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Singular Reduction for Proper Actions

R. Cushman® and J. Sniatycki2

1 Introduction

The goal of this paper is to give a simplified proof of the singular reduction
theorem for a proper Hamiltonian action of a Lie group & on a connected
smooth symplectic manifold (P,w) which has a coadjoint equivariant mo-
mentum mapping. Our proof does not use the assumption that the coadjoint
orbit is locally closed, any local normal form, or the shifting trick. These
were essential ingredients of the existing proof [4].

The space P/G of orbits of the symmetry group G is a topological quo-
tient space of the original phase space P. We show that G-invariant smooth
functions on P define a differential structure on P/G in the sense of Siko-
rski [12]. Singular reduction gives rise to a partition of P/G by symplectic
manifolds.

We begin by describing regular reduction [9], [10]. Let
C:Gx P = P:(g.p)O(p)=yg-p

be a proper Hamiltonian action of a Lie group ' on a connected symplectic
manifold (P, w) with coadjoint equivariant momentum mapping J : P — G*.
If the action is free, the momentum map J is a submersion [3], see note
A. Thus every a € G* is a regular value of J. The level set J™'(a) is
a presymplectic submanifold of P. Let G/, be the isotropy group of the
coadjoint action at . Then the space J~*(«a)/G,, of G,-orbits on J~!(a) is
a symplectic manifold [10].

Let O, be the coadjoint orbit through «. On the one hand, if O, is
not locally closed, then J=*(O,) is an immersed submanifold of P, see note
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B. Moreover, there is a natural bijection between the immersed submanifold
J71(0,)/G of the smooth orbit space P/G and J~'(«a)/G,, see notes C and
D. On the other hand, if O, is locally closed then J~*(Q,) is a submanifold
of P, see note E, and the space J7'(0,)/G of G-orbits on J~YO,) is a
symplectic manifold, which is naturally diffeomorphic to J™*(«a)/G,.

If the momentum map J : P — G* is not coadjoint equivariant, then it is
equivariant with respect to an affine coadjoint action on G*, which is defined
as follows. For each p € P the map

g, G =G 1 g— J(Py(p)) — Ad;—lj(p)

does not depend on the choice of the point p. Thus it defines a mapping
o : G — G* which is a G*-cocycle, that is, for every g, h € G

o(gh) =o(g) + Ad;—lo-(h).
Let
A:GxG =G :(g,h) —>Ad2_10z—|—a(g). (1)

Then A is an action of G on G* called the affine coadjoint action. The
momentum mapping J is equivariant with respect to the action A, that is,
for every (g,p) € G x P

J(Dy(p)) = Ag(J(p))-
The regular reduction theorem also holds when the momentum mapping is

equivariant with respect to the affine coadjoint action [§].

All the results for free proper actions quoted above do not require the
hypothesis that G is connected.

We now turn to discussing singular reduction. Since the Hamiltonian
G-action @ on (P,w) is not necessarily free, the isotropy groups

Gy ={g € G|@(g,p) = p}

at the point p € P play an essential role. Because the G-action is proper, G,
is a compact subgroup of G for each p € P. Let K be a compact subgroup
of GG. The set of points of P of symmetry type K is

Pi ={p€ P|G,= K}
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and the set of points of P of orbit type K is
Py = {p € P|G, is conjugate to K}.

For nonfree proper actions, reduction of the zero level set of a coadjoint
equivariant momentum map has been extensively studied [3], [14], [5] and
[15]. Their results can be extended to cover reduction of a nonzero level
set using the “shifting trick”, [1], [7]. In the above cited papers the authors
show that for each compact subgroup K of (¢, each connected component of
Py N J7H(0) is a presymplectic submanifold of P and that each connected
component of the space (Pycy N J71(0))/G of G-orbits on Py N J~1(0) is
a symplectic manifold. The stratification of J~'(0)/G by the symplectic
manifolds (Py N J71(0))/G was studied in [6], [14] and [4].

In this paper we give a simple proof that for each o € G* each connected
component of PiyNJ () is a presymplectic submanifold of P and its space
of G -orbits is a symplectic manifold. Our simplification is obtained by a
detailed investigation of J='(O,) N Pg, which reduces our argument to the
case of a free action.

2 Symmetry type

Theorem 1. Let K be a compact subgroup of G; M a connected component
of Px, and tp; : M — P the inclusion map. Then

i) M is a submanifold of P and wy = ¢};w is a symplectic form on M.

ii) For each G-invariant function f on P, the flow ¢; of the Hamiltonian
vector field X associated to f preserves M.

iii) When f is a G-invariant function on P, the restriction to (M,w) of the
Hamiltonian vector field X; is a Hamiltonian vector field on (M, was)
associated to the restriction of f to M.

Proof.
i. The proof of i) can be found in [7], [5].

ii. Since f is G-invariant, g-¢:(p) = ¢+(g-p) for all g € G, and p € P. Hence
if g € G, then g € G, (). Since @ is a local difeomorphism, we find that, if
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9 € Guyp), then g € G () = Gp. Hence Gy, ) = Gy and ¢4(p) € P for
all p € M. Since p4(p) and p are in the same connected component of Pk, it
follows that o(p) € M for all p € M. This proves ii.

iil. Since M is a symplectic submanifold of P for each p € M, the symplectic
annihilator T* M of T, M, defined by

1M = {u € T,P| w(p)(u,v) =0 YveT,M}, (2)
is a symplectic subspace of T),P complementary to T),M, that is,
T,P=T,M & T M. (3)

The Hamiltonian flow ¢, of a G-invariant function f is generated by Xy,
which satisfies the equation X;_ 1w = df. Since ¢; preserves M, X; is
tangent to M. Hence for every u € T M,

(df (p)|u) = w(p)(X(p),u) = 0.

Therefore for every v € T,M, (X;_aw)v = (df|v), which implies that
Xydwy = df|M. This proves iii. O

Given p € M, for each k € K, ®(k,p) = ®4(p) = p. Hence the tangent at
p of @ defines an action ¥ of K on T, P, which fixes every u € T,M. The
normaliser of K" in G is

NE ={geG|gKg™' =K}
For every p € P,
Gop = {9 €G|dg-p=g-pt={d€Glg g9 p=p}
= {9€GlgldgeG,l={gd€CG|d €yGy™'}=9gGy "

Hence g € (i preserves Pk if and only if g € N*. Let Ny be the subgroup
of N preserving the component M C Py, that is,

Nu={geN|g-peM Ypem}

Note that K is a normal subgroup of Nj;. The subgroup Nj; contains the
connected component of the identity of N¥ and is a closed subgroup of G.

Let NV be the Lie algebra of Ny;. For each £ € N and each p € M, we have
exp(tg) - p = B(exp(L), p) = Py(exp(L€)) € M.
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Hence X¢(p) = T.9,(¢) € T,M. For each k € K, there exists k' € K such
that k- exp(t€) = exp(t€) - k'. Hence

Or(®y(exp(t€)) = Pr(exp(lf) - p) = Bk, exp(Lf) - p) = ®(kexp(if), p)
= O(exp(t&k’,p) = (exp(t€), k' - p) = d(exp(t), p)
= ®,(exp(t)).
Therefore
T,9,(X%(p)) = X(p) VkeK, E€N, and pe M. (4)
The quotient group Gy = Njy/K is a Lie group which acts on M by
Oy Gy x M — M : ([g],p) = ®(g,p), (5)

where [g] € Gar is the coset containing g € Nyy.
Theorem 2. The action ®,; of Gy on M is free and proper.

Proof. The action ®,; is free by the construction of G;. To prove proper-
ness we argue as follows. Suppose that the sequence {p,} of points in M
converges to p € Pr and let {[g,]} be a sequence of elements of Gy such
that ®ar([ga],ps) — p' € M. Then ®(g,,p.) = Pm([gal.pn) — p'. By
properness of the action of GG on P, there is a subsequence {g,,. } in Ny con-
verging to g € (¢ such that ®(g,p) = p’. Since Ny is closed, the limit ¢ lies
in Ny and p € M. Hence, the subsequence {[g,,. ]} converges to [g] € G
and ®pr([g],p) = p'. Thus the action @,/ is proper. O

Let P = P/ be the space of G-orbits on P and let 7 : P — P be the orbit
map.

Corollary. The space M = M/Gy of Gy-orbits on M is a connected
manifold. The space 7(M) has the structure of a smooth manifold induced
by the natural bijection y : (M) — M.

Proof. Since the action of Gy on M is free and proper, M = M/Gyy is

a smooth manifold. Let 7wy : M — M be the G-orbit map. Since M is
connected and 7y is continuous, it follows that M is connected. a

For each p € M, w(p) = G- p is the orbit of G through p. The intersection
of G- p with M is the unique Gy-orbit mar(p) = Gas - p through p. In other
words,

T(p) "M =G -pNM =Gy -p=mulp).
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Consequently, the map
pem(M)y — M :7(p) = mm(p),
is bijective. Moreover, i induces a manifold structure on m(M). a
Recall that A is the Lie algebra of Ny;. For each £ € N, the vector field
X¢ is tangent to M. For each p € M, let
Mp)={e€g | Xp) e Ty M}, (6)

where T* M (2) is the symplectic annihilator of T, M.
Lemma 1. For each p € M

N+ M(p)=4G.

Proof. Since p is fixed by K, the action ®|(K x P) of K on P induces a
K-action W on T,P. The tangent space T, M consists of vectors v € T,P
which are invariant under this induced action. In other words,

T,M = {v € T,P | Wy(v) = T,04(v) = v YheK}.

Moreover, for every £ € A" we have X¢(p) € T,M.

Since w is G-invariant and T, M is Wy-invariant, it follows that T~ M is
also Wy-invariant. For every u € T,M, the average of u over K is

K K

where dk denotes Haar measure of K normalised so that vol K’ = 1. Since @ is
U y-invariant, it belongs to T,M. If u € Ty M, then w € T*M because T M
is Wy-invariant. Hence if u € T M, it follows that w € T,M NT*M = {0}.
Thus

1M ={ueT,P|u=0} (8)

For each £ € G, let
E= [ T.Li(¢&) dk,

K
where Ly : G — G : g — kg is left translation by k. Since the map

G—T,P:&— X(p)
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is equivariant, that is, XTeL#¢(p) = T, ®,¢, and has kernel K, it follows that

:{feQIEEK}.

For every £ € G, we have £ = £+ (£—&), w (f— £)=0. Since T. L, = &
for all k € K, it follows that T, ( E( )) E( ) for k € K. So Xg(p) c
T,M, that is £ € N'. Moreover (£ — &) = 0 € K, which implies that £ — £ €
M(p). Hence G = N + M(p). 0

3 Reduction

In this section we prove

Theorem 3. The action of Gy on (M,wy) has a momentum map Jys :
M — G5, which is equivariant with respect to an affine coadjoint action

A Gy x Gy — Gy ([g], @) = Ao

For every G-coadjoint orbit O, C G* with J=1(O,) N M # (), there exists an
orbit Oy of the action A such that

T O M = T3 (On).

Proof: Let k : K = G, p: K — N, and v : N' — G be inclusion mappings
and A : N — Gy be the natural projection map. Their transposes are the

mappings £* : G* — K*, p* : N* — K, v* : G — N*, and M : G}, — ™,
respectively. Let J|M : M — G* be the restriction of J to M.

To prove the theorem we need the following two lemmas.

Lemma 2. «* 0J|M : M — K* is constant.

Proof. For every £ € G, we have X¢ 1w = dJg. Moreover, £ € K implies
that X¢(p) = 0 for all p € M. Hence d(li*OJ|M) = K*o dJ|M = 0, and

K™ 0J|M is constant on M. O

Since p* : N* — K* is onto and & °J| : M — K~ is constant, there
exists a constant map jar : M — N such that

/«L*OJMZK*OJ|M
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Lemma 3. There exists a unique map Jys : M — G}, such that
)\*OJM:V*OJ|M—jM. (9)

Proof. We have

*

pro(wred|  —im) =Ko J| — w7 =0

The existence of a unique lift Jy; : M — Gj; of (1/*°J|M —Ju) M — N~
follows from the exactness of the sequence
0 — gy 5 A S oKk — o 0 (10)

Continuing with the proof of the first assertion in theorem 3, we now

show that the map Jy : M — G3; is a momentum map for the action of Gy
on M.

For each £ € NV C G, the action of the one parameter subgroup exp tA(¢)
of Gy on M coincides with the action of the subgroup exptf of G. This
latter action is generated by the Hamiltonian vector field X¢ of J; restricted
to M. Hence

Xewy = (| [u(©) = dlved] |€)
= A\ edny +gm [ €) = (d(A e dm) [ ) + (djn [ €)
= d(Jm [ A(9) -

Thus X¢ is the Hamiltonian vector field of (Jas | A(€)). Hence Jys is a mo-
mentum map for the action Gy on M.

We note that the momentum map Jy : M — G3; need not be coadjoint
equivariant. However, there exists a G3;-cocycle o : Gy — G3; such that the
map

A:Gu X g;h — g;h : ([g],qb) = AM([Q],Qb) = Adfg]_1¢+ U([g])

is an action of G on Gj; and

Ju(lg] - p) = Ay (Jm(p)).

This completes the proof of the first assertion in theorem 3.
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We make a short digression to find an explicit expression for the cocy-
cle A*o, which will not be used in the remainder of the proof. Comparing
equations (9) and (1) we see that for £ € N,

(g | ME)) = (Jallgl - p) — AdiyiJarlp) | ()
= (Adz-jn(p) 1€) = Gulg - p) [ &) = (mr | Adyma€ =€)
(A jar = jar | €)
Hence
N (o(lg) = Ady g — G- (11)

We now turn to proving the second assertion of theorem 3. 1If p,p’ €
J7HO,) N M then J(p') = Ad;-iJ(p) = J(g-p) for some g € Ny Since,
g-p=1[g]p, where [g] is the coset of g in G'pr = Np/ K, equation (9) yields

Nody(p') = viedp) —ju = v e Ad; J(p) — ju
= vied(g-p)—gu = (N oJdullgl-p) +im) —Jum
X e du(lgl - p) = Ao Ay (Ja(p)).

Since ker \* = 0, it follows that
T (p') = A (Ju(p))-

This implies that Ja(p') and Ja(p) are in the same orbit Op of the affine
coadjoint action A of Gy on Gy, that is,

JTHONNM C Ji (Own). (12)

Conversely, if p, p’ € J3;'(Onr), then Jas(p) = Ay (Ja(p')) where g € Ny
Therefore,
vioJ(p) =vie Adi J(p).

But v* : G* — N™ is the transpose of the inclusion mapping v : N — G. So
ker' =N ={aeg [(a]€) =0 VEeN]

This implies that
J(p) — Ad; J(p') € N°.



Hence for every £ € N, we have
(J(p) = Ad;-J () | €) = 0.

On the one hand, differentiating this equation in a direction u tangent to
Ji (Onr) at p, we get

(T, (J(p) = Ay J(p)) (u) | §) =0 (13)
for every u € T,J3; (On) and every € € A'. On the other hand, from (6) we
see that X¢(p) € Ty M for £ € M(p). But

(T, J () | €) = dT*(p)u = wn(p)(X*(p),u) = 0,
for all u € T,J3; (O) and € € M(p). Therefore

(T, (T(p) = Ady— (1)) (w) [ €) = 0 (14)

for every u € T,J3;(Ox) and every € € M(p). Since N+ M(p) = G,
equations (13) and (14) imply that J(p) — Ad;_,.J(p') is independent of p €
Ji (Onr). Moreover, g € Ny implies that g - p' = [g] - p' € J3/ (Oar). Hence
taking p = g - p’, we get

J(p) — Ad;— J(p') = J(g-p') — Ad;- J(p') = 0,
because .J is coadjoint equivariant. Thus J(p) and J(p') are in the same
coadjoint orbit O,. Therefore,

JiH(On) C T HO,) N M.

Taking into account inclusion (12) we obtain J3;'(Oar) = J~HO,)N M. This
completes the proof of theorem 3. O

Theorem 4. If J71(O,) N M # 0, then its projection (M N J~*O,)) /Nu

to M is a symplectic manifold.

Proof. Let 3 = Jy(p) for some p € M NJ1(O,). Then
(M J™0.) /Ny = (MNJ7H0.)) /Gy
= ' (Om)/Gu = T3 (B)) G,

where (77, is the isotropy group of 3 in Gy, But Jif (8)/ G, is a symplectic
manifold using the regular reduction theorem. O
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4 Differential spaces

Let K be a compact subgroup of . Our symplectic manifold (P,w) is
partioned by connected components M of the manifold Px of symmetry
type K and by connected components L of the manifold P of orbit type
K. The partition of P by orbit type, given by

P=Uro=U II L

K<G K<G L cc. P

is G-invariant. Here < means compact subgroup of and c.c. means connected
component of. It induces a partition

= I T
K<G L c.c. P(I\")

of the orbit space P.

For each o € G*, the level set J~!(a) is invariant under the motion of a
Hamiltonian vector field associated to a G-invariant Hamiltonian. Hence we
have a further partition of P

P=U U JI J'a)nM

K<G a€eG* M cc. P

by subsets which are invariant under the motion. However, J () is not
G-invariant. Since the momentum map J : P — G* is G-equivariant,
G- J Y a) = J7HO,), where O, is the coadjoint orbit through a. Hence a
G-invariant partition of P is

P=1 U I (Lns'0.).

K<G 04CG* L cc. Py

Our aim in this section is to analyze this partition and the induced partition

of P = P/ given by

r=UU U II (MnJY0.)/Gu.

K<G 0aCG* M c.c. Py

Since coadjoint orbits need not be even locally closed [11, p. 512], the
differential structure of the partition of P by the inverse image J~'(Q,) of
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coadjoint orbits O, C G* cannot be described in terms of Whitney smooth
functions. A generalization of Whitney’s theory, which is adequate for this
purpose, is Sikorski’s theory of differential spaces [12], [13].

A difterential structure on a topological space @ is a set C*(Q) of con-
tinuous functions on ) which have the following properties:

. The topology of Q) is generated by the functions in C*°(Q), that is, the
collection

{f_l(U)|f € C(Q) where U is an open subset of R}

is a subbasis for the topology of Q).

II. For every F' € C*(R") and every fi,...,f, € C=(Q), F(f1,...,[a) €
C=(Q).

I If f: @ — R is a function such that for every p € ) there is an
open neighbourhood U of p in @ and a function fiy € C*°(Q) satisfying
f, = fu | U, then f € C=(Q).

A topological space () endowed with a differential structure C*°(Q)) is called
a differential space [12, sec. 6]. An element of C'(Q) is called a smooth
function. Thus C*(Q) is the set of smooth functions on ). From property
IT it follows that C'*°(Q) is a commutative ring under addition and pointwise
multiplication.

Example 1. If () is a smooth manifold, then the collection of smooth func-
tions on P, defined in terms of the manifold structure of P, is a differential
structure on P.

Proof. To verify property I we need only show that given a ¢ € () and an
open neighborhood U of ¢ in (), then there is a smooth function f on ) such
that f='(0,1) is an open neighborhood of ¢ contained in /. We may assume
that U is contained in the domain of a chart (V, ) of @ and that the closure
U of U is compact. Then there is a nonnegative smooth function ¢ on R”
whose support is contained in ¢(U) and whose range is contained in [0,1].
The smooth function f = goy has the desired property.

Property Il is obvious.
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To prove III suppose that f : () — R has the property that for each ¢ € ()
there is an open neighborhood U = U, of ¢ in () and a smooth function
Fy such that f|U = Fy|U. Shrinking U if necessary, we may assume that
U is contained in a chart domain V, containing ¢ of the manifold (). Since
{Vq}qu cover ) and f|V, is smooth, it follows that f is smooth. O

Example 2. Let & : ¢ x P — P be a proper action of a Lie group G on a
smooth manifold P. Let P = P/ be the space of G-orbits on P (which is
not necessarily a smooth manifold) and let 7 : P — P be the orbit map. We
say that the function f: P — R is smooth if there is a smooth G-invariant
function on P such that fer = f. In other words, if f: P — R is a smooth
G-invariant function on P, then the induced function f: P — R is smooth.
Hence the set C'°°(P) of smooth functions on P is induced from the space
COO(P)G of smooth G-invariant functions on P. The pair (C*°(P), P) is a

differential space.

Proof. Property 1. It suffices to show that given 7 € P and an open neigh-
borhood U of 7 in P, there is a smooth function f on P such that 7_1(0, 1)
is an open neighborhood of p contained in U. Let p € 771(p) and let S, be a
slice to the G-action on P at p. Then V = S, N7~(U) is an open neighbor-
hood of p in S,. There is a smooth G/,-invariant nonnegative function f on
S, whose support is a compact subset contained in V' which contains p and
whose range is contained in [0, 1 ). Define the function f by f(®,(v)) = f(v)
for every g € GG and every v € V. Then f is a smooth G-invariant function
on P with support contained in G-V and whose range is contained in [0, %]
Thus f induces a smooth function f on P such that 7_1(0, 1) is an open
subset of U containing p.

Property II follows immediately from the fact that property II holds for
C>(P)°,
We now prove property I1L. Let f: P — R be a function such that for each

p € P there is an open neighborhood U of pin P and a smooth function fz
on P so that f|U = [f7|U. Now 7*f : P — R is G-invariant and

™ fla Y (U) = W*Tﬁ|ﬁ_1(U).

But 7 € C(P)°. Hence 7f € C**(P)", which implies that f € C**(P).
O
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Suppose that (C*(Q), Q) is a differential space and that M is a subset
of ). Then we can define a differential structure on M as follows. We say
that a function f : M — R is smooth on M if for every m € M there is
an open neighborhood U of m in ) and a function fy € C*(Q) such that
FIM AU) = fol(M A U).

Proposition 1. The set C*°(M) of smooth functions on M is a differential
structure.

Proof.

Property I. Let m € M and suppose that U is an open neighborhood of m
in ). Then there is an open set V' in R and a smooth function f on () such
that f=!(V) is an open neighborhood U of m in ) contained in U/. Now f|M
is a smooth function on M because for every p € M C @ there is an open

neighborhood U of p in Q and a smooth function f on Q such that = f|(7
But fIM = f]U on M NU. Hence FI(M N (7) = ]%KMO (7) Moreover,
(fIM)=(V) = U N M, which is an open neighborhood of m in the induced
topology on M contained in M N U.

Property II follows immediately from the fact that property II holds for
C(Q).
Property III follows from the definition of smooth function on M. a

We say that the differential structure on M given in proposition 1 is inherited
from the differential structure on (). Locally a smooth function on M in the
differential structure on M inherited from the differential structure on @) is
a restriction to M of a smooth function on Q).

Proposition 2. If M is a closed subset of a smooth paracompact manifold
() then every smooth function on M extends to a smooth function on Q).

Proof. Let f € C*(M) and {U, | p € M} the covering of M by opens
sets in @) such that for each p € M, U, 3 p and there exists fy, € C*(Q)
satisfying fu, | U,NM = f | U,N M. Since M is closed in @), its complement
M" is open in @ and the family {U, | p € M} U M’ is an open covering
of Q. Let {¢,} be a partition of unity subordinate to this covering. Each
Yo € C™(Q) has support in some U, or in M'. Moreover 3_, ¢, = 1. Let
g = > u¥alv,,, where the sum is taken over a such that the support of ¢,
has nonempty intersection with M. Clearly, g € C*(M). Since M'NM =0,
it follows that g|M = f. O
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If M is not closed in @, and {p,} is a sequence of points in M converging
to p ¢ M, then we can construct a smooth function f on M such that
f(pn) = o0 as n — oo. Hence f cannot be a restriction to M of a function

on C*(Q).

Corollary. If M is a closed submanifold of (), then the differential struc-
ture on M induced by restriction is the space of smooth functions using the
manifold structure of Q).

Proof. This is a special case of proposition 2 because a submanifold M of
() is a closed subset of (). Moreover the differential structure induced by
restriction is just the set of smooth functions using the manifold structure of

M. O

5 Reduced Poisson algebra

As before, let (P,w) be a symplectic manifold with ® : G x P — P a proper
Hamiltonian action of a Lie group G on P. Let P = P/G the space of
G-orbits with orbit map 7 : P — P.

In example 2 we have shown that the space C°°(P) of all functions on P
which pull back under the G-orbit map 7 to a smooth G-invariant function
on P is a differential structure on P. In fact,

Proposition 3. (C*~(P), {, }3,") is a Poisson algebra.

Proof. Here - is pointwise multiplication of smooth functions and {, }# is

a Poisson bracket on C'°°(P), which is defined as follows. Let f,h € C*°(P).
At each p € P let

{.}s(m(p) = {/. 1} (p),
where 7*f = f, m*h = h with f,h € COO(P)G. Moreover, {, } is the usual

Poisson bracket on the space of smooth functions on the symplectic manifold
(P,w). To see that the Poisson bracket {, }& is well defined, suppose that
f is another smooth G-invariant function on P which induces the function f

on P. Then _ _ B
0=wT =T = f—]
on P, since 7 is surjective. Hence {f,h} = {f, h}, which implies that {f, 2 }%

does not depend on the choice of representative of f. Since {, }& is skew
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symmetric, the same argument shows that {f, %} does not depend on the
choice of representative of h either. Hence {., }5 is well defined.

From the fact that (COO(P)G, {, },-) is a Poisson algebra [5, p. 347 (5.1)],
it follows that (C*°(P), {, }&,-) is a Poisson algebra. O

Let O, C G* be a GG-coadjoint orbit and let M be a connected component
of the manifold Pk of points of P of symmetry type K. Furthermore, suppose
that Py, = MNJ~1(0O,) is nonempty. From theorem 3 we know that Py, =
J71(Op) for some Gyr-affine coadjoint orbit Oyy. Thus it follows from note
B, that Py, is an immersed submanifold of the symplectic manifold (M, wxy),
(see theorem 1). In addition, Py, is invariant under the flow of every G-
invariant Hamiltonian vector field on (M,wys) [5, p. 343 (4.10)]. Consider
the space COO(PMQ)GM of smooth Gp-invariant functions on Py, inherited
from the space COO(M)GM defined by the manifold structure of M. Then
COO(PMQ)GM is a differential structure on Pps,.

Let FM,oz be the space of Gjs-orbits on Pyr,. Since a smooth func-
tion on FM,oz is induced by a smooth Gp-invariant function on Py, we
see that COO(FMQ) 1s a differential structure on FMQ. Define a Poisson
bracket {, }ﬁM,a on C®(Pyr4) as follows, compare with [2]. For each f,h €

C*®(Ppr.) and each p € Py, let
{705, (p(p) = { [ 1}y (p), (15)

where {, },, is the usual Poisson bracket on (M,wa), f,h € COO(PMQ)GM
such that p*f = f,p*h = h, and p is the restriction of the G/js-orbit map =
to Pyo. Note that the right hand side of (15) is well defined, because locally
every smooth Gjs-invariant function on Py, is the restriction of a smooth
(pr-1nvariant function on M.

Proposition 4. The Poisson bracket {, }5  is well defined.

Proof. Suppose that f € COO(PMQ)GM induces the function f on Pys.,.
Then

f=f=pT-pT=0
on FMQ. Hence for each p € Py, we have

{F = Fhdu(p) = =d(f = NH(P)Xu(p) = —Lx,0 = 0,
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where the last equality follows from the fact the Py, is invariant under the
flow of every GGp-invariant Hamiltonian vector field on M. Hence {f, h}FMa

does not depend on the choice of representative of f. Since {, }FMQ is skew

symmetric, it does not depend on the choice of representative of h either.
Hence the Poisson bracket {, }5 —on C°(Pa,) is well defined. O

From the fact that (COO(M)GM, {, }as) is a Poisson subalgebra of (C*°(M)
{, }y»-)and that Py, is Ga-invariant, it follows that (COO(PMQ)GM, {, huo
-) is a Poisson algebra. Hence (C*(Pys.4),{, }5,,.») is a Poisson algebra.
In fact 7

Theorem 5. (C*(Py.), 1, }5,,.»") 18 a nondegenerate Poisson algebra,

that is, every smooth function on Py, which is a Casimir, is locally constant.

Proof. Suppose that f € C°(Py;,) is a Casimir. Then for each p € Py,

0= (.0}, (p(p)).

for every h € C**(Py,0). From the definition of the Poisson bracket {, }5
it follows that 7

0= {f,htn(p) = —df(p)Xn(p), (16)
for every p € Py and every h € COO(PMQ)GM. Here p*f = f and p*h = h.
But Pyro = J3/ (Oar) = Gar - J37 (B) by theorem 3. Since the Gy-action on
M (and hence on Py, ) is free, 3 is a regular value of the GGjy momentum
mapping Jas, (see note A). Consequently,

Ty T3 (8) = span{Xu(p)|h € C(Para) },

see [5, p. 343-4 (4.12)]. Hence equation (16) reads 0 = df(p)v, for every
v, € T,J3/ (3). Thus f is locally constant on Py, since it is Gy-invariant.
This implies that f is locally constant on J3;' (Oar) and hence on Pys,. O

Corollary. If the coadjoint orbit O, C G~ is locally closed, then Py, is
a smooth symplectic manifold and the differential structure C*°(Py;,) on
FM,oz coincides with that formed by the smooth functions coming from its
manifold structure.

Proof. TFrom theorem 3 and the hypothesis it follows that Ji;'(On) =
JHO,) N M = Py, is locally closed and hence is a submanifold of M,
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see note E. The assertions of the corollary now follow from corollary 2 of
proposition 2 and regular reduction. a

Suppose that we define a relation ~ on P by saying that p, ~ p, if
they can be joined by a piecewise smooth curve in P each of whose pieces is
an integral curve of a Hamiltonian vector field of a smooth function on P.
Clearly ~ is an equivalence relation. The following theorem [14] holds.

Theorem 6. The partition

P=U U II (MnJ'(0.)/Gu (17)

K=<G 0aCG* M c.c. Py

is the same as the partition of P by the equivalence classes of ~.

In other words, the Poisson algebra (C*°(P),{, }p,-) determines the parti-
tion (17).

6 Notes

None of the proofs in this section are original. They are included only for
convenience of the reader.

All the arguments below hold if J is not coadjoint equivariant but only
equivariant under an affine coadjoint action.

A. Proof. Let p € P and suppose that imT},J is a proper subspace of G*.
Then there is a nonzero £ € G such that £ € (imT,J)°, that is, (im7,J)(§) =

0. Hence for every v, € T),P, we have

w(p)(X*(p),vy) = dJe(p)v, = (T, )vp)¢ = 0.

Since w(p) is nondegenerate, this implies X¢(p) = 0. Hence expt{ - p = p for
every t € R. Thus for a nonzero ¢t € R, we see that expt£ is a nonidentity
element of the isotropy group G),. But this contradicts the hypothesis that
the G-action is free. Thus J is a surjective submersion. Hence every element
of G is a regular value of J. O

B. Proof. Since a is a regular value of .J, the a-level set J~!(a) is a sub-
manifold of P. Because J is coadjoint equivaraint, the induced G ,-action on
J1(«a) is defined and is proper. Let p € J7'(a). Then there is a slice S, to
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the GG, action at p. Let £ be a complementary subspace in G, of G, and let
L = exp L. From the definition of a slice, it follows that the map

WL xS, —=J W a):({,s,) =15,

with W(e,p) = p is a local diffeomorphism. Because J~'(0,) = G - J~}(a),
the map

MG x (L xS,) = J N0 : (g,(l,5,)) = g-¥(L,s,)

with A(e, (e, p)) = pisalocal diffetomorphism and hence is a local parametriza-
tion of J71(Q,) at p. Consequently, J=*(O,) is an immersed submanifold of
P. O

C. Proof. Let i : J7'(a) = J71(O,) be the inclusion and let 7 : J=*(O,) —
JH0,)/G and 7, : J7Ha) = J7Ha) /G, be the orbit maps. Since 7 oi is
(,-invariant, it induces a map o : J ' (a)/Gs — JHO,)/G. The map o is
injective, for if p,p’ € J~ () with 7(i(p)) = 7(i(p')), then there is a g € G
such that ¢ - «(p) = i(p'). Since

a=J(@i(p")) = Ad;—lj(i(p)) = Ad;—lO{,

it follows that ¢ € G,. Thus every fiber of mo: is a single G,-orbit, which
shows that o is injective. To show that o is surjective, it suffices to show
that 7 o4 is surjective. Suppose that p € J~=1(0,). Consider the orbit G- p €
JH0O,)/G. Since J7HO,) = G- J Ha), thereisa p’' € J ' a)andag € G
such that p = ¢ - p'. Hence 7(u(p')) = G - p' = G- p. Thus o is surjective.
Consequently, there is a bijective mapping between .J~!(«) and J=1(O,). O

D. Proof. Because the G-orbit map © : P — P/G is a submersion and
AU CGx(LxS,) — JH0O,) is alocal parmetrization of J=*(O,,) at p (see
B), it follows that 7o A restricted to {e} x (L x S,) is a local parmetrization of
J1(0,)/G at 7(p). Consequently, J='(O,)/G is an immersed submanifold
of P/G. 0

E. Proof. Since O, is locally closed and J is continuous, it follows that
J71(0,) islocally closed and thus locally compact. Hence the local parmetriza-
tion A is a homeomorphism using the topology on J~!(0,) induced from P.
Consequently, J=1(0,) is a submanifold of P. O
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