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Abstract

We describe the structure of minimal round functions on closed surfaces
and three-folds. The minimal possible number of critical loops is determined
and typical non-equisingular round function germs are interpreted in the
spirit of isolated line singularities. We also discuss a version of Lusternik-
Schnirelmann theory suitable for round functions.

Key words: round function, equisingular critical loop, almost Morse
round function, Lusternik-Schnirelmann category

1 Introduction

We will deal with round functions on low-dimensional manifolds, that is with
such smooth functions that their critical sets are smooth one-dimensional
submanifolds (which are not assumed to be non-degenerate, in the sense of
R.Bott [3]). This is an evident extension of the notion of a round Morse
function introduced by W.Thurston [21].

Our main concern in this paper are round functions with the minimal
possible number of critical loops (so-called minimal round functions), espe-
cially changes in topology of their Lebesque sets and typical local models
of their singular behaviour. The set-up and approach accepted in this note
are much in the spirit of F.Takens' paper [20] containing a comprehensive
treatment of similar questions for functions with isolated critical points.

It should be noted that, unlike to the round Morse functions which gained
a lot of attention [1], [21], [17], [7], round functions with degenerate critical
loops are rather poorly understood. For example, it is still unclear how to
describe the class of compact closed manifolds which possess round func-
tions. Some results about general (not necessarily Morse) round functions
may be found in several papers [1], [2], [17], [18], but to the best of our
knowledge there exists no systematic exposition of this topic in the litera-
ture. The present paper may be considered as an attempt to �ll this gap
and create certain framework for further investigations.
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As we were able to conclude from [2], [17], [18] and discussions with col-
leagues, many natural questions about round functions remain unanswered
even in low dimensions. Thus we decided to begin with discussing round
functions on low-dimensional manifolds. Speci�cally, we consider round
functions on surfaces and three-folds (smooth three-dimensional manifolds)
and their local behaviour near critical loops. Some of these results are rather
simple and we do not exclude that they may be known for the experts or
even belong to "mathematical folklore", but we have good evidence to hope
that, in any case, our presentation contains certain novelties arising from
the treatment of round functions from the singularity theory viewpoint.

One of the basic ideas we want to formulate and illustrate here, is that
round functions with degenerate critical loops appear quite naturally in cer-
tain simple context and their transversal singular behaviour along critical
loops resembles some patterns exhibited by so-called isolated line singular-
ities [19]. The context we have in mind, is related to certain homotopy
invariants similar to the classical Lusternik-Schnirelmann category [12]. We
describe this setting in some detail, as well as typical examples of degenerate
round functions in low dimensions.

In order to endow the whole topic with a proper background, we �rst
address the general existence problem for round functions on closed mani-
folds. We recall main results in this direction from [1], [16] and complement
them by some observations about the Euler characteristic of Lebesque sets.
Results of this section imply, in particular, that degenerate round functions,
generally speaking, cannot be approximated by round Morse functions. This
shows that degenerate round functions are in some sense inevitable and
should be studied by themselves.

We proceed by considering examples of minimal round functions on com-
pact closed surfaces. It turns out that, in the orientable case, critical loops
of such functions are transversally non-degenerate except a �nite number
of points of Whitney umbrella type (D1-points in notation of [19]). For
functions with such critical loops, we describe possible changes in topol-
ogy of Lebesque sets under passing of a critical level. This enables us, in
particular, to determine the minimal possible number of D1-points on a
given orientable two-surface. We also establish that round functions exist
on all closed three-folds, which is in a contrast with the fact that not all of
three-folds possess round Morse functions [17].

Thus minimal round functions on closed surfaces admit a rather de-
tailed description. Actually, these two-dimensional results serve as the main
paradigm for our research and suggest an approach to higher-dimensional
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cases, although it should be noted that in higher dimensions the situation
is much more complicated and leaves small chances for such a complete de-
scription. In particular, it is already not so simple to compute the round
complexity by visual geometric considerations so one has to develop some
general topological machinery suitable for this purpose.

With this in mind, we describe some tools su�cient to obtain general
lower estimates for the number of critical loops. As is well known, the classi-
cal Lusternik-Schnirelmann category gives a lower estimate for the minimal
number of isolated critical points of a smooth function on a given manifold
[12]. We follow the same pattern in the context of round functions by using
an appropriate version of generalized category-like invariants introduced by
M.Clapp and D.Puppe [4] (cf. also [2]). In such a way we come to reasonably
e�ective lower estimates for the minimal possible number of critical loops
in terms of these invariants and conclude the section by computing them in
some simple cases.

In the last section we discuss minimal round functions on three-folds. In
particular, we present complete lists of (homeomorphy types of) three-folds
possessing round functions with two or three critical loops and obtain some
corollaries concerned with the computation of round categories and round
complexities. These results require rather involved geometric arguments and
may be considered as our main new contribution to the topic.

The �rst author acknowledges �nancial support by INTAS, project 96-
713, and by NWO (Nederlandse Organisatie voor Wetenschapelijk Onder-
zoek) during the period of joint work on this paper at the Department of
Mathematics of Utrecht University and thanks all members of the Depart-
ment for the warm hospitality.

2 De�nitions and setting

For brevity, throughout the whole text the word "smooth" means "in�nitely
di�erentiable". Manifolds are always assumed to be smooth compact and
closed (without boundary), those with boundary will be referred to as @-
manifolds.

Let f :M ! R1 be a smooth function on a (smooth compact) manifold
M . As usually, the critical set C(f) of function f is de�ned as the set of
all points where di�erential dpf vanishes. In our situation C(f) is evidently
non-empty and carries a lot of topological information about manifold M .
The latter circumstance is well known and has spectacular manifestations in
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the case of functions with isolated critical points, especially Morse functions
[15]. It should be noted that often it is also necessary (or useful) to consider
functions with non-isolated critical points [3].

In many problems of di�erential topology and Hamiltonian mechanics
an important role is played by so-called round Morse functions, with critical
sets consisting of several smooth loops which are non-degenerate, in the
sense of R.Bott [1], [21]. In some situations the condition of non-degeneracy
does not seem natural, so we will work with a little bit more general class
of functions.

De�nition 1 Function f is called a round function if its critical set C(f) is
a disjoint union of several smooth simple loops (images of smooth embeddings
of the circle S1). Components of C(f) will be called critical loops of f .

If all critical loops of f are non-degenerate, in the sense of Bott, then
following [21] we will say that f is a round Morse function. If all critical
loops are non-degenerate except a �nite number of points on them, we will
say that f is an almost Morse round function.

Examples of round functions are immediate, but unlike to Morse func-
tions, they do not exist on all manifolds.

Proposition 1 No round functions exist on two-sphere S2 and real projec-
tive plane RP2.

Indeed, on S2 any critical loop bounds an embedded disc in interior of
which the function in question evidently should have further critical points
(maxima or minima, at least). On the other hand, by an evident compact-
ness argument one always �nds a critical loop containing no other critical
loops in its interior. So there should exist some isolated minima or maxima
in its interior, which contradicts the de�nition of round function. In the case
of RP2 one arrives at the desired conclusion by considering lifts of functions
to the universal covering space S2.

At the same time there are many evident examples of round functions
in all dimensions. For example, on any manifold of the form M � S1

round functions arise from arbitrary functions with isolated critical points
on M . The same holds for circle bundles over manifolds, which provides,
in particular, round functions on odd-dimensional spheres from Hopf �bra-
tions S2n+1 ! CPn, the most visual example being a well-known function
("height-Hopf") on S3 having two critical loops which are linked (as �bres
of the Hopf �bration S3 ! S2).
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Thus the existence issue for round functions is not completely trivial and
we will comment upon it in the sequel. Note that in three-dimensional case
mutual position of critical loops is also a non-trivial issue.

Proposition 2 On S3 there are no functions with two critical loops which
are unlinked.

Indeed, any function with two critical loops gives a decomposition of
S3 in a union of two solid tori S1 � D2 (which are suitable tubular neigh-
borhouds of critical loops) glued by certain di�eomorphism of their bound-
aries. Clearly, only homotopy classes of gluing di�eomorphisms are im-
portant, and those are known to be described by an element of SL(2;Z)
expressing the e�ect of gluing on H1(T;Z) [11]. Discussion in [11] shows
that the result of such gluing is di�eomorphic to S3 if and only if the core
circles of those solid tori are linked with linking number �1 (in other cases
one obtains S1 � S2 or such lens spaces which are not even homeomorphic
to S3).

On the other hand, it is clear that round functions with unlinked critical
circles exist on direct products of the form M2 � S1. These observations
suggest some natural problems which seem rather promising.

Problem 1 Characterize closed three-manifolds which possess round func-
tions with unlinked critical circles.

Problem 2 For a given compact connected three-fold, characterize links
which may be represented as critical sets of round functions.

Using Bott's theory of non-degenerate critical manifolds it is quite sim-
ple to indicate a topological invariant responsible for the existence of round
Morse functions. Indeed, it is clear that if a non-degenerate critical manifold
is homeomorphic to the circle, then under passage of this critical level the
Euler characteristic of Lebesque sets remains unchanged [3]. Thus round
Morse functions may only exist on manifolds with vanishing Euler charac-
teristic.

D.Asimov proved that the converse is also true, except in the three-
dimensional case [1]. As follows from [13], one can generalize this observa-
tion by looking at possible changes of the Euler characteristic in so-called
transversally equisingular case. It turns out that the transversally equisin-
gular behaviour is often exhibited by minimal round functions, so we give a
precise de�nition.
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De�nition 2 A function f is called transversally equisingular at a critical
manifold C if, for every point p 2 C, germs at p of restrictions of f to small
discs transversal to C at p belong to the same right-left equivalence class [8].

Proposition 3 ([13]) If K is a transversally equisingular critical subman-
ifold of function f , then under the passage of level f(K) the Euler char-
acteristic of Lebesgue sets �(ff � ag) is changed by an integer multiple of
�(K).

Corrolary 1 Equisingular round functions exist on manifoldM if and only
if �(M) = 0.

In order to prove this proposition, one uses the multiplicativity property
of the Euler characteristic and existence of a locally trivial �bration struc-
ture in a neighbourhood of an equisingular critical submanifold (cf. similar
statements in [5]), to show that the total change of the Euler characteristic
of Lebesgue sets 4�ff � ag is equal to the product 4�(slice) � 4�(K).
Actually, it is not di�cult to show that in this case 4�(slice) is equal to
the gradient index indp grad (f jDp) of restrictions of f to small transversal
discs Dp at p.

Remark 1 According to [13], the proof may be also obtained by a defor-
mation argument which enables one to substitute an equisingular degenerate
submanifold K by a number of Bott submanifolds di�eomorphic to K, and
then refer to classical results of Bott [3]. This is a sort of "morsi�cation"
procedure in the class of functions with critical submanifolds.

This proposition remains valid under a weaker assumption that function
f is only topologically equisingular but, as we will see below, imposing
certain condition of equisingularity is essential and a similar statement is not
true for arbitrary round functions. In other words, the existence issue for
round Morse functions and general round functions have essentially di�erent
features. Actually, up to now there is no complete description of the class of
manifolds which possess round functions. In the next section we will clarify
this issue for surfaces and three-folds.

Remark 2 In connection with said above it is natural to ask if every round
function can be approximated by round Morse functions. In the next section
we will see that this is not always possible, so degenerate round functions
are really inevitable, even from the topological point of view.
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For further reference, it is also convenient to introduce another natural
class of degenerate round functions.

De�nition 3 A point p 2 K on a critical loop of a round function f is
called a point of D1-type (for f) if, in some system of local coordinates
(x1; :::; xn) around p, function f takes the form x1x

2
2 � x23 � :::� x2n.

A critical loop K is called a Morse-Whitney critical loop if f is transver-
sally non-degenerate on K with only possible exception of a �nite number of
points which are all of D1-type. Finally, we will say that a round function
is a Morse-Whitney function if all of its critical loops are Morse-Whitney
critical loops.

Remark 3 The term "Morse-Whitney" is chosen for the reason that level
surfaces near a D1-point exhibit behaviour similar to that of the Whitney
umbrella. In principle, it would be even more logical to say "Bott-Whitney"
but we want to emphasize analogy with the term "round Morse functions".

In this paper we will be basically concerned with estimating the minimal
possible number of critical loops of a round function on a given manifold.
Recall that F.Takens in [20] introduced an interesting topological invariant
F:(M) of a smooth manifold M , de�ned as the minimal number of criti-
cal points of smooth functions on M . In some cases he was able to show
that F:(M) coincides with the Lusternik-Schnirelmann category catM , and
explicitly constructed so-called exact functions which have precisely catM
critical points on M . Our research strategy is to mimic his approach in the
context of round functions.

De�nition 4 Round complexity rocM of a manifold M is de�ned as the
minimal possible number of critical loops of round functions on M . If round
functions on M do not exist we put rocM = 1. A round function f is
called a minimal round function if the number of components of C(f) is
equal to rocM .

Round complexities are usually hard to compute. Below we will in-
troduce an appropriate homotopy invariant of M , round category TcatM ,
which gives a lower estimate for rocM . We will be interested in �nding
cases in which rocM = TcatM . If this is the case, we will say that a round
function is exact if it has precisely TcatM critical loops.

In the sequel we will be mainly concerned with minimal and exact round
functions on surfaces and three-folds.
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3 Round functions in low dimensions

Here we describe some constructions of round functions on surfaces and
three-folds and discuss the structure of minimal round functions.

Theorem 1 Round functions exist on all closed surfaces, except S2 and
RP2. Transversally equisingular round functions, as well as round Morse
functions, exist only on T 2 and Klein bottle K2. The round complexity is
equal to two for T 2 and K2, and it is equal to three in all remaining cases.

On all closed surfaces there exist almost Morse round functions. On
surfaces with the even Euler characteristic there always exist minimal round
functions which are Morse-Whitney functions. The minimal number of D1-
points of a minimal Morse-Whitney function on an orientable surface of
genus g is equal to 2g � 2.

We prove this by using a sort of surgery suitable for round functions
on surfaces the best description of which could be probably given just by
drawing some pictures. We prefer nevertheless to make concise comments
which should make clear the main point of construction. For simplicity,
we only consider the orientable case and start with a standard model of a
(round) torus T 2 with the evident minimal round function on it ("height on
a lying tyre").

We take two such tori and arrange that the circle of maxima on the �rst
copy lies on the same level with the circle of minima on the second copy, say
on the zero-level. Then we take a point P on one circle and a point Q on
another, delete small discs around these points and perform our surgery. To
this end we glue a cylinder to boundaries of deleted discs and try to extend
our function to that cylinder.

A simple visual examination of arising picture shows that this is really
possible and the simplest way of doing so is to join "free ends" of original
critical circles by two segments on the cylinder with one Whitney umbrella
(D1-point) on each of those segments. As one immediately sees, the result
is a round function with three critical loops on a connected sum of two tori
and it becomes clear that this procedure may be iterated, which yields round
functions on all orientable closed surfaces.

A slight modi�cation of the same surgery enables one to fuse any pair
of critical loops containing points of di�erent types (max vs. min). This
shows that the number of critical loops may be reduced to three, for any
surface with the genus higher than one, and the arising round functions are
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Morse-Whitney functions. Using standard Morse theory it is easy to check
that the number of Whitney umbrellas on every critical loop is even and
the Euler characteristic of Lebesgue sets changes by �2k under passage of a
Morse-Whitney loop with 2k points of D1-type on it, which gives the last
statement of the theorem referring to the orientable case.

In the non-orientable case one can develop similar surgery which uses
gluing of M�obius bands. It should be noted that critical loops provided by
this procedure have the transversal A2-type [19] so in this way one cannot
derive existence of almost Morse functions on non-orientable closed surfaces.
To prove the latter statement one may apply another natural procedure
which uses blow-ups of isolated extrema and produces almost Morse critical
loops with points of J2;1-type, in the notation of [19].

Remark 4 Despite its simplicity, this theorem is instructive since it gives
an example of a fairly complete description of minimal round functions, both
in local and global aspects. The description of their local behaviour follows
from the explicit geometric constructions which we apply and �ts nicely into
the framework of isolated line singularities [19]. It is also remarkable that
constructions of round functions and types of local singularities are di�erent
in the orientable and non-orientable case. In higher dimensions one cannot
hope for such a complete description but it is clearly helpful to keep in mind
a sample result.

We consider now round functions on three-folds. Here situation is sub-
stantially more complicated and our results are less complete. For the sake
of clarity we �rst formulate the existence result. Recall that there exists an
especially well understood class of three-folds, so-called Waldhausen class,
which consists of unions of Seifert �brations patched along parts of their
boundaries [11].

Theorem 2 Round functions exist on all closed three-folds. Round com-
plexity of a closed three-fold does not exceed four. Transversally equisingular
round functions, as well as round Morse functions, exist only on three-folds
of Waldhausen class.

The simplest way to prove the �rst statement is to refer to the well
known fact that any three-fold is a union of solid tori glued along parts of
their boundaries [11]. This is indeed su�cient because we are also able to
show that round functions can be constructed on any such union by applying
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a "parameterized version" of Takens' trick ([20], Theorem 2.7), in such a way
that critical loops are precisely the core circles of those solid tori.

In order to prove that the round complexity does not actually exceed
four, one may refer to a more elaborated procedure of "surgery on links"
[11], which in particular yields that every three-fold may be obtained from
S3 by a surgery on a two-component link. This basically reduces to deleting
two solid tori from S3 and gluing them back with possible twists de�ned by
certain di�emorphisms of their boundaries. Granted this, we may start by
taking a standard round function on S3 ("height�Hopf") and then properly
modify it on the interiors of deleted solid tori using the same "parameterized
version" of the Takens' construction.

The statement about transversally equisingular round functions is re-
duced to the particular case of round Morse functions by a procedure of
"round morsi�cation" mentioned in Remark 1. The statement about round
Morse functions follows from the results of [17]. Indeed, in [17] it was shown
that a three-fold belongs toWaldhausen class if and only if it admits so-called
round handle decompositions introduced in [1]. The proof is completed by
noticing that, as was established in [16], existence of a round handle decom-
position is equivalent to existence of a round Morse function.

Remark 5 Another application of a "parameterized version of Takens's
trick" may be found in [5]. We emphasize that the setting there is substan-
tially di�erent from ours and results of [5] cannot be automatically applied in
our case because they were obtained under the assumption that critical sub-
manifolds are simply connected. Similar but less precise statements about
round functions on surfaces and three-folds may be also found in [2]. It
should be noted that [2] contains only announcements of results without any
comments on proofs.

Two important general conclusions which one may derive from these
results, are, �rstly, that degenerate round functions are inevitable outside
Waldhausen class and, secondly, that arbitrary round functions not always
can be approximated by round Morse functions. Of course this well may
be caused by the low-dimensionality of manifolds in question so it would be
interesting to know if such approximation is possible in higher dimensions,
but this issue remains uninvestigated.
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4 Round category and cup-length

In higher dimensions, there is already little hope to succeed in studying
round functions by purely geometric means and to this end one has to de-
velop some suitable topological tools. Here we use two relevant notions,
round category and round cup-length, and present analogies of the two ba-
sic inequalities of Lusternik-Schnirelmann theory (Propositions 4 and 5).
Similar notions and results are found in [2] and [14] but actually they go
back to [4]. Then we compute these invariants in some cases of interest,
including closed surfaces and certain three-folds. Combined with results of
Section 3, this proves existence of exact round functions on closed surfaces
and certain connected sums of Seifert �brations.

Recall that a subset A � X of a topological space X is called T -
categorical if the inclusion map i : A ! X may be factored through the
circle T up to homotopy [4], that is, there exist continuous maps � : A! T

and  : T ! X such that  � is homotopic to i.

De�nition 5 (cf. [4], [2], [14]) Round category TcatX of a connected para-
compact space X is de�ned as the minimal possible cardinality of coverings
of X by T -categorical closed subsets. A round function on manifold M is
called an exact round function if the number of its critical loops is equal to
TcatM .

This is just a special case of the general de�nition from [4] so we may
use results from [4]. In particular, from the discussion in [4] it follows that,
for any closed manifold M which is not homeomorphic to S1, one has in-
equalities: 2 � TcatM � catM � dimM + 1. In particular, it becomes
clear that, for any n, Tcat Sn = 2.

Proposition 4 For a closed manifold M , one has: TcatM � rocM .

This follows from a more general statement found in [4] (Theorem 2.3)
so we omit the proof. It is now easy to verify that Theorem 1 enables one
to compute round category for closed surfaces and yields examples of exact
round functions.

Corrolary 2 Exact round functions exist on all surfaces except two-torus
and Klein bottle.
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For evident reasons, it is tempting to compare round category of a circle
bundle with the usual Lusternik-Schnirelmann category of its base. It may
be proved that for a circle bundle E over a closed surfaceM , one always has
TcatE = catM . There is little hope that the same holds for arbitrary CW-
complexes but there is good evidence that this is true for direct products
with the circle.

Problem 3 Prove that Tcat (X � S1) = catX for any two-dimensional
CW-complex X.

We are nearly sure that in higher dimensions this equality cannot hold
for all smooth manifolds, so looking for a corresponding counter-example
might be a reasonable enterprise. At the same time, the equality holds for
many manifolds with su�ciently simple cellular decompositions.

Problem 4 Find topological conditions on manifold M which guarantee
that Tcat (M � S1) = catM .

Computation of round category in higher-dimensional cases usually can-
not be done by purely geometric considerations like those in Theorems 1
and 2. Some tools from algebraic topology are helpful here and we borrow
one of them from [4].

De�nition 6 ([4]) Round cup-length Tcl(X) of a topological space X is
de�ned as the nilpotency index [12] of the subring H�

T (X;Z) equal to the
intersection of all kernels of induced mappings F � : H�(X;Z) ! Z, where
F : T ! X runs over all continuous mappings of the circle T into X.

Proposition 5 For any CW-complex X, one has: Tcl(X) + 1 � TcatX.

As in the case of Proposition 4, the proof is obtained by a simple mod-
i�cation of the proof of a similar statement in [4] (Proposition 3.1) and is
therefore omitted. For a closed manifold M , according to Poincar�e duality,
one can of course reformulate this estimate in a more geometric form by
looking at suitable intersections of cycles on M .

This result enables one to compute the round category in some higher-
dimensional cases. We present but two results of this kind which illustrate
some general phenomena exhibited by these invariants.

Proposition 6 roc S5 = 3.
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We prove this by analyzing possible topological types of unions of two
copies of S1 � D4 glued along some di�eomorphism of their boundaries.
Using van Kampen's theorem it is not di�cult to show that the result of
such gluing never can have the homotopy type of S5.

Proposition 7 roc Tn = Tcat Tn = n.

This follows by �rst showing that Tcat Tn � n and then constructing
a round function with n critical loops. An elementary examination of cup-
products in H�(Tn) shows that Tcl(Tn) = n�1 (cf. [4]), and it is also easy to
obtain a desired function on Tn. Indeed, it is well known that cat Tn�1 = n

[12] and one easily shows by induction that on Tn�1 exists a function with
exactly n isolated critical points.

Thus exact round functions exist on tori, while S5 admits no exact round
functions. Hence inequality in Proposition 4 cannot be substituted by equal-
ity and of course the same refers to inequality in Proposition 5. Nevertheless,
we know many cases when it is possible to prove that one or both of these
equalities take place, so this issue deserves further investigation.

Remark 6 It is also possible to prove that, for all n � 3, roc S2n�1 � 3 by a
similar topological analysis of unions of two copies of S1�D2n�2. Actually,
one can even compute the round complexity in question and show that, for
all n � 2, roc S2n�1 = n. We do not make here any attempts to describe
the proof, since our argument requires some results of Conley index theory
which did not seem appropriate to discuss in this note.

We would like to conclude this section by formulating another interesting
problem suggested by the inequalities obtained above.

Problem 5 For any n � 4, construct an n-dimensional manifold M with
TcatM = n + 1.

5 Minimal round functions on three-folds

In order to formulate the main result, we need some notations and conven-
tions. The symbol # will always denote connected sum of two closed 3-folds.
By Bj we will denote a copy of the product S1 � S2 and by B = #Bj an
arbitrary �nite connected sum of such products. By Lj or simply L we
will denote any lens space with a non-trivial �nite fundamental group. Fi-
nally, let Sf(3) denote any Seifert �bration [11] with no more than three
exceptional �bres.
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Theorem 3 LetM be a compact closed three-fold. If rocM is equal to two,
then M is homeomorphic to S3;RP3; S1 � S2, or L. If rocM is equal to
three, thenM is homeomorphic to one of the manifolds of the following type:

L#B;L1#L2; L1#L2#B;L1#L2#L3; L1#L2#L3#B; Sf(3); Sf(3)#B:

Corrolary 3 There exist manifoldsM fromWaldhausen class with rocM =
4, in other words the upper bound four established in Theorem 2 is sharp.

Remark 7 Theorem 3 enables one to compute the round complexity for
many three-folds and may be considered as an analogy of Theorem 3.3 from
[20]. Despite apparent similarity of formulations of these two results, their
proofs use essentially di�erent techniques. In particular, we make no use of
so-called �llings [20] playing the crucial role in the Takens' approach.

Proof of Theorem 3 makes an essential use of the existing comprehensive
structural theory of three-folds [11]. The crucial ingredient is an analysis
of possible homeomorphy types of unions of several solid tori in the spirit
of [10]. First, applying standard Morse theory we show that a manifold
with the round complexity not exceeding three is representable as a union
of two or three solid tori appearing as suitable tubular neighbourhoods of
critical loops. Results of [10] actually contain the topological classi�cation
for certain types of unions of two solid tori, and with some additional e�ort
we are able to show that they are applicable in our situation. It remains to
extend the classi�cation to unions of three solid tori, which is done in an
analogous way by making proper use of results of [9].

Remark 8 A straightforward attempt to prove that in situation of Theorem
3 manifoldM is actually di�eomorphic to one of the manifolds in these lists,
meets some serious di�culties typical for low-dimensional di�erential topol-
ogy. Situation here is analogous with [20] since availability of classi�cation
of three-foldsM with F:(M) = 2 depends on validity of Poincar�e conjecture.

Thus it turns out that the round category is more hard to compute than
the round complexity. Nevertheless, Theorem 3 apparently computes the
round category of any three-fold M with rocM � 3. It is also possible to
develop explicit constructions of minimal round functions on many three-
folds from the above lists and obtain some information on the transversal
behaviour of resulting functions along their critical loops.
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Note that one should additionally check existence of exact round func-
tions on three-folds from the above lists, since they are only homeomorphic
to three-folds on which the existence of an exact round function is granted,
while we do not have a proof of the fact that rocM is a topological invariant.
We approach the construction of desired functions by using an extension of
surgery applied in the proof of Theorem 1.

Such surgery enables one, in particular, to fuse two extremal loops of
di�erent types (a max-min pair) lying on the same critical level, in such a
way that the result is again a round function with only two exceptional points
on the corresponding critical loop. This leads to an inductive construction of
round functions on three-folds from our lists and yields exact round functions
on some of them.

Proposition 8 All three-folds from the above lists possess almost Morse
round functions.

We prove this by checking that this surgery produces an almost Morse
round function on a connected sum of two three-folds from a pair of almost
Morse round functions on summands.

Remark 9 We want to emphasize that existence of exact round functions
on these three-folds cannot be discussed since we have not yet computed their
round categories. Moreover, even their round complexities should be com-
puted by a separate argument since we do not know if round complexity is a
topological invariant (from the de�nition it only follows that round complex-
ity is an invariant of di�eomorphy type).

Thus it remains unclear if exact round functions exist on all three-folds.
The latter fact would be established, if the following problem has positive
solution, which seems to us very plausible.

Problem 6 Prove that for a compact closed three-fold M , TcatM = 3 if
and only if rocM = 3.

As a natural �rst step, one should of course try to compute round cat-
egories for three-folds in our lists. It is quite simple to see that three-folds
with round complexity equal to two, have the round category also equal to
two. We have checked that the round category is equal to three for some
manifolds from our second list, but we do not see any "a priori" reason why
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the same should hold in remaining cases so the whole issue is open even for
our "models".

In general, round category is di�cult to compute and situation here
is much more complicated than with the classical Lusternik-Schnirelmann
category. For example, it is well-known that a manifoldM with catM = 2 is
homotopy equivalent to a sphere [12], but we are not aware of any reasonable
description of manifolds with the round category equal to two.

Remark 10 In order to keep this text within a reasonable length, we con-
sciously do not discuss round functions in higher dimensions, despite this
is related to some interesting observations and open problems. For exam-
ple, the vanishing of Euler characteristic is not indeed an obstruction for
existence of round functions in higher-dimensions, as may be seen by con-
sidering products of Riemann surfaces of high genera. At the same time, we
are not aware of any description of manifolds which admit round functions,
so �nding such a description is apparently a meaningful and urgent problem.

In the conclusion, we would like to mention that similar results are
available for low-dimensional @-manifolds and some other types of strati-
�ed spaces. These developments, as well as relevant versions of Lusternik-
Schnirelmann theory, will be published elsewhere.

Another promising line of development is related with functions on man-
ifolds endowed with codimension-one foliations [6]. Those results are techni-
cally more involved and require additional preliminary explanations so they
are also left for future publications.
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