On the Connes-Kreimer construction of Hopf Algebras

I. Moerdijk

Abstract: We give a universal construction of families of Hopf \mathbb{P}-algebras for any Hopf operad \mathbb{P}. As a special case, we recover the Connes-Kreimer Hopf algebra of rooted trees.

Keywords: Hopf operad, Hopf algebra, Hochschild cohomology.
In [K], [CK] a Hopf algebra H of rooted trees is discussed. This algebra originates in problems of renormalisation $[\mathrm{K}]$ and is closely related to the Hopf algebra introduced in [CM] in the context of cyclic homology and foliations. The algebra H is the polynomial algebra on countably many indeterminates T, one for each finite rooted tree T. Its comultiplication is given by the formula

$$
\Delta(T)=1 \otimes T+T \otimes 1+\sum_{c} F_{c} \otimes R_{c}
$$

see [CK]. Here c ranges over all "cuts" (prunings) of the tree T. Such cuts are assumed non-empty, and to contain at most one edge on each branch. R_{c} is the part of the tree which remains after having performed the pruning, and F_{c} is the product of subtrees which have fallen on the ground. In [CK] it is proved that this comultiplication indeed makes H into a Hopf algebra. Furthermore, H is equipped with a linear endomorphism λ, which is a universal cocycle for a suitably defined Hochschild cohomology of Hopf algebras.

The first aim of this note is to show that all these properties can in fact be deduced from a more basic universal property of H. Namely, H is the initial object in the category of (commutative unitary) algebras equipped with a linear endomorphism. Having realized that this is the case, it becomes clear that H is in fact equipped with a large family of Hopf algebra structures, all making the endomorphism λ into a universal cocycle for the corresponding Hochschild cohomology. For example, for any two complex numbers q_{1} and q_{2}, there is a coproduct on H, uniquely determined by the identity

$$
\Delta(\lambda(T))=\sum q_{1}^{\left|T_{(1)}\right|} \cdot T_{(1)} \otimes \lambda\left(T_{(2)}\right)+\lambda\left(T_{(1)}\right) \otimes q_{2}^{\left|T_{(2)}\right|} \cdot T_{(2)}
$$

where $|T|$ denotes the number of nodes in the tree T. For $q_{1}=1$ and $q_{2}=0$ one recovers the Hopf algebra structure of [CK].

The second aim is to describe how this construction applies more generally to "algebras" for any operad \mathbb{P} on an additive category, as soon as one has a well-behaved tensor product of algebras. More precisely, we will show that if \mathbb{P} is a "Hopf operad" on a symmetric monoidal additive category, then the initial object in the category of \mathbb{P}-algebras equipped with a "linear" endomorphism is naturally equipped with a family of natural Hopf \mathbb{P}-algebra structures. The algebra of rooted trees then becomes the extreme instance of this construction where the operad \mathbb{P} is the unit object in each degree.

Acknowledgements. My attention was first drawn to the algebra H by A. Connes at the "Karoubi Fest" in Paris (November 1998). I would like to thank Ezra Getzler and André Joyal for helpful discussion. I am indebted to the Dutch Science Foundation (NWO) for financial support. The main results of this paper were first presented at the Newton Institute, in February 1999.

1 Operads and algebras.

1.1 The underlying category. In this preliminary section we will consider operads on a category \mathcal{C}. We will assume that \mathcal{C} is a symmetric monoidal additive category, with countable sums and quotients of actions by finite groups on objects of \mathcal{C}. (In most cases, \mathcal{C} will be closed under all small colimits.) As an example, the reader may wish to keep the category of vector spaces over a field k in mind in what follows. We will write k for the unit object of \mathcal{C}, and a, l, r for the associativity and unit isomorphisms. The symmetry will be denoted by c, with components $c_{X, Y}: X \otimes Y \rightarrow Y \otimes X$. We will assume that \otimes is an additive functor in each variable separately. Often, the isomorphisms a, l, r will be suppressed from the notation, and we identify $k \otimes X$ with X, and $X \otimes(Y \otimes Z)$ with $(X \otimes Y) \otimes Z$, etc. This is justified, on the basis of Mac Lane's coherence theorem. See [CWM] for details.
1.2 Operads. ([M], $[\mathrm{KM}],[\mathrm{GK}], \ldots$) We will consider operads \mathbb{P} on such a category \mathcal{C}, and write $\mathbb{P}(n)$ for the object (of \mathcal{C}) of n-ary operations. We will always assume that our operads have a distinguished "unit element" $u: k \rightarrow$ $\mathbb{P}(0)$. We will not assume that this map is an isomorphism, i.e. that \mathbb{P} is unitary in the sense of $[\mathrm{KM}]$. Many operads are unitary, but the constructions of 1.3 lead us out of unitary operads. Note that the unit $u: k \rightarrow \mathbb{P}(0)$ provides us with a unit $u_{A}: k \rightarrow A$ in any \mathbb{P}-algebra A.

The functor underlying the monad on \mathcal{C} whose algebras are \mathbb{P}-algebras will be denoted by $F_{\mathbb{P}}: \mathcal{C} \rightarrow \mathcal{C}$; so for any object V in \mathcal{C},

$$
F_{\mathbb{P}}(V)=\coprod_{n \geq 0} \mathbb{P}(n) \otimes_{\Sigma_{n}} V^{\otimes n}
$$

This object $F_{\mathbb{P}}(V)$ is the free \mathbb{P}-algebra generated by V.
1.3 Two constructions. (i) If \mathbb{P} is an operad on \mathcal{C} and G is an object of \mathcal{C}, there is an operad \mathbb{P}_{G} whose algebras are \mathbb{P}-algebras equipped with a map from G. Thus, \mathbb{P}_{G} is obtained from \mathbb{P} by adding G to the space $\mathbb{P}(0)$ of "constants" (nullary operations). Explicitly,

$$
\mathbb{P}_{G}(n)=\coprod_{p \geq 0} \mathbb{P}(n+p) \otimes \Sigma_{p} G^{\otimes p}
$$

Note that the initial \mathbb{P}_{G}-algebra $\mathbb{P}_{G}(0)$ is the free \mathbb{P}-algebra $F_{\mathbb{P}}(G)$ on G.
(ii) Let \mathbb{P} be an operad on \mathcal{C}. A $\mathbb{P}[t]$-algebra is a pair (A, α) where A is a \mathbb{P}-algebra and $\alpha: A \rightarrow A$ is a map in \mathcal{C}. (We will often refer to maps in \mathcal{C} as "linear maps", to contrast them with \mathbb{P}-algebra homomorphisms.) A map between $\mathbb{P}[t]$-algebras $(A, \alpha) \rightarrow(B, \beta)$ is a map of \mathbb{P}-algebras $f: A \rightarrow B$ such that $\beta f=f \alpha$. This defines a category of $\mathbb{P}[t]$-algebras. This category is the category of algebras for an operad, again denoted $\mathbb{P}[t]$. It is the operad obtained
by freely adjoining a unary operation " t " to \mathbb{P}. It is not difficult to give an explicit description of $\mathbb{P}[t]$ in terms of trees, analogous to constructions in [GK]. We will not need such an explicit description.
1.4 Example. Let \mathcal{C} be the category of vector spaces over a field k, and let \mathbb{P} be the operad $\mathbb{P}(n)=k$. Its algebras are commutative unitary k-algebras, and the monad $F_{\mathbb{P}}$ associated to \mathbb{P} is the symmetric algebra functor. The associated operad $\mathbb{P}[t]$ can be described as follows. The space $\mathbb{P}[t](n)$ is the vector space on rooted finite trees T , with one "output node", the root, and n "input nodes", labelled by x_{1}, \ldots, x_{n}. The inner nodes represent application of the new unary operation t. For example, the tree

represents the binary operation $t\left(t\left(x_{1} \cdot x_{2}\right) \cdot t(1)\right)$. The tree o consisting of just the output vertex represents the element (nullary operation) 1. We will refer to the algebra $\mathbb{P}[t](0)$ as the algebra of finite rooted trees. It can be identified with the Connes-Kreimer algebra H mentioned in the introduction. (There is a slight difference in notation, in that we have merged a product of trees into one tree with a new output node added to it.)

2 Hopf operads.

2.1 Coalgebras. Let \mathcal{C} be a category as in 1.1. A coalgebra $\underline{X}=(X, \varepsilon, \Delta)$ is an object X of \mathcal{C} equipped with a coassociative comultiplication $\Delta: X \rightarrow$ $X \otimes X$, and a counit $\varepsilon: X \rightarrow k$ for this comultiplication. The associated category $\operatorname{Coalg}(\mathcal{C})$ is again a (symmetric) monoidal category, with the usual tensor product $(\underline{X} \otimes \underline{Y}$ is $X \otimes Y$ with as comultiplication the composition of $\Delta_{X} \otimes \Delta_{Y}: X \otimes Y \rightarrow(X \otimes X) \otimes(Y \otimes Y)$ and the symmetry $X \otimes c \otimes Y:$ $(X \otimes X) \otimes(Y \otimes Y) \rightarrow(X \otimes Y) \otimes(X \otimes Y))$.
2.2 Hopf operads. A Hopf operad on \mathcal{C} is an operad \mathbb{P} on \mathcal{C} equipped with additional structure making it an operad on $\operatorname{Coalg}(\mathcal{C})$. Thus, each $\mathbb{P}(n)$ has the structure of a coalgebra,

$$
\begin{equation*}
k \stackrel{\varepsilon}{\longleftarrow} \mathbb{P}(n) \xrightarrow{\Delta} \mathbb{P}(n) \otimes \mathbb{P}(n), \tag{1}
\end{equation*}
$$

this structure is Σ_{n}-invariant, and the structure maps of the operad $\mathbb{P}(n) \otimes$ $\mathbb{P}\left(k_{1}\right) \otimes \cdots \otimes \mathbb{P}\left(k_{n}\right) \rightarrow \mathbb{P}\left(k_{1}+\cdots+k_{n}\right)$ are coalgebra maps. The notion of a Hopf operad has been introduced in [GJ]. (But beware that their coalgebras are not necessarily counital.) I will sometimes write \mathbb{P} for this operad on $\operatorname{Coalg}(\mathcal{C})$, as opposed to the operad \mathbb{P} on \mathcal{C}. The Hopf operad \mathbb{P} is cocommutative if each of the coalgebras $\mathbb{P}(n)$ is.

If \mathbb{P} is a Hopf operad, then the tensor product $A \otimes B$ of two \mathbb{P}-algebras A and B is again a \mathbb{P}-algebra, by the maps

$$
\begin{gathered}
\mathbb{P}(n) \otimes(A \otimes B)^{\otimes n \xrightarrow{\Delta \otimes i d}} \mathbb{P}(n) \otimes \mathbb{P}(n) \otimes(A \otimes B)^{\otimes n} \xrightarrow{c} \\
\left(\mathbb{P}(n) \otimes A^{\otimes n}\right) \otimes\left(\mathbb{P}(n) \otimes B^{\otimes n}\right) \longrightarrow A \otimes B .
\end{gathered}
$$

Moreover, the counits $\varepsilon: \mathbb{P}(n) \rightarrow k$ in (1) make k into a \mathbb{P}-algebra, which is a unit for this tensor product of k-algebras. Thus, the category of \mathbb{P}-algebras is again a monoidal category (symmetric if \mathbb{P} is cocommutative). A coalgebra in this category of \mathbb{P}-algebras is the same thing as a \mathbb{P}-algebra in the category $\operatorname{Coalg}(\mathcal{C})$ of coalgebras, and (as in [GJ]) will be referred to as a Hopf \mathbb{P}-algebra.
2.3 Example. The free \mathbb{P}-algebra $F_{\mathbb{P}}(G)$ on an object G has a canonical Hopf \mathbb{P}-algebra structure, cocommutative if \mathbb{P} is. Indeed, since $F_{\mathbb{P}}(G)$ is free, the maps $0: G \rightarrow k$ and id $\otimes 1+1 \otimes \mathrm{id}: G \rightarrow F_{\mathbb{P}}(G) \otimes F_{\mathbb{P}}(G)$ into \mathbb{P}-algebras extend uniquely to \mathbb{P}-algebra maps

$$
k \stackrel{\varepsilon}{\leftarrow} F_{\mathbb{P}}(G) \xrightarrow{\Delta} F_{\mathbb{P}}(G) \otimes F_{\mathbb{P}}(G),
$$

and one easily checks that this provides the claimed structure.

3 The Connes-Kreimer construction.

Let \mathbb{P} be a Hopf operad on a category \mathcal{C} as before, and let $\mathbb{P}[t]$ be the associated operad whose algebras are \mathbb{P}-algebras equipped with a "linear" endomorphism. We now present a general construction of Hopf \mathbb{P}-algebras, of which the ConnesKreimer Hopf algebra is a special case.
3.1 The initial $\mathbb{P}[t]$-algebra. Let (H, λ) denote the initial $\mathbb{P}[t]$-algebra, i.e. $(H, \lambda)=\mathbb{P}[t](0)$. Thus H is a \mathbb{P}-algebra, $\lambda: H \rightarrow H$ is a linear map (i.e. just an arrow in \mathcal{C}), and these have the following universal property: For any \mathbb{P}-algebra A and any linear map $\alpha: A \rightarrow A$, there is a unique \mathbb{P}-algebra map $\varphi: H \rightarrow A$ such that $\alpha \varphi=\varphi \lambda$.
3.2 Lemma. There is a unique augmentation $\varepsilon: H \rightarrow k$ with $\lambda \varepsilon=0$.

Proof: Apply the universal property to the \mathbb{P}-algebra k with the zero endomorphism.

Next, let $\sigma_{1}, \sigma_{2}: H \rightarrow H$ be two linear maps. Let

$$
\left(\sigma_{1}, \sigma_{2}\right)=\sigma_{1} \otimes \lambda+\lambda \otimes \sigma_{2}: H \otimes H \rightarrow H \otimes H
$$

This gives $H \otimes H$ the structure of a $\mathbb{P}[t]$-algebra. So there is a unique \mathbb{P}-algebra map

$$
\Delta=\Delta_{\sigma_{1}, \sigma_{2}}: H \rightarrow H \otimes H
$$

such that $\left(\sigma_{1}, \sigma_{2}\right) \circ \Delta=\Delta \circ \lambda$.
3.3 Lemma. (i) If $\varepsilon \sigma_{i}=\varepsilon$ for $i=1,2$ then $\varepsilon: H \rightarrow k$ is a counit for Δ. (ii) If, in addition, $\Delta \sigma_{i}=\left(\sigma_{i} \otimes \sigma_{i}\right) \Delta$ for $i=1,2$ then Δ is coassociative.

Proof: (i) Consider the maps

$$
(H, \lambda) \xrightarrow{\Delta}\left(H \otimes H,\left(\sigma_{1}, \sigma_{2}\right)\right) \xrightarrow[\varepsilon \otimes \mathrm{id}]{\mathrm{id} \otimes \varepsilon}(H, \lambda),
$$

where on the right the isomorphisms $H \otimes k=H=k \otimes H$ have been suppressed. By initiality of H, it is enough to prove that id $\otimes \varepsilon$ and $\varepsilon \otimes \mathrm{id}$ are $\mathbb{P}[t]$-homomorphisms. This is indeed the case, since

$$
\begin{aligned}
(\mathrm{id} \otimes \varepsilon)\left(\sigma_{1}, \sigma_{2}\right) & =(\mathrm{id} \otimes \varepsilon)\left(\sigma_{1} \otimes \lambda+\lambda \otimes \sigma_{2}\right) \quad \text { (definition) } \\
& =\sigma_{1} \otimes \varepsilon \lambda+\lambda \otimes \varepsilon \sigma_{2} \\
& =\lambda \otimes \varepsilon \sigma_{2} \quad(\varepsilon \lambda=0) \\
& =\lambda \otimes \varepsilon \quad \text { (assumption) } \\
& =\lambda \circ(\mathrm{id} \otimes \varepsilon)
\end{aligned}
$$

and similarly $(\varepsilon \otimes \mathrm{id})\left(\sigma_{1}, \sigma_{2}\right)=\lambda \circ(\varepsilon \otimes \mathrm{id})$.
(ii) Consider the $\operatorname{map} \nu: H \otimes H \otimes H \rightarrow H \otimes H \otimes H$,

$$
\nu=\lambda \otimes \sigma_{2} \otimes \sigma_{2}+\sigma_{1} \otimes \lambda \otimes \sigma_{2}+\sigma_{1} \otimes \sigma_{1} \otimes \lambda
$$

This makes $H^{\otimes 3}$ into a $\mathbb{P}[t]$-algebra, so there is a unique $\mathbb{P}[t]$-homomorphism $(H, \lambda) \rightarrow\left(H^{\otimes 3}, \nu\right)$. It thus suffices to show that $(\mathrm{id} \otimes \Delta) \Delta$ and $(\Delta \otimes \mathrm{id}) \Delta$ both are. For the first,

$$
\begin{aligned}
(\mathrm{id} \otimes \Delta) \Delta \lambda & =(\mathrm{id} \otimes \Delta)\left(\sigma_{1} \otimes \lambda+\lambda \otimes \sigma_{2}\right) \Delta \\
& =\left(\sigma_{1} \otimes \Delta \lambda+\lambda \otimes \Delta \sigma_{2}\right) \Delta \\
& =\left(\sigma_{1} \otimes \sigma_{1} \otimes \lambda+\sigma_{1} \otimes \lambda \otimes \sigma_{2}+\lambda \otimes \sigma_{2} \otimes \sigma_{2}\right)(\mathrm{id} \otimes \Delta) \Delta \\
& =\nu(\mathrm{id} \otimes \Delta) \Delta
\end{aligned}
$$

The calculation for $(\Delta \otimes \mathrm{id}) \Delta$ is similar.
The preceding lemmas prove:
3.4 Theorem. The initial $\mathbb{P}[t]$-algebra (H, λ) has a natural family of Hopf \mathbb{P}-algebra structures, parametrized by pairs $\sigma_{1}, \sigma_{2}: H \rightarrow H$ satisfying the conditions of Lemma 3.3.
3.5 Example. The conditions of Lemma 3.3 are always satisfied if one takes σ_{i} to be the identity $H \rightarrow H$ or the composition of the counit $\varepsilon: H \rightarrow k$ and the unit $u: k \rightarrow H$, or any convex combination $\alpha \cdot \mathrm{id}+\beta \cdot u \varepsilon: C \rightarrow C$ of these two (for $\alpha, \beta: k \rightarrow k$ with $\alpha+\beta=\mathrm{id}$). This provides many different Hopf \mathbb{P}-algebra structures on H.
3.6 Example. Consider again the case of the commutative unitary algebra operad of 1.4. Then H is the algebra of finite rooted trees T. Note that $\varepsilon(T)=0$ as soon as T has at least one inner node. Write $|T|$ for the number of inner nodes of T. Now let $q_{1}, q_{2} \in k$ be any two numbers, and let

$$
\sigma_{i}=q_{i}^{|T|} \cdot T, \quad \text { for } i=1,2
$$

Then σ_{1} and σ_{2} satisfy the condition of Lemma 3.3. Thus for any two $q_{1}, q_{2} \in k$, the algebra H has a Hopf algebra structure, with the usual counit, and with comultiplication completely determined by the identity

$$
\Delta \lambda(T)=\sum q_{1}^{\left|T_{(1)}\right|} T_{(1)} \otimes \lambda\left(T_{(2)}\right)+\lambda\left(T_{(1)}\right) \otimes q_{2}^{\left|T_{(2)}\right|} \cdot T_{(2)}
$$

where we write $\Delta(T)=\sum T_{(1)} \otimes T_{(2)}$ as usual [S]. For the values $q_{1}=1$ and $q_{2}=0$ one finds $\sigma_{1}=\mathrm{id}$ and $\sigma_{2}=\varepsilon$, and one recovers the Hopf algebra structure of [CK].
3.7 Remark. The results and examples in this section have been stated for the initial $\mathbb{P}[t]$-algebra $(H, \lambda)=\mathbb{P}[t](0)$. Similar facts hold for the free $\mathbb{P}[t]$-algebra generated by any object G of \mathcal{C}. Writing $(H[G], \lambda)$ for this algebra and $j: G \rightarrow$ $H[G]$ for the universal map from G, one defines $\Delta: H[G] \rightarrow H[G] \otimes H[G]$ from σ_{1} and σ_{2} as the unique map of $\mathbb{P}[t]$-algebras satisfying $\Delta \lambda=\left(\sigma_{1} \otimes \lambda+\lambda \otimes \sigma_{2}\right) \Delta$ as before and extending the map $u \otimes j+j \otimes u: G \rightarrow H[G] \otimes H[G]$ (where $u: k \rightarrow$ $H[G]$ is the unit). However, rather than doing the calculation again, this can be seen as a formal consequence of the statements made for the initial algebra, because the free $\mathbb{P}[t]$-algebra on G is the initial $\mathbb{P}_{G}[t]$-algebra (cf. 1.3.(i)), and \mathbb{P}_{G} is a Hopf operad whenever \mathbb{P} is.

4 Hochschild cohomology.

In [CK] it is proved that for the Connes-Kreimer algebra (H, λ) (cf. Example 3.6), the map λ is a universal 1-cocycle for Hochschild cohomology. In this section, we show that this result extends to our more general construction.

Recall the definition of the Hochschild cohomology groups $H^{*}(A, M)$ for any algebra A and any bimodule M, from the complex with maps $A^{\otimes n} \rightarrow M$ as cochains (see e.g. [L, formula (1.5.1.1)]). Turning around all the arrows in a diagrammatic form of this definition, one obtains a cohomology $H^{*}(E, C)$ of a coalgebra C with coefficients in a bicomodule E, as the cohomology of the complex $C^{n}(E, C)=\operatorname{Hom}_{\mathcal{C}}\left(E, C^{\otimes n}\right)$. Explicitly, this is the cohomology of the simplicial abelian group with the face maps $d_{i}: C^{n-1}(E, C) \rightarrow C^{n}(E, C)$ defined for $\varphi: E \rightarrow C^{\otimes(n-1)}$ by

$$
d_{i}(\varphi)= \begin{cases}E \xrightarrow{l} C \otimes E \xrightarrow[\longrightarrow]{C \otimes \varphi} C \otimes C^{\otimes n-1}=C^{\otimes n} & (i=0) \\ E \xrightarrow{\varphi} C^{\otimes n-1} \xrightarrow{\Delta^{(i)}} C^{\otimes n} & (0<i<n) \\ E \xrightarrow{r} E \otimes C \xrightarrow{\varphi \otimes C} C^{\otimes n} & (i=n) .\end{cases}
$$

Here l and r are the left and right coactions, and $\Delta^{(i)}=C^{\otimes(i-1)} \otimes \Delta \otimes C^{(n-i-1)}$. Note that this cohomology $H^{*}(E, C)$ is contravariant in E and covariant in C.

In particular, given "linear" maps $\sigma_{1}, \sigma_{2}: C \rightarrow C$, we can view C itself as a C-bimodule $\sigma_{\sigma_{1}} C_{\sigma_{2}}$, with left action $C \xrightarrow{\Delta} C \otimes C \xrightarrow{\sigma_{1} \otimes C} C \otimes C$ and right action $C \xrightarrow{\Delta} C \otimes C \xrightarrow{C \otimes \sigma_{2}} C \otimes C$. We denote the corresponding cohomology by

$$
\begin{equation*}
H H_{\sigma_{1}, \sigma_{2}}^{*}(C) \tag{2}
\end{equation*}
$$

A map $\varphi: C \rightarrow C$ is a 1-cocycle for this cohomology precisely when

$$
\begin{equation*}
\Delta \circ \varphi=\left(\sigma_{1} \otimes \varphi+\varphi \otimes \sigma_{2}\right) \Delta \tag{3}
\end{equation*}
$$

Now let us go back to the context of a Hopf operad \mathbb{P} on our underlying category \mathcal{C}.
4.1 Natural twisting functions. Call σ a natural twisting function if σ assigns to each Hopf \mathbb{P}-algebra C a linear endomorphism $\sigma=\sigma^{(C)}: C \rightarrow C$, which is natural for morphisms of augmented \mathbb{P}-algebras (i.e. if $f: C \rightarrow D$ is such a morphism then $f \circ \sigma^{(C)}=\sigma^{(D)} \circ f$), and has the property that $\sigma^{(k)}$ is the identity. Note that this implies that $\varepsilon \circ \sigma^{(C)}=\varepsilon$. For example, the identity $C \rightarrow C$ and the composition $C \xrightarrow{\varepsilon} k \xrightarrow{u} C$ of the augmentation and the unit are natural twisting functions, as is any convex combination $\alpha \cdot \mathrm{id}+\beta \cdot u \varepsilon: C \rightarrow C$ of these two (for $\alpha, \beta: k \rightarrow k$ with $\alpha+\beta=\mathrm{id}$).

Now let (H, λ) be the initial $\mathbb{P}[t]$-algebra, and let $\sigma_{1}=\sigma_{1}^{(H)}, \sigma_{2}=\sigma_{2}^{(H)}$: $H \rightarrow H$ be the components of two natural twisting functions. Suppose that σ_{1} and σ_{2} define a Hopf \mathbb{P}-algebra structure (H, Δ, ε) on H, by Theorem 3.4. Observe that the defining equation $\left(\sigma_{1}, \sigma_{2}\right) \Delta=\Delta \lambda$ for the coproduct states precisely that λ is a 1 -cocycle for $H H_{\sigma_{1}, \sigma_{2}}^{*}(H)$. The following theorem is now a consequence of the universal property (3.1) of (H, λ).
4.2 Theorem. The map λ is the universal 1-cocycle. More explicitly, if B is a Hopf \mathbb{P}-algebra and γ is a 1-cocycle in the complex defining $H H_{\sigma_{1}, \sigma_{2}}^{*}(B)$, there is a unique Hopf \mathbb{P}-algebra map $c_{\gamma}: H \rightarrow B$ such that $c_{\gamma} \circ \lambda=\gamma \circ c_{\gamma}$.

Proof: By the universal property of H and λ, there is a unique \mathbb{P}-algebra map $c=c_{\gamma}: H \rightarrow B$ such that $\gamma c=c \lambda$. It suffices to show that c is a coalgebra map. First, we show that c is a map of augmented algebras, i.e. $\varepsilon \circ c=\varepsilon$. By initiality of (H, λ), it suffices to show that the composite $(H, \lambda) \xrightarrow{c}(B, \gamma) \xrightarrow{\varepsilon}(k, 0)$ is a map of $\mathbb{P}[t]$-algebras; in other words, that $\varepsilon \gamma=0$. To prove this, apply $\varepsilon \otimes \varepsilon$ to the cocycle condition $\Delta \gamma=\left(\sigma_{1} \otimes \gamma+\gamma \otimes \sigma_{2}\right) \Delta$. Using that $(\varepsilon \otimes \varepsilon) \Delta=\varepsilon$, and $\varepsilon \sigma_{i}=\varepsilon$ (as observed above), this yields $\varepsilon \gamma=(\varepsilon \otimes \varepsilon \gamma+\varepsilon \gamma \otimes \varepsilon) \Delta=\varepsilon \gamma+\varepsilon \gamma$. Thus $\varepsilon \gamma=0$, as desired.

Next, we show that the map c preserves coproducts. Observe that, by initiality of (H, λ), the square

necesarily commutes as soon as all four maps are $\mathbb{P}[t]$-algebra homomorphisms. The $\operatorname{map} c \otimes c$ is the only one for which this still has to be shown. But, we have just proved that c is a map of augmented \mathbb{P}-algebras, so $c \circ \sigma_{i}^{(H)}=\sigma_{i}^{(B)} \circ c$ by naturality. Since alse $c \lambda=\gamma c$, the map $c \otimes c$ is indeed a map of $\mathbb{P}[t]$-algebras. This completes the proof of the theorem.

5 Remarks on functoriality.

We continue to work in the context of Hopf operads on a category \mathcal{C} as in 1.1.
5.1 Adjoint functors. Let $\varphi: \mathbb{Q} \rightarrow \mathbb{P}$ be a map of Hopf operads. Then φ induces functors $\varphi^{*}:(\mathbb{P}$-algebras $) \rightarrow\left(\mathbb{Q}\right.$-algebras) and $\bar{\varphi}^{*}:($ Hopf \mathbb{P}-algebras $) \rightarrow$ (Hopf \mathbb{Q}-algebras). Also, φ gives a functor $\varphi^{*}:(\mathbb{P}[t]$-algebras $) \rightarrow(\mathbb{Q}[t]$-algebras $)$, by $\varphi^{*}(B, \beta)=\left(\varphi^{*}(B), \beta\right)$. If the relevant coequalizers exists in \mathcal{C} then the first functor φ^{*} has a left adjoint $\varphi!:(\mathbb{Q}$-algebras) \rightarrow (\mathbb{P}-algebras), see e.g. [GJ]. Note that $\varphi^{*}(k)=k$ and that the (first) functor φ^{*} commutes with tensor products of algebras. Hence by adjointness, there are canonical maps of \mathbb{P}-algebras $\varphi_{!}(k) \rightarrow k$ and $\varphi_{!}(A \otimes B) \rightarrow \varphi_{!}(A) \otimes \varphi_{!}(B)$. Using these maps, one obtains a lifting of $\varphi!$ to a left adjoint $\bar{\varphi}:($ Hopf- \mathbb{P}-algebras $) \rightarrow$ (Hopf- \mathbb{Q}-algebras) for $\bar{\varphi}^{*}$.

Now let (H, λ) be the initial $\mathbb{P}[t]$-algebra and (K, μ) the one for \mathbb{Q}. Let $j_{0}:(K, \mu) \rightarrow\left(\varphi^{*}(H), \lambda\right)$ be the unique map of $\mathbb{Q}[t]$-algebras, and note that this is a map of augmented \mathbb{Q}-algebras. Let $j: \varphi_{!}(K) \rightarrow H$ be the adjoint map; this is a map of augmented \mathbb{P}-algebras. Next, consider natural twisting functions σ_{1}, σ_{2} on \mathbb{Q}-algebras. These also induce $\sigma_{i}: H \rightarrow H$ on any \mathbb{P}-algebra H, by $\sigma_{i}=\sigma_{i}^{\left(\varphi^{*}(H)\right)}$.
5.2 Proposition. Suppose σ_{1} and σ_{2} satisfy the conditions of Theorem 3.4 so as to make H and K into Hopf \mathbb{P}-(respectively \mathbb{Q}-)algebras. Then $j_{0}: K \rightarrow$ $\varphi^{*}(H)$ and $j: \varphi_{!}(K) \rightarrow H$ are maps of Hopf \mathbb{P}-(resp. \mathbb{Q}-)algebras.

Proof: The second assertion for j follows from the first for j_{0} by adjointness. To see that the map j_{0} preserves the coproduct, simply apply initiality of (K, μ) to the square

exactly as in the proof of Theorem 4.2.
5.3 The operad \mathbb{B}. A pointed object is an object X of \mathcal{C} equipped with a "basepoint" $u: k \rightarrow X$. We call X well-pointed if X is equipped with an augmentation $\varepsilon: X \rightarrow k$ with $\varepsilon u=\mathrm{id}$. Such an object splits as $X=k \oplus \tilde{X}$ where $\tilde{X}=\operatorname{Ker}(\varepsilon)$. Let \mathbb{B} be the operad whose algebras are pointed objects. If \mathbb{P} is any (Hopf) operad then the unit of \mathbb{P} gives a map of operads $u: \mathbb{B} \rightarrow \mathbb{P}$. We consider the left adjoint $u_{!}$of the induced functor $u^{*}:(\mathbb{P}$-algebras $) \rightarrow(\mathbb{B}$-algebras).
5.4 Lemma. If X is well-pointed then $u_{!}(X)=F_{\mathbb{P}}(\tilde{X})$, the free \mathbb{P}-algebra on \tilde{X} 。

Proof: Let $k \xrightarrow{u} X \xrightarrow{\varepsilon} k$ be a well-pointed object. Let $w: X \rightarrow F_{\mathbb{P}}(\tilde{X})=$ $F(\tilde{X})$ be the map $k \oplus \tilde{X} \rightarrow F(\tilde{X})$ obtained from the unit $u_{F(\tilde{X})}: k \rightarrow F(\tilde{X})$ of this free algebra together with the canonical map $\mu: \tilde{X} \rightarrow F(\tilde{X})$. We claim that w is the universal base-point preserving map from X into a \mathbb{P}-algebra. Indeed, suppose $f: X \rightarrow A$ is any map into the underlying object A of a \mathbb{P}-algebra \underline{A}, with $f \circ u=u_{\underline{A}}$. Since $F(\tilde{X})$ is the free algebra, the restriction $f \upharpoonright \tilde{X}: \tilde{X} \rightarrow A$
extends uniquely to a \mathbb{P}-algebra map $\underline{f}: F(\tilde{X}) \rightarrow \underline{A}$. It is easy to check that $\underline{f} \circ w=f$ for this map \underline{f}.

Now let (A, α) be the initial $\mathbb{B}[t]$-algebra, and (H, λ) the initial $\mathbb{P}[t]$-algebra as before. Let σ_{1}, σ_{2} be natural twisting functions on \mathbb{B}-algebras. Suppose $\sigma_{1}^{(A)}, \sigma_{2}^{(A)}: A \rightarrow A$ define a Hopf algebra structure on A, and $\sigma_{1}^{(H)}, \sigma_{2}^{(H)}: H \rightarrow$ H one on H, by Theorem 3.4.
5.5 Proposition. There is a canonical retraction

$$
u_{!}(A) \underset{r}{\stackrel{j}{\longleftrightarrow}} H, \quad r \circ j=\mathrm{id},
$$

where j is a map of Hopf \mathbb{P}-algebras and r one of augmented \mathbb{P}-algebras.
Proof: The map $j: u_{!}(A) \rightarrow H$ is the one of Proposition 5.2. The map $r: H \rightarrow u_{!}(A)$ is the unique map $(H, \lambda) \rightarrow\left(u_{!}(A), \bar{\alpha}\right)$ of $\mathbb{P}[t]$-algebras, for the map $\bar{\alpha}$ defined as follows. Since A has an augmentation ε with $\varepsilon \alpha=0$ (Lemma 3.2), we can write $A=k \oplus \tilde{A}$ where α maps A into \tilde{A}. Also, the free \mathbb{P}-algebra $u_{!}(A)=F_{\mathbb{P}}(\tilde{A})$, briefly $F(\tilde{A})$, is augmented, hence splits as $u_{!}(A)=k \oplus F(\tilde{A})^{\sim}$. Now define $\bar{\alpha}$ on these two summands separately: on k it is the composition

$$
k \xrightarrow{u} A \xrightarrow{\alpha} \tilde{A} \rightarrow F(\tilde{A})
$$

and on the other summand it is the map

$$
F(\tilde{A}) \tilde{\sim} \subseteq F(\tilde{A}) \xrightarrow{F(\tilde{\alpha})} F(\tilde{A})
$$

where $\tilde{\alpha}: \tilde{A} \rightarrow \tilde{A}$ is the restriction of α. Note that the map $\bar{\alpha}$ thus defined satisfies the identities

$$
\bar{\alpha} w=w \alpha, \varepsilon \bar{\alpha}=0
$$

where $w: A \rightarrow u_{!}(A)$ is the universal map as in the proof of the previous lemma.
We claim that $r \circ j=$ id. By adjointness, it suffices to show $r j w=w$ as maps of pointed objects. Now $w \alpha=\bar{\alpha} w$ as we have seen. Also, $j: u_{!}(A) \rightarrow H$ is obtained from $j_{0}: A \rightarrow u^{*}(H)$ by adjointness, hence $j w=j_{0}$. Thus $(r j w) \alpha=$ $r j_{0} \alpha=r \lambda j_{0}=\bar{\alpha} r j_{0}=\bar{\alpha}(r j w)$. This shows that w and $r j w$ are both maps of $\mathbb{B}[t]$-algebras on (A, α), hence equal by initiality.

It remains to observe that r respects the augmentation. Since $r:(H, \lambda) \rightarrow$ $\left(u_{!}(A), \bar{\alpha}\right)$ and $\varepsilon:\left(u_{!}(A), \bar{\alpha}\right) \rightarrow(k, 0)$ are both maps of $\mathbb{P}[t]$-algebras, so is the composite εr. So $\varepsilon r=\varepsilon$ by initiality of (H, λ). This shows that r preserves the augmentation, and completes the proof.
5.6 Example. Let (H, λ) be the Connes-Kreimer Hopf algebra of Example 3.6. For the same twisting functions $\sigma_{1}=\mathrm{id}$ and $\sigma_{2}=u \varepsilon$, the initial $\mathbb{B}[t]$-algebra (A, α) is the vector space with basis $x_{0}, x_{1}, x_{2}, \ldots$, where x_{0} is the base point and $\alpha\left(x_{n}\right)=x_{n+1}$. Thus $u_{!}(A)$ is the algebra $k\left[x_{1}, x_{2}, \ldots\right]$, where we identify x_{0} with $1 \in u_{!}(A)$. The Hopf algebra structure is given by $\Delta\left(x_{n}\right)=\sum_{i=0}^{n} x_{i} \otimes x_{n-i}$. The embedding j identifies $u_{!}(A)$ with the subalgebra of "linear trees" of H
(considered also in $[\mathrm{CK}]$), and x_{n} with $\lambda^{n}(1) \in H$. The retraction $r: H \rightarrow u_{!}(A)$ sends a tree T to the product of all the maximal branches through T. For example, the tree

representing $\lambda\left(\lambda^{2}(1) \cdot \lambda(1)\right)$ is sent to $x_{3} \cdot x_{1}$. Note that r does not commute with coproducts.

References

[CK] A. Connes, D. Kreimer, Hopf algebras, renormalization and noncommutative geometry, Comm. Math. Phys., 199 (1998), 203-242.
[CM] A. Connes, H. Moscovici, Hopf algebras, cyclic homology and the transverse index theorem, Comm. Math. Phys., 198 (1998), 199-246.
[GJ] E. Getzler, J. Jones, Operads, homotopy algebra and iterated integrals for double loop spaces, Preprint, 1992.
[GK] V.A. Ginzburg, M.M. Kapranov, Koszul duality for operads, Duke Math. J., 76 (1994), 203-272.
[K] D. Kreimer, On the Hopf algebra structure of perturbative quantum field theories, Adv. Theo. Math. Phys. 2.2 (1998), 303-334.
[KM] I. Kriz, J.P. May, Operads, algebras, modules and motives, Astérisque 233 (1995).
[L] J.-L. Loday, Cyclic Homology, Springer-Verlag, 1992.
[CWM] S. Mac Lane, Categories for the Working Mathematician, SpringerVerlag, 1971.
[M] J.P. May, The geometry of iterated loop spaces, Lecture Notes in Math. 271, Springer-Verlag, 1972.
[S] M. Sweedler, Hopf Algebras, Benjamin, New York, 1964.

Utrecht, April 1999.

