LICHTENBAUM-TATE DUALITY FOR VARIETIES OVER  P-ADIC FIELDS
JOOST VAN HAMEL

S. Lichtenbaum has proved in [L1] that there is a nondegenerate pairing
1) Pic(C) x Br(C) — Br(K) =Q/Z

between the Picard group and the Brauer group of a nonsingular projective @ urver
a p-adic fieldK (a finite extension of the-adic numbersQp). His proof consists of a
reduction via explicit cocycle calculations in Galois cohomology to a combination of Tate
duality for group schemes overadic fields and the autoduality of the Jacobian of a smooth
curve. In this paper we will reconstruct the above duality as a purely formal combination
of a generalized form of Tate duality overadic fields and a form of Poinaaduality for
curves over arbitrary fields of characteristic zero. This gives a more conceptual proof of
Lichtenbaum'’s result and an analogue in higher dimensions.

Let ¢: X — Sped be a variety over g-adic field, and consider the cohomological
Brauer group

Br(X) := H2(X,Gn),

or more generally thetale cohomology groupl'(X,Gp) for somei > 0. The group
Ex' (R, Gm,Gn) is a natural candidate for its dual via the Yoneda pairing inttKBr

We will see that this Ext-group should not be computed oretiadesite oveK, but on the
smooth site K, see Section 1.2 for a definition and a motivation of this choice of topology.
These groups turn out to give interesting homology groups for varieties over an arbitrary
field k. For technical reasons we will require that the ground fiefchs characteristic zero
and thatp: X — Sped is proper and smooth (see Remark 2.1). The analogaie ho-
mology with coefficients irZ /n prompts for the notation

Hi(X,2) = Ext, (R0.Gm, G,

with the quotes added in order to avoid confusion with motivic homology. Indeed, these
groups can be regarded as intermediates betve¢ale homology with coefficients id

(see Section 2.2) and motivic homology with coefficientsZin For example, whelk is
algebraically closed, we have for- 2 that

‘Hi(X,Z) :Hi(Xaz)a

whereasty(X,Z) is canonically isomorphic to (thiepoints of) thetotal Albanese variety

of X (see Sections 1.1, 2.2, and 3.2). On the other hand, the motivic homology group
Ho(X,Z) is the Chow group of zero-cycles. Therefore | will refer to the homology theory
defined above gsseudo-motivic homology he following result shows that for duality over

a p-adic field these pseudo-motivic homology groups are just right.
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Theorem 1. Let X be a smooth proper variety over a finite extension Qgf For every
r € Z the Yoneda pairing

(2) ‘Hr(X,Z) x H'2(X,Gp) — Br(K) =Q/Z
is nondegenerate, inducing perfect pairings
‘Hi(X,Z) xH"(X,Gp)”— Q/Z forr=-2,—1,
‘H(X,Z)"x H™*3(X,Gyn) — Q/Z forr=0,1,
and
‘Hr(X,Z2) x H'2(X,Gp) — Q/Z forr > 2.

Here a pairing between topological groups< B — Q/Z is called nondegeneratéf the
induced homomorphisms fromto the Pontryagin dual d8 and fromB to the Pontryagin

dual of A are monomorphisms angerfectif these induced maps are isomorphisms. The
topology we choose implicitly on our groups is the discrete topology for torsion groups and
the profinite topology on all other groups. The notat®ohdenotes the completion éfwith
respect to the profinite topology.

PrRoOOFE For X geometrically irreducible, this is a special case of Theorem 4.3; removing
the irreducibility condition is a straightforward generalization. O

Theorem 2 (Poincag duality for curves) Let C be a smooth projective curve over a field of
characteristic zero. For any¢ Z we have a natural isomorphism

H'(C,Gm) = ‘H1_i(C,2).

PrROOF ForC geometrically irreducible, this is a weak version of Theorem 3.7. Removing
the irreducibility condition is straightforward. O

Note that wherC has ak-rational point (or, more generally, a divisor defined olexf
degree 1), then Theorem 2 is hardly more than a reformulation of the autoduality of the
Jacobian o€C. This more general result seems to be new. The proof follows a usual pattern:
in Section 3.3 we will construct a pairing

L
R).Gm® R.Gm — Gm[—1]

in the derived category of sheaveslqp, that induces the above isomorphism. This pairing
is constructed using the Suslin—Voevodsky cycle complexes, and it is shown to induce an
isomorphism using Friedlander—Voevodsky duality for curves.

Remark. In view of the calculations of the pseudo-motivic homology groups in high de-
gree (see Section 2.2), | do not expect that the above Peincality generalizes to higher
dimensions. To be precise, | do not think that > 1 there are (complexes of) sheaves
‘Z(d) on the smooth site ove® such that for each proper smooth purelgimensional
variety X over a field of characteristic zero we had&X,*'Z(d)) =‘Hag—i(X,Z).

Corollary 1 (Lichtenbaum-Tate duality [L1])Let C be a smooth projective curve over a
p-adic field K. For every € Z we have a nhondegenerate pairing

H (X,Gm) x H3(X,Gp) — Q/Z.
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These pairings satisfy the usual symmetry rules for cup products, and they induce perfect
pairings

HO(X,Gm)~ x H3(X,Gm) — Q/Z,
‘HY(X,Gm)”~ x H3(X,Gm) — Q/Z.

PrROOFE The existence, nondegeneracy and perfectness of the pairings follows immediately
from the theorems above. The symmetry rules follow from the construction. The im-
plicit claim that the pairings given here coincide with Lichtenbaum’s pairings is justified
by Lemma 3.1 and the construction of the Poiraduality pairing in Section 3.3. O

In the course of proving Theorem 1 we will collect several other dualities. In particu-
lar, we get the following result. Recall that tperiod of a principal homogeneous space
X for an abelian varietyA over a fieldK is defined to be the order of the classXfin
the Weil-Clatelet groupH®(K,A). More generally, we define the period of an arbitrary
nonsingular, complete, geometrically irreducible variétio be the period of the Albanese
torsor Albl(X), which is associated to zero-cycles of degree 1 (see Section 1.1 for the formal
definition).

Theorem 3. Let X be a smooth proper geometrically irreducible variety over a p-adic field
K.
() The image of the mappirin the exact sequence

0 — Pic(X) — Pic(Xg)®¥K/K) 25 Br(k) — Br(X)

induced by the Hochschild-Serre spectral sequence is a finite group dual to the cokernel of
the degree mappirtlo(X,Z) — Z.
(i) The image of the mappir® in the exact sequence

0 - PI(X) — Pic®(%)®aK/K) &, Br(k)

induced by the above exact sequence is a finite group dual to the cokernel of the mapping
‘Ho (X, Z)G3K/K) — 7 induced by the degree mapping. The order of this cokernel is the
period of X.

PROOFE See Section 4.3. O

Note that for a curveX we have by Poincarduality thatHo(X,Z) = Pic(X), so in that
case the first part of the theorem is equivalent to Roquette’s theorem ([Ro, Th. 1], see also
[L1, p. 120]). The part of the theorem concerning the perioX @fas already mentioned in
[vH, Rem. 5.4], with a sketch of a proof via cocycle calculations.

Corollary 2. Let X be a principal homogeneous space for an abelian variety over a p-adic
field K. The restriction map

Br(K) — Br(K(X))

from the Brauer group of K to the Brauer group of the function field of X is injective if and
only if X is trivial.

PrROOF Immediate from the above theorem and the injectivity of the restriction map
Br(X) — Br(K(X)) (see [Gr, Il, Cor. 1.8] or [M1, Exa. 2.22]). O
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For a smooth proper geometrically irreducible varigtyver a number fieldk, we can
now use class field theory in order to get a sufficient condition for the surjectivity of the map

(3) Picd®(X) — Pic® (X)) G k/k)

(which is in any case injective, sin¢éis proper ovek). In analogy with the terminology
of [CM], where Coray and Manoil study the map

Pic(X) — Pic(Xg) G/,

we will say that Pi€(X) is big if the map (3) is surjective. In other words, PiX) is big

if every k-rational point on the Picard variety B /k) of X corresponds to a divisor class
containing a divisor defined ovér Recall, that thelfate—Shafarevich groupf an abelian
variety A over the number fielk is the subgroup ofH!(k,A) consisting of classes that
become trivial when restricted té(ky, A, ) for any completiork, of k.

Corollary 3. Let X be a smooth proper geometrically irreducible variety over a number
field k. If the class of the Albanese torstib?(X) is contained in the Tate—Shafarevich
group ofAlb(X), thenPic®(X) is big.

PROOF Consider the following diagram with well-known exact rows (see Section 1.1).

00— Pi®(X) —— Pid®(X) 8k —— Br(K)

| | |

0 — v Pic(X,) — v Pic’ (X )G ki/k) MvBr(k,)

Herev ranges over finite and infinite primes. The right hand vertical arrow is injective by
class field theory, so the statement follows immediately from Theorem 3.ii and its analogue
over the real numbers (see [vH, Cor. 5.3]). O

1. Preliminaries

In this section we will fix some notation and terminology and we will briefly consider the
cohomology of sheaves on the smooth site over a scheme. The notation and terminology
in this paper concerning derived categories is all standard (see for example [GM]), except
maybe the choice not to make a distinction in terminology or notation between cohomology
and ‘hypercohomology’ (the classical term for the result of applying a higher derived functor
to a complex, rather than a single object)skeafwill be a sheaf of abelian groups, unless
explicitly mentioned otherwise.

A variety over a fieldk will be a separated geometrically reduced (but not necessarily
irreducible) scheme ovédy and it will be of finite type unless explicitly mentioned otherwise
(the group varieties we encounter will in general only be locally of finite type). When there
is no danger of confusion, we will denote the scheme 8fck. The base change of a
variety X overk to an extension fiel#t’ will be denoted byX,/, and the base change to the
separable closureof k will be denoted byX. A curveoverk will be a variety ovek of pure
dimension 1.
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1.1. Picard and Albanese variety

We will start by recalling some well-known results; the main reason for repeating them
is to fix the notation and terminology, since there does not seem to be a well-established
standard.

For a proper varietyp: X — k over a fieldk, the higher direct image she&¢,.Gn,
on thefpgcsite overk is represented by a group scheme locally of finite type &vsee
[Mur, 11.15]), hence by a group variety locally of finite typekfis of characteristic zero.

In that case we will denote the group variety represenithy. G, by Pig(X /k) and call it
the total Picard varietyof X. Note that in general thBicard groupPic(X) = H(X,Gp,)
(= Hfth(X,Gm)) does not coincide with the group &fpoints of Pi¢X/k): we have the
well-known long exact sequence

4) 0 — Pic(X) — Pic(X /k)(K) — Br(k) — Br(X),

where B(X) denotes the cohomological Brauer groupxof

From now on we will assume that is smooth and proper over a fidtcdf characteristic
zero. Then the connected component of Rjk) containing zero is an abelian variety over
k which we denote by P%X /k) and which we call thé®icard varietyof X. We have an
exact sequence

0 — Pic®(X/k) — Pic(X /k) — N§X) — 0,

where NS X) is the finitely generated group variety corresponding to tleeoN-Severi
group of X, equipped with its natural Galois action. We denote b)P(IN() the inverse
image of Pi€(X/k) under the canonical injection FX) — Pic(X /k)(k) and we put

NS(X) := Pic(X)/Pid(X).

In order to define the (total) Albanese variety, we considerfplgesheaf.Zx on k as-
sociated to the presheaf that sends a schdne the free abelian group generated by the
setX(U) of maps fromU to X. Still assumingX to be smooth and proper over a fiddaf
characteristic zero, we have that the shéafadmits a homomorphism

a: Zx — Alb*(X)

into a sheaf represented by a group variety locally of finite type kwadrwhich the con-
nected component A(IX) containing zero is an abelian variety. The neajs the universal
homomorphism of%x to sheaves represented by group varieties of which the connected
component containing zero is a semi-abelian variety (see for exampl&2Ra,We will

call Alb*(X) thetotal Albanese variety of XThe abelian variety AlpX) is the (classical)
Albanese variety oK. WhenX is geometrically irreducible, we have a short exact sequence

(5) 0— Alb(X) — Alb*(X) - Z — 0,

where the map t& corresponds, via, to the degree magy(X/k) — Z. The con-
nected component of AftfX) mapping ton € Z will be denoted by AIB(X). In particular,
Alb%(X) = Alb(X), anda induces a morphism frorX to Alb!(X) the Albanese torsoof
X, which is a principal homogeneous space over(Xlpb Of course, anyk-valued point
x € X(k) induces, by subtraction, an isomorphism ) — Alb®(X) of principal homo-
geneous spaces over AK), hence a morphismi,: X — Alb(X). This is the classical
Albanese mafor the pair(X,x), which is universal for maps of into abelian varieties that
sendx to zero.
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Remark 1.1. The terms ‘Picard group’, ‘Picard variety’ and ‘Albanese variety' are tradi-
tional, and so is the notation PX) and Alb(X). The notation Pi¢X /k) and Albt(X) is a
variation on notation introduced by Grothendieck in [Gr]. What | call here the ‘total Picard
variety’ is often called th®icard schemeBy analogy, the term ‘Albanese scheme’ is used

in [Ra] for what | call the ‘total Albanese variety’. Indeed, when a variety is defined to be
irreducible, a distinguishing feature of the ‘Picard scheme’ and the ‘Albanese scheme’ is
that they are not varieties. However, in this paper a variety is not necessarily irreducible,
since irreducibility does not behave well under base change, so the adjective ‘total’ seems a
better way to make the distinction.

1.2. Smooth cohomology

For a schem& the siteXs, has as underlying category the category of smooth schemes
locally of finite type overX. The coverings are the smooth surjective morphisms.

The cohomology of sufficiently nice sheaves X, is the same as the cohomology on
other popular sites, like the (smakYdle siteXg: or the (big) flat siteXy, for which the
underlying category consists of schemes thaegae and of finite type ovef (resp. locally
of finite type overX) and the coverings are the surjectile (resp. flat) morphisms. We
will use that for each she& represented by a smooth commutative group scheme>over
we have equalities

(6) Hi(Xﬂag) = Hi(XSmag) = Hi(xétag)

for anyi. This follows from the vanishing of higher direct images of the skédér the
mappings between the various topologies (see [Gr, lll, Th. 11.7], or [M1, Th. 111.3.9]). Note
that this implies in particular that, with: X — k as in the previous section, the total Picard
group Pi¢X/k) also representB'¢,Gy, on the smooth site ovée The same holds when
¢ is a direct limit of sheaves represented by smooth group schemes, or an inverse limit of
sheaves represented by finite group schemes, or Whem complex of sheaves for which
all cohomology sheave”*(¥¢) are of the above form.

In the above situation we will often omit the reference to the topology and witi%, %)
for any of the above groups. We will not make any distinction in notation between commuta-
tive group schemes and the sheaves they represent. Also, we will freely use the equivalence
of categories betweegtdle sheaves dnand Galois modules. With these conventions, we
have for example

H' (Ksmy Gm) = H' (Ket, Gm) = H(k, Gm) = H' (k,k*) = H' (Gal(k/k),k*).

For our purposes here, the difference betweenetiade “site and the smooth site lies
in the internal and external Hom- and Ext-groups between sheaves represented by group
schemes. Thetale site turns out to be too small to give good results; consider for example
H0Mmy,, (Gm, Gm) = Hom(k*,k*). We need a site with a bigger underlying category. In this
respect the (big) flat site is actually as good as the smooth site, as we will see in Lemma 1.2.
but the smooth site has the advantage that wkds a smooth variety ovek, then all
schemes in the underlying categoryXf, are smooth varieties ovér This is convenient
for certain calculations (see Section 2.2) and also when we want to represent complexes of
sheaves by Suslin—Voevodsky cycle complexes (see Section 3.3).
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Lemma 1.2. Let G, G, be smooth group schemes locally of finite type over a scheme X. Let
a: Xq — Xsmbe the canonical morphism of sites. Then we have a canonical isomorphism

Ra, R%OIT}(ﬂ (gl, gz) = R%I’T}xsm(gl, gz).

PrROOFE We have thati* is exact(on the level of underlying categorigss a full embed-
ding), so its right adjointr, sends injectives to injectives, and adjunction gives us an iso-
morphism

Ra,R7z0my, (0*%1,%) = Rtomy,, (41,Ra,.945).

Now a*%; is represented b¥; on Xy, since¥; is a smooth group scheme. The complex
Ra.% is quasi-isomorphic to the sheaf represente@hysince the higher direct images of
%, undera vanish, as we saw above. O

Corollary 1.3. For M afinitely generated group scheme, T atorus, and A an abelian variety
over a field k of characteristic zero we have
R%Ol'n(sm(M,Gm) = ’%nb/k(Mma)a
R%m(sm(-ra Gm) = '%ﬂorrb/k(TaGm)a
R#0m,(A, Gm) = éXtg (A, Gm)[~1] = A[-1],
whereJZ0mg  and éaxté/k are the internaHom and Ext in the categoryG/k of commuta-
tive group schemes over k andlidthe dual abelian variety of A.

Recall that the notatiofi] is used to indicate a shift byin the indexing of a complex. In
particular, we have here that[—1] denotes the complex consisting of the single obféct
in degree 1.

PrROOF By Lemma 1.2 this follows from [O, Th. 17.4, Th. 18.1], [B&&7, 8, 10], and the
vanishing of the higher direct images under kq — ksm of sheaves represented by smooth
group schemes. O

2. Pseudo-motivic homology

Throughout this sectionp: X — k will be a smooth proper scheme over a figélaf
characteristic zero. We will establish the basic properties of the pseudo-motivic homology
groups

‘H.(X,Z) = Ext " (R$.Gm, Gm)
and do some calculations. The definition of these homology groups is completely analogous
to the definitionsa’la Verdier of homology of locally compact spaces andtafé homology
with finite coefficients:
(see for example [DV, Exp. VIII], and recall that is proper overk).
Remark 2.1. Of course, the above definition makes sense for arbiiXaoyer an arbitrary
field k. Formally, this would give something that plays the role of homology with compact

supports, but since the groups themselves might not be nice enough | would prefer not to
use the notatioH, (X, Z), whenX is not smooth and proper, or whéris of characteristic
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p > 0. | should say that | do not know exactly what | mean by ‘nice enough’, but | would
hope that at least we would have that the comfe¥om, (Rp.Gm,Gm) is concentrated

in nonpositive degree, and that it admits a filtration for which the graded pieces are either
complexes of group schemes, or profirgtalé (compare Section 2.2). In view of the results

and constructions in [Ra], it seems reasonable to expect that in characteristic zero these
properties can be obtained for arbitratyby taking a smooth hypercovering. In character-

istic p > 0 the groups under consideration need not even be nice in the above sense when
X is smooth and proper, due to the ‘pathological’ behaviour oféki, -functor (see for
example [Brl]).

2.1. Basic properties
The dual Kummer sequence
Applying the right derived functors of Hog,(R$.—, Gm) to the Kummer sequence
O—- i —>6Gm—Gn—0
gives a long exact sequence
(8) e HI (X, Z) 2 H(X,Z) = Hi (X, Z/n) = -

All basic constructions that follow below also exist for coefficients modyland they are
compatible with the Kummer exact sequences.

Functoriality

For a mapf: Y — X of proper smooth schemes ouethe adjunction morphisrs, —
R f.Gnminduces th@ush-forwardhomomorphisnt, : ‘H.(Y,Z) —‘H.(X,2).If f: Y — Xis
finite étale, then th&race map {Gn, — G, (cf. [M1, Lemma V.1.12]) induces thtale pull-
back f: ‘H.(X,Z) —‘H.(Y,Z). If f is of constant degree, thenf, o f* is multiplication
by d. If Y is Galois oveiX with Galois groupG, then thenf* o f, sends a clags to the class
Ygec 9 B.

Note that ifk’ /k is a finite extension and we have a base change diagram
X —— X
vl
Sped’ —— Sped
then the trace map induces an adjunction formula
Exqtém(Rq);Gm,Gm) = Ext;_ (R(T0 ¢'),Gm, Gm)

(see [M1, Lemma V.1.12]). Therefore, the grodp(Xy,Z) does not depend on the question
whether we consideXy as variety ovek or overk'. In particular, we have a push-forward
mapTt, and a pull-back map* between the homology of andXy .

Product with cohomology

The pairing (2) is a special case of thfleneda pairing

‘Hi(X,Z) X HJ(XaGm) - Hj_i(kaem)
Y X ® — Y-
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which is defined for arbitrary, j via the canonical map
Ext_ (R$.Gm,Gm) = EXt, (R9.Gm, Gm[—i]) = Hom(H! (k, Rp.Gm),H! (K, G)).

From the definitions it is easy to check that for a morphisnY — X we have theprojection
formula

fiy-w=y- f*w.
Homology of a point
For any finite field extensiok’ of k, we have a canonical isomorphism
©) ‘Hi(Sped/,Z) = H™'(K,2).
Under this isomorphism the pushforward morphism
T, : ‘Hi(Sped’,Z) — ‘Hi(Spek, 2)

corresponds to the trace map (i.e., the corestriction map in Galois cohomology). Moreover,
the Yoneda product defined above correspondXferSped to the cup product

H(K,Z) x HI(K,Gp) = HIT (K, Gp)
followed by the trace map
HI7(K,G) — HI (K, Gp).

Remark 2.2. The above connection to Galaishomology shows that the pseudo-motivic
homology of Spek is in general not equal to the Galois homology grétipGal(k/k),Z),
S0 it seems better not to use the notatidifk, Z), which might lead to misunderstandings.

2.2. Calculations

In this sectiong: X — k will be a proper smooth geometrically irreducible variety of
dimensiond over a field of characteristic zero. The condition of geometric irreducibility is
merely for ease of exposition.

A filtration on the derived direct image G,

In order to compute the pseudo-motivic homology groups, we will first define a con-
venient filtration onR$p.Gn,. Since we work in a derived category, where the notion of
‘subcomplex’ does not make sense, this filtration will simply be a sequence of morphisms

0:9_1%9\0% _>9\2d+1 292d+2: o= Py = R(I)*Gm.
For everyi > 0 we define théth graded piece¥; to be the mapping cone of the m&f 1 —
Zi, giving a triangle
(20) Fi_1— Fi =% — F[l].
Ouir filtration will have the property, that each graded piece consists of a sheaf concentrated
in a single degree. It will almost be the canonical filtratig§®" = 1<jR$..Gm, but not quite,
since the graded piece of degree one for that filtratidR'#s, Gy, = Pic(X /k), which is an

extension of the finitely generated groNiS(X) by the abelian variety PI¢X /K). Itis better
to separate these two parts. Therefore we take

Fo = TSOR(I)*G = ¢*Gm = G,
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for .#; we take the mapping cone of the canonical map
1<1R9.Gm — NSX),
with the degree shifted by one, so that we have a triangle
F1 — T<1R$.Gm — NSX) — A[1],
and fori > 2 we put
Fi =< 1R$.Gm.

Using the standard notation @fn| for a complex that consists of a sheaf concentrated in
degree—n, we get

Gm if i =0,
11 g _ PO/ ifi=1,
o NS ifi—2,

R19,Gp[1—i] ifi>3.

The sheaveRY.Gn, are torsion foig > 2, sinceH9(X x U, Gyy) is torsion forq > 2 andU
smooth over ovek by [Gr, II, Prop. 1,4]. In other words, we have fior 3 that

% = lim (%)
n

where % is the complex consisting of thetorsion of the sheaR~1¢,G, in degred — 1.

Using the Kummer sequence we see from the smooth specialization theorem for torsion

coefficients (see [SGA4, Exp. XVI, Th. 2.1] or [M1, Cor. VI.4,2]) that the sHe&f.Gn,

is isomorphic to the locally constant sheaf associated to the Galois mdd(¥e G,) for

q>2 and in fact taH9(X,Q/Z(1)) for q > 2, whereQ/Z(1) =1lim . In other words,
_JBr(X)[-2] if i =3,

THFYX,Q/z(1)i—-1 ifi>4a

In particular, we have by [SGA4, Exp. X, Cor. 4.3] (see also [M1, Th. VI.1.1]) #hat O

fori>2d+ 1, hence that,q, 1 = %, as we claimed in the beginning. Below, we will also

use the fact that by [D, Th. finitude] (see also [M1, Th. VI.2.1]) we have i#fatis finite
for anyi > 2 and anyn € N.

Remark 2.3. | do not know whetheRY¢ .G, is torsion forq > 2 when taken on sites for
which the underlying category contains singular schemes, like the big flat site.

The dual filtration

For any complexg’ of sheaves ok, we define theCartier dualof % to be the complex
&P .= Ratom,(¢,Gm).

In particular, Hi(X,Z) = H(ksm, (R$.Gm)P). Dualizing the ascending filtratior#, on
R¢.Gm we get a descending filtration

(R0.Gr)° = 7o) =+ = T2 = Fog1 = Foa -+ = Fg > Fa=+-=0,
and for everyi € Z we have a triangle
(12) G = F° = F21 = 401,
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In order give explicit descriptions of t1P we will first consider the case> 3 in greater
detail. Since th& are torsion foi > 3, we have that
4P = Rtomy,(lim (n%), Gm) LRffomk (%, Gm).
n
Fori > 4 the surjectiondd' (X, ) — n%[i — 1] and the isomorphisms_1(X,Z/n) =
R.zom(H'~1(X, ), Gm) induce an isomorphism
Rlim R.720my, (n4, Gm) = RQmHi_l(Y,Z/n)[i —1].
n n

By [J, Th. 2.2] we have that
H p(k, RMHQ(YaZ/n)) cont(k HQ(X 2))
n

whereHE . (k, —) denotes continuous Galois cohomology. Therefore we will write
ALOM(X [k, 2) = Rljm Hq(X,Z /n).
n

Here we keefk in the notation, since it is important that the inverse limit is taken in the
derived category of sheaves on Ske€or example, taking inverse limits does not commute
with infinite field extensions (compare [K2]). In particular, wherk is not algebraically

closed, the complexe%com(x,ﬁ) will in general not be concentrated in degree 0, whereas

MK/, Z) = RIM Hy(X,2/n) = Hq(X,2).

In the case = 3 we have tha#? equals the compleR.#om_ (Br(X),Q/Z(1))[2]. As
above, we have that

HP(ksm, 45") = Heonlk, Hom(Br(X),Q/Z(1)).

Combined with the above calculations of theor i = 0, 1, 2 and the results of Section 1,
we get that
.

0 ifi<0

Z ifi=0

(13) 4o _ JAb(X) ifi=1
" | #omNS(X),G)[1] it i =2

Rszom, (Br(X),Q/Z(1))[2] ifi=3

| A (X /K, Z)[i - 1] if i > 4

The modified Hochschild—Serre spectral sequence

Since the complexe%CO”t(X/k,Z) are in general not concentrated in degree O, the
above calculations do not give a sensible description ofEtfl&terms of the ‘standard’
Hochschild—Serre spectral sequence

EP% = HP(ksm, R #0my,,(RO.Gm, Gm)) = ‘H_p_q(X,Z).

Therefore it makes sense to modify this spectral sequence a little, replacing the degree fil-
tration on.zzom,(R$.Gm, Gm), by the decreasing filtration

=7 =785 ... o Z5=Riom_ (RO.Gm,Gn)
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with Z1S for —2d < i < —1 determined by the requirement that we have a triangle
FS = (Rh.Gm)” — 7L — Z91.

Here(Rcb*Gm)D — #P . is the canonical map associated to the filtratiBf of Rp.Gp,. As
above, we obtain for eveiythe associateidh graded piec@j”s, and we put

IA(X,Z) = G,
The filtration.# 1S gives rise to thenodified Hochschild—Serre spectral sequence
(14) EYY = HP(ksm, ' 7 4(X,Z)) = 'H_p (X, Z).

In this modified spectral sequence, tBeterms are easy to interpret, thanks to the calcu-
lations above. By construction we have thatifor O that
(X, Z) =G24 [~]-
On the other hand#5(X, Z) fits into an exact sequence
0— Alb(X) = J%(X,Z2) - Z — 0.
This suggests tha#p(X,Z) is represented by the total Albanese variety*AK) defined in
Section 1.1. We will see in Section 3.2 that this is indeed the case, and we will use it below
to simplify the notation. The Albanese property.gfy(X,Z) will not be used in an essential
way before Section 3.3.
In terms of Galois cohomology, we get the following expression forBj¢erms of the
modified Hochschild—Serre spectral sequence.
(0 if q> 0,
HP(k, Alb* (X)(k)) if q=0,
HP (ksm, “#q(X,Z)) = { HP(k, Hom(NS(X), k")) if q=—1,
Hébni(k, Hom(Br(X),Q/Z(1))) if g=—
L cont(kaH—q( ,Z)) if g< -2
Remark 2.4. If all Galois cohomology groups dfwith finite coefficient modules are finite,
then

Heont(k,Hom(Br(X),Q/Z(1))) —¢_H *(k, Hom(, Br(X),Q/Z(1)))

and

Heont(k, Hi (X, 2)) = ¢_Hcom(k H (X, Z/n))
(see [J, Rem. 3.5]). The finiteness condition is fulfilled wRkés a p-adic field.

Calculations over an algebraically closed field

For X over the algebraic closuteof k the above gives us:

(0 ifi <0,

Alb*(X)(K) if i =0,

‘Hi(X,Z) = { Hom(NS(X),k*) if i =1,
om(Br(X),Q/Z(1)) ifi=2,

H.(X,Z) if i > 2.
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High degree homology

Over an arbitrary field of characteristic 0, we see from the modified Hochschild—Serre
spectral sequence that the canonical rR¢pQ/Z(1) — R.Gy, induces fori > 2 an iso-
morphism

‘Hi(X,Z) = R 'Homy,, (R$.Q/Z(1),Gp).
The right hand side of tpis equation is canonically isomorphic toittheontinuousétale
homologygroupH"(X,Z) as defined in [K§3.2] (recall thatX is proper ovek).
Calculations in degree 0 over a p-adic field

Now let us assum& has cohomological dimensiof 2, which is the case wheX is a
p-adic field (see [S, Prop. 1.15]). Then tl’@t-terms of the modified Hochschild—Serre
spectral sequence vanish for- 2. We get an exact sequence

‘Ho(X,Z) — Alb*(X)(K) — H?(k, Hom(NSX),k*)).

The kernelHg(X,Z)AP of the Albanese magy(X,Z) — Alb*(X)(k) fits into an exact
sequence

H2,(k, Hom(Br(X),Q/Z (1)) = ‘Ho(X,Z)"? — H(k, Hom(NSX),k*)) = 0
Whenk is a p-adic field, we actually have

H2(k, Hom(NS(X), k")) = Hom(NS(X)S3k/X Q/7)

and

HZ,n(k, Hom(Br(X),Q/Z(1))) = Hom(Br(X)¥k/¥ Q)

as we easily deduce from Tate duality for finitely generated groups (compare Proposi-
tion 4.1.

3. The cycle map, the Albanese property and Poinc&rduality

In this section we will construct a cycle map for zero-cycles into the homology of degree
zero, and check that this map satisfies the Albanese property. Then we prove &oincar’
duality for curves (Theorem 2 from the introduction).

3.1. The cycle map for zero-cycles

Letk' be a finite extension of a fieklof characteristic 0. The canonical isomorphism (9)
gives in degree zero a canonical isomorphism

‘Ho(Spe',Z) = Z.

The canonical generator ¢i15(Sped<,Z) will be called thefundamental classf Sped'.
We will denote it by[Sped] € ‘Ho(Sped’,Z). We now define the cycle map

(15) cl: Z(X) = Ho(X,2)
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from the group of zero-cycles into homology by sending a closed painX to the image
of [x] under the mapping.: ‘Ho(X,Z) — ‘Ho(X,Z), wherei is the inclusion. By construc-
tion the cycle map commutes with the push-forward associated to a morphism of varieties
f: X=Y.
The following lemma implies that Lichtenbaum’s pairing 8§(X) with Br(X), as de-
fined in [L1, §3], factorizes via the cycle map and the Yoneda pairing.

Lemma 3.1. With notations as above, we have that for any 0 and anyw € H'(X,Gp)
the image ofl(x) x w e H"(k, Gy,) under the pairing(2.1) coincides with the image @b
under the composite mapping

H" (X, Gm) — H' (X, Gm) — H' (k, Gm),
where the mapping tr is induced by the trace map.

PrRooOE Immediate from the definitions. O

Later, it will be important that the cycle map for zero-cycles is already defined on the
sheaf level. LetZx be the free sheaf ok, of abelian groups oveX, i.e., the sheaf asso-
ciated to the preshe&f — Z[X(U)]. For everyU smooth ovek we have that a morphism
s: U — X induces via pull-back a homomorphism from the complex of sheBye&, to
the sheaf5,, both restricted t&J. Thus we get a homomorphism

(16) cl: %% — R #omRY,.Gm, Gm) = (X, Z)

of sheaves olgy; it follows from the definitions that taking sections ovegives back the
original cycle map (15).

Proposition 3.2. Let X be a proper smooth geometrically irreducible variety over a field of
characteristic zero. The cycle map factorizes via rational equivalence, giving a homomor-
phism

cl: CHo(X) —‘Ho(X,Z)

PROOF The groupﬁ%rat(X) of zero-cycles rationally equivalent to O is generated by zero-
cycles of the fornmt, (f), wherert: C — X is a morphism of a nonsingular projective curve
Cto X, and(f) is the divisor of a rational functiori onC. Since clt.(f)) = m.cl((f)), it
is sufficient to check the proposition for a nonsingular projective cGrve

Since 54(C,Z) is represented by a commutative group variety locally of finite type,
the universal property of the total Albanese variety implies that the #jap> ‘74 (X,Z2)
induced by (16) factorizes via the Albanese map. Taking sectionskoaed using the
injectivity of the map

‘Ho(C,Z) - ‘%(C,Z)(k)
(Hilbert's Theorem 90), we get that the cycle map (15) factorizes as
Z(C) — Alb*(C) (k) — ‘Ho(C,2).

The kernel of the first map is equal #,° (C) by the Abel-Jacobi theorem. O
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3.2. The Albanese map

In this section we will prove that the map
@7 cl: Zx — (X, 2Z)

induced by the map (16) satisfies the Albanese property. In particétgfX’Z) is repre-
sented by the total Albanese variety Ali), as was claimed and used in Section 2.2.

The covariant functoriality of#3(—,Z), will enable us to reduce the proof to the case
whereX is a principal homogeneous space for an Abelian variety, and then the statement
follows from Proposition 3.3 below, which claims that the cycle map induces for any abelian
variety A an isomorphism betweea itself and the connected componesty{A,Z)° of
‘b (A,Z) containing zero.

Proposition 3.3. Let A be an abelian variety over a field k of characteristic zero. The map

a A — ‘HAZ)°
x = cl(X—[0])
is an isomorphism of (sheaves represented by) abelian varieties.
PROOF. The mapa is a priori only a morphism of varieties, but sincgy(A,Z)° is (rep-
resented by) an abelian variety, and 0 is mapped to 0, itieraomorphisnof abelian

varieties. In order to prove thatis an isomorphism, it is sufficient to check that the induced
map onn-torsion

nA = (A, Z2)°

is an isomorphism for alh € N. This is equivalent to proving that the induced map of finite
n-torsion groups

an: nAK) = nHo(A,2)° (= nHo(A,Z))

is an isomorphism.
Letd: A— Kk be the structure map, and ket A — A be multiplication byn. We define
R$.Gm/n* to be the cone of the induced map

R$.Gm —— R).Gm,
and we put
H'(A, G, ") := H'(k,R$.Gpm/n")
‘Hi(A,Z,n,) := RHom_(R$,.Gm/n*,G).

We get long exact sequences

HO(A, Gm) —— HO(A, Gm) — HO(A, G, n*) — HY(A, Gm) > HY(A,Gp) — -+
and

o H (A Z) /5 Hi (A, Z) = ‘Ho(A, Z,n,) — Ho(A, Z) 5 ‘Ho(A, Z)

Recall that the pull-back* is the identity ond.Gr,, multiplication byn on Pi@(A/k) and
multiplication byn? onNSA), and thatNSA) is torsion free (see [Mun$8]. This implies
that

HO(A, G, n") = 1 Pic(A)
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and

‘Ho(A,Z,n,) = wHo(A,Z)
It follows that we have a map
an, : nAK) = Ho(A,Z,1.)

that fits into the following commutative diagram.

2N\

nHoAZ ‘HoAZn)

Hence it suffices to show thaj, is an isomorphism.

The cohomology sheave#” (R$.Gn/n*) are torsion for every € Z, as we see from
the above expression of the endomorphisiras multiplication by powers af. Therefore
the comparison between smooth atalé cohomology gives us that the gradg(A, Z,n..)
is canonically isomorphic to the group H¢R$.Gn/n*,k*) computed in the derived cat-
egory of étale sheaves ok We will now define a suitable complex of abelian groups
that represents the complex efale sheave®$.Gn/n*, in order to be able to compute
Hom(R¢.Gm/n*,k*) in the derived category of abelian groups.

Let © be the complex of abelian groups

% di A
Ok ik — DIV(A, oA

whereﬁ*— xis the multiplicative group of invertible functions @rhavmg no poles or zeroes

on then- torS|on points, and D(\A, nA) is the group of divisors oA with supports outside
the n-torsion points. The moving lemma for divisors implies ti#ts quasi-isomorphic to
the complex

2 (A -, Div(A),

hence we have a canonical map of complexes of groefade(Sheaves ovE)
€ — R).Gm,

that induces an isomorphism in cohomology of degrek
Deflnlngﬁ /n to be the cokernel of the injective map

*_ *_
Oxx = ORA
f — fon

and DiV(A, ,A) /n* to be the cokernel of the injective map
Div(A ,A) — Div(AnA)
D — n YD),

we see that the corresponding comp#¥n* maps canonically t&¢$.Gmn/n*, inducing an
isomorphism

HO(%/n*) S HO(A, G, n*) = n Pic(A)
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that sends the class of a functigron A_WEh div(g) = n—1(D) for some divisoD to the
n-torsion divisor clas$D] € Pic(A). Sincek* is a divisible group, hence injective, we also
see that

‘Ho(A, Z,n,) = Hom(H®(R$,Gpm/n*),K*) = Hom(H%(%'/n*), k).
In particular, we obtain a perfect pairing betwdd@(‘A_,Z,n*) ananic(,A_Q into k*, and the
mapa,, induces a pairing
WAK) x 1 Pic(A) — K.
From the above discussion and the definition of the cycle map we see that this pairing is
given by the formula

(x,[D]) = £(x)/(0),
whereD is a divisor with support outside thetorsion points ofA and f is a function
with div(f) = n=3(D). In other words, this pairing coincides up to sign with the Weil
pairing, which is nondegenerate (see for example [Mi20)]). We conclude thad,« is an
isomorphism for every € N. O

Remark 3.4. In the proof of the proposition we pass to torsion elements, since there would
have been no point in considering the composite map

A(K) = ‘Ho(A, Z) — Hom(%,k*),
which is zero: sincek* is an injectiveetale sheaf, the right hand map factorizes via

Corollary 3.5. Let A be an extension d by an abelian variety Aover a field k of char-
acteristic zero. Let Abe the connected component ofmAapping tol € Z. We have an
isomorphism of sheaves ogtepresented by group varieties

a: A S (AL Z)
such that arestricted to A is the canonical map
Al — (AL Z)
of sheaves of sets induced by the cycle nfap ¢
PROOF. For a schem@ that is smooth ovek with x; € AL(T) # 0 we sendk € A (T) to
cl([x— (i —)xa] + (i = 1) [xa]) € (A", Z)(T).

It follows from Proposition 3.3 that this map does not depend on the choice 8ince the
extension

0-A° A -5Z-0

is locally trivial on the smooth site ovélr we have sections locally everywhere so the above
defines a homomorphism
a: A S AKX, 2Z).

If we have a global sectior; € A'(k), it follows easily from Proposition 3.3 that is an
isomorphism; otherwise we make a base change to a finite extendiauct that we obtain
a global section oA, and we apply Proposition 3.3. O
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Theorem 3.6. Let X be a proper smooth geometrically irreducible variety over a field k of
characteristic zero. The homomorphism of sheaves

cl: B — H(X,2Z)

is the universal homomorphism &£ into sheaves ongk, represented by group varieties
locally of finite type of which the connected component containing zero is an abelian variety.
In particular, ‘74 (X, Z) is represented by the total Albanese variety of X.

PROOF LetA be a commutative group variety locally of finite type of which the connected
component containing zero is an abelian variety. Let

f: % —A

be a homomorphism of sheaves. We will show th#ctorizes via the cycle mag.

Let A% be the connected component Afcontaining zero. In order to be able to use
Corollary 3.5, we need to repladeby an extensioi* of Z by A. Let 5;”)? be the subsheaf
of 2 of elements of degree zero. Sinkeis geometrically connected, we have thf
maps toA°, s0.%/ 2 (= Z) maps toA/A°. We take the fibre produét’ = Ax/x0Z, and
we have a homomorphism

for = A
defined byf*(z) = (f(2),dedgz)). We denote byrt: A* — A the canonical projection. In
order to prove the theorem, it is sufficient to show tfraflactorizes via the cycle mag and

a homomorphism fromy#p(X,Z) to A*, sincef = f* o
Let Al C A* be the connected component mapping ©2, and let

fl: X - At
be the morphism of varieties induced by, By Corollary 3.5 we have the following com-
mutative diagram.

I —— A
lcé la’
fl
(X, Z) —— (AL, Z)

Sincea’ is an isomorphism, the diagram gives the desired factorizatidn af ‘7(X, Z).
]

3.3. Poincag duality for curves

The proof of Poincar duality for curves in the present setting is analogous to the proof of
duality for cohomology with coefficients in thah roots of unityy, of a smooth projective
curved: C — Spedk over a field of characteristic not dividing Writing Z/n(j) = uel, we
have that geometric Poin@duality consists in that case of a composite morphism

L
R$.Z/n(1) ® Rp.Z/n(1) = R$p.Z/n(2) - Z/n(1)[~2]
Z/n
in the derived category af-torsion sheaves on Splethat induces an isomorphism

(18) R$.Z/n(1) = RAOM, z/n(R$.Z/N(1),Z/n(1)[-2])
in the derived category & /n modules orkg; (see for example [D, Duaéi).



3. THE CYCLE MAP, THE ALBANESE PROPERTY AND POINCAR DUALITY 19
A natural integral analogue of the above duality would be a pairing

RY.Z(1) R Z(1) — RY.Z(2) — Z(1)[-2)
inducing an isomorphism
R$.Z(1) = RszomRd.Z(1),Z(1)[-2)).

Here the compleX (1) is by definition quasi-isomorphic to the she&af, in degree 1 (see
[L2]), whereas there are several working definitions for the comgleX.

The pairing to be constructed is a kind of intersection pairing, hence we need represen-
tatives of the complex of sheavB$,Z (1) on the smooth site ovérwith good intersection
properties. For this we take the Suslin—Voevodsky complexes of equidimensional cycles.
Once the pairing is constructed, we will prove that this pairing induces the desired iso-
morphism using Theorem 3.6; the comparison with the cycle map we need for this uses
Friedlander—\Voevodsky duality. We will first recall the necessary definitions and results.
For consistency with the rest of the paper, the notafi¢n will not be used in the rest of
this section.

Sheaves of equidimensional cycles

Let¢: X — k be a variety over a field of characteristic zero. As in [FV] we denote by
Zequi(X, 1) the presheaf oy, that associates to every smooth scheunocally of finite
type overk the groupzequi(X,r)(U) of algebraic cycles oiX x U that are equidimensional
of relative dimensiom overU. For a varietyy we denote byequi(X,Y,r)(U) the presheaf

U = Zequi(Y,r) (X xU)
Observe that wheK is smooth ovek, then
(19) ZeqUi(XaYa r) = ¢*¢*Zequi(Ya r)'

For a presheaf we denote by, the associated sheaf, and ®y(F) the associated sim-
plicial complex of presheaves, i.e., the complex of presheaves associated to the simplicial
presheaf

U F(A* xU),

whereA* is the standard cosimplicial scheme okgsee for example [F\5 4]).
By [V, Th. 3.4.2 and Cor. 4.1.8] we have a canonical isomorphism

(20) G = Ci(Zequ(A%,0))[—1].

The right hand side is the complex we will use to define our pairing. WhemdY are
smooth ovek, the natural embedding of presheaves

Zequi(X,Y,T) < Zequi(X X Y,r +dimY)

induces by [FV, Th. 7.1] quasi-isomorphisms of the associated simplicial complexes of
presheaves.

Ci(Zequi(X,Y,r)) = Ci(Zequi( X x Y,r +dimY)).
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This is what we will callFriedlander—Voevodsky duality=rom this duality and the homo-
topy invariance of complexes of presheaves of the fGuf+-) (see [FV, Lemma 4.1]) we
see that the pullback map

induces a quasi-isomorphism of associated simplicial complexes of presheaves.

Theorem 3.7. Let ¢: C — Spedk be a smooth projective geometrically irreducible curve
over a field of characteristic zero. There is a pairing

L
R).CGm®R.Gm — Gm[—1]
that induces an isomorphism
R$.Gm — R#om, (RY.Gm, Z)[—1]

in the derived category of sheaves on the smooth site over k. In particular, we have for any
i € Z an isomorphism

H'(C,Gm) = H1-i(C,2).
PrROOFE By (19) and (20) we have a natural homomorphism
Cu(Zequi(C,AY,0)) — R).Gn.

SinceC is a smooth projective curve, this is a quasi-isomorphism after sheafifying for the
smooth topology by [V, Th. 3.4.2]. We have an obvious symmetric pairing of presheaves

Zequi(CaAlao) X Zequi(CaAlaO) — Zequi(CaAzao)

that takes closed subvarietiaV on Al x X x U to the cycle associated to the fibre product
V xxxuW C A2 x X x U. This induces a pairing

C*(Zequi(CaAla 0)) xC, (Zequi(CaAla 0)) = C, (Zequi(CaAza 0)).

Composing with the push-forward map
C.(Zequi(C,AZ,0)) 2 C, (Zequi( Speck, A2, 1))

and the isomorphism

C*(Zequi(SpeCk,Aza 1) = C*(Zequi(Aza 1) ~ C*(Zequi(AlaO)),
we obtain a pairing of complexes of presheaves that induces a pairing

L
R$..Gm[1l] @ Rd.Gm[1] — Gm[1].

Shifting the degrees gives the pairing we require.
In order to check that our pairing induces Poimcdriality, it is sufficient to check that
we have isomorphisms

A (C,Gp) — #4-i(C,2)

of the homology sheaves in degreées0 and 1, since the homology sheaves of the complex
R¢.Gm and its dual vanish in all other degrees. We first prove the icasg. Since both
source and target are representable by an extensidgrbgfthe Jacobian df, it would by
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Theorem 3.6 be sufficient to check that the sheaf-theoretic cycle map (17) factorizes via the
map
(21) H*(C,Gm) = (C,Z).

We will construct a candidate (23), but we will not quite need to prove that this composite
map coincides with the cycle map (17). Consider the following diagram of pairings, in
which all vertical arrows become quasi-isomorphisms after appl@ir{g-) and where all
pairings are defined via intersection products or fibre products in the obvious way.

b
(22) Zequi(CaAlaO) ®Zequi(CaAlao) — Zequi(CaAzal) — Zequi(Aza]-)

I [ I [

0.
Zequi(C x AL, 1)®Zequi(C,AL,0) — Zequi(C x A%, 1) — Zequi(A%, 1)

T I T T
¢=k
Zequi(C,0)  ®Zequi(C,A%,0) — Zequi(C x A, 0) =+ Zequi(A*,0)

We have a natural map
Z¢ — Zequi(C,0),
and from the leftmost column we get a map
Zequi(C,0) — #1(C,Gp).
Composing with (21) we get a map
(23) Ze — HYC,Gm) — H(C,2).

Since 54 (C, Z) is the total Albanese variety &, the universal property gives a commuta-
tive diagram

P~ ANC,Gm) — H(C,2)
24) J T
HH(C,Z)

We will check that the right-hand diagonal arrow in this diagram is the identity. Since we
deal with a morphism of sheaves represented by smooth group varieties, it is sufficient to
check this at the global sections, provided we pass to the algebraic clostike From the
bottom row of diagram (22) we see that (23) sends the cycle associated to a closed point
i: x— Cto the element irty(C,Z) = Hom_(R$.Gm,Gm) represented by the morphism

R(I)*Gm —>i‘k RlIJ*Gm: Gn’h

where: x — Sped is the structure map. This coincides with the cycle map (15), hence
the right-hand diagonal arrow of (24) is the identity, so the homomorphism (21) is an iso-
morphism.

In order to prove that

#°(C,Gm) = /#4(C,Z)
is an isomorphism as well, we simply observe (using the calculations in Section 2.2 and the

symmetry of the pairing) that this mapping can be obtained from the isomorphism (21) by
applying the functorzomy,(—,Gm). O
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4. Generalized Tate duality

In this section we will prove Theorems 1 and 3. These are actually straightforward conse-
guences of Theorem 4.3 below, which asserts that the compl&xdsfined in Section 2.2
satisfy Tate duality wheiX is smooth and proper overadic field. This in turn follows
from the duality for the graded piec& which is classical Tate duality, since ti#econsist
of (direct limits of) étale finitely generated groups, tori and abelian varieties concentrated in
a single degree.

A crucial role in the proof of Theorem 4.3 below will be played by the following collec-
tion indexed byi > 0 of compatible systems of pairings intt?(K,Gr) = Q/Z with long
exact rows.

(25) -+ H™YK,9P) «— H'(K,.Z2)) +— H"(K,.#P) +— H"(K,4P) +—
X X X X
- — HY(K, %) — HZ (K% 1) = HZ'(K,.%) = H> (K, %) —

Fori > 0 this system is constructed from the triangles (10) and (12) using the Yoneda pairing.
It will allow us to glue the Tate duality for thé&; (see Proposition 4.1 in order to obtain
duality for the.%;. In the gluing process some caution is necessary, since some of the
duality pairings for the4 are only perfect after taking suitable completions. Lemma 4.2
provides the essential arguments that will allow us to proceed. In Section 4.3 we will prove
Theorem 3. Throughout this sectidhis a smooth, proper and geometrically irreducible
over ap-adic fieldK.

4.1. Classical Tate duality

Proposition 4.1. Let X be a smooth and proper geometrically irreducible variety over a
p-adic field K. Consider for > 0, r € Z the Yoneda pairing

H"(K,%4P) x HZ "(K,4) — H3(K,Gp) = Q/Z.

(i) Foreveryi> 0, r e Z the pairing is nondegenerate.
(i) The pairing is perfect if the paifi,r) is not in the se{(0,0), (0,2), (2,1), (2,3)}.
(iif) The pairing induces perfect pairings

H?(K,4P) xHOK, %) — Q/z,
YK, 97) xHYK %)" = Q/Z,
HO(K,45)" x H3(K,%) — Q/Z,
YK, %) xH3 K. %) —Q/Z.

(iv) Fori=0o0r1,r € Z the groups H(K,%4) and H>"(K,%P) vanish if the pair(i,r) is
not in the sef(0,0), (0,2), (1,1), (1,2)}. Fori > 1the groups H(K,%) and H>~"(K,%P)
vanish if ris not in the range+1,...,i + 1.

PROOF Fori = 0,2 the proposition follows from Hilbert's Theorem 90 and Tate—Poitou
duality for finitely generated groups (see [M2, Thm. 1.2.1]). Ferl the proposition follows
from Tate duality for abelian varieties (see [M2, Cor. 3.4]).
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Fori > 2 the proposition follows from Tate—Poitou duality for finite groups, since
4 :Mngia
n
where the complex¥; consists of the (finitej-torsion subgroum%ﬂi*l(%) of the Galois
module.#'~1(4) = H'—1(X,Gp,) placed in degree— 1. Hence for alf € Z we have
H27r(Kagi) :LnrgH27r(ngi)a

and
H' (K, %) = H"(K,Rlim (:¢/)®) = RImMH" (K, (:%;)°) = jm H' (K, (:%,)°),

n

since the groupbl’ (K, (1%;)P) are finite (see [M2, Th. 1.2.1]). O
4.2. Gluing dualities

As was mentioned in the introduction of this section, we will need the following technical
result for the proof of Theorem 4.3.

Lemma 4.2. Let X be a smooth and proper geometrically irreducible variety over a p-adic
field K. Consider the compatible system of pairig@s).

(i) The boundary map HK,%) — H?(K,.#1) has finite image.
(i) Fori=1,2the boundary map HK,.#P,) — H(K,%P) has finite image.
(i) The boundary map (K, #2) — HO(K,¥4P) has finite image.

PrROOE (i) The image of the boundary map is the cokernel of the map
Pic(X) = HY(K, %) — HY(K, %) = HO(K,NSX)),

which is well-known to be finite.
(if) For i = 1 the image of the boundary map is the cokernel of the map

HO(K,.77) = HO(K, 77).

The image of this map contains the image of the composite map
CHo(X) =25 *Ho(X,Z) — HO(K, ZR) = Z,
which coincides with the degree map for zero-cycles, hence the cokernel under consideration
is finite. Fori = 2, we consider the commutative diagram
HOK, #P) ——————— HY(K,%4P)
} }
Hom(H*(K, #1),Q/Z) -+ Hom(H*(K,%2),Q/Z)

obtained from the system of pairings (25). The right hand vertical arrow is an isomorphism
by Proposition 4.1, and the image of the bottom arrow is finite by part (i) of this lemma.
(iii) The image of the mapi ~1(K,.#P) — HO(K,¥4D) is the cokernel of the map

H7YK, 25) = HH(K,.77),
hence a quotient of the cokernel of the natural map
‘H1(X,Z) = H (K, %) = H 1(K,.ZD) = HO(K,Hom(NSX),K")).
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In order to show that the latter cokernel is finite, it is sufficient to prove that it has finite
exponent, sinc&*/K*" is finite for anyn € N. Therefore it is sufficient to prove that the
cokernel of the map

e: ‘Hi(X,Z) — HO(L,Hom(NSX),K"))

has finite exponent for some finite extensloof K in K.

We will finish the proof by showing that this is a rather straightforward consequence
of the fact that for divisors algebraic equivalence modulo torsion coincides with numerical
equivalence. So let us takdarge enough such thiatS X, ) = N§X) and such that we have
a finite collection

fil Ci—>X|_

of smooth, projective, geometrically irreducible cur@®verL mapping toX,, that gener-
ates a subgroup of finite index in HOMSX), Z) via the intersection product. To be precise,
taking 21(JG;) to be the group of 1-dimensional cycles on the disjoint union ofGhse
have that the right kernel of the pairing

21(UG) x NSX) — Z
yalG] x [B] = ya(fi).[C]-[D] -

is precisely the (finite) torsion subgroup N§X).
After tensoring withL* we obtain a map

Q"l(UCi) ®L* — Hom(NSX),L*)
of which the cokernel has finite exponent. By Section 2.2 we have a canonical isomorphism
zi(Jo) oL =Hi(JG,2),

which fits into the following commutative diagram by the projection formula.

Z(UG)®L* ———— Hom(NSX),Z) ® L*

‘H1(UGi,2) Hom(NSX),L*)

Jin |

H1(X,Z) —— HO(L, Hom(NS(X),K"))
Hence the cokernel bottom arrow has finite exponent. O

Theorem 4.3. Let X be a nonsingular complete variety over a p-adic field K Forq, let
Z; be the complex defined in Section 2.2, and consider the Yoneda pairing

H"(K,.ZP) x H>"(K,.%) —» H3(K,Gp) = Q/Z.

(i) Foreveryi> 0and re Z the above pairing is nondegenerate.
(i) Foreveryi>0,r < —2the pairing is perfect.
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(iii) For every i> 0 the following induced pairings are perfect:
H?(K,.ZP) xHOK,#)" - Q/Z,
HY(K,.ZP) xH'(K, %) = Q/Z,
HO(K, 7°)" x H3(K, %) —Q/Z,
HH (K, ZP) " x H3(K, 7)) —Q/Z.
(iv) Foreveryi>0,r > 2, the cohomology groups in the pairing are zero.

ProoOF In all four cases the proof will proceed by induction on the the léw#lthe ‘fil-
tration’ .%;, using Proposition 4.1 and Lemma 4.2 and the following commutative diagrams
with exact rows that are obtained from the system of pairings (25).

HIH(FRy) — HY(4P) — HI(FP) — HI(FDy) — H(4P)

@) ! | I | |

H3_r(<%,1)*%H2_r(gi) H2 r | * %HZ r(g%, ) Hl—r(gi)*
and

@) H(Fi ) HE(S) — HEN () HET(F) — HI ()

! | | | |

HIZHFP )" — HI(EP) — HI(FP)* — HI(FP )" — HHH(&P)

HereH9(—) is short forH9(K, —), and—* denotes the Pontryagin dual Hegi(—,Q/Z).

The exactness of the bottom rows is clear at the duals of torsion groups (which are equipped
with the discrete topology); at the duals of groups which are not purely torsion (which are
equipped with the profinite topology), the exactness follows from [M2, Prop. 0.20] and
Lemma 4.2.

(i) In order to show thaH"(.#P) — H?~"(.%)* is injective, consider diagram (26). By
the induction hypothesis and Proposition 4 1, we know that all vertical arrows but the middle
one are injective. Moreover, the megy—1(.#P ) — H3"(.%_1)* is either an isomorphism,
or the image oH"%(.%_1)P — H"(¥4P) is a finite groupl by Lemma 4.2, in which case
we replace the left column of diagram (26) by the nhap 1*. The injectivity follows by a
diagram chase.

The mapH?~" (%) — H"(FP)* is treated similarly.

(i) For r < —2 the surjectlwty of the mapbl' (#P) — HZ"(%)* andH> " (%) —
H"(#P)* follows by a similar diagram chase, using Proposition 4.1 and the induction hy-
pothesis, which give the surjectivity of the second and the fourth vertical arrows and the
injectivity of the rightmost vertical arrow in diagrams (26) and (27).

(i) The injectivity and surjectivity of the map

HO()" = H3(#P)*
follows immediately from Proposition 4.1 and the above commutative diagrams, since

HO(Z) = HO(%) andH2(.#P) = H2(¥4p) for all i > 0. The injectivity and surjectivity
of

HY(F)™ = HA(FP)
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follows by induction from diagram (27), Proposition 4.1, and Lemma 4.2, since we may
replaceH?(.%;) and its dual by finite groups in the diagram, and then the upper row remains
exact after taking profinite completions. For the isomorphistA§7#P°)~ — H?(.%)* and
H-1(#P)™ — H3(%)* we use similar arguments.

For the arrows in the other direction, like

H3(FP) = (HY(F) )" =HO ()"

we have injectivity by part (i) of this theorem, and the surjectivity follows by diagram chas-
ing in (26) and (27) and induction arfrom Proposition 4.1.

(iv) This follows from Proposition 4.1.iv by induction an O

4.3. Proof of Theorem 3

() Letd: X — Sped be the structure morphism. Consider the triangle
$.Gm — RY.Gm — 1>1RHP.Gm — ¢.Gm[]]
in the derived category of sheaves on the smooth sitekv&ince
HY(K,151R$.Gm) = HY(K,R'.Gm[—1]) = Pic(X/K)(K)
and ¢.Gn, = Gy, the associated long exact sequence of cohomology groups contains the
exact sequence
0 - Pic(X) — Pic(X /K) (k) —> Br(K) -2 Br(X),

where the first term is zero by Hilbert's Theorem 90. This exact sequence coincides with the
exact sequence in the first statement of the theorem. The Cartier dual of thie, Gap-
R$ .G, gives rise to the degree map

Ho(X,Z) =5 7,

so the Yoneda pairing gives the following compatible system of pairingsQpri.
Br(K) —— Br(X)
X q X
7+ Hy(X,Z)

Since B(K) is the Pontryagin dual o, and B(X) is the Pontryagin dual ofy(X,Z) by
Theorem 4.3.iii, we have that the kerneldofis the dual of the cokernel of the degree map.
Therefore these two (finite cyclic) groups have the same order.

(il) Take .71 as in Section 2.2, and consider the triangle

$.Gm — -#1 — PIQ(X/K)[-1] = $.Gm[—1].
Now we proceed as in the proof of part (i) of the theorem, observing that
HY(K,.Z1) = Pid(X)
and
Ex_(#1,Gm) = "Ho(Xg, Z)CaK/K),
as we see from the calculations in Section 2.2. The final statement follows from the fact that
Ho(Xc, Z) /) = Alb* (X) (K)
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