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Travelling wave solutions to the K-P-P equation at supercritical wave speeds: a

parallel to Simon Harris’ probabilistic analysis.

A.E.Kyprianou *

Abstract

Recently Harris (1999), using probabilistic methods alone, has
given new proofs for the (known) existence, asymptotics and unique-
ness of travelling wave solutions to the K-P-P equation. Following in
this vein we outline alternative probabilistic proofs for wave speeds
exceeding the critical (minimal) wave speed. Specifically the analysis
is confined to the study of additive and multiplicative martingales and
the construction of size biased measures on the space of (marked) trees
generated by the branching process. This paper also acts as a prelude
to its companion Kyprianou (2000b) which deals with the more dif-
ficult case of travelling waves at criticality. The importance of these
new probabilistic proofs is their generic nature which in principle can
be extended to study other types of spatial branching diffusions and
associated travelling waves.

Keywords and phrases. Branching Brownian motion, K-P-P equa-
tion, travelling wave solutions, size biased measures.
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1 Introduction

A branching Brownian motion is constructed as follows. An initial ancestor
begins its existence at the origin of one-dimensional Euclidean space and
time. This individual is immortal and moves according to an independent
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copy of standard Brownian motion B. The initial ancestor produces a ran-
dom number of offspring, X, at times which form a Poisson process, n, with
rate § > 0. We shall assume that X has distribution (py : & > 0) such
that m := >, o kpr < oo. Starting from their point of creation on the
path of their parent, each of these children moves and reproduces accord-
ing to an independent copy of the triple (B,n,X). Let Z; be the point
process describing the number and positions of individuals alive at time ¢,
{Zx(t): k=1,...,Z;(R)}. In this text we shall use the Ulam-Harris labelling
notation such that an individual « is identified by its line of decent from the
initial ancestor. That is, if w = (i1, ...,%,-1,%,) then she is the ¢,th child of
the 2,,_1th child of ....of the 7;th child of the initial ancestor. Thus wv refers
to the individual who, from wu’s perspective, has line of descent expressed as
v.

A natural martingale that arises in branching Brownian motion is of the

Wi (\) = Z e~ A Eult)+ert)

uE N

form

for t and X positive, where N, is the set of individuals alive at time ¢ and
ex = A2+ pm/A. See Chauvin (1991), Kingman (1975), Biggins (1977) and
Neveu (1988) for further details. Also from these references, it is known (or
can be deduced) that W (A) := limy., W, (A) exists almost surely and in L*
if A € [0,v20m) and F (X log X) < oo, otherwise, its almost sure limit is
identically zero.

Interest in the limit of this martingale is stimulated by its intimate connec-
tion with travelling wave solutions to the Kolmogorov-Petrovski-Piscounov
equation

ou 10%
E=§@+U(f(u)—1)a (1)

where f(u) = E(s¥), taking solutions u : R x R* — [0,1]. This reaction-
diffusion equation has been studied by many authors, both probabilistically
and analytically [see for example Kolmogorov et al. (1937), Fisher (1937),
Skorohod (1964), McKean (1975), Bramson (1978, 1983), Neveu (1988),
Uchiyama (1978), Aronson and Wienburger (1975), Biggins and Kyprianou
(1996), Karpelevich et al. (1993) and Kelbert and Suhov (1995) to name but
a few]. Of particular interest however is the recent exposition of Harris (1999)
which, using probabilistic arguments alone, gives an excellent derivation of
the existence, uniqueness and asymptotics of travelling wave solutions to (1).



By a travelling wave solution it is meant a twice differentiable, monotone
increasing function ®. : R — [0, 1] such that ®.(—o00) =0 =1—®.(c0) with
u(x,t) = ®. (x — ct) a solution to (1); ¢ > 0 is the wave speed. Substituting
into (1) shows that ®. solves the ordinary differential equation

SO B, b (f () 1) =0, )

We shall now give a brief account of the connection between these travel-
ling waves and the limit W (A). For further information, one should consult
Neveu (1988), McKean (1975), Chauvin (1993) and for a complete account,
Harris (1999).

Travelling waves exist if and only if ¢ > ¢ = /28m. We can parameterize
wave speeds such that 0 < ¢ € {cy : A > 0}, in which case the critical wave
speed occurs when A = /28m =: \. When ¢, > ¢ such that A € [0, ), (su-
percritical wave speeds) there exists a unique (modulo an additive constant
in the argument) supercritical travelling wave which can be expressed as the
exponentially rescaled Laplace transform of W (A). That is to say

O, (z) = E (exp{—e "MW (N)}).

At criticality, when A = A and W () = 0, there is again a unique travelling
wave (modulo an additive constant in the argument) which this time is the
exponentially rescaled Laplace transform of

, 0
OW (A) := %{g—aWt (A) .

Thus
¢.(x)=F (exp {—e‘ﬁxaw (A)}) :

We shall offer in this paper a complete proof of the existence, asymptotics
and uniqueness of the above mentioned travelling wave solutions at super-
critical wave speeds using again purely probabilistic methods but none the
less different to those of Harris (1999). For the case of the critical wave speed
the author has also alternative probabilistic proofs for existence, uniqueness
and characterization. Their complexity deserves a platform of its own and
thus are presented in the companion paper Kyprianou (2000b). The method
used for the critical case uses a non-homogenous branching tree to approxi-
mate the original process. This technique is a continuous time version of an



idea originally developed in Kyprianou and Biggins (2000) which deals with
similar issues but for the branching random walk.

The reason for pursuing probabilistic proofs of the existence uniqueness
and asymptotics of these travelling waves goes deeper than pure aesthetics.
It is anticipated that the probabilistic view will also shed more light on the
problem of understanding the asymptotic behaviour of the position of right
most particle in a spatial branching diffusions. Bramson (1978, 1983) has
already treated branching Brownian motion in this respect, but the right-
most particle issue remains unresolved for the branching random walk and
indeed other types of spatial branching diffusions.

Recently there has been a lot of interest in the construction of so called
size-biased probability measures on branching trees. These size-biased mea-
sures have been skilfully used in conjunction with a fundamental measure
theoretic result by Lyons et al. (1995) and others to show, within the con-
text of a variety of different branching processes, necessary and sufficient
conditions for the convergence of additive martingales similar to W; (). For
further references, see Lyons (1997), Kurtz et al. (1997), Olofsson (1998) and
Athreya (1999). In the next section we shall use these ideas to give a new
proof of the L'-convergence of the martingale W;()) for A € [0, 1) and almost
sure zero limit for A > A. The existence of solutions to (2) thus follows easily
[c.f. Neveu (1988) and Harris (1999)].

By freezing particles in the branching Brownian motion who are first in
their line of decent to hit the space time line y+c¢\t = @ (where y is the spatial
variable and x is a positive constant) we produce sequences of subpopulations,
indexed by x, known as stopping lines. It is known [Neveu (1988), Chauvin
(1991), Kyprianou (1999)] that these stopping lines can be used to construct
additive martingales similar in structure to Wi(\) as well as multiplicative
martingales built from travelling wave solutions to the K-P-P equation. In
Section 3, we shall study the limit of these two classes of martingales and
show that they are, in some sense, equivalent. This equivalence induces a
new proof of the result that, when A € [0,1) and E(Xlog X) < oo, any
solution to (2) satisfies the asymptotic relation

=&, (z) ~k x e (3)

as = tends to infinity, where k is a positive constant. This asymptotic gives
us almost immediately uniqueness [c.f. Neveu (1988) and Harris(1999)].
Finally, the reader will note that only one Lemma is formally stated in this



paper. Whist we have presented here new proofs of existence, asymptotics
and uniqueness, only the included Lemma is in fact a new result.

2 Martingale convergence and existence of
supercritical travelling waves

For future use we shall recall some standard Radon-Nikodym derivatives for
measures we shall be interested in. Let L{®) be the law of a Poisson process
n=Hwv:i=1,...,n}:t>0) with rate « > 0 and ]Lga) its restriction to
o(ns:s<t). We have

JLE+) . .
;L(ﬁ) —(n) = e (m +1) (4)
t

for all ¢ > 0. Define P* to be the law of a Brownian motion B with negative
drift A > 0 and dP; its restriction to o (B, : s < t) so that

dP? )
o) = e 5)
for all t > 0. [Note that the last two changes of measure are essentially
versions of the Girsanov Theorem for Lévy processes]. Finally let (py, : & > 0)
be the tilted distribution for X such that pr = (k+1)pi/(m+1) for all £ > 0.

Now let T be the space of trees generated by the branching Brownian
motion and F; is the sigma algebra generated by the subspace of T consist-
ing of trees truncated at time ¢. Suppose that p is the natural probability
measure on 7 corresponding to branching Brownian motion as outlined in
the introduction and let p; be is its restriction to F;.

In following any line of decent from the origin of space and time we iden-
tify a process £ = (& : t > 0) embedded within branching Brownian motion
which we shall refer to as a spine. Now let T be the space of trees with
distinguished spine €. For each (7,€) € T, at the i-th fission point along
the spine, there are k; > 0 new trees growing, {r; € 7T :0< 75 < X;}. We
construct the (non-probability) measure u; (¢t > 0) on T such that

ng X;
Ay (7€) = dPAEAL (1) [ Lo, [ i (7).
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This new measure is a decomposition of p; over T so that
dpe (1) = D 1(Zu (1) = &)dp; (7€) (6)
uE N

for all t > 0. Consider also the bivariate probability measure 7} (¢ > 0) on
T where

dry (1,6) = e CFoD cdur (1,€)

=N (g

X+ 1 1
d*

K3

= dPYOdL " (n)

Tt X,
Xi+1 1
XE<m+1> XAl X]l_[d’“""‘”i(”)‘ 0

—

Note that (6) can be used to check that 7* really is a probability measure.
Marginalizing this measure to 7 (using (6)) we have a probability measure
7 (t > 0) which, in view of (6), satisfies

d’ﬂ't

— = Wi(A 8

=W )
for all ¢t > 0.

In view of the Radon-Nikodym derivatives outlined at the beginning of

this section, the construction in (7) suggests that the measure 7* corresponds
to a branching Brownian motion having a distinguished spine ¢ such that:

(i) the spine moves according to a Brownian motion with negative drift A,

(i1) points of fission along the spine form a Poisson process with accelerated

rate (m + 1),

(iii) the distribution of offspring numbers at each point of fission on the
spine has tilted measure (py, : k£ > 0) and finally,

(iv) the spine is chosen randomly so that at each fission point the next
individual to represent the spine is chosen with uniform probability
from the current representative and its offspring.

6



The idea of spines and size-biasing in branching Brownian motion can
also be seen for example in the work of Chauvin et al. (1991). It was
considered there how to reconstruct a measure representing the distribution
of the branching tree given that a specific point in space and time has been
populated (i.e. given that a spine passes through a certain space-time point).

Using the change of measure (8) on the space of branching trees we can
recover the known necessary and sufficient conditions on A and X that imply
L'-convergence of W; (). Essential to the argument is the following fun-
damental measure theoretic result [see for example Durrett (1991) pp210
or Athreya (1999)]. Let W (X) = limsup,,., Wy (A) so that W (X) = W (X)
p-a.s., then

=

(A) = = mas = W) =0 p-as., (9)
W) < o T-a.s :>/W()\)d/,L:1. (10)

In order to make use of (9) and (10) we shall take advantage of the
properties that ¢ and a sequence of independent copies of X have under 7*.
Consider the moment condition on X log X. A sequence of simple calcu-

lations shows that E(X log X) is (in)finite if and only if

Z Prv (log X > ck)

k>1

is (in)finite for any ¢ > 0. Thus if (X} : & > 1) is a sequence of independent
copies of X representing the numbers of offspring of ¢ at each point of fission,
then (by the Borel-Cantelli Lemma) limsupy,., k=" log Xj is (infinite) zero
according to whether the given moment is (in)finite. Consider also that for
A> A ey < Asothat (&4 ext:t>0) is a 7*-Brownian motion with non-
positive drift. Similarly, if A € [0, ), then (& 4 ext : ¢ > 0) is a 7*-Brownian
motion with strictly positive drift. Consequently as W, (A) > exp{—XA(& +
ext)f and W, (A) > Xi exp{—=A(&, + cxvg)} we have respectively that if
either A > X or F(X log X) = 00

limsup Wy (X)) = oo T-a.s.
ttoo

and thus W (A) = 0 p-a.s. (Note that in the second case we use also the
Renewal Theorem).



Now let A € [0, ) and E(X log X) < oo. Define G to be the sigma algebra
generated by the diffusion on the spine £, the Poisson process representing the
birth times along the spine n and (X : & > 1). A brief computation, based
on the decomposition of W; (A) according to contributions from descendents
of individuals born along the spine, yields

B (W (V)] G) = ) XpeMErten) g oA Ekent), (11)
=1

Within the specified regime of A recall that (& + ¢\t : ¢ > 0) is a m-Brownian
motion with strictly positive drift. [Note however that when A = 0, the
summands in (11) are simply X;e=#™!]. The moment condition ensures that
extremes of the sequence of variables (X, : n > 1) have sub-exponential be-
haviour. Consequently (again using the Renewal Theorem)

11Tm Ewx (Wi (N)|G) <0 m-a.s.
Fatou’s Lemma now tells us that lim infi., Wy (A) < oo m-a.s. In light of (8),
W, ()\)_1 is a m-martingale with an almost sure limit and thus by the previous
statement, limseo Wi (A) < oo m-a.s. Thus we conclude that for A € [0,)
and F(Xlog X) < oo, W; (A) converges almost surely and in mean.
As mentioned in the introduction, existence at supercritical wave speeds
(A € ]0,2)) follows almost immediately. To see this it suffices to follow the

reasoning of Harris (1999) as below.
We can easily make the decomposition for all £ > s > 0,

Wt ()\) — Z e—/\(Eu(S)+C>\S)Wt_S ()\7 u) , (12)

UEN,

where W;_; (A, u) are independent copies of W;_; () for each u € N;. Letting
t tend to infinity and taking an exponentially rescaled Laplace transform of
the resulting identity yields the functional equation

O(x)=FE | [ ®(x+Eu(s)+crs)

for all s > 0, where ® (2) = £ [exp{—e‘”W ()\)}] . Theorem 8 of Kyprianou
(1999) concludes that this ® solves the above functional equation if and only
if it is a travelling wave solution to the K-P-P equation with wave speed c,.
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3 Martingales on stopping lines, asymptotics
and uniqueness

On the space-time half plane {(y,?) : y € R,t € R}, consider the barrier
['(=#) described by the line y + et —z = 0 for & > 0. By arresting lines of
descent the first time they hit this barrier we produce a random collection
of individuals, C,, which is a stopping line. For further information on stop-
ping lines, their rigorous definition and properties, one should consult Neveu
(1988) and Chauvin (1991). What is important to note for our purposes is
that {C,}_ s, is a sequence of dissecting stopping lines tending to infinity on
which the branching property holds and whose cardinality, {|C;|} 5, forms a
continuous time branching process (x plays the role of time). [Note that by
a sequence of dissecting stopping lines tending to infinity we mean any line
of decent from the initial ancestor will hit I'=%) with probability one for all
x> 0 and limgteo inf{|u| : v € Cp} = oo almost surely]. Let {o, () :u € C,}
be the times at which individuals meet the barrier I'(=*) . From the afore
mentioned references, it is known that when A € [0, ),

H Q. (2, (0u(2)) +erou(2)) = P, (x)lcml

ueCy

is a martingale with expectation ®., (x) that converges almost surely and in
mean. It follows that

liTm —|Cy|log ®., (x)

exists and has mass in (0, 00).
Define for x > 0

Wo, (A) = D _ e MEOant) = =)

ueCy

We shall show in the only Lemma of this paper (below) that for A € [0,})
and F(X log X) < oo, that this sequence of variables is a martingale which
converges almost surely and in mean to W (A), the limit of {W;(A)},5,-
Since we have shown in the previous section that this limit has mass in
(0,00), we now have two sequences of (Seneta-Heyde) norming constants for
the branching process {|Cy|}, 50
must be asymptotically equivalent. That is to say,

- 10g (I)CA (l‘) 1 — (I)CA (l‘)

= lim
—Az ztoo

Consequently, these two norming sequences

lim =k

ztoo € 6_/\90
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where the second equality follows since ®., (c0) = 1 and k is a positive con-
stant. We have thus constructed an alternative proof of the asymptotic (3).
Once this is known it is very easy show uniqueness of travelling waves with
supercritical wave speeds as in Harris (1999). We include the argument here
for completeness. From the previously mentioned references Neveu (1988)
and Chauvin (1991), it is known that for any supercritical travelling wave

®,., that (z > 0)

M, (2) == [] @, (24 Zu (1) + cat)

uE N

is a multiplicative martingale with expectation ®., (z), convergent almost
surely and in mean as ¢ tends to infinity. Since W (A) = 0, it follows that
the largest summand in W;()A) tends almost surely to zero as ¢ tends to
infinity. Hence if L; = minyen, =, (1), then limye, Ly + At = oo almost
surely. Assuming that A € [0,A) and hence ¢y > A, we have also that
limyo, Li+cyt = oo almost surely. Combining these facts with our asymptotic
for travelling waves with wave speed ¢\ > ¢, we have as t tends to infinity

—log M, (z) = Y —log®., (z+EZ.(t)+ert)

uEN
~ Y 1=d, (2 +E. (1) + )
uEN
~ k Z e—/\(Z—I—Eu(t)+c>\t)
uEN
= keTVWi()).

Thus any travelling wave solution with supercritical wave speed satisfies

b, (z2)=F {%{S M; (Z):| =F (exp {—ke‘AZW (A)})
and therefore uniqueness (modulo an additive constant in the argument)
follows.

Our work is thus concluded by verifying the previous claim that We, ()
is a martingale. Similar ideas can be found in Kyprianou (2000a).

Lemma Let Fe, (x > 0) be the natural filtration describing all ancestral
paths receding from the stopping line C,, to the initial ancestor. Then We, ()

10



is an Fe,-martingale that converges almost surely and in mean to W () when
A €[0,)) and E (X log X) < oo.
Proof. Let A, (C,) ={u € N;:v ¢ C, Yo < u} and define

Wiene, ()= ) e E0Fa0 4 2oy

where Cp; = {u € C, : 0, (2) < t}. By decomposing members of N; in ac-
cordance with their ancestors (if at all) in C,, much as in (12), an easy
calculation to shows that

E(W: (M| Fe,) = Waae, (M) .

As C, is a dissecting stopping line, limyteo [ A (C3) | = 0 and limyoo |Co\Cot| =
0 almost surely. When A € [0,)) and E (X log X) < oo, W; () has an L*

limit and hence with the previous remarks

fim £ (W, ()| Fe) = £ OV ()] Fe,) = We, () (13)
showing that W¢, (A) is an Fe,-martingale.

As the sequence C, is tending to infinity, then lim4o, A; (Cy) = N; and
limgteo |Cri] = 0 almost surely. Talking the limit in (13) with respect to
instead thus gives us,

E(W, (N[ Fe) = Wi ()

for all £ > 0 where F., = o <Ux>0 .7:@). This implies that W; () is Feo-
measurable for each ¢ > 0 and thus so is its limit W (A). In conclusion
limgteo We, (A) = W (X). The Lemma is proved.

On a final note, the Lemma confirms that A is the Malthusian parameter
of the branching process {|Cy|} -
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