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Abstract

Seismic data is modeled in the high frequency limit� We consider general anisotropic
media� and our method is also valid in the case of multipathing �caustics�� The data
is modeled in two ways� First using the Kirchho� approximation �where the medium
is assumed to be piecewise smooth� and re�ection and transmission occurs at the
interface�� Secondly the data is modeled using the Born approximation� in other
words by a linearization in the medium parameters�

The main result is a characterisation of seismic data� We construct a Fourier inte�
gral operator and a �re�ectivity function	� which is a function of subsurface position
and scattering angle and azimuth� such that the data is given by the invertible Fourier
integral operator acting on the re�ectivity function�

Using this new transformation of seismic data to subsurface position
angle coor�
dinates we obtain the following results on the problem of reconstructing the medium
coe�cients� Given the medium above the interface in the Kirchho� approximation
one can reconstruct the position of the interface and the angular dependent re�ection
coe�cients on the interface� We also obtain a criterium to determine whether the
medium above the interface �the background medium in the Born approximation�
is correctly chosen� These results are new in medium with caustics� In the Born
approximation the singular medium perturbation can be reconstructed�
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� Introduction

In the seismic experiment one generates elastic waves in the earth using sources at
the surface� The waves that return to the surface of the earth are observed �in fact
sources and receivers are not always on the surface of the earth� this case is also
considered�� The problem is to reconstruct the elastic properties of the subsurface
from the data thus obtained�

The subsurface is given by an open set X � R
n � In practice n � � or �� but

we leave it unspeci�ed� Sources and receivers are contained in the boundary �X of
X� Their position is denoted by �x� �x� Measurement of data takes places during a
time interval ��� T �� The set of ��x� �x� t� for which data is taken is called the acquisi�
tion manifold Y �� We assume that the displacement of the medium is measured for
pointsources at �x� t � � and that data is taken for all the elastic components� both at
the source and at the receiver� Thus we assume that �after preprocessing� the data
is given by the Green�s function Gil��x� �x� t�� for ��x� �x� t� � Y ��

We refer to the codimension of the set of Y � � �X��X���� T � as the codimension
of the acquisition manifold and we denote it by c� For example in marine data
the receivers are along a line behind the source and we may have n � �� c � 
�
�X � fx � R

n j x� � �g� Y � � f��x� �x� t� � R
��R����� T � j �x� � �x� � �x�� �x� � �g� So

the data is a function of �n� 
� c variables� From this data we want to determine a
function of n variables� hence there is a redundancy in the data of dimension n�
�c�

We analyze the highfrequency content of the data� Highfrequency methods �in
particular ray theory� are applied very often to seismic data� and turn out to be suc�
cessful� We use the methods of microlocal analysis� see H�ormander �
��� Duistermaat
�
��� Treves ���� ����

The data is modeled for general elastic media� allowing for multipathing �leading
to caustics�� We model the data in two ways� In Section � we assume that the medium
consists of di�erent pieces with smooth interfaces between the di�erent pieces� The
medium parameters are assumed to be smooth on each piece� and smoothly extendible
across each interface� but they vary discontinuously at the interface� We discuss how
to model the high frequency part of the data using Fourier integral operators� which
is new for seismic data� Data modeled in this way are called Kirchho� data� In
Section � we discuss the Born approximation� This is essentially a linearization�
where the mediumparameters are written as the sum of a background medium and
a perturbation that is assumed to be small� It is assumed that the background is
smooth and that the perturbation contains the singularities of the medium�

The main result is the characterization of seismic data in Theorem ���� The data
can be written as an invertible Fourier integral operator HMN acting on a �re�ectiv�
ity	 function rMN�x� e�� that is a function of subsurface position x and an additional
variable e� essentially parametrizing the scattering angle and azimuth� In the Kirch�
ho� approximation the function rMN�x� e� equals to highest order RMN �x� e���zn�x���
where RMN�x� e� is the appropiately normalized re�ection coe�cient for the pair of
modes �M�N� and ��zn�x�� is the singular function of the interface� For the Born ap�
proximation something similar holds� The result holds microlocally away from points
in the cotangent space T �Y �n� that violate Assumptions 
 to �� discussed in the text�
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As a consequence of Theorem ��� we obtain results about the reconstruction of
the mediumparameters� Given the medium above the interface the function rMN�x� e�
and hence the position of the interface and the re�ection coe�cients can be recon�
structed by acting with the inverse H��

MN on the data� see Corollary ���� For the
Born approximation a similar result holds� but an inverse is also obtained directly in
Theorem ����

When the data is redundant there is in addition a criterium to determine whether
the medium above the interface �the background medium in the Born approxima�
tion� is correctly chosen� The position of the singularities of the function rMN�x� e��
obtained by acting with H��

MN on the data� should not depend on e� There exist
pseudodi�erential operators QMN�y�� Dy�� that� if the medium above the interface is
correctly chosen� annihilate the data� see Corollary ��
�

The exact choice of the variable e is unspeci�ed� When multipathing occurs a
suitable choice is the scattering angle� because in these coordinates the caustics are
�unfolded	� In that case the operator HMN transforms the data to subsurface position
and scattering angle coordinates� which is new� In other cases one can use for instance
the o�set �di�erence between source and receiver coordinates��

We discuss some of the literature on this subject� There have been many publi�
cations about highfrequency methods to invert seismic data in acoustics media� The
reconstruction of the singular component of the medium coe�cients in the Born ap�
proximation� without caustics has been done in the paper by Beylkin ���� Bleistein
��� discusses the case of a smooth jump using Beylkin�s results� It has been shown by
Rakesh �
�� that the modeling operator in the Born approximation is a Fourier inte�
gral operator� Hansen studied the inversion in an acoustic medium with multipathing
for both the Born approximation and the case of a smooth jump� Ten Kroode� Smit
and Verdel ���� also treat the case of seismic imaging in the presence of multipathing�
They discuss in detail the assumptions �most importantly Assumption �ii� below�
that are made about the geometry of the rays involved in the scattering� Stolk ����
discusses the case when this assumption is violated� Nolan and Symes discuss the
imaging with di�erent acquisition geometries� The article by Symes ��
� discusses the
reconstruction of the background medium in the Born approximation�

The mathematical treatment of systems of equations� such as the elastic equa�
tions� in the highfrequency approximation has been described by Taylor ����� This
fundamental paper also discusses the interface problem� Beylkin and Burridge ��� dis�
cuss the imaging of seismic data in the Born approximation in isotropic elastic media�
under a no caustics assumption� De Hoop and Bleistein ��� discuss the imaging in
general anisotropic elastic media� using a Kirchho� type approximation� The Born
approximation in anisotropic elastic media allowing for multipathing is discussed by
De Hoop and Brandsberg�Dahl ����

We give an overview of the paper� In Section � we discuss the propagation of waves
in smooth elastic media� First we discuss how in asymptotically the elastic system
can be decoupled by conjugating with pseudodi�erential operators �a technique that
is common in mathematics� but not in the seismic literature�� Then we discuss the
construction of asymptotic solutions for the decoupled equations using Fourier integral
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operators�
In Section � we discuss the re�ection and transmission of waves at a smooth inter�

face� We explicitly construct Fourier integral operator solutions describing re�ected
and transmitted waves� These solutions where already discussed� but not explicitly
constructed� by Taylor ����� Thus we prove directly the validity of the Kirchho�
approximation� which is not obvious from e�g� De Hoop and Bleistein ����

In Section � we discuss the modeling and inversion of seismic data in the Born
approximation� This is important both in its own right and for the reconstruction
problem if we model using a smooth jump� We give an e�cient presentation for the
case of general anisotropic media with general acquisition geometry� We discuss in
detail the assumptions that are needed�

In Section � we essentially discuss the geometry of the wave front set of the data�
Under the assumptions of Section � this set is contained in a coisotropic submanifold
L of the cotangent space T �Y �n�� We discuss the extension of symplectic coordinates
on L to a neighborhood of L�

After the preparations of Sections � to � the derivation of our main result in
Section � is relatively simple� We discuss a characterization of seismic data and some
consequences� in particular the reconstruction of the position of the interface and the
re�ection coe�cients given the medium above the interface�

Finally in Section � we discuss the reconstruction of the smoothly varying medium
parameters above the interface �or of the background medium in the Born approxi�
mation��
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� The elastic wave equation with smooth coe��

cients

��� Decoupling the elastic equations

The elastic wave equation is given by�
� �il

��

�t�
� �

�xj
cijkl

�

�xk

�
�displacement�l � �vol� force density�i� �
�

Here ��x� is the volume density of mass and cijkl�x� is the elastic sti�ness tensor� and
i� j� k� l � 
� � � � � n�

In order to diagonalize this system� thus decoupling the modes� it is convenient
to remove the x�dependent coe�cient � in front of the time derivative� Thus we
introduce the equivalent system

Pilul � fi� ���

where

ul �
p
��displacement�l� fi �


p
�

�force density�i� ���

and

Pil � �il
��

�t�
� �

�xj

cijkl
�

�

�xk
� l�o�t� � ���

Here we use that � is smooth and bounded away from zero� Both systems �
� and
��� are real� time reversal invariant� and satisfy reciprocity�

We describe how the system ��� can be decoupled by transforming it with ap�
propriate pseudodi�erential operators see Taylor ����� Dencker ���� It turns out that
microlocally� away from certain exceptional points in T �Xn�� there are a matrix val�
ued pseudodi�erential operator Q�x�D�iM � D � �i �

�x
� and scalar pseudodi�erential

operators PM�x�D�Dt� such that

Q�x�D���
Mi Pil�x�D�Dt�QlN�x�D� � diag�PM�x�D�Dt� � M � 
� � � � � n�MN � ���

Here the indices M�N denote the mode of propagation� they range from 
 to n� Let

uM � Q�x�D���
Miui� fM � Q�x�D���

Mifi� ���

The system ��� is then equivalent to the n scalar equations

PM�x�D�Dt�uM � fM � ���

The time derivative in Pil is already on diagonal form� hence we only have to
diagonalize the spatial part

Ail�x�D� � � �

�xj

cijkl
�

�

�xk
� l�o�t� �
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So we have to �nd QiM and AM such that ��� is valid with Pil� PM replaced by Ail� AM �
The operator PM is then given by

PM�x�D�Dt� �
��

�t�
� AM�x�D��

The principal symbol Aprin
il �x� �� is a positive symmetric matrix� so it can be

diagonalized by an orthogonal matrix� On the level of principal symbols� composition
of pseudodi�erential operators is given by multiplication� Therefore� we let Qprin

iM �x� ��
be this orthogonal matrix� and we let Aprin

M �x� �� be the eigenvalues� so that

Qprin
Mi �x� ����Aprin

il �x� ��Qprin
lN �x� �� � diag�Aprin

M �x� �� � M � 
� � � � � n�MN � ���

The principal symbol Qprin
iM �x� �� is the matrix� that has as its columns the orthonor�

malized polarization vectors associated with the modes of propagation�
If the multiplicities of the eigenvalues are constant then Qprin�x� ��iM depends

smoothly on �x� �� and microlocally equation ��� carries over to an operator equa�
tion� Taylor ���� has shown that if this condition is satis�ed then decoupling can be
accomplished to all orders� We summarize this result in the following lemma�

Lemma ��� Suppose the multiplicities of the eigenvalues of Ail�x� �� are equal to
one on some neighborhood� Then we can �nd pseudodi�erential operators QiM �x�D��
AM�x�D� with principal symbol as described above such that microlocally ��� is valid�

Remark ��� For generic elastic systems the case where the multiplicity of an eigen�
value is equal to two is investigated in Braam and Duistermaat ���� They give a
normal form for such systems and investigate the behavior of bicharacteristics and
polarization spaces� In this case the system cannot be decoupled� On the other hand
if the multiplicities are constant� but not equal to 
 such as in the isotropic elastic
case� then the system can still be decoupled with the right hand side of ��� replaced
by a blockdiagonal matrix� each block corresponding to a di�erent eigenvalue�

The second order equations ��� clearly describe the decoupling of the original sys�
tem in n elastic modes� In addition equations ��� inherit the symmetries of the original
system� To start it is easy to see that they are time reversal invariant� The operators
Q�A can be chosen such that QiM�x� �� � �QiM�x����� AM�x� �� � AM�x� ��� This
means that QiM � AM are real� We argue that they also satisfy reciprocity� For the
causal Green�s function Gij�x� x�� t � t�� reciprocity means that Gij�x� x�� t � t�� �
Gji�x�� x� t � t��� We show that such a relationship holds �modulo smoothing oper�
ators� for the Green�s function GM�x� x�� t� t��� The transpose operator Q�x�D�tMi

�obtained by interchanging x� x� and i�M in the distribution kernel QiM�x� x�� of
QiM �x�D�� is also a pseudodi�erential operator� with principal symbol Q�x� ��tMi� It
follows from the fact that At

ij � Aij that we can choose Q orthogonal� i�e� such that
Q�x�D�iMQ�x�D�tMj � �ij� From the fact that

GM�x� x�� t� t�� � Q�x�D���
MiGij�x� x�� t� t��Q�x�� Dx��jN
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it follows that microlocally GM is reciprocal� GM�x� x�� t � t�� � GM�x�� x� t � t���
modulo smoothing operators�

The values � � �
q
Aprin
M �x� �� are precisely the solutions to the equation

detP prin
il �x� �� �� � �� ���

Because P prin
il �x� �� �� is homogeneous in �� � � one often uses the slowness ����� in

calculations� The set of ����� such that ��� holds is called the slowness surface� It
can easily be visualized and may for instance look like Figure 
�

��� The Green�s function

To calculate the Green�s function we use the �rst order system for uM that is equiv�
alent to ���� It is given by

�

�t

�
uM
�uM
�t

�
�

�
� 


�AM �x�D� �

��
uM
�uM
�t

�
�

�
�
fM

�
� �
��

This system can be decoupled in a similar way as above� Let BM�x�D� �
p
AM �x�D��

which exists because AM�x�D� is positive de�nite� The principal symbol of BM �x�D�

is given by Bprin
M �x� �� �

q
Aprin
M �x� ��� We �nd that �
�� is equivalent to the following

two �rst order equations �
�

�t
� iBM�x�D�

�
uM�� � fM��� �

�

where

uM�� � �
�
uM � �

�
iBM �x�D����uM

�t
fM�� � � �

�
iBM�x�D���fM � �
��

We construct operators GM�� that solve the initial value problem for �

�� The
operators GM�� are Fourier integral operators� Their construction is well known�
see e�g� Duistermaat �
��� chapter �� The singularities are propagated along the
bicharacteristics� that are determined by Hamilton�s equations from the principal
symbol �factor i divided out� � � BM�x� �� of �

�� These equations read

�x

��
� � �

��
BM�x� ���

�t

��
� 
�

��

��
� � �

�x
BM�x� ���

��

��
� �� �
��

The solution may be parameterized by t� We denote the solution with the � sign and
initial values x�� �� by �xM�x�� ��� t�� �M�x�� ��� t��� The solution with the � sign is
given by reversing the time direction� i�e� it is given by �xM�x�� ����t�� �M�x�� ����t���

�
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Figure 
 Slowness surface� and the set of corresponding velocities� Note the caustics
that are due to the face that middle component of the slowness surface is not convex�

Observe that the group velocity �the velocity of the bicharacteristic� ��BM

��
is

orthogonal to the slowness surface� If the slowness surface is not convex caustics may
arise instantly from a point source� An example is given in Figure 
�

The canonical relation of the operator GM�� is given by

CM�� � f�xM�x�� ����t�� t� �M�x�� ����t���BM���x�� ���� x�� ���g� �
��

A convenient choice of phase function is described in Maslov and Fedoriuk �
��� His
results state that one can always use a subset of the cotangent vector components as
phase variables� Let us choose coordinates for CM�� of the form

�xI � �J � �� x��

where I� J is a partition of f
� � � � � ng� Now it follows from Theorem ���
 in Maslov
and Fedoriuk �
�� that there is a function SM���xI � �J � �� x��� such that locally CM��

is given by

xJ � � �SM��

��J
� t � � �SM��

��
�

�I �
�SM��

�xI
� �� � � �SM��

�x�
� �
��

Here we take into account that CM�� is a canonical relation which introduces a minus
sign for ��� A nondegenerate phase function for CM�� is then de�ned by

	M���x� t� x�� �J � �� � SM���xI � �J � x�� �� � hxJ � �Ji� �t� �
��

The canonical relation CM�� for is given by

CM�� � f�x� t������ � x������ j �x� t� �� � � x�� ��� � CM��g�
Thus a phase function for CM�� is 	M���x� t� x�� �J � �� � �	M���x� t� x����J ����� We
may de�ne the canonical relation for GM as CM � CM���CM�� and a phase function
	M � 	M�� if � 
 �� 	M � 	M�� is � � ��

�



We have to assume that the decoupling is valid microlocally around the bicharac�
teristic� In that case Theorem ��
�� of Duistermaat �
�� gives that the operator GM��

is microlocally a Fourier integral operator of order ��
�
� Hence microlocally we have

an expression for GM�� of the form

GM���x� x�� t� � �����
jJj��
�

� �n��
�

Z
AM���xI � x�� �J � ��ei�M���x�x���J ��� d�J d�� �
��

The factors of ���� in front of the integral are according to the convention of Treves
����� H�ormander �
���

The amplitude AM���xI � x�� �J � �� satis�es a transport equation along the bichar�
acteristics� It is an element of MCM

� !����CM�� the tensor product of the Maslov
bundle MCM

and the halfdensities on the canonical relation CM � The Maslov bun�
dle gives a factor ik� which we will not explicitly calculate� We will however give
an expression for the absolute value of the amplitude� using the fact that energy is
conserved to highest order�

For this purpose consider the Green�s function with t� t� �xed� It can be viewed as
an invertible FIO� mapping the displacement at t�� ujt� � E ��X� to the displacement
at t� ujt � D��X�� We denote this FIO by GM���t � t��� For this FIO on can �nd
a Maslov type phase function using �xI � �J � t� x�� to parameterize CM��� We will
calculate the absolute value of the corresponding amplitude AM���xI � �J � t� x��� To
highest order the energy at time t is given byZ

jBM�x�D�uM���x� t�j� dx�

This gives the relation

GM���t� t��
�BM�x�D��BM�x�D�GM���t� t�� � BM���x�� D��

�BM���x�� D���

where GM���t � t��
� denotes the adjoint of GM���t � t��� The left hand side is a

product of invertible Fourier integral operators� so we can use the theory of section
��� in Treves ����� We �nd that to highest order

��������
�

�AM���xI � �J � t� x��
���� �

����det
���

��xI � �J�

����
����BM�x�� ���

BM�x� ��

����
�

�

The value of BM�x� �� is conserved along the bicharacteristic� Also we may use that���det ���
��xI ��J �

��� �
���det ��x�����t�

��xI ��J �x��t�

���� It follows that to highest order

jAM���xI � �J � t� x��j � ����
�

�

����det
��x�� ��� t�

��xI � �J � x�� t�

����
�

�

� �
��

Since the absolute value of the amplitude is a halfdensity on the canonical relation
we can easily transform this to di�erent variables�

We collect the results of this section� using equations �
��� �
�� to obtain the
statement about the amplitude� We require that around some bicharacteristic from
�x�� ��� t�� to �x� �� t� the decoupling is valid� i�e� we have

�



Assumption � On the bicharacteristic the multiplicity of the eigenvalue AM�x� �� in
��� is equal to one�

Lemma ��� Suppose that for some bicharacteristic given by �x� t� �� � � x�� ��� � CM

Assumption � is satis�ed� Then microlocally we have

uM�x� t� �

Z
GM�x� x�� t� t��fM�x�� t�� dx� dt�� �
��

where GM�x� x�� t� is the kernel of a Fourier integral operator with canonical relation
C and order �
�

�
	 mapping functions of x� to functions of x� t� It can be written as

GM�x� x�� t� � �����
jJj��
�

� �n��
�

Z
AM�xI � x�� �J � ��ei�M �x�x���J ��� d�J d�� ����

For the amplitude AM �xI � x�� �J � �� we have to highest order

jAM�xI � x�� �J � ��j � ����
�

�
�
�
j� j��

����det
��x�� ��� t�

��xI � �J � x�� ��

����
�

�

� ��
�


�



� Re�ection at an interface

A popular way to model the subsurface is to assume that it consists of di�erent layers
that have di�erent physical properties� in our case the elastic coe�cients cijkl and the
density �� In this section we will model the re�ection of waves at a smooth interface
between two regions with smoothly varying parameters�

The amplitude of the scattered waves is determined essentially by the re�ection
coe�cients� It is well known how to calculate these for two constant coe�cient media
and a plane interface �see e�g� Aki and Richards �
�� chapter ��� In the case of smoothly
varying media they determine the scattering in the limit of high frequency� see Taylor
���� for a treatment of re�ection and transmission of waves using microlocal analysis�
For the acoustic case see also Hansen �

�

Mathematically the re�ection and transmission of waves is described by an inter�
face problem� Let 
 be the normal to the interface� At the interface the displacement
and the normal traction have to be continuous

Pilul � fi away from the interface

ui � � for t � �

�����ui is continuous at the interface


jcijkl
�

�xk
������ul� is continuous at the interface� ����

Here we have the factors � because of our de�nition ���� We assume the source
vanishes on a neighborhood of the interface� That this is a well�posed problem can
for instance be shown using energy estimates �see e�g� Lions and Magenes �
��� section
�����

The solutions to the PDE with f � � follow from the theory discussed in Section ��
The singularities are propagated along the bicharacteristics� curves in T ��X � R�n�
given by

�xM �x�� ����t�� t� �M�x�� ����t���BM �x�� �����

This is the bicharacteristic associated with the M�� part of the solution� see Section ��
We de�ne a bicharacteristic to be incoming if its direction is from inside the medium
towards the interface in positive time� We de�ne a bicharacteristic to be outgoing if
its direction is from the interface inside the medium in positive time� see Figure ��

Assume that the incoming bicharacteristic stays inside the medium from t � �
until it hits the interface� then the solution along such a bicharacteristic is determined
completely by the PDE and the initial condition� On the other hand the solution along
the outgoing bicharacteristics is not determined by the PDE and the initial condition�
We can put an arbitrary source at the interface� We will show that the solution along
the outgoing bicharacteristics is determined by the interface conditions�

Let�s consider the consequences of the interface condition� We have

WF �uijxn	�� � f�x�� t� ��� �� j there is �n with �x�� �� t� ��� �n� �� � WF �ui�g�







interface

    outgoing (transmitted) modes

 incoming
outgoing (reflected) modes

Figure � Incoming and outgoing rays

It follows that waves travelling along bicharacteristics that intersect the boundary at
some point x�� xn � �� t� with the same value of ��� � interact �re�ect and transmit
into each other�� This is depicted in Figure �

Depending on x� and the �tangential	 slowness ������ the number of interacting
bichararacteristics may vary� For large values of ������ there will be no incoming
or outgoing modes� for small values there are n incoming and n outgoing modes�
The situation where the vertical line in Figure � is tangent to the slowness surface
corresponds to rays tangent to the interface� This is not treated here� Equation ���
gives that the incoming and outgoing modes correspond to the real solutions �n of

detPil�x
�� �� ��� �n� �� � ��

This equation has �n real and complex roots� The complex roots correspond to
evanescent waves�

In the following theorem we show that if none of the rays involved is tangent
there exists a pseudodi�erential operator type relation between the amplitudes of the
di�erent modes at the interface and we calculate the principal symbol in the proof�
Let x 	
 z�x�  Rn 
 R

n be a coordinate transformation such that the interface is
given by zn � �� The corresponding cotangent vector is denoted by �� We have the
following result

Assumption � There are no tangent rays at z�� � �� � �

Theorem ��� Suppose Assumption 
 holds microlocally on some neighborhood in
T ��Z � � R�n�� Let uinN��� be microlocal parts of a solution for the incoming modes	

and suppose GM��� refers to an outgoing mode ����� Microlocally	 the singly re�

ected�transmitted part of the solution is given by

uM����x� t� �

Z
zn	�

GM����x� x�z�� t � t���iDt�

�
R���z�Dz� � Dt��u

in
N����x�z�� t��

�
dz� dt��

����

where R���z�Dz� � Dt� is a pseudodi�erential operator of order ��

In the proof we derive the explicit form of R���z�Dz� � Dt��
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Figure � ��dimensional section of ��dimensional slowness surfaces at some point of
the interface� for the medium on both sides of the interface� The slownesses of the
modes that interact �i�e� re�ect and transmit into each other� are the intersection
points with a line that is parallel to the normal of the interface� The group velocity�
which is normal to the slowness surface determines whether the mode is incoming or
outgoing�
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Proof For the moment we assume we have a re�ector at xn � �� and smooth
coe�cients on either side� We show that at the interface

uM�out�x
�� �� t� � R�

MN�x�� �� D�� Dt�uN�in� ����

We will use the notation cjk
il � cijkl and also �cjk�il � cijkl� The partial di�erential
equation reads in this notation�

��il
��

�t�
� cjk
il

��

�xj�xk

�
������ul� � l�o�t� � ��

This equation can be rewritten in a �rst order system for the vector va of length �n
that contains both the displacement and the normal traction �normal to the surface
xn constant�

va �

�
�����ui

cnk
il
��	����ul�

�xk
�

�
� ����

The �rst order system is

�va
�xn

� iCab�x�D
�� Dt�vb�

where C is a matrix di�erential operator given to highest order by

Cab�x�D
�� Dt� � �i

�
�Pn��

q	�

Pn
j	��cnn���

ij cnq
jl
�
�xq

�cnn���
il

�Pn��
p�q	� bpq
il

��

�xp�xq
� �il

��

�t�
�Pn��

p	�
�
�xp

cpn
ij�cnn���
jl

�
ab

�

Here bpq
il � cpq
il �
Pn

j�k	� cpn
ij�cnn���
jk cnq
kl �we indicated the summations explicitly

because the summations over p� q are 
� � � � � n� 
� while for the j� k indices they are
still 
� � � � � n��

If the matrix Cab�x� �
�� �� has no degenerate eigenvalues then microlocally this

�rst order system can be decoupled� This means there are scalar pseudodi�erential
operators C��x�D�� Dt� and a matrix pseudodi�erential operator La��x�D�� Dt� such
that

Cab�x�D
�� Dt� � La��x�D�� Dt� diag�C��x�D�� Dt���� L

��
�b �x�D�� Dt��

The index � is 
� � � � � �n� The principal symbols Cprin
� �x� ��� �� are the �n solutions �n

to

detP prin
il �x� ���� �n�� �� � �� ����

while the principal symbol Lprin
a� �the columns appropiately normalized� is given by

Lprin
a� �x� ��� �� �

�
QiM����x� ��

�� Cprin
� �x� ��� ����

cinkl��i���� Cprin
� �x� ��� ���k�QlM����x� ��

�� Cprin
� �x� ��� ����

�
aM

�
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We de�ne v� � L��
�a va� �The index � here is not the same as in ����� where it refers

to the outgoing modes on both sides��
If the principal symbol of C��x� ��� �� is real the decoupled equation for mode � is of

hyperbolic type� It corresponds to an outgoing wave or to an incoming wave� depend�
ing on the direction of the corresponding ray� If the principal symbol of C��x� ��� ��
is complex the decoupled operator for mode � is of elliptic type� Depending on the
sign of the imaginary part it corresponds to a mode that �blows up	 going into the
medium� a backward parabolic equation� or one that �dies out	� a forward parabolic
equation� The blow up mode has to be absent�

The matrix La� is �xed up to normalization of its columns� For the elliptic modes
�ImCprin

� �x� ��� �� �� �� the normalization is unimportant� For the hyperbolic modes
the normalization can be such that the vector v� � L��

�a va agrees microlocally with
the corresponding mode de�ned in section �� To see see this assume v� refers to
the same mode as uM � In that case there is an invertible pseudodi�erential operator
��x�D�Dt� of order � such that v� � �uM � Now we can de�ne v��new � ���v��old�
Because � may depend on �n� this factor cannot directly be absorbed in L� However�
since v��old satis�es a �rst order hyperbolic equation the dependence on �n can be
eliminated and the factor ��� can be absorbed in L�

For the purpose of this proof let the in�modes be the modes for which the amplitude
is known� that is the incoming hyperbolic and the �blow up	 elliptic modes� Denote
by L

���
a� � L

���
a� the matrix La� on each side of the interface� We de�ne the �n � �n

matrix Lin such that it contains the columns related to incoming modes of L
���
a� � L

���
a�

as follows

Lin
a� �

�
L����in �L����in

�
a�
�

and de�ne Lout
a� similarly �so here � is slightly di�erent�� The boundary condition now

reads

Lout
a� v

out
� � Lin

a�v
in
� � ��

so if we set R�
�� � ��Lout���

�aL
in
a� � �for the question whether the inverse exists� see the

remark after the proof� then the part referring to the hyperbolic modes give �����

By ���� the uM�out are determined at the interface� �nding how they propagate
into the medium is a �microlocal� initial value problem similar to the problem for
GM�� above� where now the xn variable plays the role of time� The solution is again
a Fourier integral operator� with canonical relation given by the rays� it follows that
we can use 	M���x� x�� t � t�� �J � �� as phase function �take care that n �� J�� The
amplitude AM���xI � �J � �� x�� satis�es the transport equation� however� the restriction
of the FIO to the �initial surface	 xn � � so constructed is a pseudodi�erential
operator that is not necessarily the identity� Let�s therefore tryZ

GM���x�� xn� t� t�� x�� ����x�D�� Dt�uM�out�x
�
�� �� t�� dx�� dt�� ����
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where ��x�D�� Dt� is to be chosen such that the restriction of this formula to xn � �
is the identity� We can use again section ��� of Treves ���� to �nd that the principal
symbol of this pseudodi�erential operator should be

��x�D�� Dt� �
�BM

��
�x� ��� BM���� ��� �

�����xM�t �x� ��� BM���� ��� ��

���� � ����

i�e� the velocity of the ray� the group velocity� After this we take into account that
GM � �

�
iGM��BM �x�D��� � �

�
iGM��BM�x�D� and that Bprin

M �x� �� � �� �
We have now obtained ���� for the case that z � x �no coordinate transformation��

We argue that ���� is also true for z�x� is a general coordinate transformation� We
start with the following equivalent of ����

uM����out�x�z�� ��� t� � R��transf
�� �z�� �� Dz�� Dt�uN����in�x�z�� ��� t�� ����

This follows transforming the system ���� to z coordinates� The symbol of the

�pseudo�di�erential operators transforms as �transf�z� �� � ��x�z��
�
�z
�x

�t
��� Tracing

the steps of the proof we �nd �����
When the interface is at zn � � we can obtain ���� in z coordinates instead of

x coordinates� Transforming GM � uM back to x coordinates we �nd that for x away
from the interface

uM�x� �

Z
zn	�

GM�x� x�z�� t � t��

����det
�x

�z

����
�����zM�n

�t
�z�Dz�� Dt�

����uM�x�y�� t�� dz� dt��

Here
����zM�n

�t
�z�Dz� � Dt�

��� is the transformed version of ����� Thus expression ���� fol�

lows� �

Remark ��� The re�ection coe�cients satisfy unitary relations� see Chapman ����
Kennett �
��� the appendix to chapter �� These follow essentially from conservation
of energy� It follows that the matrix of re�ection coe�cients is well de�ned and in
particular that the inverse Lout

a� exists� Chapman also gives a direct proof of the
reciprocity relations for the re�ection coe�cients�

Remark ��� We have shown that the re�ected
transmitted signal is given by a com�
position of Fourier integral operators acting on the source� In the case of multiple re�
�ections or transmissions �for instance in a medium consisting of a number of smooth
pieces with smooth interfaces� this is also the case� It follows that microlocally the
solution operator describing the re�ected solutions is itself a Fourier integral oper�
ator� where the canonical relation is given by the generalized bicharacteristics �i�e�
the re�ected and transmitted bicharacteristics�� and the amplitude is essentially the
product of the ray amplitudes and the re�ection
transmission coe�cients�
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� The Born approximation

We discuss the modeling and inversion of seismic data in the Born approximation�
where the mediumparameters are written as the sum of smooth background and
a singular perturbation� This is important in its own right� and it will also be a
motivation for our approach to the model with smooth jumps described in the previous
section�

The Born approximation has been discussed by a number of authors� In the
acoustic case� allowing for multipathing �caustics�� see Ten Kroode e�a� ����� Hansen
�

�� For the acoustic problem with nonmaximal acquisition geometry� see Nolan
and Symes �
��� For the elastic case with maximal acquisition geometry �and from a
more applied point of view�� see De Hoop and Brandsberg�Dahl ���� We extend their
results� and give an e�cient� partly new presentation� Also we discuss in detail the
di�erent assumptions that are needed for the modeling and inversion�

��� Modeling

In the Born approximation one assumes that the total value of the medium parameters
cijkl� � can be written as the sum of a smooth background constituent and a singular
perturbation�

cijkl � �cijkl� � � ��

This leads to a perturbation of P

�Pil � �il
��

�

��

�t�
� �

�xj

�cijkl
�

�

�xk
�

We denote the causal Green�s operator for ��� by Gil and its distribution kernel by
Gil�x� x�� t � t��� The �rst order perturbation �Gil of Gil is derived by demanding
that the �rst order term in �Pij � �Pij��Gjk � �Gjk� vanishes� This gives

�Gil��x� �x� t� � �
Z t

�

Z
X

Gij��x� x�� t� t�� �Pjk�x�� Dx�� Dt�Gkl�x�� �x� t�� dx� dt�� ����

Because the background model is smooth the operator �G contains only once re�ected
data�

We use the decoupled equations ���� Omitting the factors QiM �x�D�� Q�x�D���
Nl

at the beginning and end of the product� we obtain an expression for the perturbation
of the Green�s function for the pair of modes �M�N��

�GMN��x� �x� t� � �
Z t

�

Z
X

GM��x� x�� t� t��Q�x�� Dx��
��
Mi

�
�
�il

�

�t

��

�

�

�t
� �

�x��j

�cijkl
�

�

�x��k

�
Q�x�� Dx��lNGN�x�� �x� t�� dx� dt��

��
�
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Figure � The scattering

Microlocally we can write GM as in ����� For GN we use in addition the reciprocity re�
lation GN�x�� �x� t�� � GN��x� x�� t��� The product of operators GMQ�x�� Dx��

��
Mi

�
�x��j

is

a Fourier integral operator with the same phase as GM � and amplitude that is to high�
est order the product AM��x�I � x��

�� �J � ��Q�x�� ����
��
Mii

����j� where ��� � ����x�I � x��
�� �J � ��� In

the resulting expression one of the two frequency variables �� � �� can now be eliminated
using the integral over t�� Asymptotically� by stationnary phase�

R t

�
eit�������� dt� �

������ � ���� The resulting formula for �GMN is� modulo lower order terms in the
amplitude�

�GMN��x� �x� t� � �����
�n��
�

�
�J� �J��

�

Z
BMN ��x�I � �x�I � x��

�� �J �
�� �J � ��

�
�
wMN 
ijkl��x�I � �x�I � x��

�� �J �
�� �J � ��

�cijkl�x��

��x��
� wMN 
���x�I � �x�I � x��

�� �J �
�� �J � ��

���x��

��x��

�

� ei
MN ��x��x�t�x���� �J �
�� �J ��� dx� d�� �J d�� �J d�� ����

Here �see �
�� for the construction of 	M � 	N�

"MN��x� �x� t� x�� �� �J �
�� �J � �� � 	M��x� t� x�� �� �J � �� � 	N��x� t� x�� �� �J � ��� �t� ����

The amplitude factors BMN and wMN 
ijkl are given by

BMN��x�I � �x�I � x��
�� �J �

�� �J � �� � �����
n��
� AM ��x�I � x��

�� �J � ��AN��x�I � x��
�� �J � ��

wMN 
ijkl��x�I � �x�I � x��
�� �J �

�� �J � �� � QiM�x�� ����QlN �x�� ��������j ����k�

wMN 
���x�I � �x�I � x��
�� �J �

�� �J � �� � �QiM �x�� ����QiN �x�� �����
� ����

where in the second and third equation ��� � ����x�I � x��
�� �J � ��� ��� � ����x�I � x��

�� �J � ���
The scattering is depicted in Figure ��
�

We investigate the map �

cijkl
	

� 
	
	

� 	
 �GMN��x� �x� t�� We use the notation C�M for
the canonical relation associated to 	M �


�



Lemma ��� Assume that if ��x� �t� ��� � � x�� ���� � C�M 	 ��x� �t� ��� � � x�� ���� � C�Ng	 then
��� � ��� �� �� Then the map �


cijkl
	

� 
	
	

� 	
 �GMN��x� �x� t� given by ��
� is a Fourier

integral operator E ��X� 
 D��X �X���� T ��� The canonical relation is given by

f��x� �x� �t � �t� ��� ��� � � x�� ��� � ���� j ��x� �t� ��� � � x�� ���� � C�M � ��x� �t� ��� � � x�� ���� � C�Ng�
����

Proof We show that "MN ��x�I � �x�I � t� x�
�� �J �

�� �J � �� is a nondegenerate phase function�
The derivatives with respect to the phase variables are given by

�"MN

��
� � �t��x�I � x��

�� �J � ��� �t��x�I � x��
�� �J � �� � t

�"MN

� �� �J

� � �x �J��x�I � x��
�� �J � �� � �x �J

�"MN

� �� �J

� � �x �J��x�I � x��
�� �J � �� � �x �J �

where �x �J��x�I � x��
�� �J � ��� �x �J��x�I � x��

�� �J � �� are as de�ned in �
��� The derivatives of these
expressions with respect to the variables ��x �J � �x �J � t� are linearly independent� so "MN

is nondegenerate� From the expression ���� it follows that the canonical relation
of this operator is given by ����� By the assumption it contains no elements with
��� � ��� � �� so it continuous E ��X� 
 D��X �X���� T ��� �

We show that the condition is violated if and only if M � N and there is a direct
bicharacteristic from �x� �� to �x����� From the symmetry of the bicharacteristic under
the transformation � 
 ��� t
 �t it follows that indeed in this case the condition is
violated� On the other hand we have BM�x�� ���� � BN�x�� ���� � �� � If ��� � ���� then
we must have M � N � because BM�x�� ���� � BM�x������� and the condition that the
multiplicities of the eigenvalues in ��� are equal to one� If M � N and ��� � ���� then
we have a direct bicharacteristic�

The data is supposed to be given by �GMN��x� �x� t� for ��x� �x� t� in the acquisition
manifold� To make this explicit� let y 	
 ��x�y�� �x�y�� t�y�� be a coordinate transforma�
tion� such that y � �y�� y��� and the acquisition manifold is given by y�� � �� Assume
that the dimension of y�� is � � c� where c is the codimension of the geometry� We
assume the data is given by

�GMN��x�y�� ��� �x�y�� ��� t�y�� ���� ����

It follows that the map �

cijkl
	

� 
	
	

� to the data may be seen as the compose of
the map of Lemma ��
 with the restriction operator to y�� � �� The restriction
operator that maps a function f�y� to f�y�� �� is a FIO with canonical relation given
by #r � f�y�� ��� �y�� y���� ���� ����� � T �Y � � T �Y j y�� � �g� The composition of the
canonical relations #��MN and #r is well de�ned if the intersection of #r�#��MN with
T �Y �n� � diag�T �Y n�� � T �Xn� is transversal� In this case we must have that the
intersection of #��MN with the manifold y�� � � is transversal�

Let us repeat our assumptions� and state the �nal result of this subsection�


�



Assumption � There are no elements �y�� �� ��� ���� � T �Y n� such that there is a
direct bicharacteristic from ��x�y�� ��� ���y�� �� ��� ����� to ��x�y�� �������y�� �� ��� ����� with
time t�y�� ���

Assumption � The intersection of #��MN with the manifold y�� � � is transversal�
In other words

�y��

��x�� ���� ���� �t� �t�
has maximal rank� ����

Theorem ��� If Assumptions �	 � are satis�ed then the operator FMN 
ijkl that maps

the medium perturbation �

cijkl
	

� 
	
	

� to the data is microlocally a Fourier integral op�
erator with canonical relation given by

#MN �f�y��x�� ���� ���� �t� �t�� �
��x�� ���� ���� �t� �t�� x�� ��� � ���� j

BM�x�� ���� � BN�x�� ���� � ��� y���x�� ���� ���� �t� �t� � �g ����

The order equals n���c
�

� The amplitude is given to highest order �in coordinates
�y�I � �

�
J � x�� for #MN 	 where I� J are a partition of f
� � � � � �m� 
� cg� by the product

wMN 
ijkl�y
�
I � �

�
J � x��BMN�y�I � �

�
J � x��	 where

jBMN�y�I� y
��� ��J � x��j �




�
��������

n���c
�

�������x� �x� t�

�y

����
� �

�

����� ��x�� ���� ���� �t� �t�

��x�� y�I � y
��� ��J �$��

�����
�

�

����

Proof The �rst statement is argued above� The order is given by

� �
N

�
� dimX � dimY �

�
�

where � is the degree of homogeneity of the amplitude and N is the number of phase
variables� Now the factor wMN 
ijkl� wMN 
� are homogeneous of order � the degree of
homogeneity of the factor BMN follows from �
��� We have

orderFMN 
ijkl � � � ��� � j �J j� j �J j� �

�
� n� �

j �J j� j �J j� 


�
� �n� 
� c

�
�

This gives the order�
We calculate the amplitude of the Fourier integral operator in Lemma ��
� The fac�

tor wMN 
ijkl is simply multiplicative� Suppose we parameterize ���� by x�� �x�I �
�� �J � �x�I �

�� �J � �� � �� � where �� � �� � De�ne � � �����
�

� $� � �� � �� � Using �
��� ���� we �nd that the

amplitude BMN�x�� �x�I �
�� �J � �x�I �

�� �J � �� satis�es

jBMN�x�� �x�I �
�� �J � �x�I �

�� �J � ��j �



�
��������

n��
�

����� ��x�� ���� ���� �t� �t�

��x�� �x�I �
�� �J � �x�I �

�� �J � ��$��

�����
�

�

The transformation to y coordinates in ����� and not as a halfdensity� gives a factor

j���x��x�t�
�y

j� �

� � �for the Fourier integral operators it would be more natural to transform as

��



a half density�� The amplitude transforms as a halfdensity on the canonical relation�
this gives a factor ����� ��y�I � y

��� ��J�

���x�I �
�� �J � �x�I �

�� �J � ��

�����
�

�

�

The additional factor �����
��c
� is because of the normalization� We �nd ����� �

The canonical relation is naturally parameterized by �x�� ���� ���� �t� �t� such that
BM�x�� ���� � BN�x�� ���� � �� y���x�� ���� ���� �t� �t� � �� There is also a natural density
associated to this set� the quotient density� The Jacobian in ���� means that the
amplitude factor jBMN�y�I� y

��� ��J � x��j is given in fact by the associated halfdensity

times �
�
��������

n��
�

������x��x�t��y

���� �

�

�

If c � � and there are no tangent rays� i�e�

rank
�y��

���t� �t�
� ��

then a practical way to parameterize the canonical relation is by using the vectors

�� � ���� ��

k��� ��k
� �� � ���� ��

k��� ��k
� Sn�� and the frequency � �

��� Inversion

Let us now consider the reconstruction of
�

cijkl
	

� 
	
	

	
from the data� We de�ne some

new notation� let

g� �

�
�cijkl
�

�
��

�

�
�

the forward operator in the Born approximation is denoted by FMN 
��
Supppose we want to invert data from one pair of modes �M�N� �the general case

is discussed at the end of this section�� The standard procedure to deal with the fact
that the problem is overdetermined is to use the method of least squares� De�ne the
normal operator NMN 
�� as the product of FMN 
� and its adjoint F �

MN 
�

NMN 
�� � F �
MN 
�FMN 
� ����

�no summation over M�N�� If NMN 
�� is invertible �as a matrix valued operator with
indices ���� then

F��
MN 
� � �NMN���

��F
�
MN 
� ��
�

�no summation over M�N� is a left inverse of FMN 
� that is optimal in the sense of
least squares��

�Equation 
��� is for case where one wants to minimize the L� norm kdMN � FMN ��g�k
 It can
be easily adapted to the case where one wants to minimize a di�erent norm
 This introduces extra
factors in the amplitude


�




The properties of the compose ���� depend on #MN � Let �Y � � �X be the projection
mappings of #MN to T �Y �n�� resp� T �Xn�� We will show that under the following
assumption NMN 
�� is a pseudodi�erential operator� so that the problem of inverting
NMN 
�� reduces to a �nite dimensional problem for each �x� ���

Assumption � The projection �Y � of #MN on T �Y �n� or on a open conical subset
of T �Y �n�	 for the case we apply a microlocal cuto� to the data	 is an embedding	 i�e�
it is
i� immersive
ii� injective
iii� proper

This assumption implies that the image of �Y � is a submanifold of T �Y �n�� Let
us discuss these requirements� starting with the �rst� Using that #MN is a canonical
relation we have

Lemma ��� The projection �Y � of #MN on T �Y �n� is an immersion if and only if
the projection �X of #MN on T �Xn� is a submersion� In this case the image of �Y �

is locally a coisotropic submanifold of T �Y �n��

Proof This is a property of Lagrangian manifolds� It follows from Lemma ������ in
H�ormander �
��� We give an independent proof�

The symplectic forms �X � �Y � on T �Xn�� T �Y �n� can be viewed as ��forms on
#MN � Because #MN is a canonical relation �Y � � �X on #MN � and in particular
rank �Y � � rank �X � Now consider �X � Clearly rank �X � �n if and only if �X is
submersive�

Consider �Y �� If this projection is immersive then the image has dimension n�m
�in this proof m � dimY � � �n � 
 � c�� while dimT �Y �n� � �m� Then rank �Y � is
at least �n� so it must be equal to �n� On the other hand� if rank �Y � � �n� then the
tangent space of #MN at that point is given by the span of a set vectors of the form

f�v�� w��� � � � � �v�n� w�n�� ��� w�n���� � � � � ��� wn�m�g�
The wi� i � f
� � � � � �ng must be linearly independent because rank �Y � � �n� For
wi� wj� i � �n� j 
 �n we have �Y ��wi� wj� � �� so the wj are linearly independent from
the wi� The wi� i 
 �n must be linearly independent� because ��� wi� are basisvectors
for the tangent space to #MN � So if rank �Y � � �n then �Y � is an immersion� Because
rank �Y � � �n in that case the image is locally a coisotropic submanifold� �

Thus if the �rst part of Assumption � is satis�ed then we can use �x� �� � T �Xn�
as coordinates on #MN � In addition we need a coordinate on the set �x� �� � constant�
that we denote by e� The new parameterization of #MN is

#MN � f�y��x� �� e�� ���x� �� e�� �x� ���g� ����

The results do not depend on the precise de�nition of e� A natural choice is
something like scattering angle and azimuth� �such that �� e together parameterize

��



����� ���� of equation ����� assuming that the variables ��t� �t� can be solved from the
constraints�� because the scattering can always be parameterized in this way� Often
people use part of the y� coordinates� such as the o�set �x� �x if X � R

n
xn
�� However�

these cannot always be used� because of caustics�
We show that the �rst part of Assumption � implies that �BM

��
�x� ����� �BM

��
�x� ���� ��

�� in other words the group velocities at the scattering point do not add up to ��
We may parameterize #MN by parameters x� ���� ���� �t� �t� where ���� ��� are such that
BM�x�� ���� � BN �x�� ���� � �� � The projection �X is given by �x� ��� � ����� Consider
tangent vector to #MN given by vectors v��� � v���� They must satisfy

�BM

��
�x� ���� 
 v��� �

�BN

��
�x� ���� 
 v��� � �v� � ����

So if �BM

��
�x� ���� � ��BN

��
�x� ����� then ���� implies that �BM

��
�x� ���� 
 �v��� � v���� � �� so

that the projection of #MN on T �Xn� is not submersive� If c � �� and rank �y��

���t��t�
�

� �no tangent rays�� then ���� is the only condition on ����� ����� In that case if
�BM

��
�x� ���� �� ��BN

��
�x� ���� then the projection is submersive� In other cases the set of

����� ���� is in general a smaller subset of T �
xXn� � T �

xn�� which should also be taken
into account�

Let us now discuss the second and third part of Assumption �� The second part
is a well known condition� see Ten Kroode e�a� ����� Hansen �

�� Essentially the
condition is that there are no two di�erent singularities in g� mapped to the same
position in T �Y n�� For an analysis of the case where this condition is violated see
Stolk �����

The de�nition of proper is that the preimage of a compact set is a compact set�
So assume we have a compact subset of T �Y �n�� The elements of #MN correspond
to those points where the source and receiver rays intersect� This can be written
as a set where some continuous function vanishes� Therefore this set is closed� It
is also bounded� and hence it is compact� So the third part of the assumption is
automatically satis�ed�

When constructing the compose ���� there is a subtlety that we have to take into
account� namely that the linearized forward operator is only microlocally a Fourier
integral operator� To make it globally a Fourier integral operator we apply a pseudo�
di�erential cuto� ��y�� Dy�� with compact support� Due to the third part of Assump�
tion � the forward operator is then a �nite sum of local Fourier integral operators�

Theorem ��� Let ��y�� Dy�� be a pseudodi�erential cuto� with conically compact
support in T �Y �n�	 such that for the set

f�y�� ��� x�� ��� � #MN j �y�� ��� � supp�g ����

Assumptions �	 �	 � are satis�ed� Then

F �
MN 
���y�� Dy��

���y�� Dy��FMN 
� ����

��



is a pseudodi�erential operator of order n� 
� Its principal symbol is given by

NMN 
���x� �� �




�
�����n

Z
j��y��x� �� e�� ���x� �� e��j����wMN 
��x� �� e�wMN 
��x� �� e�

�
�������x� �x� t�

�y

����
��
����� ��x� ���� ���� �t� �t�

��x� �� e� y���$��

����� de� ����

Proof We use the clean intersection calculus for Fourier integral operators �see e�g�
Treves ����� to show that ���� is a Fourier integral operator� The canonical relation
of F �

MN is given by

#�
MN � f�x� �� y�� ��� j �y�� ��� x� �� � #MNg�

Let L � #�
MN � #MN and M � T �Xn� � diag�T �Y �n�� � T �Xn�� We have to show

that the intersection of L �M is clean� i�e�

L �M is a manifold ����

TL � TM � T �L �M�� ����

It follows from Assumption � that L �M is given by

L �M � f�x� �� y�� ��� y�� ��� x� �� j �y�� ��� x� �� � #MNg� ����

Because #MN is a manifold this set satis�es ����� The property ���� follows from the
assumption that the map ��

Y is immersivene� The excess is given by

e � dim�L �M�� �dimL � dimM � dimT �Xn�� T �Y �n�� T �Y �n�� T �Xn��

� n� 
� c� ����

Taking into account that we apply the pseudodi�erential cuto� ��y�� Dy�� it follows
that ���� is a Fourier integral operator� The canonical relation #�

MN�#MN is contained
in the diagonal of T �Xn�� T �Xn�� so it is a pseudodi�erential operator� The order
is given by � orderFMN 
� � e

�
� n� 
�

We write ��y�� ��� �
P

i �
�i��y�� ���� where each ��i� is such that the distribution

kernel of ��i��y�� Dy��FMN 
��y�� x� can be written as

��i��y�� Dy��FMN 
��y�� x� � �����
�n���c

�
�
jJj
�

Z
��i��y�I� �

�
J � x�

� BMN�y�I� �
�
J � x�wMN 
��y�I� �

�
J � x�ei�S�y

�
I �x��

�
J��h��J �y

�
Ji� d��J �

��
�

where ��i��y�I� �
�
J � x� � ��i��y�I � y

�
J�y�I� �

�
J � x�� ��I�y

�
I� �

�
J � x�� ��J�� The distribution kernel

��



of the normal operator is given by a sum of termsZ
���y�� Dy��FMN 
��y�� x�����y�� Dy��FMN 
��y�� x��� dy�

� �����
�n���c

�
�jJj

Z
��i��y�I� �

�
J � x���i��y�I � �

�
��J � x��

�BMN �y�I� �
�
J � x�BMN�y�I� �

�
��J � x��wMN 
��y�I� �

�
J � x�wMN 
��y�I� �

�
��J � x��

� ei�S�y
�
I �x���

�
��J ��S�y

�
I �x��

�
J��h��

��J �y
�
Ji�h��J �y

�
J i� d����J d��J dy��

We now perform stationnary phase� One can integrate out the variables y�J � �
�
��J � For

the remaining variables we use that

S�y�I� x�� �
�
J�� S�y�I� x� �

�
J� � hx� x�� ��y�I� �

�
J � x��i� O�jx� x�j���

Thus we �nd �to highest order�

�����
�n���c

�

Z
j��i��y�I � �

�
J � x�j�jBMN�y�I � �

�
J � x�j�wMN 
��y�I � �

�
J � x�wMN 
��y�I � �

�
J � x�

� eihx�x����y
�
I ��

�
J �x��i d��J dy�I �

We now do the change of variables �x� y�I � �
�
J� 
 �x� �� e�� and we use ����� In addition

we can do the summation over i� We �nd

NMN 
���x� x�� �
������n


�

Z
j��y��x� �� e�� ���x� �� e��j����wMN 
��x� �� e�wMN 
��x� �� e�

�
�������x� �x� t�

�y

����
��
����� ��x� ���� ���� �t� �t�

��x� �� e� y���$��

����� eihx�x���i d� de� ����

It follows that the principal symbol of NMN 
�� is given by ����� �

So far we concentrated on inversion of data from one pair of modes �M�N�� Often
data dMN will be available for some subset I of all possible pairs of modes� De�ne
the normal operator for this case

N �
X

�M�N��I

F �
MNFMN �

X
�M�N��I

NMN �

If all the NMN are pseudodi�erential operators then N is also a pseudodi�erential
operator� A left inverse is now given by

N��F ��

where F � is the vector containing the FMN � �M�N� � I�

��



� Symplectic geometry of data

In the previous section we saw that the wavefront set of the modeled data can not
be arbitrary� This is due to the redundancy in the data� in the Born approximation
the singular part of the medium parameters is a function of n variables� while the
data is a function of �n� 
 � c variables� This redundancy is also important in the
reconstruction of the background medium �or the medium above the interface in the
case of a smooth jump�� This will be explained below�

Consider again the canonical relation #MN � Denote by F in this section the map
�x� �� e� 	
 �y��x� �� e�� ���x� �� e��  T �Xn� � E 
 T �Y �n�� This map conserves the

symplectic form of T �Xn�� That is� if wxi � ��y�����
�xi

� and similar for w�i � wei� we have

�Y ��wxi� wxj� � �Y ��w�i� w�j� � �

�Y ��w�i � wxj� � �ij

�Y ��wei� wxj� � �Y ��wei� w�j� � �Y ��wei� wej� � �� ����

The �x� �� e� are �symplectic coordinates	 on the projection of #MN on T �Y �n�� which
is a subset of T �Y �n��

The image L of the map F is coisotropic� The sets �x� �� � constant are the
isotropic �bers of the �bration of H�ormander �
��� Theorem �
����� see also Theorem
�
������ Duistermaat �
�� calls them characteristic strips �see Theorem ������� We
have sketched the situation in Figure �� The wavefront set of the data is a union of
�bers�

Using the following result we can extend the coordinates �x� �� e� to symplectic
coordinates on an open neighborhood of L�

Lemma ��� Let L be an embedded coisotropic submanifold of T �Y �n�	 with coor�
dinates �x� �� e� such that ���� holds� Denote �y�� ��� � F �x� �� e�� We can �nd a
homogeneous canonical map G from an open part of T ��X �E�n� to an open neigh�
borhood of L in T �Y �n�	 such that G�x� e� �� � � �� � F �x� �� e��

Proof The ei can be viewed as functions on L� We will �rst extend them to functions
on the whole T �Y �n� such that the Poisson brackets fei� ejg satisfy

fei� ejg � �� 
 � i� j � m� n� ����

where m � dimY � � �n�c�
� This can be done successively for e�� � � � � em�n by the
method that we describe now� see Treves ����� chapter �� the proof of Theorem ���� or
Duistermaat �
��� the proof of Theorem ������ Suppose we have extended e�� � � � � el�
we extend el��� In order to satisfy ���� el�� has to be a solution u of

Heiu � �� 
 � i � l�

with initial condition on some manifold transversal to the Hei� For any �y�� ��� � L
the covectors dei� 
 � i � l restricted to T�y� ����L are linearly independent� so the Hei

are transversal to L and they are linearly independent modulo L� So we can give the

��



ξ)(x,

L

fiber with constant

e coordinate

T*Y’\ 0

Figure � Symplectic structure of #MN �

initial condition u � el�� for u on L and even prescribe u on a larger manifold� which
lead to nonuniqueness of the extensions ei�

We now have m � n commuting vector�elds Hei that are transversal to L and
linearly independent on some open neighborhood of L� The Hamilton systems with
parameters �i reads

�y�j
��i

�
�ei
���j

�y�� ����
���j
��i

� ��ei
�y�j

�y�� ����

Let G�x� e� �� �� be the solution of the Hamilton systems with initial value �y�� ��� �
F �x� �� e� with ��owout parameters	 �� This gives a di�eomorphic map of a neigbor�
hood of the set � � � in T ��X � E�n� to a neighborhood of L in T �Y �n�� One can
check from the Hamilton system that this map is homogeneous�

Remains to check the commutation relations� The relations ���� are valid for
any �� because the Hamilton �ow conserves the symplectic form on T �Y �n�� The

commutation relations for ��y�����
��i

follow� using that ��y�����
��i

� Hei� �

Let MMN the canonical relation associated to the map G we just constructed�
i�e� MMN � f�G�x� e� �� ��� x� e� �� ��g� We construct a Maslov type phase function for
MMN that is directly related to a phase function for #MN �

Suppose �y�I� �
�
J � x� are suitable coordinates for #MN � For � small the constant��

subset of MMN � can be coordinatized by the same set of coordinates� thus we can
use coordinates �y�I � �

�
J � x� �� on MMN � Now there is �see Theorem ���
 in Maslov and

Fedoriuk �
��� a function S�y�I� �
�
J � x� �� such that MMN is given by

e �
�S

��
� � � � �S

�x
�

y�J � � �S

���J
� ��I �

�S

�u�I
�

Thus a phase function for MMN is given by

%MN�y�� x� e� ��J � �� � S�y�I� �
�
J � x� �� � hy�J � ��Ji � he� �i� ����

A Maslov type phase function for #MN is given by %MN�y�� x� e� ��J � ���

��



	 Characterization of seismic data and the imag�

ing re�ection coe�cients

In this section we give our main result� which is a characterization of seismic data�
modeled with the Born approximation or using a model with �smooth jumps	 as in
Section �� We also give a discussion of this result�

First we give an expression for the data modeled using the smooth jump approxi�
mation that is very similar to the expressions for the Born modeled data we obtained
in Section �� The smooth medium above the interface plays the role of the background
medium in the Born approximation�

Recall the coordinates x� ���� ��� that played a role in the Born approximation�
A signal with mode N and covector ��� can be re�ected into mode M � covector
��� if the frequencies � are equal and ��� � ��� is normal to the interface� To high�
est order the pseudodi�erential re�ection �coe�cient	 R���z�� � �� �� leads to a factor

RMN �x� ���� ���� � R��M����N��z
��x�� � ������� ��� The indices �� 
 are not necessary here�

This factor can now be viewed as a function of coordinates �x� �� e� on #MN �strictly
speaking only de�ned for x in the interface� and � normal to the interface�� To highest
order it does not depend on k�k and is it simply a function of �x� e�� We obtain the
following result� which is a generalization of the Kirchho� approximation�

Theorem ��� Suppose Assumptions �	 
	 �	 � are satis�ed	 microlocally for the rele�
vant part of the data� Let "MN �y�� x� ��J�� BMN�y�I� x� �

�
J� be phase and amplitude as in

Theorem ��
	 but now for the smooth medium above the interface� The data modeled
with the smooth jump model is given microlocally by

dMN�y�� � �����
jJj
�
� �n���c

�

Z
�BMN�y�I� x� �

�
J��i�����RMN�y�I� x� �

�
J� � l�o�t��

� ei
MN �y��x���J���zn�x�� d��J dx� ����

i�e� by a Fourier integral operator with canonical relation #MN and order n���c
�

� 

acting on the function ��zn�x���

Proof We write the distribution kernel of the re�ected data in a similar form as
����� First recall the reciprocal expression for the Green�s function�

GN �x�z�� �x� t�� � �����
j �Jj��
�

� �n��
�

Z
AN��x�I � x�z�� �� �J � ��ei�N ��x�x�z��t���� �J ��� d�� �J d��

By using Theorem ��
� and doing an integration over an t and a � variable one �nds
that the Green�s function for the re�ected part is given by

Gre�
MN��x� �x� t� � �����

j �Jj�j �Jj��
�

�n

�
Z
zn	�

�
�i�AM ��x�I � x�z�� �� �J � ��AN ��x�I � x�z�� �� �J � ��R��M���N��z� �

�� �� � l�o�t�
	

� ei
MN ��x��x�t�x�z���� �J �
�� �J ���

����det
�x

�z

���� d�� �J d�� �J d� dz�� ����

��



where � � depends on �x�z�� ���� �the indices �� 
 for the re�ection coe�cients have
been explained in Section ��� The integration

R
dz� is now replaced by

R
��zn�dz�

The latter can be transformed back to an integral over x� Thus we have the following
expression

�����
j �Jj�j �Jj��

�
�n

Z �
�i�AM��x�I � x�z�� �� �J � ��AN��x�I � x�z�� �� �J � ��R��M���N��z� �

�� � l�o�t�
	

� ei
MN ��x��x�t�x��� �J �
�� �J �����zn�x�� d�� �J d�� �J d� dx� ����

This formula is very similar to ����� only the amplitude is di�erent and

cijkl�x�

	�x�
� 
	�x�
	�x�

is replaced by the ��function ��zn�x��� The phase function "MN now comes from the
smooth medium above the re�ector�

The data is modeled by Gre�
MN��x� �x� t�� with ��x� �x� t� in the acquisition manifold�

see the text following Lemma ��
� We follow the approach of Section �� and do a
coordinate transformation ��x� �x� t� 	
 �y�� y���� such that the acquisition manifold is
given by y�� � �� It follows that under Assumptions �� � the data is the image of a
Fourier integral operator acting on ��zn�x�� and that it is given by ����� �

We now show our main result� by applying the results of the previous section on
the Kirchho� modeling formula ����� and its equivalent in the Born approximation
�����

Theorem ��� Suppose microlocally Assumptions �	 
	 �	 �	 � are satis�ed� Let
HMN be the Fourier integral operator with as canonical relation the extended map
�x� �� e� �� 	
 �y�� ��� constructed in Section �	 and with amplitude to highest order
given by ����

n
� ��i��BMN �y�I� x� �

�
J � ��	 such that BMN�� � �� is as given in Theo�

rem ��
� Then the data in both Born and Kirchho� approximation is given by HMN

acting on a function rMN�x� e�� For the Kirchho� approximation

rMN�x� e� � �pseudo�x�Dx� e����zn�x��� ����

and to highest order rMN�x� e� � RMN�x� e���zn�x��� For the Born approximation the

function rMN�x� e� is given by a pseudodi�erential operator acting on
�

cijkl
	

� 
	
	

	
�
	

with principal symbol ��i��x� �� e����wMN 
��x� �� e�	 see �����

Proof We do the proof for the Kirchho� approximation using ����� for the Born
approximation it is similar� Since Assumption � is satis�ed� the projection �Y � of
#MN into T �Y �n� is an embedding� and the image is a coisotropic submanifold of
T �Y �� Therefore we can apply Lemma ��
� Formula ���� gives that the factor ei
MN

can be written as

ei�SMN �y�I �x��
�
J ����hy�J ��

�
J i� � ������n���c�

Z
ei�SMN �y�I �x��

�
J ����hy�J ��

�
J i�he��i� d� de

� ������n���c�

Z
ei�MN �y��x�e���J ��� d� de� ����

��



So the number of phase variables is increased by using stationnary phase� Let
BMN �y�I� x� �

�
J � �� be as described� Then we obtain

dMN�y�� � �����
jJj�n���c

�
� �n���c

�

�
Z �

����
n
� �i�����BMN�y�I� x� �

�
J � ��RMN�x� e� � l�o�t�

�
� ei�MN �y��x�e���J �����zn�x�� d��J d� dx de� ��
�

In this formula the data is represented as a Fourier integral operator acting on a
function of �x� e� given by ��zn�x��� Multiplying by H��

MN gives a pseudodi�erential
operator of the form described acting on ��zn�x��� Thus we obtain the result� �

Thus given the medium above the re�ector �in Kirchho� approximation� the func�
tion rMN�x� e� can be reconstructed by applying the Fourier integral H��

MN to the data�
Hence we have the following result for Kirchho� data�

Corollary ��� Suppose that the medium above the re
ector is given	 and that it
satis�es Assumptions �	 
	 �	 �	 �� Then one can reconstruct position of the interface
and angle dependent re
ection coe�cient R���x� e� on the interface�

The operator HMN transforms the data to �x� e� coordinates� If e is chosen as
scattering angle and azimuth we have a transformation of the data to subsurface
position and scattering angle
azimuth coordinates� which is new� The advantage of
these coordinates is that multipathing is incorporated�

The motivation for Lemma ��
 can now also be explained� Suppose there is high
frequency data that is not from a given model� In the Kirchho� case this may be
because the medium above the interface is not correctly chosen� or because the data
cannot be modeled at all by Kirchho� modeling� To such data there is no natural value
of the scattering angle
azimuth associated� So to transform it to �x� e� coordinates
the value of e must be chosen� This is precisely the choice that we have in the proof
of Lemma ��
� where the function e�y�� ��� on T �Y �n� is chosen�

It is known how to transform data to the �x� e� domain when e is chosen to be
the o�set� Assume X � R

n
xn
�� �X � R

n�� � fx � R
n j xn � �g� and the acquisition

manifold is given by �X � �X���� T �� In the absence of certain degenerate ray
geometries e can be the o�set e � �x � �x � R

n�� � This coordinate is automatically
de�ned on all of T �Y �n�� which gives automatically an extension as in Lemma ��
�
De�ne the midpoint coordinate m � �x��x

�
� The operator HMN is now for each �xed

value of h an invertible Fourier integral operator mapping functions �m� t� to functions
of x � X�

��




 Reconstructing the smooth part of the medi�

umparameters

The result of the previous section gives information on the problem of reconstructing
the medium above the interface� or� in the Born approximation� of the background
medium� Suppose there is a redundancy in the data� i�e� the dimension of the variable
e� n � 
 � c 
 �� If the smooth mediumparameters above the interface are correct�
then applying the operator H��

MN of Theorem ��� to the data results in a re�ectivity
function rMN �x� e�� such that the position of the singularities does not depend on
e� This can be used as a criterion to determine whether the medium above the
interface or the background medium is correct� This technique is called velocity
analysis� because in the acoustic case one determines in this way the local propagation
speed of the acoustic waves� If the smooth medium parameters above and below
the interface are correct� then also the amplitude of the singularities of rMN�x� e�
should be proportional to the re�ection coe�cients� This could also be used in the
determination of the medium above the interface� However� information about the
position of the singularities �traveltimes� is often more reliable than information about
the amplitudes�

This is well known in the case where e is given by the o�set� e � �x� �x� Thus we
have generalized this method to using any coordinate e� in particular we can use the
scattering angle� which depends only on the phase directions at the scattering point�

We mention the two most important criteria to measure how well the data �line
up	� see Symes ��
� for a discussion� The �rst criterium is called �stacking power	�
Assume the re�ection coe�cient that has the same sign for each e� then the integralZ ����

Z
rMN�x� e� de

����
�

dx

is maximal when the data line up�
The second way to measure how well the data lines up is essentially by taking

the derivative with respect to e� If rMN�x� e� depends smoothly on e as in ����� then
�
�e
rMN�x� e� is one order less singular �for instance in a Sobolev space� than if it would

not have this smooth dependence on e� One can now try to �nd the medium above
the re�ector by minimizing the semblance norm



�rMN

�e
�x� e�






�

� ����

where a suitable norm should be chosen �we do not go into this�� Taking also the
factor in front of the � function of rMN into account� see ����� we obtain that to the
highest two orders �

RMN �x� e�
�

�e
� �RMN

�e
�x� e�

�
rMN�x� e� � �� ����

If RMN �x� e� is nonzero then the lower order terms can be chosen such that this
equation is valid to all orders�

�




a� e

x

b� e

x

Figure � Examples of the singularities of rMN�x� e�� when the medium above the
re�ector is correct �a�� or incorrect �b��

Conjugating the di�erential operator of ���� with the invertible FIO HMN we
obtain pseudodi�erential operator on D��Y ��� Thus we obtain the following corollary
of Theorem ���

Corollary ��� Let the pseudodi�erential operators QMN�y�� Dy�� be given by

QMN �y�� Dy�� � HMN

�
RMN�x� e�

�

�e
� �RMN

�e
�x� e�

�
H��

MN �

Then for Kirchho� data dMN�y�� we have to the highest two orders

QMN �y�� Dy��dMN�y�� � �� ����

For values of e where RMN �x� e� �� � the operator QMN�y�� Dy�� can be chosen such
that ���� is valid to all orders�

��



Notation

n dimension of space
x position in medium
X subset of Rn where the medium is
subscript i� j� k� l indices space variables and elastic indices
�ij Kronecker delta
t time
�� � � etc� cotangent vectors corresponding to x� t�etc�
y� coordinates on acquisition manifold
��x� mass density in the medium
cijkl�x� elastic tensor
ui normalized displacement� see ���
fi normalized elastic force density� see ���
Pil normalized elastic wave operator� see ���
subscript M�N indices over elastic mode
PM�x�D� wave operator for each mode ��do�� see ���
QiM�x�D� pseudodi�erential operator that diagonalizes Pil

�contains the polarization vectors�
uM � fM amplitude and force density of each mode
Ail spatial part of the wave operator
AM�x�D� spatial part of decoupled wave operator ��do�
BM�x�D� square root of AM�x�D�� see above �

�
uM��� fM�� amplitude and force density for �rst order equations
xM �x�� ��� t�� �M�x�� ��� t� bicharacteristic� see �
��
GM�� Green�s function for �rst order decoupled equations
CM��� CM canonical relation of GM��� GM � see �
��
	M��� 	M phase function for GM��� GM

AM���xI � � � � � amplitude function for GM��

subscript I� J partition of some set f
� � � � � kg in two disjoint subsets
xI fxi j i � Ig
superscript prin to indicate that we have a principal symbol

subscript a index for the �n component vector of ����
R�
�� re�ection coe�cients %DO� for amplitudes

R�� re�ection coe�cients %DO� see Theorem ��

va displacement and traction ����
v� decoupled displacement and traction� see below ����

��



�cijkl� �� medium perturbation in Born approximation
�Gil� �GMN perturbation of Green�s function
dMN�y�� data� for a pair of modes �M�N�

g�

�

cijkl
	

� 
	
	

	
FMN� operator mapping g��x� 	
 dBornMN �y��
"MN phase function for FMN�

BMN � wMN 
ijkl� wMN 
� amplitude factors for FMN�

#MN canonical relation of FMN�

e � E coordinate on #MN together with �x� ��� see ����
�X � �Y � projection from #MN to T �Xn�� resp� T �Y �n�
NMN�� normal operator F �

MN�FMN�

�Y � symplectic form on T �Y �n�
MMN canonical relation extending #MN � see Section �
%MN phase function extending "MN � see ����
rMN�x� e� �re�ectivity	 function� see Theorem ���
HMN operator mapping rMN�x� e� to data� see Theorem ���
QMN�y�� Dy�� pseudodi�erential operator that annihilates data�

see Corollary ��


We use the Einstein summation convention �summation over repeated indices��
unless explicitly mentioned� We use the notation Q�x�D� for a pseudodi�erential
operator with symbol Q�x� ���

��
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