold. It follows that there exists an optimal solution
of (ECp) that is also an optimal solution of (ICp). QED

Even as specializations of Theorem 2.8, the above corollaries still improve the corresponding
results in [4] in a number of respects. For instance, Corollaries 4.5 and 4.6 do not require (
;F ; �)
to be nonatomic, Corollary 4.7 does not require u(z; !) to be increasing for a.e. ! and none of the
three corollaries requires �i � ei. Besides, they allow for easy improvements that have not been
considered in [4]. For instance, in Corollary 4.7 one could also consider a general measure space
instead of a nonatomic one by introducing for ! 2 
pa extra concavity for u(z; !) in the variable
z, just as in Theorem 2.8. Also, in that same corollary, one could omit the nondecreasingness of
u(z; !) in z for most ! (except for those ! that are in the non-null set mentioned in the statement)
by requiring (
p) to hold instead of (�0p). This is illustrated by the following examples:

Example 4.8 Let 
 be the unit interval, equipped with Lebesgue measure �. Let m = d = 1,
� 2 (0; 1] and de�ne the utility function as follows:

u(z; !) :=

� �z2 if ! � 1� �p
z! if ! > 1� �

[Here one could think of 1� � as some critical value; if the state of nature ! is less than this value,
the bene�t of consumption is completely reversed.] Consider the problems (ICp) and (ECp) with
�1 � 1. It is obvious that u satis�es growth condition (
p) for any p � 1 and that u(~x(!); !) = 0 on

 for ~x � 0. Even though u(z; !) is decreasing in z for ! 2 [0; 1� �], the conditions of Theorem 2.8,
and in particular essential nonsatiation, are valid. This theorem therefore establishes existence of an
optimal solution of (ICp) and (ECp) for every p � 1 (note that (ICp) always has x � �1 as a feasible
solution { cf. Remark 2.9). It is illuminating to inspect this result by a more complete analysis of
this example, based on an application of Theorem 3.2 (or Corollary 3.3). By this result the optimal
solution x� of (ICp) must be feasible and must satisfy x�(!) 2 argmaxz�0u(z; !)��1z a.e. for some
�1 � 0. If �1 = 0, then for ! > 1 � � the above \argmax set" would be empty, which would give a
contradiction. So the only possibility is �1 > 0 (note that this is in agreement with Corollary 3.3).
For a.e. ! 2 [0; 1� �] this gives x�(!) = 0. For a.e. ! 2 (1 � �; 1] the above pointwise maximum

principle gives x�(!) = !=4�21. To satisfy complementary slackness we also need
R 1
0 x� = �1, and

this is easily seen to be solved for �1 = [(2� � �2)=8�1]1=2. The su�ciency part of Theorem 3.2
now also guarantees that the above x� is an optimal solution of (ICp). In fact, the above derivation
shows that it is essentially (i.e., apart from null sets) the unique optimal solution of (ICp) and ECp).

Example 4.9 Let 
 be the unit interval, equipped with Lebesgue measure �. Let m = d = 1,
� 2 [0; 1] and de�ne the utility function as follows:

u(z; !) :=

�
min(z

p
!; 1) if ! � 1� �p

z! if ! > 1� �

9



Consider the problems (ICp) and (ECp) with �1 � 1. It is not hard to check that u satis�es growth
condition (
p) for any p � 1 and that u(~x(!); !) = 0 on 
 for ~x � 0. However, in Case 1 below the
essential satiation condition is violated:

Case 1: � = 0, �1 = 2. This is precisely the example stated in [4, p. 502]. Although in this case
the problem is completely elementary, we give a formal derivation for reasons of comparison with
case 2 below. First of all, because u(z; !) is nondecreasing in z, any optimal solution of (ICp) also
leads to an optimal solution of (ECp) (see the proof of Proposition 2.6 { it turns out that this time
we cannot use complementary slackness). So it makes sense to start looking for an optimal solution
of (ICp). By Theorem 3.2, to �nd an optimal solution x� of (ICp) we must �nd a multiplier �1 � 0
such that x�(!) 2 argmaxz�0u(z; !) � �1z a.e. If �1 > 0, then the pointwise maximum principle

implies x�(!) = 0 if
p
! < �1 and x�(!) = 1=

p
! if

p
! > �1. This clearly violates

R 1
0 x� = 2, which

must hold by complementary slackness in this case. So �1 > 0 is impossible, and we are left with
�1 = 0. In this case the pointwise maximumprinciple implies x�(!) � 1=

p
! a.e. Together with the

feasibility constraint
R 1
0 x� � 2, this implies x�(!) = 1=

p
! a.e. Observe that x� 2 L1Z, but x� 62 L2Z.

So, by the su�ciency part of Theorem 3.2, x� is the essentially unique optimal solution of (IC0),
(EC0), (IC1) and (EC1), but not of (IC2) or (EC2). In fact, it follows that (IC2) does not have an
optimal solution at all, since the preceding application of the necessary conditions in Theorem 3.2
gave us the above x� as its only candidate for optimality. Similar nonexistence can be proven for
(EC2) by considering an analogue of Theorem 3.2, mentioned in footnote 2.

Case 2: � = 0:19, �1 = 5:89875. This time the essential nonsatiation condition is valid (see
Remark 2.4), so Theorem 2.8 applies: we know in advance that there exists an optimal solution of
(ICp) and (ECp) for any p � 1. This is con�rmed by determining the optimal solution explicitly.
Again, by Theorem 3.2, the optimal solution x� of (ICp) must be feasible and satisfy x�(!) 2
argmaxz�0u(z; !)� �1z a.e. for some �1 � 0. If �1 = 0, then for ! > 0:81 the pointwise maximum
principle would be self-contradictory, its \argmax set" being empty. So we are left with �1 > 0. For
! > 0:81, the set argmaxz�0

p
z! � �1z is the singleton f!=4�21g (see Example 4.8). For ! � :81,

the set argmaxz�0min(z
p
!; 1)� �1z is the singleton f1=p!g if �1 < p

!, but if �1 >
p
! it is the

singleton f0g. We now distinguish (a) �1 � 0:9 and (b) 0 < �1 < 0:9. In case (a) we �nd, by the
pointwise maximum principle, x�(!) = 0 for a.e. ! � 0:81, by ! < �21. In case (b) we �nd (a.e.),
by the same principle, x�(!) = 0 if ! 2 [0; �21) and x�(!) = 1=

p
! if ! 2 (�21; 0:81]. In both cases

the equation
R 1
0 x� = 5:89875 is forced by complementary slackness, since �1 > 0. In case (a) this

equation gives immediately �1 = 0:0853 : : :, which is in con
ict with the underlying inequality (a).
In case (b) that same equation is the cubic equation 1:8� 2�1 + 0:0429875��21 = 5:89875, of which
�1 = 0:1 is the only root complying with (b). By the su�ciency part of Theorem 3.2, x�(!) = 0
if ! 2 [0; 0:01), x�(!) = 1=

p
! if ! 2 (0:01; 0:81] and x�(!) = 2:5 ! if ! 2 (0:81; 1] is an optimal

solution of (ICp) and (ECp) for any p = 0 or p � 1 (observe that x� 2 LpZ for any p � 1). Moreover,
our derivation shows x� to be the essentially unique optimal solution of (ICp) and (ECp).

Next, we turn to the existence results in [10].

Corollary 4.10 ([10, Proposition 4.2]) Suppose that u(z; !) is upper semicontinuous and non-
decreasing in z for a.e. ! in 
 and concave in z for a.e. ! in 
pa. Suppose also that u has growth
property (�01) and that (�i;j) has diagonal structure. Then problem (IC0) has an optimal solution

x�,
R

 �̂jx�jd� < +1, that is also an optimal solution of (EC0).

Proof. Condition (
1) holds by Proposition 4.3, since u(z; !) is nondecreasing in z. The
conditions of Proposition 2.6 are thus ful�lled. This gives the existence result. QED

Corollary 4.11 ([10, Theorems 4.1, 4.2]) Suppose that u(z; !) is upper semicontinuous and non-
decreasing in z for a.e. ! in 
, concave in z for a.e. ! in 
pa and increasing for a.e. ! in some
non-null subset of 
. Suppose also that u has growth property (�0p) and that (�i;j) has diagonal

structure and is order-equivalent to �̂ with �̂�1 2 Lp. Suppose also that there exists some ~x 2 Lp for
which ! 7! u(~x(!); !) is essentially bounded. Then problem (ECp) has an optimal solution that is
also an optimal solution of (ICp).
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Proof. Again, by Proposition 4.3 u has property (
p) in view of the given monotonicity of

u(z; !) in z. Since �̂�1 2 Lp, it is evident that ! 7! u(~x(!); !)=�̂(!) is p-integrable. So all the
conditions of Theorem 2.8 are valid and the result follows. QED

Observe that, by Example 4.2, the upper bounds for u in Theorems 4.1, 4.2 of [10] both imply the
validity of (�0p), as used in the above corollary. Other improvements over the conditions used for the
utility u in [10] are also quite evident; for instance, our concavity and monotonicity conditions are
considerably weaker. We conclude this section by giving a very historical application of Theorem 2.8:

Example 4.12 Let 
 be the unit interval, equipped with Lebesgue measure �. The following
formulation can be given of Newton's classical problem of least resistance [1, p. 17].

inf
y2Yp

f
Z 1

0

!

1 + _y2(!)
�(d!) : y(0) = 0; y(1) = �1; _y � 0g:

Here �1 > 0 and Yp stands for the class of all p-absolutely continuous functions, i.e., the set of all
functions y : [0; 1] ! R for which there exists _y 2 Lp such that y(!) = y(0) +

R !
0 _yd� for every

! 2 
. In [1] this problem is only studied for p = 1, but we wish to consider it also for p � 1. By
substitution of x := _y, Newton's problem is seen to be precisely of the form (ECp), with m = d = 1,

u(z; !) := �!=(1 + z2), �̂ = �1;1 � 1 (observe that
R 1
0
x =

R 1
0
_y = y(1) � y(0) = �1). It is easy

to check that all conditions of Theorem 2.8 hold in this example for any p � 1 (use Remark 2.4).
Thus, for any p � 1 the above problem has an optimal solution. See [1, p. 60 �.] for a complete
description of this optimal solution. Just as in Examples 4.8 and 4.9, it could also be derived via
Theorem 3.2.

5 Extensions

5.1 State-contingent consumption sets

The fact that u(z; !) is allowed to be �1 can be exploited to absorb pointwise constraints on
consumption of the type

x(!) 2 X(!) for a.e. ! in 


in a very simple and direct way into the model. Here X : 
! 2R
d
+ denotes a multifunction with a

F � B(Rd+)-measurable graph. Such absorption comes about very simply by introducing

~u(z; !) :=

�
u(z; !) if z 2 X(!)
�1 if z 62 X(!)

Of course now the conditions for X must be such that ~u can be substituted for u in the various
conditions. Observe that for ~u(z; !) to be upper semicontinuous [concave] in the variable z, it is
su�cient to have X(!) closed [convex]. The reformulation of (
p) for ~u obviously yields a version
that is easier to satisfy than the one used previously, and in De�nition 2.3 one must simply replace
the maximization domain Rd+ by X(!).

5.2 Optimal consumption over time

Other extensions and applications are to a time-dependent situation. First of all, one can specialize
(ICp) and (ECp) to deterministic variational problems by setting 
 := [0; T ] and taking F equal
to the Lebesgue �-algebra and � equal to the Lebesgue measure on [0; T ]. This is the situation of
optimal consumption or resource allocation over time, as considered by Aumann and Perles [4] and
several others (e.g., see [17]).

Secondly, as in [10], one can automatically extend the main results of this paper to a stochastic
time-dependent situation, simply by a suitable choice of the underlying measure space. In addition
to the space 
 of states of nature, whose distribution is given by the (probability) measure �,
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there is now also a time interval [0; T ] and a �ltration fFt : t 2 [0; T ]g of information �-algebras
(e.g., this could be the natural �ltration with respect to some stochastic process of signals). Equip
~
 := [0; T ]�
 with the �-algebra ~F of progressively measurable sets (i.e., A 2 ~F if and only if the
section of A at t belongs to Ft for each t). If, moreover, a �nal wealth term is added to the objective
function, then problem (ICp) gets the following form (of course, the same can be done for (ECp)):

( ~ICp) sup
x2 ~Lp

Z

f ~U(x) :
Z



Z T

0
xt(!) � �i;t(!)dt�(d!) � �i; i = 1; : : : ;mg:

Here

~U (x) :=

Z



Z T

0
ut(xt(!); !)dt�(d!) +

Z


uT (xT (!); !)�(d!)

and ~LpZ stands for (Lp+(~
; ~F; ~�))d, where ~� := ~�1+ ~�2, with ~�1 the product of the Lebesgue measure
on [0; T ] and �, and ~�2 the measure on [0; T ]�
 that is entirely concentrated on the subset fTg�

and coincides there with � (i.e., ~�2(A � B) := 1A(T )�(B)). Observe that the strip fTg � 
 has
~�1-measure zero, which makes it possible to treat the restrictions x j[0;T )�
 and x jfTg�
 as separate
functions. The reformulated problem (10) of Cox and Huang [10], an optimal consumption-portfolio
problem in static form, is a special case of ( ~ICp).
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