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Abstract

Seismic data is modeled in the high frequency limit. We consider general anisotropic
media, and our method is also valid in the case of multipathing (caustics). The data
is modeled in two ways. First using the Kirchhoff approximation (where the medium
is assumed to be piecewise smooth, and reflection and transmission occurs at the
interface). Secondly the data is modeled using the Born approximation, in other
words by a linearization in the medium parameters.

The main result is a characterisation of seismic data. We construct a Fourier inte-
gral operator and a “reflectivity function”, which is a function of subsurface position
and scattering angle and azimuth, such that the data is given by the invertible Fourier
integral operator acting on the reflectivity function.

Using this new transformation of seismic data to subsurface position/angle coor-
dinates we obtain the following results on the problem of reconstructing the medium
coefficients. Given the medium above the interface in the Kirchhoff approximation
one can reconstruct the position of the interface and the angular dependent reflection
coefficients on the interface. We also obtain a criterium to determine whether the
medium above the interface (the background medium in the Born approximation)
is correctly chosen. These results are new in medium with caustics. In the Born
approximation the singular medium perturbation can be reconstructed.
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1 Introduction

In the seismic experiment one generates elastic waves in the earth using sources at
the surface. The waves that return to the surface of the earth are observed (in fact
sources and receivers are not always on the surface of the earth, this case is also
considered). The problem is to reconstruct the elastic properties of the subsurface
from the data thus obtained.

The subsurface is given by an open set X C R". In practice n = 2 or 3, but
we leave it unspecified. Sources and receivers are contained in the boundary 0.X of
X. Their position is denoted by z,z. Measurement of data takes places during a
time interval |0, T[. The set of (&, ,t) for which data is taken is called the acquisi-
tion manifold Y’. We assume that the displacement of the medium is measured for
pointsources at T, = 0 and that data is taken for all the elastic components, both at
the source and at the receiver. Thus we assume that (after preprocessing) the data
is given by the Green’s function Gy(%,7,t), for (z,7,t) € Y.

We refer to the codimension of the set of Y’ € 0X x 90X x]0,T]| as the codimension
of the acquisition manifold and we denote it by ¢. For example in marine data
the receivers are along a line behind the source and we may have n = 3,¢ = 1,
0X = {IL’ e R |.’L’3 = 0}, Y' = {(.’i’,i‘,t) cER3 XRSX]O,THi‘g =23 =To—Tg = 0} So
the data is a function of 2n — 1 — ¢ variables. From this data we want to determine a
function of n variables, hence there is a redundancy in the data of dimension n—1—c¢c.

We analyze the highfrequency content of the data. Highfrequency methods (in
particular ray theory) are applied very often to seismic data, and turn out to be suc-
cessful. We use the methods of microlocal analysis, see Hormander [12], Duistermaat
[10], Treves [24, 25].

The data is modeled for general elastic media, allowing for multipathing (leading
to caustics). We model the data in two ways. In Section 3 we assume that the medium
consists of different pieces with smooth interfaces between the different pieces. The
medium parameters are assumed to be smooth on each piece, and smoothly extendible
across each interface, but they vary discontinuously at the interface. We discuss how
to model the high frequency part of the data using Fourier integral operators, which
is new for seismic data. Data modeled in this way are called Kirchhoff data. In
Section 4 we discuss the Born approximation. This is essentially a linearization,
where the mediumparameters are written as the sum of a background medium and
a perturbation that is assumed to be small. It is assumed that the background is
smooth and that the perturbation contains the singularities of the medium.

The main result is the characterization of seismic data in Theorem 6.2. The data
can be written as an invertible Fourier integral operator Hjy;y acting on a “reflectiv-
ity” function rpn(z,e), that is a function of subsurface position = and an additional
variable e, essentially parametrizing the scattering angle and azimuth. In the Kirch-
hoff approximation the function ry/n(x, €) equals to highest order Ry (z,€)0(2,(x)),
where Ry y(z,e) is the appropiately normalized reflection coefficient for the pair of
modes (M, N) and 6(z,(z)) is the singular function of the interface. For the Born ap-
proximation something similar holds. The result holds microlocally away from points
in the cotangent space T*Y'\0 that violate Assumptions 1 to 5, discussed in the text.



As a consequence of Theorem 6.2 we obtain results about the reconstruction of
the mediumparameters. Given the medium above the interface the function ryn(z, €)
and hence the position of the interface and the reflection coefficients can be recon-
structed by acting with the inverse H;,y on the data, see Corollary 6.3. For the
Born approximation a similar result holds, but an inverse is also obtained directly in
Theorem 4.4.

When the data is redundant there is in addition a criterium to determine whether
the medium above the interface (the background medium in the Born approxima-
tion) is correctly chosen. The position of the singularities of the function 7y, y(z,€),
obtained by acting with H;/\ on the data, should not depend on e. There exist
pseudodifferential operators Qun(y', Dys) that, if the medium above the interface is
correctly chosen, annihilate the data, see Corollary 7.1.

The exact choice of the variable e is unspecified. When multipathing occurs a
suitable choice is the scattering angle, because in these coordinates the caustics are
“unfolded”. In that case the operator H),;y transforms the data to subsurface position
and scattering angle coordinates, which is new. In other cases one can use for instance
the offset (difference between source and receiver coordinates).

We discuss some of the literature on this subject. There have been many publi-
cations about highfrequency methods to invert seismic data in acoustics media. The
reconstruction of the singular component of the medium coefficients in the Born ap-
proximation, without caustics has been done in the paper by Beylkin [2]. Bleistein
[4] discusses the case of a smooth jump using Beylkin’s results. It has been shown by
Rakesh [19] that the modeling operator in the Born approximation is a Fourier inte-
gral operator. Hansen studied the inversion in an acoustic medium with multipathing
for both the Born approximation and the case of a smooth jump. Ten Kroode, Smit
and Verdel [23] also treat the case of seismic imaging in the presence of multipathing.
They discuss in detail the assumptions (most importantly Assumption 5ii) below)
that are made about the geometry of the rays involved in the scattering. Stolk [20]
discusses the case when this assumption is violated. Nolan and Symes discuss the
imaging with different acquisition geometries. The article by Symes [21] discusses the
reconstruction of the background medium in the Born approximation.

The mathematical treatment of systems of equations, such as the elastic equa-
tions, in the highfrequency approximation has been described by Taylor [22]. This
fundamental paper also discusses the interface problem. Beylkin and Burridge [3] dis-
cuss the imaging of seismic data in the Born approximation in isotropic elastic media,
under a no caustics assumption. De Hoop and Bleistein [7] discuss the imaging in
general anisotropic elastic media, using a Kirchhoff type approximation. The Born
approximation in anisotropic elastic media allowing for multipathing is discussed by
De Hoop and Brandsberg-Dahl [8].

We give an overview of the paper. In Section 2 we discuss the propagation of waves
in smooth elastic media. First we discuss how in asymptotically the elastic system
can be decoupled by conjugating with pseudodifferential operators (a technique that
is common in mathematics, but not in the seismic literature). Then we discuss the
construction of asymptotic solutions for the decoupled equations using Fourier integral



operators.

In Section 3 we discuss the reflection and transmission of waves at a smooth inter-
face. We explicitly construct Fourier integral operator solutions describing reflected
and transmitted waves. These solutions where already discussed, but not explicitly
constructed, by Taylor [22]. Thus we prove directly the validity of the Kirchhoff
approximation, which is not obvious from e.g. De Hoop and Bleistein [7].

In Section 4 we discuss the modeling and inversion of seismic data in the Born
approximation. This is important both in its own right and for the reconstruction
problem if we model using a smooth jump. We give an efficient presentation for the
case of general anisotropic media with general acquisition geometry. We discuss in
detail the assumptions that are needed.

In Section 5 we essentially discuss the geometry of the wave front set of the data.
Under the assumptions of Section 4 this set is contained in a coisotropic submanifold
L of the cotangent space T*Y"\0. We discuss the extension of symplectic coordinates
on L to a neighborhood of L.

After the preparations of Sections 2 to 5 the derivation of our main result in
Section 6 is relatively simple. We discuss a characterization of seismic data and some
consequences, in particular the reconstruction of the position of the interface and the
reflection coefficients given the medium above the interface.

Finally in Section 7 we discuss the reconstruction of the smoothly varying medium
parameters above the interface (or of the background medium in the Born approxi-
mation).



2 The elastic wave equation with smooth coeffi-
cients

2.1 Decoupling the elastic equations

The elastic wave equation is given by

2
(p 5”% — G%jcijklﬁixk> (displacement); = (vol. force density);. (1)
Here p(x) is the volume density of mass and ¢;jx;(z) is the elastic stiffness tensor, and
1,7,k l=1,...,n.
In order to diagonalize this system, thus decoupling the modes, it is convenient
to remove the z-dependent coefficient p in front of the time derivative. Thus we
introduce the equivalent system

Pyw = fi, (2)

where

1
w, = +/p(displacement);, fi = —=(force density);, (3)
NG
and
2 .

Py=oy 0 O cum 9 oy (4)

Here we use that p is smooth and bounded away from zero. Both systems (1) and
(2) are real, time reversal invariant, and satisfy reciprocity.

We describe how the system (2) can be decoupled by transforming it with ap-
propriate pseudodifferential operators see Taylor [22], Dencker [9]. It turns out that
microlocally, away from certain exceptional points in 7*X\0, there are a matrix val-
ued pseudodifferential operator Q(z, D)y, D = —ia%, and scalar pseudodifferential
operators Py(x, D, D;) such that

Q(an)]T/jlz ]Dil(anaDt) QlN(xiD) = dlag(PM(anaDt)a M = 17 ;n)MN- (5)

Here the indices M, N denote the mode of propagation, they range from 1 to n. Let

uy = Q(x, D)y, fir = Q(w, D)y fi. (6)
The system (2) is then equivalent to the n scalar equations
PM(anaDt)uM:fM- (7)

The time derivative in P is already on diagonal form, hence we only have to
diagonalize the spatial part

Ail(.fb',D) = ——



So we have to find Q;p; and A,y such that (5) is valid with P, Py, replaced by A;;, Ay
The operator Py, is then given by

82
Py (z, D, Dy) = ERl Apn(z, D).

The principal symbol AP™(z,€) is a positive symmetric matrix, so it can be
diagonalized by an orthogonal matrix. On the level of principal symbols, composition
of pseudodifferential operators is given by multiplication. Therefore, we let (@, 6)
be this orthogonal matrix, and we let A} (z,£) be the eigenvalues, so that

QB (2, €) 7 AR (3, €) QI (1, €) = liag (A" (5,€); M= 1,... n)yn. (8)
The principal symbol fﬁn(x, €) is the matrix, that has as its columns the orthonor-
malized polarization vectors associated with the modes of propagation.

If the multiplicities of the eigenvalues are constant then QP"%(x,€);5; depends
smoothly on (z,€£) and microlocally equation (8) carries over to an operator equa-
tion. Taylor [22] has shown that if this condition is satisfied then decoupling can be
accomplished to all orders. We summarize this result in the following lemma.

Lemma 2.1 Suppose the multiplicities of the eigenvalues of A;(z,&) are equal to
one on some neighborhood. Then we can find pseudodifferential operators Q;y(x, D),
A (x, D) with principal symbol as described above such that microlocally (5) is valid.

Remark 2.2 For generic elastic systems the case where the multiplicity of an eigen-
value is equal to two is investigated in Braam and Duistermaat [5]. They give a
normal form for such systems and investigate the behavior of bicharacteristics and
polarization spaces. In this case the system cannot be decoupled. On the other hand
if the multiplicities are constant, but not equal to 1 such as in the isotropic elastic
case, then the system can still be decoupled with the right hand side of (5) replaced
by a blockdiagonal matrix, each block corresponding to a different eigenvalue.

The second order equations (7) clearly describe the decoupling of the original sys-
tem in n elastic modes. In addition equations (7) inherit the symmetries of the original
system. To start it is easy to see that they are time reversal invariant. The operators
Q, A can be chosen such that Qi (z,€) = —Q.ys(z, —&), Apr(x,€) = A, €). This
means that Q;yr, Ay are real. We argue that they also satisfy reciprocity. For the
causal Green’s function G;j(x,xo,t — to) reciprocity means that G;;(z,zo,t —ty) =
Gji(xo,x,t — ty). We show that such a relationship holds (modulo smoothing oper-
ators) for the Green’s function Gy(x, zg,t — t9). The transpose operator Q(z, D).
(obtained by interchanging x,xy and i, M in the distribution kernel Q;ps(x,xy) of
Qin(z, D)) is also a pseudodifferential operator, with principal symbol Q(z, £)%,,. It
follows from the fact that A'Z?j = A;; that we can choose () orthogonal, i.e. such that
Q(x, D)inQ(x, D)4y = 6ij. From the fact that

G (@, w0, t — to) = Q(z, D)y Gij (2, 20, t — to)Q(x0, Day)jn



it follows that microlocally G/ is reciprocal, Gy (x, xg,t — to) = Gpr(zo, x,t — tp),
modulo smoothing operators.

The values 7 = i\/AE’\?n(x, €) are precisely the solutions to the equation
det PV (x,€,7) = 0. (9)

Because P (z, €, 7) is homogeneous in £, 7, one often uses the slowness —7~'¢ in
calculations. The set of —771¢ such that (9) holds is called the slowness surface. It
can easily be visualized and may for instance look like Figure 1.

2.2 The Green’s function

To calculate the Green’s function we use the first order system for u,, that is equiv-
alent to (7). It is given by

w(5) = Lo o) (3) ()

This system can be decoupled in a similar way as above. Let By/(z, D) = /Ay (z, D),
which exists because Ays(z, D) is positive definite. The principal symbol of By, (z, D)

is given by BY"(z,€) = 1/ AY"(x, €). We find that (10) is equivalent to the following
two first order equations

0 .
(& + iBy(z, D)) unr+ = far+s (11)
where
0
UM+ = %U/M + %ZBM(:C; D)il%
fue = £ LiBy(z,D)" fur. (12)

We construct operators G o that solve the initial value problem for (11). The
operators Gjr 4 are Fourier integral operators. Their construction is well known,
see e.g. Duistermaat [10], chapter 5. The singularities are propagated along the
bicharacteristics, that are determined by Hamilton’s equations from the principal
symbol (factor ¢ divided out) 7 4+ By(z, ) of (11). These equations read

ox 0 ot
a_)\_ :ta_gBM(l‘a )7 5_17
ok D or

The solution may be parameterized by ¢t. We denote the solution with the + sign and
initial values o, &y by (zar(xo, &o, ), Ear(To, &0, t)). The solution with the — sign is
given by reversing the time direction, i.e. it is given by (z (20, &0, —1), Enr (0, Eo, —1))-
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Figure 1: Slowness surface, and the set of corresponding velocities. Note the caustics
that are due to the face that middle component of the slowness surface is not convex.

Observe that the group velocity (the velocity of the bicharacteristic) :I:ag% is
orthogonal to the slowness surface. If the slowness surface is not convex caustics may
arise instantly from a point source. An example is given in Figure 1.

The canonical relation of the operator G+ is given by

CM,:E = {(mM(mﬂv gOa :l:t)v ta gM("I’.Ua §07 :I:t)a :FBM,:i:(l‘Oa fo); To, gO)} (14)

A convenient choice of phase function is described in Maslov and Fedoriuk [17]. His
results state that one can always use a subset of the cotangent vector components as
phase variables. Let us choose coordinates for Cy 4 of the form

(xla 6]7 T, l'())

where I,.J is a partition of {1,... ,n}. Now it follows from Theorem 4.21 in Maslov
and Fedoriuk [17] that there is a function Sy (z1,&;, T, o), such that locally Cyy
is given by

o= _ 55M,+ PR 55M,+
d ¢, or
8SM+ aSM +

_ M - =7 1

Here we take into account that Cy/ 4 is a canonical relation which introduces a minus
sign for &. A nondegenerate phase function for Cy; 4 is then defined by

br4 (2,1, 20,85, 7) = Sar g (w1, 85,20, 7) + (27, 65) + T (16)
The canonical relation Cy/,_ for is given by
CM,* = {(l‘, ta _67 —T;Zo, _60) | (ZL‘, ta 67 T; X0, 60) € C1M,+}'

Thus a phase function for Cyy — is ¢, (2, t, 20, &5, T) = —Pu+ (7, t, 20, =€y, —T). We
may define the canonical relation for Gy as Cyr = Cp+ UCyy— and a phase function
O = On,— i T >0, dar = darg is T <0,



We have to assume that the decoupling is valid microlocally around the bicharac-
teristic. In that case Theorem 5.1.2 of Duistermaat [10] gives that the operator G/ +
is microlocally a Fourier integral operator of order —3. Hence microlocally we have
an expression for Gs 4 of the form

[J|+1 2n+1

G (z,20,1) = (2m)" 2 /AMi rr,xg, £, T)eME@TOELT) qe dr o (17)

The factors of (27) in front of the integral are according to the convention of Treves
[25], Hérmander [13].

The amplitude Aps (7, 20,&s,7) satisfies a transport equation along the bichar-
acteristics. It is an element of M¢,, ® QY2(Cyy), the tensor product of the Maslov
bundle M¢,, and the halfdensities on the canonical relation C;. The Maslov bun-
dle gives a factor 7%, which we will not explicitly calculate. We will however give
an expression for the absolute value of the amplitude, using the fact that energy is
conserved to highest order.

For this purpose consider the Green’s function with ¢, ¢, fixed. It can be viewed as
an invertible FIO, mapping the displacement at o, u|,, € £'(X) to the displacement
at t, u|y € D'(X). We denote this FIO by G+ (t — to). For this FIO on can find
a Maslov type phase function using (z7,&;,t,20) to parameterize Cpr 5. We will
calculate the absolute value of the corresponding amplitude A4 (27, &s,t, 20). To
highest order the energy at time ¢ is given by

/ Bus(2, D)ungo (, 8)[ da.
This gives the relation
Gura(t —to)" By(x, D) By(x, D)G o (t — to) = B (@0, Do)* B+ (20, Do),

where Gpr1(t — t9)* denotes the adjoint of Gy o(t — to). The left hand side is a
product of invertible Fourier integral operators, so we can use the theory of section
8.6 in Treves [25]. We find that to highest order

-1 2 9o B (o, &) ’
2 A t = |det
‘( 7T) 4 M,i(xlagJa ,1'0) e 8(55'],6]) ‘ BM(«T,f)
The value of Bys(z,€) is conserved along the bicharacteristic. Also we may use that
‘det ‘950 ‘ ‘det #"m))‘ It follows that to highest order
1
3(:50, 507 t) ?

det

|Anr+ (21,65, 20)| = (27T)i (18)

8(1’], 6]; Lo, t)

Since the absolute value of the amplitude is a halfdensity on the canonical relation
we can easily transform this to different variables.

We collect the results of this section, using equations (12), (18) to obtain the
statement about the amplitude. We require that around some bicharacteristic from
(20, &, to) to (z,&,t) the decoupling is valid, i.e. we have

9



Assumption 1 On the bicharacteristic the multiplicity of the eigenvalue Ay(z,€) in
(8) is equal to one.

Lemma 2.3 Suppose that for some bicharacteristic given by (x,t,&, 7;x0,&) € Cy
Assumption 1 is satisfied. Then microlocally we have

UM(ZU,t) :/GM(J',ZUU,t—tU)fM(ZUU,tU) dZUUdt(), (19)

where Gyr(x, xg,t) is the kernel of a Fourier integral operator with canonical relation

C and order —1%, mapping functions of xq to functions of x,t. It can be written as

Gu(x,20,t) = (QW)fm%*# /AM(xl,JUo,fJaT)ewM(m’mo’&J’T) d¢;dr. (20)

For the amplitude Ay (xr,x0,&5,7) we have to highest order

a(x07507t) %

det
a(fL’[, §J7 Zo, T)

|Ans (1, 20,5, 7)] = (2m) 7 1 }7] ! (21)

10



3 Reflection at an interface

A popular way to model the subsurface is to assume that it consists of different layers
that have different physical properties, in our case the elastic coefficients ¢;;; and the
density p. In this section we will model the reflection of waves at a smooth interface
between two regions with smoothly varying parameters.

The amplitude of the scattered waves is determined essentially by the reflection
coefficients. It is well known how to calculate these for two constant coefficient media
and a plane interface (see e.g. Aki and Richards [1], chapter 5). In the case of smoothly
varying media they determine the scattering in the limit of high frequency, see Taylor
[22] for a treatment of reflection and transmission of waves using microlocal analysis.
For the acoustic case see also Hansen [11]

Mathematically the reflection and transmission of waves is described by an inter-
face problem. Let v be the normal to the interface. At the interface the displacement
and the normal traction have to be continuous

Pyu, = f; away from the interface
u; = fort <0
=2, is continuous at the interface
0 . . .
12y is continuous at the interface. (22)

ViCijki P
=) 8l‘k(

Here we have the factors p because of our definition (3). We assume the source
vanishes on a neighborhood of the interface. That this is a well-posed problem can
for instance be shown using energy estimates (see e.g. Lions and Magenes [16], section
3.8).

The solutions to the PDE with f = 0 follow from the theory discussed in Section 2.
The singularities are propagated along the bicharacteristics, curves in 7*(X x R)\0
given by

(-'I:M(I‘Oa gOa :l:t)v ta gM(-'L'(), gOa :I:t)a :FBM(I‘Oa gﬂ))

This is the bicharacteristic associated with the M, + part of the solution, see Section 2.
We define a bicharacteristic to be incoming if its direction is from inside the medium
towards the interface in positive time. We define a bicharacteristic to be outgoing if
its direction is from the interface inside the medium in positive time, see Figure 3.

Assume that the incoming bicharacteristic stays inside the medium from ¢ = 0
until it hits the interface, then the solution along such a bicharacteristic is determined
completely by the PDE and the initial condition. On the other hand the solution along
the outgoing bicharacteristics is not determined by the PDE and the initial condition.
We can put an arbitrary source at the interface. We will show that the solution along
the outgoing bicharacteristics is determined by the interface conditions.

Let’s consider the consequences of the interface condition. We have

W F(uile,—0) = {(2',t,&,7) | there is &, with (2/,0,¢,&, &, 7) € WF(u;)}.

11
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Figure 2: Incoming and outgoing rays

It follows that waves travelling along bicharacteristics that intersect the boundary at
some point x', z, = 0,¢, with the same value of ¢, 7 interact (reflect and transmit
into each other). This is depicted in Figure 3

Depending on 2’ and the “tangential” slowness —7 '¢’ the number of interacting
bichararacteristics may vary. For large values of —7 ¢’ there will be no incoming
or outgoing modes, for small values there are n incoming and n outgoing modes.
The situation where the vertical line in Figure 3 is tangent to the slowness surface
corresponds to rays tangent to the interface. This is not treated here. Equation (9)
gives that the incoming and outgoing modes correspond to the real solutions &, of

det' ‘Pll ("L‘,, 07 §I7 é’n? T) = 0'

This equation has 2n real and complex roots. The complex roots correspond to
evanescent waves.

In the following theorem we show that if none of the rays involved is tangent
there exists a pseudodifferential operator type relation between the amplitudes of the
different modes at the interface and we calculate the principal symbol in the proof.
Let z — z(x) : R® — R be a coordinate transformation such that the interface is
given by z, = 0. The corresponding cotangent vector is denoted by (. We have the
following result

Assumption 2 There are no tangent rays at 2', (', 7.

Theorem 3.1 Suppose Assumption 2 holds microlocally on some neighborhood in
T*(Z" x R)\0. Let uifvl(y) be microlocal parts of a solution for the incoming modes,
and suppose Gy refers to an outgoing mode (17). Microlocally, the singly re-
flected /transmitted part of the solution is given by

Unp(py(z, 1) = / G (T, 2(2),t — 10)2iDyy (Ry (2, Dy, Dto)uifvl(y)(x(z),to)) dz' dty,
o (23)

where R, (z, Dy, Dy) is a pseudodifferential operator of order 0.

In the proof we derive the explicit form of R, (2, D,/, D;).

12
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________________________________ interface

in medium 2

Figure 3: 2-dimensional section of 3-dimensional slowness surfaces at some point of
the interface, for the medium on both sides of the interface. The slownesses of the
modes that interact (i.e. reflect and transmit into each other) are the intersection
points with a line that is parallel to the normal of the interface. The group velocity,
which is normal to the slowness surface determines whether the mode is incoming or
outgoing.
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Proof For the moment we assume we have a reflector at x, = 0, and smooth
coefficients on either side. We show that at the interface

Unrout(77,0,1) = Ry (2,0, D', D)un in. (24)

We will use the notation c;j.i; = ¢;jr and also (¢;x)u = cijri. The partial differential
equation reads in this notation

il ————— B l.o.t. =0.
<p5zz 8752 C]k,zl axjaxk> (p Ul) + lLo.t 0

This equation can be rewritten in a first order system for the vector v, of length 2n
that contains both the displacement and the normal traction (normal to the surface

x, constant)
~1/2,,
p
Vg = —1/2 . 25
¢ (an: sl 8(p3 —k 1) ) ( )

0v,
oz,

The first order system is

= Z.Ctab(xa Dl) Dt)Ub,

where C' is a matrix differential operator given to highest order by

~1 d -1
C D'.D Z Z;L 1(Cnn)z] Cng;jl oe, ()
ab(l‘ t) . n 1 b 5 9% . n—-1 9§ 1 .
qu 1 pq,zlax 914 + il 5 Zp 1 3z, om; w(cnn)]z b
Here b,q.ii = Cpgiir — Z?kzl cpn;ij(cnn);klcnq;kl (we indicated the summations explicitly
because the summations over p,q are 1,...,n — 1, while for the j, k indices they are
still 1,...,n).

If the matrix Cyy(z,&’,7) has no degenerate eigenvalues then microlocally this
first order system can be decoupled. This means there are scalar pseudodifferential
operators C\,(z, D', D;) and a matrix pseudodifferential operator Ly, (z, D', D;) such
that

Cu(x, D', D;) = Loy (z, D', Dy) diag(Cu(z, D', D)) L, (z, D', D).

The index fis 1,... , 2n. The principal symbols CE""(z, &', 7) are the 2n solutions &,
to

det Py™(z, (¢',&,),7) = 0, (26)

while the principal symbol Lprln (the columns appropiately normalized) is given by

prln (:C 5 ) ( QiM(u) (:U, (5,1 Cﬁrin (:U, £, T))) ) )
Cinkl(_i(fla Cgrln(l., gl, T))k)QlM(u) (ZC, (5,7 Cﬁrm(xa 5,7 T))) oM .
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We define v, = L, jv,. (The index p here is not the same as in (23), where it refers
to the outgoing modes on both sides).

If the principal symbol of C,(x, &', 7) is real the decoupled equation for mode f is of
hyperbolic type. It corresponds to an outgoing wave or to an incoming wave, depend-
ing on the direction of the corresponding ray. If the principal symbol of C,(z,&', )
is complex the decoupled operator for mode p is of elliptic type. Depending on the
sign of the imaginary part it corresponds to a mode that “blows up” going into the
medium, a backward parabolic equation, or one that “dies out”, a forward parabolic
equation. The blow up mode has to be absent.

The matrix L,, is fixed up to normalization of its columns. For the elliptic modes
(Im CP"™(z, &', 7) # 0) the normalization is unimportant. For the hyperbolic modes
the normalization can be such that the vector v, = L;;va agrees microlocally with
the corresponding mode defined in section 2. To see see this assume v, refers to
the same mode as u),. In that case there is an invertible pseudodifferential operator
Y(x, D, Dy) of order 0 such that v, = Yuy. Now we can define vy pey = ¥ v, 0.
Because v may depend on &,, this factor cannot directly be absorbed in L. However,
since v,0q satisfies a first order hyperbolic equation the dependence on §, can be
eliminated and the factor ¢»~! can be absorbed in L.

For the purpose of this proof let the in-modes be the modes for which the amplitude
is known, that is the incoming hyperbolic and the “blow up” elliptic modes. Denote
by L&?,Lg) the matrix L,, on each side of the interface. We define the 2n x 2n
matrix L™ such that it contains the columns related to incoming modes of Lgﬂ, Lg}
as follows

L:LIL — (L(l),m _L(Q),ln)

ap’

and define L))" similarly (so here p is slightly different). The boundary condition now
reads

out ,,out in _in __
Lau v, + Lauvu =0,

so if we set R}, = —(L°"), IL, (for the question whether the inverse exists, see the

remark after the proof) then the part referring to the hyperbolic modes give (24).

By (24) the upsout are determined at the interface, finding how they propagate
into the medium is a (microlocal) initial value problem similar to the problem for
G+ above, where now the z,, variable plays the role of time. The solution is again
a Fourier integral operator, with canonical relation given by the rays. it follows that
we can use ¢+ (z,zo,t — to,&y,7) as phase function (take care that n ¢ J). The
amplitude Aps (27, &y, 7, xo) satisfies the transport equation, however, the restriction
of the FIO to the “initial surface” x, = 0 so constructed is a pseudodifferential
operator that is not necessarily the identity. Let’s therefore try

/ GM,:I:('I‘Ia M t— th X, 0)¢($, Dla Dt)uM,Out (:L.i)a 07 tO) d{L’6 dth (27)
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where ¢ (x, D', D;) is to be chosen such that the restriction of this formula to x,, =0
is the identity. We can use again section 8.6 of Treves [25] to find that the principal
symbol of this pseudodifferential operator should be

0B
3

ﬁxM

(xaf,aBM(flaT)): —(xaflaBM(flaT)aO) ) (28)

w(anlaDt) = ot

i.e. the velocity of the ray, the group velocity. After this we take into account that
G = 531Gy By (x, D)™ — 1iG - By (x, D) and that By (x,€) = Fr.

We have now obtained (23) for the case that z = = (no coordinate transformation).
We argue that (23) is also true for z(x) is a general coordinate transformation. We
start with the following equivalent of (24)

uM(u),out (l‘(zla 0)7 t) = RzﬁranSf(Zla 07 Dz’a Dt)uN(u),in (-T(Zla 0)7 t) . (29)

This follows transforming the system (22) to z coordinates. The symbol of the
(pseudo)differential operators transforms as 1" (z, () = 9 (z(2), (%)t ¢). Tracing
the steps of the proof we find (29).

When the interface is at z, = 0 we can obtain (27) in z coordinates instead of
x coordinates. Transforming G, ups back to x coordinates we find that for x away
from the interface

x| | 0zpm
un(@) = [ Garlw,a(2),t —to) |det 5| | 252 (2, Doy, D) | uar(2(y), to) d2' d.
2n=0 0z ot
Here azé‘i’” (2, Dy, Dt)‘ is the transformed version of (28). Thus expression (23) fol-
lows. O

Remark 3.2 The reflection coefficients satisfy unitary relations, see Chapman [6],
Kennett [15], the appendix to chapter 5. These follow essentially from conservation
of energy. It follows that the matrix of reflection coefficients is well defined and in
particular that the inverse Lgff exists. Chapman also gives a direct proof of the
reciprocity relations for the reflection coefficients.

Remark 3.3 We have shown that the reflected /transmitted signal is given by a com-
position of Fourier integral operators acting on the source. In the case of multiple re-
flections or transmissions (for instance in a medium consisting of a number of smooth
pieces with smooth interfaces) this is also the case. It follows that microlocally the
solution operator describing the reflected solutions is itself a Fourier integral oper-
ator, where the canonical relation is given by the generalized bicharacteristics (i.e.
the reflected and transmitted bicharacteristics), and the amplitude is essentially the
product of the ray amplitudes and the reflection/transmission coefficients.
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4 The Born approximation

We discuss the modeling and inversion of seismic data in the Born approximation,
where the mediumparameters are written as the sum of smooth background and
a singular perturbation. This is important in its own right, and it will also be a
motivation for our approach to the model with smooth jumps described in the previous
section.

The Born approximation has been discussed by a number of authors. In the
acoustic case, allowing for multipathing (caustics), see Ten Kroode e.a. [23], Hansen
[11]. For the acoustic problem with nonmaximal acquisition geometry, see Nolan
and Symes [18]. For the elastic case with maximal acquisition geometry (and from a
more applied point of view), see De Hoop and Brandsberg-Dahl [8]. We extend their
results, and give an efficient, partly new presentation. Also we discuss in detail the
different assumptions that are needed for the modeling and inversion.

4.1 Modeling

In the Born approximation one assumes that the total value of the medium parameters
Cijil, p can be written as the sum of a smooth background constituent and a singular
perturbation,

Cijkl + 0Cijkl, p+0p
This leads to a perturbation of P

5p 82 0 (5ci'kl 0
0Py =0y— -5 — — —20
: : p Ot2  Ox; p Oz

We denote the causal Green’s operator for (2) by Gy and its distribution kernel by
Gi(x,xg,t — tg). The first order perturbation dGy of Gy is derived by demanding
that the first order term in (P;; + 6 P;;)(Gji + 0Gjj) vanishes. This gives

t
5Gild, 3,1) = — / / Gii (&, 20, t — to) 6 Psp(0, Days 1) G0, & to) dig dty. (30)
0 X

Because the background model is smooth the operator §G contains only once reflected
data.

We use the decoupled equations (7). Omitting the factors Q;x(z, D), Q(z, D)y,
at the beginning and end of the product, we obtain an expression for the perturbation
of the Green’s function for the pair of modes (M, N),

t
8GN (2,7, 1) = —/ / G (&, 20, — t0)Q(w0, D) i
0 X

(5, 2000 0 deu 0
i ot 1Y ot 8:507]- P afL’g’k

) Q(x0, Do )inG N (0, T, to) dzg dtp.

(31)
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E 50

Figure 4: The scattering

Microlocally we can write G s as in (20). For Gy we use in addition the reciprocity re-
lation Gn(zo, Z,t) = GN(Z, o, to). The product of operators G, Q(xo, DIO)K/}Z-M‘?” is
a Fourier integral operator with the same phase as G, and amplitude that is to high—
est order the product Ay (%, zo, &5, 7)Q (0, &0)0fii0.4, where & = & (24, 20,5, 7). In
the resulting expression one of the two frequency variables 7, 7 can now be eliminated
using the integral over t,. Asymptotically, by stationnary phase, fot elo(T=7) qty =
216(7 — 7). The resulting formula for Gy is, modulo lower order terms in the
amplitude,

_ 3n41l  J4+J+1

(SGMN(i',ZZ',t) = (271') 4 2 /BMN(ilfajfaxmgjagjaT)
5Cijkz($0) F M)

x <wMN;z'jkz(fi“faffiaxo,fjagfa T)W +wyn(Ef, T, 70, €5, €7, 7) o)
x PN (BE2085.85m) o dE 5 dE; dr. (32)
Here (see (16) for the construction of ¢, dn)
Doy (&, 3,1, 70, €5, €7, T) = O (@, 8,30, €5, 7) + On (3, 8,30, €5, 7) — T, (33)
The amplitude factors By and warn,ijr are given by
Bun (&1, %7, 70,5, €, w) = (2m) 7T Aw (&, 20,5, 7) An (&7, 70,5, 7)

wMN;z‘jkz(fja fi; Lo, éj; éia 7') = QiM(«TOa gO)QlN(an gO)gO,ng,ka

wMN;o(if,ff,foaéj,gj,T) = - Qz’M(l‘OaéO)QiN(-TOagﬂ)TQ (34)

where in the second and third equation & = §0(if,x0,§j,7'), & = 50(:Ef,x0,§~j, ).
The scattering is depicted in Figure 4.1.

dcijri dp

We investigate the map (=2, %) — 6G (%, 2,t). We use the notation Cy,, for
the canonical relation associated to ¢y;.

18



Lemma 4.1 Assume that if (2,1, é,T;iUU,éO) € Cy,,, (T,1, {N,T;xg,go) € Cyy}, then
&+ & # 0. Then the map (5Ci—l§'“,%) — 0G yn(Z,Z,t) given by (32) is a Fourier
integral operator £'(X) — D'(X x X x|0,T[). The canonical relation is given by

{(i‘,.ﬁi‘,f—l—g, éa 5,7';1'0,50 +50) | (:%71?7 éaT;xméﬂ) € O¢M7 (jlaia 5,7';1'0,50) € O¢N}
(35)

Proof We show that @MN(:%i,if,t,x,fj,gj,T) is a nondegenerate phase function.
The derivatives with respect to the phase variables are given by

od - 2 y c
afN = —t(i‘p{[:g,&j,(ﬂ)_t(jfax()agj)w)_'_t
0Py N PR . -
= = _xj(xf;xmgjaw) —|—l'j
¢ ;
8<I>MN R It ~
— = —$j($f71‘075j7w)+1‘j’
¢

where Z ;(Z}, zo, éj, 7), % (T, o, §~J~, 7) are as defined in (15). The derivatives of these
expressions with respect to the variables (2 j, T 7,t) are linearly independent, so @y
is nondegenerate. From the expression (33) it follows that the canonical relation

of this operator is given by (35). By the assumption it contains no elements with
& + & = 0, so it continuous £'(X) — D'(X x X x]0,T). O

We show that the condition is violated if and only if M = N and there is a direct
bicharacteristic from #, £ to Z, —é . From the symmetry of the bicharacteristic under
the transformation & — —&,t — —t it follows that indeed in this case the condition is
violated. On the other hand we have B (o, éo) = By(xy, 50) =47 If fg = —& then
we must have M = N, because By;(zy, éo) = B(xy, —é[)) and the condition that the
multiplicities of the eigenvalues in (8) are equal to one. If M = N and & = —&, then
we have a direct bicharacteristic.

The data is supposed to be given by dGyn(Z, z,t) for (Z,Z,t) in the acquisition
manifold. To make this explicit, let y — (2(y), Z(y),t(y)) be a coordinate transforma-
tion, such that y = (¢/,y”) and the acquisition manifold is given by y” = 0. Assume
that the dimension of 3" is 2 4+ ¢, where ¢ is the codimension of the geometry. We
assume the data is given by

0Gun(2(y',0),Z(y,0),t(y',0)). (36)
It follows that the map (%, ‘%p) to the data may be seen as the compose of
the map of Lemma 4.1 with the restriction operator to ” = 0. The restriction

operator that maps a function f(y) to f(y/,0) is a FIO with canonical relation given
by Ar = {75 @\ y"),(0',n")) € T*Y' x T*Y |y" = 0}. The composition of the
canonical relations Ay asn and A, is well defined if the intersection of A, x Ay py with
T*Y'\0 x diag(T*Y'\0) x T*X\0 is transversal. In this case we must have that the
intersection of Ay prx with the manifold y” = 0 is transversal.

Let us repeat our assumptions, and state the final result of this subsection.
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~

direct bicharacteristic from (z(y',0),&(y',0,7',0")) to (Z(y',0), —&(y',0,7',1")) with
time t(y',0).

Assumption 3 There are no elements (y',0,n',n") € T*Y\O such that there is a
t

Assumption 4 The intersection of Aoy with the manifold y" = 0 is transversal.
In other words

ay//
————— has mazimal rank. (37)
8(1‘0, 607 607 ta t)
Theorem 4.2 If Assumptions 3, 4 are satisfied then the operator Fun i that maps

the medium perturbation (&i—pj“, %’)) to the data 1s microlocally a Fourier integral op-

erator with canonical relation given by

AMN :{(y,(x07£07507£7 7?),77,(%,50,50,5, g);xﬂagﬂ + 50) |
Bu(w0,&0) = B (0, &) = £7. 9" (w0, &, &0, £, 1) = 0} (38)

The order equals ”*THC. The amplitude is given to highest order (in coordinates

(yr, 1y, o) for Anen, where I,.J are a partition of {1,...,2m—1—c}) by the product
W Nk (Y7o M5 To) Buen (Yr, 1y, To), where

1
2

M

3(:50, 507 507 1?7 E)
8(1'0, ylla yll’ 77!,]7 AT)

__ n4l4c
4

1
|13mnv(y},y”,n},xo)|:=;1T‘2(2W) (39)

o(z,z,t) |
dy

Proof The first statement is argued above. The order is given by

N dimX +dimY’

M+E_ 4 )

where p is the degree of homogeneity of the amplitude and N is the number of phase
variables. Now the factor wasn.ijr, Warn,o are homogeneous of order 2 the degree of
homogeneity of the factor By y follows from (18). We have

|J|+ |J| + 2

T+ +1 3n—1—c

order FMN;z'jk:l =2+ (—2 5 1

n) +

This gives the order.

We calculate the amplitude of the Fourier integral operator in Lemma 4.1. The fac-
tor wasnijk is simply multiplicative. Suppose we parameterize (35) by o, 27, éj,i‘f,
g},%, 7, where 7 = 7. Define 7 = %, AT =7 — 7. Using (18), (34) we find that the
amplitude By (%o, 2}, éj,i‘f, §~J~, T) satisfies

M

n—1 8(1‘0750750757 E)

. ~ 1 —
BMN,ZL‘,.Z%A,f*,j'”,f”,T :_7—72 2m) 3 3
| ( 0L SrdST )| 4 ( ) 8(1‘0;-%f7§j7jf’§j’T’AT)

The transformation to y coordinates in (36), and not as a halfdensity, gives a factor

|3(ja+j’t) 3, (for the Fourier integral operators it would be more natural to transform as
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a half density). The amplitude transforms as a halfdensity on the canonical relation,
this gives a factor

M

oy, y" )
N2, &5, 77,€5,T)

The additional factor (27)~ 7% is because of the normalization. We find (39). O

The canonical relation is naturally parameterized by (xg,éo,go,f, t) such that
BM(xU,éO) - BN(:UU,EO) = O,y”(xo,fg,gg,f, t) = 0. There is also a natural density
associated to this set, the quotient density. The Jacobian in (39) means that the
amplitude factor |Buyw(y7, 4", 1, )| is given in fact by the associated halfdensity

1

times i7"2(27T)7L3 —8(%’5’” -
If ¢ = 0 and there are no tangent rays, i.e.
a n
rank % =2,
o(t, 1)

then a practical way to parameterize the canonical relation is by using the vectors
d — _T—lf C~¥ — —7'71~£
=1l Il €l

€ S"! and the frequency 7.

4.2 Inversion

Let us now consider the reconstruction of (%, %”) from the data. We define some

. (6Cz’jkl 5P>
Jo = D B
p P

the forward operator in the Born approximation is denoted by Fi/nqa.

Supppose we want to invert data from one pair of modes (M, N) (the general case
is discussed at the end of this section). The standard procedure to deal with the fact
that the problem is overdetermined is to use the method of least squares. Define the
normal operator Nysn.qg as the product of Fyy., and its adjoint F&N;a

new notation, let

NMNﬂﬁ:F])\}N;aFMN;ﬁ (40)

(no summation over M, N). If Nysn.qp is invertible (as a matrix valued operator with
indices a/3), then

F]\Z%V;a = (NMN)(;ﬁlFIT/[N;B (41)

(no summation over M, N) is a left inverse of Fysn,, that is optimal in the sense of
least squares'.

!Equation (40) is for case where one wants to minimize the L? norm ||dyn — Farn:a9al|- It can
be easily adapted to the case where one wants to minimize a different norm. This introduces extra
factors in the amplitude.
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The properties of the compose (40) depend on Aysy. Let myr, mx be the projection
mappings of Ay to T*Y'\0, resp. T*X\0. We will show that under the following
assumption Nyn.qg is a pseudodifferential operator, so that the problem of inverting
Nurniap reduces to a finite dimensional problem for each (z,§).

Assumption 5 The projection wy: of Ayn on T*Y'\O or on a open conical subset
of T*Y'\0, for the case we apply a microlocal cutoff to the data, is an embedding, i.e.
it 18

i) immersive

ii) injective

iii) proper

This assumption implies that the image of 7y is a submanifold of T*Y"\0. Let
us discuss these requirements, starting with the first. Using that Ay;y is a canonical
relation we have

Lemma 4.3 The projection wy: of Ayn on T*Y'\O is an immersion if and only if
the projection wx of Apn on T*X\0 is a submersion. In this case the image of my
is locally a coisotropic submanifold of T*Y'\0.

Proof This is a property of Lagrangian manifolds. It follows from Lemma 25.3.6 in
Hoérmander [13]. We give an independent proof.

The symplectic forms ox,oy: on T*X\0,7*Y'\0 can be viewed as 2-forms on
Apnv. Because Ajry is a canonical relation oy = ox on Ay, and in particular
rank oy = rankoy. Now consider mx. Clearly rankox = 2n if and only if 7y is
submersive.

Consider my-. If this projection is immersive then the image has dimension n+m
(in this proof m = dimY’ = 2n — 1 — ¢), while dim 7*Y’"\0 = 2m. Then rank oy is
at least 2n, so it must be equal to 2n. On the other hand, if rank oy» = 2n, then the
tangent space of Aj;y at that point is given by the span of a set vectors of the form

{(Ula wl)a I (v2n7 w2n)7 (07 w?n—l—l)a RIS (07 wn—l—m)}

The w;,i € {1,...,2n} must be linearly independent because rank oy, = 2n. For
wi, wj, i < 2n, j > 2n we have oy (w;, w;) = 0, so the w; are linearly independent from
the w;. The w;,i > 2n must be linearly independent, because (0, w;) are basisvectors
for the tangent space to Ay/y. So if rank oy = 2n then 7y is an immersion. Because
rank oy: = 2n in that case the image is locally a coisotropic submanifold. O

Thus if the first part of Assumption 5 is satisfied then we can use (z,£) € T*X\0
as coordinates on Aysy. In addition we need a coordinate on the set (z,£) = constant,
that we denote by e. The new parameterization of Ay is

AMN = {(y'(x,g,e),n'(x,g,e); (IL’,&))} (42)

The results do not depend on the precise definition of e. A natural choice is
something like scattering angle and azimuth, (such that £, e together parameterize
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(€0, &) of equation (38), assuming that the variables (f,7) can be solved from the
constraints), because the scattering can always be parameterized in this way. Often
people use part of the ' coordinates, such as the offset # — 7 if X C R} _,. However,
these cannot always be used, because of caustics.

We show that the first part of Assumption 5 implies that 8BM (z,&)+ aBé” (z,&) #
0, in other words the group velocities at the scatterlng pomt do not add up to 0.
We may parameterize Ay n by parameters x go,go,t t, where 50,50 are such that
BM(:UU,&)) BN(:UU,&)) +7. The projection 7x is given by (z, {0 + 50) Consider
tangent vector to Ay n given by vectors Vg, Vg,- They must satisfy

ag%(:c,éo) TV = 83‘%(%50) $Ug, = Eor. 43)

So if MJ(:E &) = BBN (z,&), then (43) implies that M(m &) - (v vg, +Vg,) = 0 SO

that the projection of AMN on T*X\0 is not submersive. If ¢ = 0, and rank 24 (t t) =

2 (no tangent rays) then (43) is the only condition on (&,&). In that case if
BBM (,&) # — (x €0) then the projection is submersive. In other cases the set of

(50,50) is in general a smaller subset of T X\0 x T:\0, which should also be taken
into account.

Let us now discuss the second and third part of Assumption 5. The second part
is a well known condition, see Ten Kroode e.a. [23], Hansen [11]. Essentially the
condition is that there are no two different singularities in g, mapped to the same
position in T*Y\0. For an analysis of the case where this condition is violated see
Stolk [20].

The definition of proper is that the preimage of a compact set is a compact set.
So assume we have a compact subset of T*Y'\0, The elements of Ay correspond
to those points where the source and receiver rays intersect. This can be written
as a set where some continuous function vanishes. Therefore this set is closed. It
is also bounded, and hence it is compact. So the third part of the assumption is
automatically satisfied.

When constructing the compose (40) there is a subtlety that we have to take into
account, namely that the linearized forward operator is only microlocally a Fourier
integral operator. To make it globally a Fourier integral operator we apply a pseudo-
differential cutoff ¢ (y’, D,/) with compact support. Due to the third part of Assump-
tion 5 the forward operator is then a finite sum of local Fourier integral operators.

Theorem 4.4 Let ¢(y',D,) be a pseudodifferential cutoff with conically compact
support in T*Y'\O, such that for the set

{(v',n; 20, &) € Aun | (v, 1) € supp ¥} (44)

Assumptions 3, 4, 5 are satisfied. Then

F]T/[N;Bw(ylaDy’)*w(y,;Dy’)FMN;a (45)
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s a pseudodifferential operator of order n — 1. Its principal symbol is given by

NMN;ﬁoé(l‘7§) = 11—6(271')”/ |w(yl(m7§76)777,(1’.767e))|27—74wMN;ﬁ(m7§7e)wMN;a(magae)

o(z,7,t)| 7" | a(x,&,&.1,1)
8y a(l', 67 €, y//, AT)

x de. (46)

Proof We use the clean intersection calculus for Fourier integral operators (see e.g.
Treves [25]) to show that (45) is a Fourier integral operator. The canonical relation
of Fy;y is given by

Nyv ={(, &y, n) | (Y, n's2,8) € Aun}

Let L = Ay X Ay and M = T*X\0 x diag(7T*Y'\0) x T*X\0. We have to show
that the intersection of L N M is clean, i.e.

LN M is a manifold (47)
TLATM =T(LNM). (48)

It follows from Assumption 5 that L N M is given by

LNnM= {(l‘agaylanlaylanlal‘ag) | (ylan,;mag) € AMN} (49)

Because Ay is a manifold this set satisfies (47). The property (48) follows from the
assumption that the map 7} is immersivene. The excess is given by
e=dim(LN M) — (dim L + dim M — dim T*X\0 x T*Y"\0 x T*Y"\0 x T*X\0)
=n—1-c (50)
Taking into account that we apply the pseudodifferential cutoff ¢(y', D,/) it follows
that (45) is a Fourier integral operator. The canonical relation A%, oAy is contained

in the diagonal of 7*X\0 x T*X\0, so it is a pseudodifferential operator. The order
is given by 2order Fyn,o +5 =n— 1.

We write 1(y', 1) = 32, @ (y', 1), where each 1@ is such that the distribution
kernel of ¥ (y', Dy) Frrn.o(y', ) can be written as

_8n—1—c |J]|

w(i)(yla Dy’)FMN;a(ylax) - (27(') 4 2 /w(Z)(yllanf]ax)
X Bun (Y5, 0y, @) warvia (Y, 0y, ) SWRm I H 0050 qgy

(51)

where v@ (yp, 1y, @) = 9 (yp, yy (g, 1wy, @), 17 (Y7, 0y, @), 1) The distribution kernel
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of the normal operator is given by a sum of terms

/ (B0 Dy Form (7)) (5 Dy Faraaly/ 0)) dyf

_3n—1l—c __ 7~ 5, - i
= (2m) = / PO Db (51 20)

X Burw (yp 0y ) B (Yrs 10,75 T0)warn;s (Y7, 17 ) wninsa (Y7, 1,75 To)
s Sh 200 SUL A, 400D gt '

We now perform stationnary phase. One can integrate out the variables y’, 1 ;. For
the remaining variables we use that

S(yr o, ny) — Sy, x,m7) = (& — 20, E(Y5, 17, o)) + O(|x — 30]?).

Thus we find (to highest order)

_3n—1—c i
(271-) 2 /|1/)()(yllanf]ax)|2|BMN(yllanf]ax)|2wMN;ﬁ(y,Ianflax)wMN;a(yllan{hx)

x el@—e0 €0} gty

We now do the change of variables (z, y}, 1) — (z,£, ), and we use (39). In addition
we can do the summation over 7. We find

—2n _
NMN ﬁa(x xU /W y x 5; 1 I(:C,f,e))|2T74wMN;ﬁ(l',§, G)WMN;a(l',f, 6)
-1
(l‘ gUaant t) i(z—x0,£)
HEZT0.8) € de. 52
) 8y 0z, e,y A7) | Sde (52)
It follows that the principal symbol of Ny, is given by (46). O

So far we concentrated on inversion of data from one pair of modes (M, N). Often
data dy;y will be available for some subset I of all possible pairs of modes. Define
the normal operator for this case

N: Z F]T/[NFMN: Z NMN-

(M,N)el (M,N)eT

If all the Ny are pseudodifferential operators then N is also a pseudodifferential
operator. A left inverse is now given by

Nle*,

where F* is the vector containing the Fyy, (M, N) € I.
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5 Symplectic geometry of data

In the previous section we saw that the wavefront set of the modeled data can not
be arbitrary. This is due to the redundancy in the data, in the Born approximation
the singular part of the medium parameters is a function of n variables, while the
data is a function of 2n — 1 — ¢ variables. This redundancy is also important in the
reconstruction of the background medium (or the medium above the interface in the
case of a smooth jump). This will be explained below.

Consider again the canonical relation Ay;y. Denote by F' in this section the map
(z,&e) = (V(x,&e),n'(x,&e)) : T*X\0 x E — T*Y'\0. This map conserves the
symplectic form of T*X\0. That is, if w,, = %ﬁ’:’/), and similar for we,, w,,, we have

Oy’ (wxia ij) = UY’(wSH wfj) =0
oy (we;, wwj) = 0;

oy (W, wxj) = oy (w,,, ng) = oy (w,,, we].) =0. (53)

The (z, &, e) are “symplectic coordinates” on the projection of Ay/y on T7*Y’\0, which
is a subset of T*Y"\0.

The image L of the map F is coisotropic. The sets (z,£) = constant are the
isotropic fibers of the fibration of Hérmander [14], Theorem 21.2.6, see also Theorem
21.2.4). Duistermaat [10] calls them characteristic strips (see Theorem 3.6.2). We
have sketched the situation in Figure 5. The wavefront set of the data is a union of
fibers.

Using the following result we can extend the coordinates (z,&,e) to symplectic
coordinates on an open neighborhood of L.

Lemma 5.1 Let L be an embedded coisotropic submanifold of T*Y'\0, with coor-
dinates (x,&,e) such that (53) holds. Denote (y',n') = F(z,§,e). We can find a
homogeneous canonical map G from an open part of T*(X x E)\O to an open neigh-

borhood of L in T*Y'\0, such that G(x,e,&,e =0) = F(z,&, €).

Proof The ¢; can be viewed as functions on L. We will first extend them to functions
on the whole 7*Y’\0 such that the Poisson brackets {e;,e;} satisfy

{ei,ej} =0, 1<i,5<m—n, (54)

where m = dim Y’ = 2n—c¢—1. This can be done successively for ey, ... , €,,_, by the
method that we describe now, see Treves [25], chapter 7, the proof of Theorem 3.3, or
Duistermaat [10], the proof of Theorem 3.5.6. Suppose we have extended ey, ... , €,
we extend e;y1. In order to satisfy (54) e;y; has to be a solution u of

Hou=0 1<i<l,

with initial condition on some manifold transversal to the H,,. For any (y',n') € L
the covectors de;, 1 <4 < [ restricted to T(, L are linearly independent, so the H,,
are transversal to L and they are linearly independent modulo L. So we can give the
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Figure 5: Symplectic structure of Ayy.

initial condition u = e;,; for u on L and even prescribe u on a larger manifold, which
lead to nonuniqueness of the extensions e;.

We now have m — n commuting vectorfields H,, that are transversal to L and
linearly independent on some open neighborhood of L. The Hamilton systems with
parameters €; reads

y; _ Og

o 877; de;
aéi - an;(yan)a

de; Oy

(', n').

Let G(x,e,&,€) be the solution of the Hamilton systems with initial value (y',n') =
F(z,¢,e) with “flowout parameters” e. This gives a diffeomorphic map of a neigbor-
hood of the set ¢ = 0 in 7*(X x E)\0 to a neighborhood of L in 7*Y'\0. One can
check from the Hamilton system that this map is homogeneous.

Remains to check the commutation relations. The relations (53) are valid for
any A, because the Hamilton flow conserves the symplectic form on 7*Y’\0. The

commutation relations for % follow, using that % =H,,. O]

Let M,y the canonical relation associated to the map G we just constructed,
ie. Myn = {(G(x,e,& €);x,e,&,€)}. We construct a Maslov type phase function for
My that is directly related to a phase function for Ay;y.

Suppose (y, 1, x) are suitable coordinates for Ay;x. For e small the constant-e
subset of Mjy,n, can be coordinatized by the same set of coordinates, thus we can
use coordinates (y;, 7, z,€) on Myy. Now there is (see Theorem 4.21 in Maslov and
Fedoriuk [17]) a function S(y}, 7, x,€) such that M,y is given by

oS oS
€= e’ £= — or’
, 0S , 0S
yJ:_a—n,J’ Ufzaull-
Thus a phase function for M,y is given by
Uun (Y, 2, e,my,€) = S(yp 0y, 2,€) + (Yo, n) — (e, e€). (55)

A Maslov type phase function for Ay is given by Wy n (v, z, €, 7, 0).
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6 Characterization of seismic data and the imag-
ing reflection coefficients

In this section we give our main result, which is a characterization of seismic data,
modeled with the Born approximation or using a model with “smooth jumps” as in
Section 3. We also give a discussion of this result.

First we give an expression for the data modeled using the smooth jump approxi-
mation that is very similar to the expressions for the Born modeled data we obtained
in Section 4. The smooth medium above the interface plays the role of the background
medium in the Born approximation.

Recall the coordinates z 50,50 that played a role in the Born approximation.
A signal with mode N and covector {0 can be reflected into mode M, covector
§0 if the frequencies 7 are equal and 50 + 50 is normal to the interface. To high-
est order the pseudodifferential reflection “coefficient” R, (2', (', ) leads to a factor
Rarn(z, &0, &) = RM(M)W(N)(ZI(.TJ),CI(&O), 7). The indices p, v are not necessary here.
This factor can now be viewed as a function of coordinates (z,£,e) on Ay y (strictly
speaking only defined for z in the interface, and £ normal to the interface). To highest
order it does not depend on ||£|| and is it simply a function of (z,e). We obtain the
following result, which is a generalization of the Kirchhoff approximation.

Theorem 6.1 Suppose Assumptions 1, 2, 3, 4 are satisfied, microlocally for the rele-
vant part of the data. Let @y (Y, x,n)), Bun Yy, x, 1) be phase and amplitude as in
Theorem 4.2, but now for the smooth medium above the interface. The data modeled
with the smooth jump model is given microlocally by

|J] 3n—1—c

dun(y') = (2m) 7 /(BMN(y’I,x,n&)2i7(n’)RMN(y’I,x,773)+1-0-t-)

% ei‘PMN(y',x’nff)(S(zn (1‘)) dn& dz. (56)

i.e. by a Fourier integral operator with canonical relation Ayy and order ”*THC -1

acting on the function 6(z,(x)).

Proof We write the distribution kernel of the reflected data in a similar form as
(32). First recall the reciprocal expression for the Green’s function.

Gr((2), &, 1) = (2m)~25 25 / Ax(F7,2(2), &, 7)o @@€7 4 L dr.

By using Theorem 3.1, and doing an integration over an ¢ and a 7 variable one finds
that the Green’s function for the reflected part is given by

Gl (3,5, 1) = (2m) E I on

x / (2¢TAM(:@f,x(z),§ ) AN (E7 2(2), £, 7) Ruanwn (2, € 7) + l.o.t.)
2n=0

o0x

X eiq>MN(j;j;t7x(z)7éj;£j77—) det _
0z

dé; déydrdz, (57)
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where ¢’ depends on (x(2),&) (the indices p,v for the reflection coefficients have
been explained in Section 3). The integration [ dz’ is now replaced by [ d(z,)dz.
The latter can be transformed back to an integral over x. Thus we have the following
expression

EENEESe
2

(27T) " / <2iTAM(:i‘f, :U(Z), éj, T)AN(.ff, :U(Z), fj, T)Ru(M)z/(N) (Z, C’) + l.O.t.)

X ei‘I>MN (jﬁj’t7x7éj7éj77—)6(zn (1‘)) déj dgj dT de' (58)

oK)
p(z) 7 p(z
is replaced by the d-function 0(2,(x)). The phase function ®;5 now comes from the

smooth medium above the reflector.

The data is modeled by G% (2, 7,t), with (&,7,t) in the acquisition manifold,
see the text following Lemma 4.1. We follow the approach of Section 4, and do a
coordinate transformation (z,z,t) — (y',y"), such that the acquisition manifold is
given by 3" = 0. It follows that under Assumptions 3, 4 the data is the image of a
Fourier integral operator acting on d(z,(z)) and that it is given by (56). O

This formula is very similar to (32), only the amplitude is different and

We now show our main result, by applying the results of the previous section on
the Kirchhoff modeling formula (56), and its equivalent in the Born approximation
(32).

Theorem 6.2 Suppose microlocally Assumptions 1, 2, 3, 4, & are satisfied. Let
Hyrn be the Fourier integral operator with as canonical relation the extended map
(x, & e,€) — (Y, 1) constructed in Section 5, and with amplitude to highest order
given by (27)% (2i7)Bun (yy, x, 1Y, €), such that Byn(e = 0) is as given in Theo-
rem 4.2. Then the data in both Born and Kirchhoff approximation is given by Hpyn
acting on a function ryn(z,e). For the Kirchhoff approzimation

run(z,e) = (pseudo(z, D,, €))d(z,(x)), (59)

and to highest order ryn(x,e) = Ryn(x,€)d(z,(x)). For the Born approximation the

function ryn(x,e) is given by a pseudodifferential operator acting on <5Ci—pj“, %p) ,
«

with principal symbol (2iT(x, &, e)) twyrn.a(z, &, €), see (34).

Proof We do the proof for the Kirchhoff approximation using (56), for the Born
approximation it is similar. Since Assumption 5 is satisfied, the projection my of
Ay into T*Y'\0 is an embedding, and the image is a coisotropic submanifold of
T*Y'. Therefore we can apply Lemma 5.1. Formula (55) gives that the factor el®M~
can be written as

el(SMN(ygaxanl‘]ao)+<yfjvnfj>) — (271-)7(77‘7170) /el(SMN(yljaxanl‘]af)+<yf]’nf]><e’6>) dG de

= (27r)_(n_1_c)/eiq’MN(ylyl'ye,nfpf) de de. (60)
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So the number of phase variables is increased by using stationnary phase. Let
By (yy, x,m', €) be as described. Then we obtain

_J4n—1-—c_2n—1-¢
2 2

dun(y') = (2)
X / ((271')%227'(77,)BMN(3/1, x, 77{], G)RMN(Z', 6) + l.O.t.)
x eVunzen sz (1)) dny, de da de. (61)

In this formula the data is represented as a Fourier integral operator acting on a
function of (z,e) given by &(z,(z)). Multiplying by H;,\ gives a pseudodifferential
operator of the form described acting on 6(2,(x)). Thus we obtain the result. O

Thus given the medium above the reflector (in Kirchhoff approximation) the func-
tion 7y (x, €) can be reconstructed by applying the Fourier integral HA’/A,IN to the data.
Hence we have the following result for Kirchhoff data.

Corollary 6.3 Suppose that the medium above the reflector is given, and that it
satisfies Assumptions 1, 2, 3, 4, 5. Then one can reconstruct position of the interface
and angle dependent reflection coefficient R, (x,e) on the interface.

The operator Hysy transforms the data to (z,e) coordinates. If e is chosen as
scattering angle and azimuth we have a transformation of the data to subsurface
position and scattering angle/azimuth coordinates, which is new. The advantage of
these coordinates is that multipathing is incorporated.

The motivation for Lemma 5.1 can now also be explained. Suppose there is high
frequency data that is not from a given model. In the Kirchhoff case this may be
because the medium above the interface is not correctly chosen, or because the data
cannot be modeled at all by Kirchhoff modeling. To such data there is no natural value
of the scattering angle/azimuth associated. So to transform it to (x,e) coordinates
the value of e must be chosen. This is precisely the choice that we have in the proof
of Lemma 5.1, where the function e(y’,n’) on T*Y'\0 is chosen.

It is known how to transform data to the (x,e) domain when e is chosen to be
the offset. Assume X =R? _ 0X = R"' = {z € R" |z, = 0}, and the acquisition
manifold is given by 90X x 0Xx|0,T[. In the absence of certain degenerate ray
geometries e can be the offset e = # — 7 € R*!. This coordinate is automatically
defined on all of T*Y'\0, which gives automatically an extension as in Lemma 5.1.
Define the midpoint coordinate m = "’32;""’ The operator Hy,y is now for each fixed
value of h an invertible Fourier integral operator mapping functions (m, t) to functions

of z € X.
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7 Reconstructing the smooth part of the medi-
umparameters

The result of the previous section gives information on the problem of reconstructing
the medium above the interface, or, in the Born approximation, of the background
medium. Suppose there is a redundancy in the data, i.e. the dimension of the variable
e, n—1—c> 0. If the smooth mediumparameters above the interface are correct,
then applying the operator H;;'y of Theorem 6.2 to the data results in a reflectivity
function 7y y(z,€), such that the position of the singularities does not depend on
e. This can be used as a criterion to determine whether the medium above the
interface or the background medium is correct. This technique is called velocity
analysis, because in the acoustic case one determines in this way the local propagation
speed of the acoustic waves. If the smooth medium parameters above and below
the interface are correct, then also the amplitude of the singularities of ryn(z,e)
should be proportional to the reflection coefficients. This could also be used in the
determination of the medium above the interface. However, information about the
position of the singularities (traveltimes) is often more reliable than information about
the amplitudes.

This is well known in the case where e is given by the offset, e = & — 2. Thus we
have generalized this method to using any coordinate e, in particular we can use the
scattering angle, which depends only on the phase directions at the scattering point.

We mention the two most important criteria to measure how well the data “line
up”, see Symes [21] for a discussion. The first criterium is called “stacking power”.
Assume the reflection coefficient that has the same sign for each e, then the integral

/‘/TMN(x,e) de

is maximal when the data line up.

The second way to measure how well the data lines up is essentially by taking
the derivative with respect to e. If ry/n(x, e) depends smoothly on e as in (59), then
2 ryn(z, €) is one order less singular (for instance in a Sobolev space) than if it would
not have this smooth dependence on e. One can now try to find the medium above
the reflector by minimizing the semblance norm

2

dx

2

, (62)

orvn
R

where a suitable norm should be chosen (we do not go into this). Taking also the
factor in front of the § function of ry,y into account, see (59), we obtain that to the
highest two orders

(RMN(:E, e)% - a};“(jN (z, e)) ra(@,€) = 0. (63)

If Ryn(x,e) is nonzero then the lower order terms can be chosen such that this
equation is valid to all orders.
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a. e — b. e —

Figure 6: Examples of the singularities of ry;n(x,e), when the medium above the
reflector is correct (a.) or incorrect (b.)

Conjugating the differential operator of (63) with the invertible FIO Hyy we
obtain pseudodifferential operator on D'(Y”). Thus we obtain the following corollary
of Theorem 6.2

Corollary 7.1 Let the pseudodifferential operators Qun(y', Dyy) be given by

, o oR .
Qun(Y',Dy) = Hyn (RMN(SU,G)% - aA;N ($a€)> Hy/y-

Then for Kirchhoff data dyn(y') we have to the highest two orders
Qun(Y's Dy)dyn(y') = 0. (64)

For values of e where Ryn(x,e) # 0 the operator Qun(y', Dy) can be chosen such
that (64) is valid to all orders.
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Notation

n
x

X

subscript ¢, 7, k, [
i

&, T, etc.

yl

p(z)

Cijhi(2)

Uq

P;

subscript M, N
PM(J', D)
Qim(z, D)

un, fur
Ay

AM(Z', D)
BM(.fL', D)
UM,ﬂ:an,:l:

a1 (0, €0, 1), Enr (0, &0, 1)
Gyt

Cr+,COnr
O+, Pm
AM,:t(IL’[, .. )
subscript 1, J
Xy

superscript prin

subscript a
0

R,

R,

Vg

Uy

dimension of space

position in medium

subset of R” where the medium is

indices space variables and elastic indices
Kronecker delta

time

cotangent vectors corresponding to z,t,etc.
coordinates on acquisition manifold

mass density in the medium

elastic tensor

normalized displacement, see (3)

normalized elastic force density, see (3)

normalized elastic wave operator, see (4)

indices over elastic mode

wave operator for each mode (1do), see (5)
pseudodifferential operator that diagonalizes P,
(contains the polarization vectors)

amplitude and force density of each mode

spatial part of the wave operator

spatial part of decoupled wave operator (ydo)
square root of Ay (x, D), see above (11)

amplitude and force density for first order equations
bicharacteristic, see (13)

Green’s function for first order decoupled equations
canonical relation of Gy 1, Gy, see (14)

phase function for G+, Gy

amplitude function for G+

partition of some set {1,...,k} in two disjoint subsets
to indicate that we have a principal symbol

index for the 2n component vector of (25)

reflection coefficients DO, for amplitudes
reflection coefficients DO, see Theorem 3.1
displacement and traction (25)

decoupled displacement and traction, see below (26)
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OCijki, Op
5Gil7 5GMN
dun(Yy')

Ga

FMNa

SYeN;

By, WM Nsigkl, WMN;0
Ayn

ee F

Tx, Ty
NMNaB

Oy

My N

VN
run(x,e)
Hyn
Qun(Y', Dy)

medium perturbation in Born approximation
perturbation of Green’s function
data, for a pair of modes (M, N)

(5
p p

operator mapping g () — d5*%2(y')

phase function for Fy;na

amplitude factors for Fy na

canonical relation of Fy;y,

coordinate on Ay together with (z,§), see (42)

projection from Ay n to T*X\0, resp. T*Y'\0

normal operator Fy; v, Fung

symplectic form on T*Y"\0

canonical relation extending Ay, see Section 5

phase function extending ®,/y, see (55)

“reflectivity” function, see Theorem 6.2

operator mapping ryny(x,e) to data, see Theorem 6.2

pseudodifferential operator that annihilates data,

see Corollary 7.1

We use the Einstein summation convention (summation over repeated indices),
unless explicitly mentioned. We use the notation Q(z, D) for a pseudodifferential
operator with symbol Q(z, &).
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