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Abstract

Everybody who has some experience in doing mathematics knows� that di�

mensional reduction and projection are useful tools to confront problems that

are too complicated to solve without any simpli�cation� Who hasn�t� occasion�

ally� but notwithstanding timidly� suggested that perhaps it would be a good

idea to study the simple one�dimensional case �rst before trying to understand

the real�world three�dimensional problem� Apparently� it is a wide�spread faith

that such simpli�cations will not damage the essential mathematical or physical

truth that is hidden in the original problem� But is this faith founded� Re�

gardless of the answer� one should realize that in many applications there is no

plausible alternative� so it would be unfair to judge too harshly on those who

solve reduced problems and� with due mathematical care� formulate interesting

and strong theorems and hypotheses on the full problem� Among them are the

people from the �eld of numerical linear algebra�

I� Tosca� the rabbit and the physicist

Visiting the shadow theater Laterna Magica in Prague in the spring of ����� I was
truly impressed by the skillful way in which the puppeteers moved their heroes in
such a way� that their shadows on the screen told me something of which I hardly
doubted it was the full story� Sure� there was one dimension lacking� and sure� it
was all in black and white� but somehow Tosca was still pretty and il Barone Vitel�
lio Scarpia still collapsed when the kitchen knife hit target� Arriving back at my
o�ce at the Matematicky Ustav of the Akademie V�ed �Cesk�e Republiky� where I was
employed at that time� I sat down at my desk� mournfully contemplated on spending

one tenth of a month�s salary in one evening� switched on a spotlight� and started
to project images on the wall by folding my hands� Rabbit� Camel� Crocodile� All
just as I had been taught many years before�

�
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It took me a while before I realized that the shadow theater play and my own brave
though unpublicized attempts to produce art of some kind� were two entirely dif�
ferent things� As a matter of fact� they showed opposite aspects of the concept of
projection	 preserving the reality as much as possible 
the shadow theater�� and
creating false images 
there is� after all� a non�negligible di�erence between a pair of
hands and a rabbit�� Like many things in life� it all depended on the point of view�
or� as a physicist from the previous century put it� on the frame of reference� Indeed�
after I moved the spotlight on my desk by a futile twenty centimeters� the shadow
on the wall pretty much resembled my very own two hands� folded together in some
unnatural manner� but with the recognizable curved little 
ngers that enable me to
hit an octave plus a third on the piano�

II� Oversized problems in linear algebra

In linear algebra� two of the most frequent and important problems that are posed
are the linear system problem and the eigenvalue problem� As soon as students enter
university 
and if we�re lucky� sometimes even before�� they are asked to solve the
typical Ax � b and Ax � �x� Tedious 
and not seldom incorrect� calculations follow�
techniques like Gaussian elimination and 
nding roots of polynomial equations 
Ah�
Let the degree be not too high or a factorization obvious�� are applied� and answers

not seldom incorrect� are given� Should we tell those students that when Industry
knocks on the door� it comes with matrices of size ten thousand times ten thousand�
One million times one million� If we do� wouldn�t it then be not more than decent
to teach them about projection and dimensional reduction�

Subspaces� bases and projections

Having agreed on this� the question is� how does this all work� The answer is
simpler than one might think� and the mathematics we need in order to understand
the basic principles� is not much more than what we present in this small section�
Let�s suppose that the matrix from our linear system or eigenvalue problem has size
n � n� and choose a k�dimensional subspace V of IRn� Typically� one should think
of k as being much smaller than n� Let V be a matrix with k mutually orthonormal
columns v�� � � � � vk spanning V � Then every element of V can be written as V u for
some vector u � IRk � The entries of u are the local coordinates of V u with respect
to the basis v�� � � � � vk of V � Clearly� by orthonormality of the columns of V and
the fact that V TV has as entries the Euclidean inner products vTi vj � 
vi� vj�L� 	�
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The matrix V V T is important too	 using V TV � I we see that for all y � IRn� V T 
y�
V V T y� � �� and from this it follows that z � 
y� V V T y� is orthogonal to V � After
all� it is orthogonal to each of the columns of V 	
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Since V u � V for all u � IRk� we have in particular that V V T y � V for all y � IRn�
So the relation y � V V T y � V tells us that V V Ty is the orthogonal projection of y
on V � And V Ty are its local coordinates� As a matter of fact� V V Ty can be written
as the more familiar looking expansion

V V T y � 
v�� y�L�v� � � � �� 
vk� y�L�vk� 
��

We are now able to explain how to use projections in the approximation of solutions
of oversized linear algebra problems�

Projecting from extra�large to medium

Concentrate on the linear system problem Ax � b� If we apply A to an element v
of V � then of course we cannot expect the result Av to be in V again� Neither can
we expect b to be in V 
unless we deliberately chose V that way�� But both the
projection of Av on V and of b on V are surely in V � So� imagining ourselves in the
shadow theater� we could ask ourselves what would happen if� instead of demanding
Av and b to be equal� we would demand their projections to be equal� Then on the
screen� the problem looks solved�

Mathematically� we would be trying to 
nd an element v � V such that


PV �A�v � PVb� 
��

where PV is the projection on V � Or� in matrix language� using again that every
v � V can be written as V y for some y� we would be trying to 
nd y such that

V TAV y � V Tb� 
��

This is a linear system again� for the matrix M 	� V TAV � which is �only� k�k big�
Note that it is of this size because in 
�� we imposed equality of the local coordinates
of both projections� Now� just download a computer program to perform Gaussian
elimination on this system� and it will be solved very quickly� Of course� we are not
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so much interested in the local coordinates y� but in the vector v � V y � IRn� which
is the element of V such that the shadow of AV y coincides with the shadow of b�
Naturally� the success of this approach depends on the point of view� But� before
we go into that� let�s 
rst look at the eigenvalue problem�

Extra�large eigenvalue problems

Actually� there is not much di�erence between projection methods for the linear
system problem and the eigenvalue problem� Also in the eigenvalue problem� we can
look for an element v in our subspace V such that the projection of Av coincides
with a multiple �v of v� One thing is obviously di�erent	 �v does not need to be
projected onto V since it is already in it to start with� Since we will demand equality
of the local coordinates again� the projected problem to solve reads in this case as	

V TAV y � V T�V y� or� equivalently� My � �y� 
��

µPAv= v
Vv

Av

We wouldn�t advice anyone to try and factorize the characteristic polynomial be�
longing to this eigenvalue problem of size k� k� Better 
nd some software for small
to medium size eigenvalue problems� or write it yourself after reading Section V of
this paper�

Equal rites

To make the situations for the linear system problem and the eigenvalue problem
coincide a bit more� we will from now on assume that the subspace V is chosen such�
that b is in it� Then also for the linear system problem� the right�hand side does not
need to be projected into the subspace anymore� in fact� everything will� for both
problems� only depend on how much the operator A maps the space V outside of
itself�
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Right or wrong�

Now� look back at Equation 
��� Its solution y gives a vector V y that is in general
not equal to x� To get an idea how far away it is from x� we de
ne the residual for

�� as

r 	� b�AV y � A
x� V y�� 
��

As we see� r is not equal to the error x�V y� but since it is linearly related to it� we
can extract useful information from it� Moreover� without knowing x� the residual
can be easily computed�

V
x

O

y

A
O

r

error residual

V

Apart from that� being the di�erence between the object and its shadow� it is or�
thogonal to the screen� to V � As a matter of fact� the projection method is designed
to yield y� such that r is orthogonal to V � This is exactly what is expressed by the
de�ning equation 
�� for y as V Tr � V T 
AV y�b� � �� For the eigenvalue problem�
all is similar� Given an eigenvalue � of M and a corresponding eigenvector y� just
de
ne the eigenvalue residual as r 	� AV y � �V y and note that it can be easily
computed� Also� it is orthogonal to V by de
nition� In Section VII� we learn a bit
more about residuals�
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Invariant subspaces� exact solutions

The ideal situation is of course the one in which A does not map V outside of itself�
V is then called an invariant subspace which� for invertible A� means that AV � V �
Both the linear system problem as well as 
part of� the eigenvalue problem will
then be solved exactly by our projection method� To see this� 
rst note that� in
matrix language� AV � V means that there exists a small square matrix M such
that AV � VM � Denoting the k�k matrix entries of M by mij � this relation states
that

Avj � m�jv� �m�jv� � � � ��mkjvk � 
��

which indeed expresses that the image under A of a basis vector vj of V is a linear
combination of basis vectors of V � Assuming that b � V and that AV � VM � it
follows that r � b� VMy � V � Recall that r is orthogonal to V � Then� since the
only element in V orthogonal to V is the zero vector� we get VMy � b� or AV y � b�
and hence x � V y� Using the same arguments on 
�� for the eigenvalue residual
r � AV y � �V y� one can check that if V is an invariant subspace� all eigenvalues of
M � V TAV are eigenvalues of A� and all eigenvectors y of M yield eigenvectors V y
of A� We leave this as the proverbial exercise to the reader�

The idea to project a problem 
either in
nite dimensional or almost in
nite dimen�
sional� on a relatively small subspace containing the most essential information goes
back to Boris Galerkin 
����������� John Strutt 
���������� better known as Lord
Rayleigh� and Walther Ritz 
�����������

Lord Rayleigh �������	�	
 and Walther Ritz �������	�	


III� Moving the screen around

The fact that reduction of dimension might really preserve the essentials of the object
that is projected� is now beyond doubt� The problem that remains to be solved� is
where to put the spotlight� or� as we have just seen� where to put the screen� In
order to keep things simple� we will only consider the case in which the spotlight will
project orthogonally on the screen� and then only in our usual daily�life Euclidean
geometry�� This implies that once you�ve decided on the position of the screen�

�There do exist important methods that do not fall in this category
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there�s only one possible position of the spotlight� and vice versa�

Choosing a subspace V and performing the projection gives an approximation of
our linear algebra problem� Computing the residual gives some idea about how
good this approximation is� But what to do next� if we are not satis
ed with this
approximation� The obvious choice is to reposition the screen and the spotlight and
look at the object from a di�erent viewpoint� Of course� this repositioning should�
if possible� not be at random� but based on some heuristic� or strategy� Another
choice is not to reposition the screen� but to make it bigger� to expand it� to add one
or more dimensions to it� Or� in other words� perform a projection on a space W of
bigger dimension such that V � W � Intuitively� this seems to be more promising�
but at the same time it also looks a bit more complicated�

Note
 Regardless of if you want to reposition the space or to expand it� the strategy
should be aimed at moving towards an invariant subspace�

A framework based on expansion

Let�s concentrate on the expansion approach� Of course� we do not want our pro�
jected problem to become too big� so it seems like a good idea to start with a simple
one�dimensional subspace� Then we have the opportunity to strategically expand
this space k � � times by one extra dimension before we arrive at a k�dimensional
subspace� This will surely be better then to start o� with a random subspace of
dimension k� or one chosen by some vague intuition�

?

It will be fairly straight�forward to maintain an orthonormal basis for the subspace�
Assume that Vk spans the current k�dimensional subspace Vk � and that V T

k Vk � I �
Then as soon as we have decided in which direction q to expand� we compute
�v � 
I � VkV

T
k �q 
this is nothing more than orthogonalization of q to Vk�� nor�

malize it to length one � v � �v�k�vk� and set Vk�� 	� 
Vkjv�� which is the matrix
Vk with extra column v� Then V T

k��Vk�� � I while the span of Vk�� is still equal
to the span of 
Vkjq�� After all� by the orthogonalization� we have only removed
components from q that were in Vk already�
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We can also e�ciently compute the projected matrix Mk�� � V T
k��AVk�� on the

expanded space Vk�� using the projection Mk on Vk� Recall that this is the matrix
that we need in order to solve the reduced problem� It will prove to pay o� if we
maintain a matrix Wk 	� AVk during the expansion process� Each time after the
orthogonal expansion v is computed from q� compute w 	� Av and add this as new
column to the current Wk� Then note that

Mk�� � 
Vkjv�T
Wkjw� �
�

Mk V T
k w

vTWk vTw

�
� 
��

and that we have Mk still available from the previous projection�� This means� that
we only need to compute �k � � new entries instead of all 
k� ��� of them�

The resulting iterative projection algorithm is given below� We have skipped the
indices� which are not really necessary in the algorithm�

Algorithm �	 Iterative Projection Method
input� A� V� �� matrix� 
rst subspace� the desired reduction of the residual
W � AV �
M � V HW � projected matrix belonging to the subspace V spanned by V
r � s �residual of projected problem�
while krk � �ksk

q � expansion vector� strategically obtained ����
�v � 
I � V V T �q� orthogonalization of q against V
v � �v�k�vk� normalization
w � Av� compute new column for the matrix W

M �

	
B
 M V Tw

vTW vTw

�
CA �

e�cient implementation of projection
M � 
V jv�T
W jw� using previous M

V � 
V jv�� expansion of the subspace
W � 
W jw�� updating the matrix W � AV
r � residual of the new projected problem derived from M and V �

end �while


Note
 In solving the linear system� the assumption b � V forces us to start with
V �span�b� as initial subspace�

In the algorithm�frame above� we have only sketched the main iteration� We did
not specify how to obtain the vector by which to expand the current subspace�
Sometimes this is done iteratively as well� We will now present one of the most
important and elegant strategies�

IV� Expanding towards an invariant subspace

If the approximation coming from the projection on a subspace does not have the
accuracy that is desired� we need to think about how to expand the subspace in
such a way� that the next projection will give better results� As we have seen in

�Also in the computation of the residual� the vector AV y is needed� this can then be implemented

cheaply as Wky
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the previous� we know that we would like our new space to be closer to invariant
than the one we had� At 
rst glance� this seems a frustrating task	 we started o��
for example� with looking for an eigenvector v 
which is a one dimensional invariant
subspace�� and now our algorithm wants us to iterate towards an invariant subspace
of larger dimension that contains the start�vector as well as v� This might be a
simpler problem 
take the whole space and you�re ready�� but it looks as if we�re
only pushing the real problem slightly further away from ourselves �� In the linear
system case� it seems even worse� All we wanted was to solve a system� and now
we have to iterate towards a smallest possible invariant subspace containing b� Isn�t
this an example of the cure being worse than the disease� Apart from that� what
are the odds that this smallest invariant subspace is not the whole space�

A straight�forward approach

Question� Suppose you�re given a matrix A and a vector b and you�re asked to
produce the smallest invariant subspace V for A such that b is in it� How would you
proceed	

Not hindered by any pre�knowledge� and hoping that the person who put this ques�
tion to you gave you an easy one� you might as well compute Ab and check if this
is� by some funny coincidence� a multiple of b� If this is the case� you can smile
relieved and say �Hey� it�s an eigenvector��� If� on the other hand� it isn�t� then you
do know that V must� at least� contain Ab as well� So� putting V� �� b �� where the
pointed brackets indicate the span of the vectors between them� and V� �� b�Ab ��
we have replaced the question above by the question how to 
nd the smallest in�
variant subspace that contains V�� And� 
nding an answer for this question can
be started o� similarly� Just compute 
a basis for� AV� and see if it�s in V�� Here
it starts getting interesting� because clearly� we only need to check where the ba�
sisvector Ab of V� ends up� If A
Ab� is in V�� we�re ready� and if not� we can de
ne
V� �� b�Ab� A
Ab�� and proceed��

Answer� If the smallest invariant subspace containing b has dimension m� then it
equals Vm� For any k� the space Vk 	�� b�Ab� � � � � Ak��b � is called the k
th Krylov
subspace for the vector b and the operator A� Usually it�s denoted by Kk
A� b�� and
that�s why we will do the same�

As we�ve just seen� a nice property of Krylov subspaces is that if you apply A to it�
you move out of the space in at most one direction� Put mathematically� we have

k � � � dim
Kk
A� v�	 AKk
A� v�� � k� 
��

So� for increasing k� we might say that the Krylov subspace moves� in the rela�
tive sense� towards an invariant subspace� This is not too bad in the light of our
projection methods� And indeed� the Rayleigh�Ritz�Galerkin projection algorithm
combined with Krylov subspaces gives rise to an important class of algorithms in

�This way to tackle a problem seems to be very popular in mathematics� It can be very successful

if many small pushes add up to a big push
�This� actually� is an example in which many slight pushes forward bring you to the answer of

a problem
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both the linear system and the eigenvalue problem case�

xAx

A
3

A

A
2
x

x

x4

Iterative Krylov subspace projection

In the Rayleigh�Ritz�Galerkin framework� we can try to solve our oversized linear
algebra problem by iterating towards an invariant subspace as follows� Starting in
the eigenvalue problem case with a random unit vector v� and in the linear system
case with v 	� b�kbk we do a 
rst projection� Then� upon entering the while�loop�
we propose to use Av as expansion vector for the current subspace� as suggested
by the results of the previous section� But� as it turns out� there is an important
alternative giving the same result�

Note
 The residual r resulting from projection on Kk
A� v� is an element of
Kk��
A� v�� This means that it can be used to expand the subspace� especially
since it is already orthogonal to Kk
A� v�� The orthogonalization step in our algo

rithm therefore becomes super�uous with this choice of expansion�

If the residual of the now two�dimensional projected problem is not small enough�
we repeat the procedure�

Note
 At all iteration numbers k� the columns of the matrix Vk � V form an
orthonormal basis for Kk
A� v� consisting of the startvector and the consecutive
normalized residuals� Moreover� the basis Vk of Kk
A� v� is part of the basis Vk��
of Kk��
A� v��

This last property leads to the following� Since for all k� we have that

A 	 Kk
A� v�
 AKk
A� v� � Kk��
A� v�� 
���
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it follows that A maps the 
rst j columns of Vk on a linear combination of the 
rst
j � � columns of Vk�� for all j � k� Or� in matrix language�

A

�
�����������

Vk

�
�����������
�

�
�����������

Vk vk��

�
�����������

�
������

� � � � �
�

� � �
���

�
�� � �

� � �

�
������ � 
���

The most right matrix� with k � � rows and k columns� we�ll call Hk���k� This
H stands for Hessenberg� because matrices 
hij� such that hij � � for all indices
i � j � � are called upper Hessenberg matrices� The non�zero elements in column
j of Hk���k are the local coordinates of Avj with respect to the basis v�� � � � � vj���
As a matter of fact� since Avi is a linear combination of v�� � � � � vj for all i � j� the
relative magnitude of the entry hj���j measures how much Vk is mapped outside
itself� Denoting the k � k upper part of Hk���k simply by Hk� we can state another
important and interesting observation�

Note
 The projected matrix Mk � V T
k AVk equals Hk� If A is symmetric� then Hk

is also symmetric� and in particular tridiagonal� This means� that in expanding the
projected matrix fromMk toMk��� we know a priori that the new far right column
mk�� of Mk�� �and by symmetry also the last row� will only have two non
zero
elements�

The message is� that in calculating the projected matrix for symmetric A� we can
explicitly make use of those known zero elements to reduce the computational costs�
Moreover� as we will illustrate in the upcoming section� e�cient algorithms are
known to solve linear algebra problems with Hessenberg or symmetric tridiagonal
matrices� so apart from the fact that the reduced problem is smaller than the original
one� it also has a favorable structure�

V� Small and medium problems

For completeness of our toolbox for oversized problems� let�s re�ect for a while on
the small and medium problems� of which we loosely assumed we could just down�
load some software and solve them� Instead of boring you with details on Gaussian
elimination� we�ll introduce you to the QR�factorization� The idea behind it is sim�
ple�

QR�factorization� Let Z be an n� k matrix of rank k� Then there exist an n� k

matrix Q with QTQ � I and a k� k upper triangular matrix R such that Z � QR�

This factorization can easily be constructed� for example by applying 
from the left
to the right� the Gram
Schmidt orthonormalization process to the linearly indepen�
dent columns of Z� The orthonormal result is then Q� and the matrix R contains
orthogonalization coe�cients above the diagonal� and normalization coe�cients on
the diagonal�
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Linear systems and QR�factorization

Any linear system Zx � b can be solved quite e�ciently by QR�factorizing Z and
solving Rx � QT b� The e�ciency comes from the fact that Q�� � QT and from the
comfortable way in which systems with upper triangular matrices can be solved	

Rx � QTb� or

�
��
� � � � �
�

� ��
���

� � �

�
��
�
��
x�
���
xk

�
�� � QT

�
��
b�
���
bk

�
�� 
���

Compute the right�hand side QTb� Then� just start with solving xk from the last
equation� and proceed to higher rows by substitution�

Another important observation is that for Hessenberg matrices in general� which
have already a large amount of zero elements below the diagonal� the QR�factoriza�
tion can be computed far more cheaply then for general matrices� In particular� for
the Hessenberg matrices that arise in our projection algorithms� the QR�decompo�
sition at a certain iteration step can be obtained from the one in in the previous
iteration step at relatively small costs� This all contributes to the e�ciency of the
Ritz�Galerkin projection methods on Krylov subspaces�

The QR�algorithm

The solution of small and medium size eigenvalue problems can be done using the
QR�decomposition as well� Not� of course� by doing one decomposition� but by
doing a repetition of them� After all� since eigenvalue problems are equivalent to

nding roots of polynomials� this is necessarily iterative as soon as the degree of
the polynomial exceeds four� Before we proceed� let�s 
rst highlight the Schur form
of a matrix Z� Its existence can be proved by a rather straight�forward induction
argument�

Schur canonical form� Let Z be a square matrix� Then there exists a matrix Q
with QTQ � I and an upper triangular matrix R such that ZQ � QR� The diagonal
elements of R are equal to the eigenvalues of Z�

Please do note the similarity 
but equally important� the di�erence� between the
Schur form and the QR�decomposition� Doesn�t this ask for an algorithm to produce
the Schur form by means of QR�decompositions� And in fact� a very simple idea
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would be to do a Picard iteration or successive substitution on ZQ � QR as follows	

Start with Q� � I� iterate Qn��Rn�� � ZQn� 
���

where� of course� the left�hand side Qn��Rn�� is obtained by QR�decomposition of
the right�hand side ZQn�

y=x

QR=AQ

Clearly� any 
xed point of this iteration yields a Schur form� And believe it or not�
this simple looking idea is at the foundations of one of the most successful eigenvalue
algorithms to compute the Schur form of a small size matrix� the QR
algorithm�
which is a more advanced implementation of the same idea�

QR�algorithm� The basic QR
algorithm is Picard iteration on the Schur canonical
form� using QR
decomposition at every iteration step�

To be precise� the QR�algorithm is usually presented as follows	

Start with �Q�
�R� � Z� iterate �Qn��

�Rn�� � �Rn
�Qn� 
���

In this form� the intuition behind it is less clear� but the algorithm is more robust
and cheaper� Some manipulations give that 
��� actually produces �Qn�� and �Rn��

such that
�Q� � � � �Qn

�Qn��
�Rn�� � Z �Q� � � � �Qn� 
���

which shows that the transformation Qn�� from 
��� is generated as a product of
transformations �Qj � and that the upper triangular matrices are in principle equal
for both iterations� Nice aspect of this formulation is that the right hand side
�Qn

�Rn in 
��� is always spectrally equivalent to the original matrix Z� which follows
immediately from �R�

�Q� � �QT
�Z

�Q� and an induction argument� Moreover� in case
the algorithm converges� we have that �Qj 
 I � so �Rj

�Qj 
 R� the triangular QR�
factor of Z� A last favorable property results from the following�

Note
 If Z is an upper Hessenberg matrix� then so are its orthogonal QR
factor Q
and the product RQ� In that case� one only needs to perform the relatively cheap
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QR
decompositions for Hessenberg matrices in each step of the iteration ��
��

Therefore� if Z is not upper Hessenberg to start with� it is worthwhile to transform
it such� that the result is indeed an upper Hessenberg matrix� Note that this can be
realized by transformation to an orthonormal basis of a full Krylov subspace� For
symmetric matrices� the situation is even more favorable�

Note
 In our initial iteration ����� even if we assume Z to be a Hessenberg matrix�
the right
hand side ZQn is not upper Hessenberg anymore� In fact� being the product
of two upper Hessenberg matrices� it has one more non
trivial subdiagonal�

Shifts and lucky guesses

It would go to far to try and explain the convergence behavior of the QR�algorithm�
A few words� however� won�t harm our cause� First of all� let�s re�ect on what
happens to the QR�decomposition if Z is singular� If we assume that Z is an upper
Hessenberg matrix with non�zero elements below the diagonal� then the singularity
can only be caused by the last column being a linear combination of the others� Still�
a QR�factorization can be made� one in which the last column of Q spans the one
remaining dimension 
as would have happened without the singularity� of course�
but with an upper triangular matrix R � 
rij� with rkk � �� It might seem a trivial
observation� but then the matrix QTZQ � RQ has last row zero� which shows that
Z has a zero eigenvalue�

The QR
algorithm with shifts exploits this idea to accelerate the original QR�
algorithm� First� Z is transformed to an upper Hessenberg matrix Z�� then it iterates
as follows�

Start with �Q�
�R� � Z� � ��I� iterate

�
Zn�� 	� �Rn

�Qn � �nI�
�Qn��

�Rn�� 	� Zn�� � �n��I�

���

The intuition behind this is� that again at each stage� the upper Hessenberg matrix
Zn has the same eigenvalues as the original matrix Z� And if Z � �nI happens to
be singular� then the last row of Zn equals �eTn � showing explicitly that Z has an
eigenvalue equal to �� We could then proceed the QR�iteration with the 
k � ���

k � �� upper�left block of Z� which has the remaining eigenvalues of Z�

If we would be able to a priori guess the eigenvalues exactly right then we would
be earning our money di�erently than now� But based on a continuity argument�
we might hope that if we use a shift that is close to an eigenvalue� then for the last
row eTk Zn of Zn we have

eTnZn � �eTk � hT � 
���

where h � 	ek���
ek has a relative small norm compared to j�j� This would make
�� � ��
 an approximation of an eigenvalue� while the size of 	 would indicate how
good this approximation is� Hoping that it is an even better approximation than ��
we could continue the QR�algorithm with next shift equal to ���

Note
 As soon as the subdiagonal element at position 
j � �� j� of the matrix Zn

is very small� the problem might be split in two by replacing this small element by
zero� and continuing with the remaining j � j and 
k � j � ��� 
k � j � �� blocks�
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A last remark on the QR�algorithm� If Z is a real matrix with complex eigenvalues�
then it is clearly impossible to iterate towards a Schur decomposition using real shifts
only	 every matrix Rn that is produced� will have real entries as long as real shifts
are used� Complex and double shifts are remedies for this� but we won�t present any
details�

VI� Feedback in the eigenvalue algorithm

Let�s return to our projection methods for very large linear algebra problems� Recall
that they produce small systems or small eigenvalue problems to solve� for which
the small matrix is upper Hessenberg or even tridiagonal� Those were exactly the
matrices for which the algorithms in the previous section work very e�ciently� So
it seems as if we�re doing 
ne so far� and that everything 
ts perfectly together� We
will now solely concentrate on the eigenvalue problem and explain a mechanism that
will 
t in the total framework even more beautifully�

How to start ���

Suppose that you�re interested in 
nding the� say� p eigenvalues of a matrix A that
are closest to some target value � in the complex plane� The ideal situation would
be to have a vector available that is a linear combination of 
ve corresponding
independent eigenvectors or Schur vectors� Then in 
ve steps� an invariant subspace
would be generated� and the problem solved� However� knowing nothing about the
spectrum initially� there�s not much better we can do than to start our eigenvalue
algorithm with some random vector v� Doing a number of iterations and watching
the eigenvalue approximations then gives a 
rst idea about the part of the spectrum
of A� Since it might be that our startvector has only small components in the
directions of the eigenvectors we are interested in� it could very well happen that
convergence to other eigenvalues than the ones we want� occurs� Regardless of
that� the number of iterations should not become too large� the calculations become
slower and slower since the work per iteration step increases quadratically� and also
the computer memory might become too full to have good performance� So� what
to do if we do not want to expand our subspace any further� but we still haven�t
found what we�re looking for�

��� and how to proceed

Suppose we have done k � p steps of the algorithm� which gives us k approximate
eigenvalues� The idea is to divide those into two groups	 those we 
nd uninterest�
ing� say ��� � � � � ��� because they are relatively far away from the target � � and the
remaining �good� ones� say ����� � � � � �k� Then� compute

�v �
�v

k�vk � where �v � ��
j	�
A� �j�v� 
���

and start the algorithm all over again but now with �v as startvector� The philosophy
behind this is� that apparently� v contained too large components in uninteresting
directions 
that is why and how ��� � � � � �� were generated in the 
rst place�� By
applying the product in 
��� to v� we aim to partially remove or �lter away those
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components from v� so that starting again with �v hopefully won�t yield approxima�
tions of those uninteresting eigenvalues again�
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The big disadvantage is� that it seems quite an expensive procedure to apply a pro�
jection method only to 
nd out afterwards that we started with the wrong vector�

Recycling Krylov subspaces

Watching the screen� we 
nd out that it could have been better positioned� We
even see that some directions are okay� and some aren�t� Nevertheless� the previous
section suggests that we roll it up� put it away and start all over again� Now� can�t
that be done better� Wouldn�t it be a shame to throw away this orthonormal basis
of the k�dimensional Krylov subspace that we so carefully built and maintained�
After all� isn�t it true that we only want to get rid of � dimensions� and not of all
of them� Indeed� for our new startvector �v from 
���� we have that �v � K�
A� v��
which implies that

Kk��
A� �v� � Kk
A� v�� 
���

Would it be too much to ask if there�s a way to extract this subspace from Kk
A� v��
and while we�re at it� also an orthonormal basis for it and the Hessenberg represen�
tation of A on this orthonormal basis� Or are we pushing our luck now�

Let�s 
rst write down what we have� We have� with our random start v� matrices
Vk�� and Hk���k � 
hij� such that

AVk � Vk��Hk���k � or� equivalently� AVk � VkHk � hk���kvk��e
T
k � 
���

Second� let�s write down what we would like to have	 an orthonormal basis Wk����

for the k���� dimensional subspace Kk����
A� �v� and an upper Hessenberg matrix
�Hk�����k�� such that� with q 	� k � ��

AWq � Wq��
�Hq���q� or� equivalently� AWq � Wq

�Hq � �hq���qwq��e
T
q��� 
���
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The reason why we would like to have this is� that we would have mimicked the 
rst
q steps of our algorithm with startvector �v without actually performing them� and
from there on we could just continue the algorithm by expansion with the residual
for the projected problem�

Two important observations regarding bases for Krylov subspaces should be made
here
� First one is� that when the basis is orthonormal� it is uniquely determined
by the 
rst vector� give or take the sign of the basisvectors� Secondly� not only
does A reduce to upper Hessenberg form on such a basis� also the reverse holds	 if
AVk � Vk��Hk���k with Hk upper Hessenberg� then Vk spans the Krylov subspace
Kk
A� Vke��� So� in fact� in order to 
nd Wq� all we need to 
nd is the orthogonal
transformation Q such that VkQ has �v as 
rst column� and such that A has upper
Hessenberg form on the 
rst q columns of VkQ� We�ll give the elegant solution of
this problem in the case q � k � �� which corresponds to 
ltering away only one
component of our original startvector v� If one wants to 
lter awaymore components�
the generalization is� hopefully� obvious�

The QR�algorithm strikes again

The key to the solution is� surprisingly enough� the QR�algorithm� Just apply one
iteration step of it� with shift �� to the Hessenberg matrix Hk�

QR 	� Hk � �I� and �Hk 	� RQ� �I� 
���

This transformation Q and the upper Hessenberg matrix �Hk leads to the ful
llment
of all the wishful thinking of the previous section� Simply de
ne Wk 	� VkQ� after
which Wk still spans Kk
A� v� since the right�multiplication does not change the
column span� Also� note that WT

k Wk � I � Then� using 
��� and 
���� for the 
rst
column Wke� of Wk we 
nd�

Wke� � VkQe� � VkQ
Re�
r��

�
�

r��
Vk
Hk � �I�e� �

�

r��

AVk � �Vk�e� � �v� 
���

where in the last step� we used that Vke� � v� and that we started� at the left� with
a vector of length one� It remains to be shown that for all j � k � �� the 
rst j
columns Wj of Wk span Kj
A� �v��

Note
 Since Wk does not span K
k
A� �v�� there does not exist an upper Hessenberg

matrix H such that AWk�� � WkH �

It will� however� appear to be possible to alter the last column of Wk such that we
obtain our goal� First note that

VkHkQ � Vk
QR� �I�Q � VkQ �Hk � Wk
�Hk� 
���

which is nothing more than applying 
���� after which we 
nd� using the right 
and
right� relation in 
���� that

AWk � AVkQ � VkHkQ �hk���kvk��e
T
kQ 
���

� Wk
�Hk �hk���kvk��eTkQ�

�By basis we mean the inductively built basis

��



Now� the 
rst k � � columns of the n � k matrix Ek 	� hk���kvk��e
T
kQ are zero�

because Q� being the orthogonal QR�factor of Hk� is an upper Hessenberg matrix�
Both last columns of Ek are known multiples of vk��� let�s say Ekek�� � 	vk�� and
Ekek � 
vk���

E=A

H

+W W

So� writing �Hk�k�� for the 
rst k � � columns of �Hk � we 
nd by comparing the 
rst
k � � columns of 
��� that

AWk�� � Wk
�Hk�k�� � 	vk��e

T
k��� 
���

Since �Hk�k�� is an upper Hessenberg matrix� the only equation in which the last
column wk of Wk appears� is

AWk��ek�� � wk
�hk�k�� � 	vk��� 
���

Note that WT
k��
wk

�hk�k�� � 	vk��� � �� So� if we re
de�ne wk and �hk�k�� as a

unit�vector and scalar such that wk
�hk�k�� equals the right�hand side of 
���� then

rede
ning Wk 	� 
Wk��jwk� 
nally leads to AWk��ek�� � wk
�hk�k�� and hence�

AWk�� � Wk
�Hk�k��� 
���

Summarizing we can say that if we regret to have started the eigenvalue algorithm
with startvector v� then we can still do something about it without throwing away
everything we have done� The QR�algorithm applied to the small Hessenberg ma�
trix Hk provides us with the unitary transformation that selects a subspace from
Kk
A� v� that contains the �most relevant� information�

Note
 As we have seen before� applying a step of the QR
algorithm to Hk with a
shift � that is an eigenvalue of Hk� produces a matrix �Hk that has �eTk as last row�

As a consequence we get �hk�k�� � � in �����

And now� for something completely di�erent ��� What about the objects that we try
to approximate� Do they let themselves be approximated� or do they give rise to
false images on the screen that might just look perfectly okay� like the rabbit that
wasn�t a rabbit�

VII� The complex mine�eld

It is well�known that eigenvalues depend continuously on the entries of the matrix�
In general� we cannot expect to have higher smoothness� as the example

A �

�
� a
� �

�
� ���� � �
pa� 
���
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clearly shows� The same example 
with � � �� also illustrates that the Jordan
canonical form� which is so useful in many theoretical issues� is not even continuous�
as a function from the matrix entries� That is why in the previous we preferred
to use the Schur canonical form� which is in fact continuous as a function of the
matrix entries� and this partly explains the success of eigenvalue algorithms based
on the Schur form� The success becomes even bigger when eigenvalues are simple
and isolated� which makes them di�erentiable�

Introducing the characters

Before we go further� let�s brie�y recall the main classi
cation of matrices� The
nicest group is formed by the Hermitian matrices� for which AH � A� It is a subset
of the larger group of so�called normal matrices� Normal matrices have eigenvectors
that form an orthonormal basis� In fact� they are exactly the matrices for which
A and AH commute� Clearly� they form a subset of all diagonalizable matrices�
which are the ones that have eigenvectors forming a basis� Matrices that are not
diagonalizable are also called defective� which refers to a lack of eigenvectors to form
a basis� Following our linguistic intuition� we tend to think of defective matrices
as the bad guys� As a matter of fact� non�normal matrices in general are often
presumed to be a bit suspect as well� even if they�re not defective� We�ll illustrate
why in the following�

Avoiding the pitfalls

Anything that has to do with eigenvalues� needs to be approached with proper care�
After all� eigenvalues indicate singular behavior� In order to make things even more
singular� people tend to be interested in the following function�

R 	 C 
 IR 	 z �
 k
A� zI���k��� 
���

Each eigenvalue corresponds to a singularity� and the characteristics of the singular�
ity depend on how close a matrix is to defective� or how far away from normal� We
will illustrate this by drawing a logarithmic plot containing the function R and or
its contourlines in the complex plane�
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On the left we see two eigenvalues of a normal matrix� On the right we see the only

twenty�fold� eigenvalue of a non�normal matrix of size twenty� The same contours
are given on a comparable scale� The inner contour corresponds to R
z� � ������
In the left picture� the contours are very tight around the eigenvalues� so that we
cannot even see them� In the right picture� however� there is a big disk in which
R
z� � ������

Note
 In most practical computations� it is hard to distinguish between ����� and
zero� So� the average computer will think that this relatively small matrix has an
�eigendisk� with centre � and radius ���� implying that it is impossible to �nd the
eigenvalue with an accuracy of more than about ten percent�
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In the two pictures above� we present similar plots for a matrix of size six on the
left� and a random matrix of size twenty on the right� What we try to illustrate
here is� that a cluster of singularities close to each other can also make the situation
more complicated� Imagine yourself somewhere in the complex plane� trying to spot
a particular eigenvalue� if there are one million of them around� In particular� if
there�s another eigenvalue around having a �deep� singularity� our object of interest
might just drown in that singularity and remain unnoticed�

Eigen�areas

The message of the previous is clear� It is not the singularity that counts� but the
area in the complex plane in which we cannot distinguish anymore what�s happen�
ing	 do we have a singularity here� or not� The exact eigenvalue could be anywhere
in this area� Of course� we need to be aware of this if we approximate eigenvalues
of any matrix� and those of a very large matrix in particular� As a matter of fact�
each contourline has a nice interpretation� Suppose we have one at height � � Then
it bounds the region within which an eigenvalue can move if the original matrix
A is perturbed by a matrix E with kEk � �� Or� in other words� for each z with
R
z� � �� there exists a matrixE with kEk � �� such that z is an eigenvalue of A�E�
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A

|E|

. λR(z)=|E|

.

If � is small while at the same time the region bounded by the ��contour of R is large�
the eigenvalue is called sensitive to perturbations� Analysis learns that the distance
of A to a defective matrix and its distance to a normal matrix are important factors
that in�uence the sensitivity of eigenvalues�

Residuals revisited

Let�s see how our projection method for eigenvalue problems 
ts into all this� Recall
that we de
ned the eigenvalue residual r 	� AVky � �Vky� where � is an eigenvalue
of the projected matrix Mk and y a corresponding eigenvector of length one� The
residual was supposed to give us an idea how good � and v 	� Vky approximate an
eigenpair of A� We are now able to make this claim more solid�

Consider the surprisingly simple equality�


A� rvT �v � Av � rvTv � �v� 
���

It states that we have found a matrix E � �rvT such that � and v are an exact
eigenvalue and eigenvector of A�E� It all becomes even more interesting when we
realize that kEk � krk and that we are able to compute this norm easily�

Claim
 Let r � Av � �v be an eigenvalue residual coming from our projection
method� Then � lies within the contour R
z� � krk� or equivalently� R
�� � krk�
Now� before getting too excited about this� let�s not forget that computing these
contours is not an easy job� and it might very well be that it is much harder then
computing � and v� But there are situations in which you need some guarantees
about the quality of �� and in those cases this result may be very useful�

VIII� Modern developments� ancient ideas

The eigenvalue algorithm that we have sketched in the previous sections� is not
the only one that is based on projections� Even though the idea of expanding
the subspace towards an invariant subspace is very appealing and natural 
not to
mention� it often works quite satisfactory�� there is another important strategy to
expand the subspace� The idea behind it might seem a bit perverse	 what about
expanding the subspace with error of the problem� then we�re ready at once�
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Moving the problem forward

Hold on� reader� We�re not kidding here� Of course� there is no way that we can add
the error to the space� since by linearity� having the approximation and the error
would mean that we have the solution� But in the case of expansion towards an
invariant subspace� the philosophy was the same	 we didn�t actually ever expect to
get there in the 
rst place� we only wanted to do small steps in the right direction
and stop when we would be close enough� Our new idea is similar in this respect� It
brings a kind of nestedness or recursion into the algorithm� and by means of a little
bit of steering� it might be possible to �nd a balance between the two extremes of
expanding with the error and expanding at random� It is all a matter of where to put
the energy� and by dividing the energy cleverly� we might prevent the subspace from
growing too much while on the other hand preventing to solve the whole problem
by 
nding the perfect expansion vector�

Orthogonal corrections

Suppose you have an initial subspace V spanned by v and that you�re after an eigen�
vector �v� Assume both v and �v to be of unit length� Write � � vHAv for the
eigenvalue approximation belonging to the 
rst projection� and let r 	� Av � v�
be the corresponding residual� Then� if �v �� V�� there exists a unique orthogonal
correction q � V� that yields �v� meaning that q � v and �v � 
v � q��kv � qk�

vq

span 
span v

v

It can be shown that q is a solution of the non
linear equation

q � v and 
I � vvH�
A� �I�q � q
vHAq�� r� 
���

Note that the matrix 
I� vvH�
A��I� in 
��� is singular� not because of �� which�
after all� is only an approximation of an eigenvalue� but because of the projection

I � vvH� on the orthogonal complement V� of v� The orthogonality constraint
q � v together with the fact that r � V�� make 
��� into a better posed problem�
Indeed� the total right�hand side q
vHAq�� r is in V�� and after applying A��I to
a vector w � V� it is projected back onto V�� This makes 
��� resemble a subspace
method� with the very big subspace V��
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Projection on a giant subspace

You might wonder why we would like to do something like that� since we have
stressed all the way� that the dimension of the subspace to project upon should be
kept as small as possible� The answer is that this projection is of a di�erent type�
Its goal is 
fortunately�� not so much to reduce the dimension of the problem� but to
get rid of the dimension that might cause severe computational di�culties� Indeed�
if � is relatively close to an eigenvalue � of A� we might get into the region in the
complex plane where the function R
z� from 
��� is indistinguishable from zero� Or�
equivalently� there would exist vectors such that 
A � �I���w would be too large
to handle� In particular vectors w that make a small angle with the eigenvector �v
belonging to the eigenvalue � would su�er from this� By making sure that A � �I

only acts on vectors in V�� we hope to �lter out vector components that might be
extremely blown up by 
A � �I���� just as we tried to do 
ltering in our restart
strategy for the Krylov subspace method for eigenvalues� So that motivates the
projection on the big subspace� or� working in the orthogonal complement of v�

The equation 
��� still might have several solutions because of the non�linearity�
This is of course because the span of every eigenvector �v of A that is not orthogonal
to v� intersects with the a�ne variety fw� vjwHv � �g� each giving rise to a corre�
sponding orthogonal correction q�

Note
 The solution q of ���� with the smallest norm will give rise to the eigenvector
�v of A that has minimal angle to v� Of course� strictly speaking� there might be
more than one solution q with minimal norm�

Inexact solutions of Riccati equations

Equation 
��� is� in fact� of a well�known type� It is classi
ed as a special kind of
Riccati Equation� named after Il Barone Jacopo Francesco Riccati� Riccati equa�
tions arise in many mathematical 
elds� like control theory� di�erential equations�
and di�erential geometry� It is our goal to 
nd approximations of solutions to the
Riccati equation above� and use those to expand the subspace� Then� after solving
the expanded projected problem� a new approximation of the eigenvector is used to
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write down a new Riccati equation to solve� and the process can repeat itself�

Jacopo Francesco Riccati ����������


We will now comment on three strategies to obtain approximations of solutions of
the Riccati equation 
����

Neglecting the quadratic term

A 
rst idea is to forget about the quadratic term in 
��� and to 
nd the 
unique�
solution �q � v of


I � vvH�
A� �I��q � �r� 
���

This is just a linear system� and we might apply the projection method with Krylov
subspaces� or any other method� to 
nd approximations to its solution�

Note
 Halfway the nineteenth century� Carl Gustav Jacob Jacobi used� in almost
the same context� his Jacobi iteration to �nd orthogonal corrections to approxi

mations of eigenvectors� But instead of expanding the subspace by the solution� he
merely replaced the subspace by the new approximation �he repositioned the screen��

Carl Gustav Jacob Jacobi ����������


Of course� Jacobi did not know about Krylov subspace methods� and also the idea to
expand subspaces was not known at that time� Mind you� he had to do everything
by hand� so his matrices were rather small�
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Note
 Since r � v and By 	� 
I�vvH�
A��I�y � v for all y� the Krylov subspace
Kk
B��r� is automatically orthogonal to v� So all approximations �qk to the solution
�q of 
��� taken from this space� automatically satisfy �qk � v�

Since we already introduced an error by throwing away the quadratic term� we might
as well be satis
ed with an approximation for the solution of 
��� that is not very
accurate� This leads to the following interesting and surprising observation�

Note
 Using a Krylov subspace of dimension k � � to approximate the solution of
���� yields the quite crude approximation �q � �q� 	� �	r for some 	 � IR� which
leads exactly to the Krylov subspace projection method for the eigenvalue problem
treated in Section IV�

Using Picard iteration

As we have seen in the QR�algorithm� the relatively simple concept of Picard it

eration can be a very useful tool to approximate solutions of non�linear equations�
If� instead of the linearization of the previous section� we apply Picard iteration to

���� we could be iterating as follows�

q� � �� iterate qn�� � v and 
I � vvH�
A� �I�qn�� � qn
v
HAqn�� r� 
���

In each iteration step� we have to solve a linear system� so the question is justi
ed
if this extra energy is well�spent� If� on the other hand� in 
nding an approximation
�q� for q� we have computed� say� a k�dimensional Krylov subspace Kk
B��r�� we
might as well use the same subspace to approximate the solution �q� of

�q� � v and 
I � vvH�
A� �I��q� � �q�
v
HA�q��� r� 
���

Note that� since �q� � Kk
B��r�� the right�hand side �qH� 
vHA�q�� � r is also in
Kk
B��r�� We can go for an approximation p � Kk
B��r� of �q� � q� such that
the projection of Bp on Kk
B��r� equals �qH� 
vHA�q�� � r� The big advantage of
this is� that we still have the projected matrix B available from the computation of
�q�� or� even better� its QR�factorization� So� following this strategy� we could call
the Picard iteration a projected Picard iteration� because it takes place completely
within Kk
B��r��
Note
 By linearity� we can write qn�� � q� � w where w solves the projected
equation

w � v and 
I � vvH�
A� �I�w � qn
v
HAqn�� 
���

A non�linear subspace method

Going even one step further� we could try to project 
��� directly on the Krylov
subspace Kk
B��r�� Suppose we have an orthonormal basis for it in the matrix V �
and we write H for V HBV � Then we can try to 
nd v � V y � Kk
B��r� such that

V H
BV y � 
V y�
vHAV y� � r� � Hy � y
hHy�� e�krk � �� 
���
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where we wrote hH � vHAV � If we try to solve this small non�linear equation by
Picard iteration and look at the iterates V yj � they coincide with the qj from the
previous section� So� nothing really new is happening� apart from the fact that we
can interpret the small problem 
��� as a small eigenvalue problem� Indeed�	

B
 � hH

�krk
�

H

�
CA
�

�
y

�
� 
hHy�

�
�
y

�
� 
���

This clearly implies that instead of using a Picard iteration� one could use one or
a few iterations of any e�cient method 
the QR�algorithm�� for smaller eigenvalue
problems to obtain approximations for the eigenvector 
�� y�H for which y has min�
imal norm� Such a y corresponds to the minimal norm approximation q of 
����

Note
 Since the Picard iterations typically only converge if v is close to �v� the
subspace expansion is a natural way to bring v into this convergence area�

Expanding with 
approximate� solutions of the eigenvalue problem 
��� leads to al�
gorithms with generally small subspaces compared to the approach 
���� but with
more expensive iteration steps� It remains to be found out which implementation
of the expansion methods with inexact solutions of the Riccati equation is the most
favorable for which situation�

Methods for invariant subspaces

As you might expect� an invariant subspace is� in general� more stable than a single
eigenvector� Therefore� people recently tend to be more and more interested in
invariant subspaces� and in ways to 
nd them that are di�erent than going vector�
by�vector for an eigenvector basis� In fact� such a basis does not necessarily exist in
the 
rst place�

The ideas of orthogonal corrections can be applied to invariant subspaces as well�
Under similar conditions� one can show that there exists an orthogonal correction
Q to an approximation X of an invariant subspace �X 
both stored as orthogonal
matrices� that satis
es the Riccati equation

Q � X and 
I �XXH�AQ�QM � Q
XHAQ�� R� 
���

where M � XHAX and R � AX � XM is the residual� A di�culty in this
equation is that Q and M don�t commute� so that the linear operator in the left�
hand side that acts on Q� is harder to handle� Nevertheless� the essential ideas of
the eigenvalue algorithm of the previous section can still be applied� and a similar
projection algorithm with expansion by inexact solutions of the Riccati equation

��� can be written down� including the Picard iterations taking place in a Krylov
subspace�

IX� Conclusions

We have introduced projection methods for oversized linear algebra problems� The
ideas involve iterative expansion of the space to project upon� either with the aim

��



to move towards an invariant subspace� or to include more and better approxima�
tions of the object of interest into the space� In the 
rst case� we explained a way to
restart the algorithm without breaking down the whole subspace that was just built�
Or� as you wish� we showed how to rotate towards a sub�subspace that contains the
most relevant information�

Apart from describing the algorithms� we also made some remarks on stability of
eigenvalues and practical problems that may be encountered�

X� Around and about this paper

It was a deliberate choice to write a paper on numerical methods for large linear
algebra problems without referring much to the numerical aspects and without pre�
senting numerical tests of the algorithms� Instead� the geometrical aspects were
highlighted� One of the other goals was to refrain as much as possible from the spe�
cialized terminology that has become part of the daily vocabulary of the numerical
algebraist� and which might be less common for the reader with a general math�
ematical background� For such readers� it seemed better to talk about a method
projecting on a certain type of subspace and augmented with a clever feedback mech�
anism� then to call it the Implicitly Restarted Arnoldi Algorithm�

Naturally� in practice� also topics like implementation� numerical stability� the ef�
fects of 
nite precision arithmetic� convergence speed� and computational costs are
of interest and of importance� The reader who is interested in those aspects is re�
ferred to the literature�

Rough historical overview

The idea to project a linear algebra problem on a subspace goes back to Rayleigh�
Ritz� and Galerkin at the beginning of this century� In �������� Lanczos and Arnoldi
proposed to use Krylov subspaces to project upon� In both cases� though� the algo�
rithms were meant as a way to reduce the whole matrix to Hessenberg or tridiagonal
form� It took until the seventies before it was recognized by Saad� Kaniel� Page and
others that the intermediate projected matrices could be considered as useful approx�
imations of the unprojected ones� Linear system algorithms among this category are
Conjugate Gradients and the Full Orthogonalization Method� while the eigenvalue
algorithms are named after Lanczos and Arnoldi�

It should be mentioned here that apart from 
nding the approximation from the
Krylov subspace that gives a residual orthogonal to that space 
those are the meth�
ods treated in this paper�� there is another important class of methods that aims
to 
nd the approximation from the Krylov subspace that minimizes the residual�
Clearly� expanding the subspace then gives by construction a smaller residual� For
non�Hermitian linear systems� the Generalized Minimal Residual Method is the best
known� Those methods were developed in the early eighties�

Yet another class of subspace methods arises if bi
orthogonality is exploited� The
Krylov subspace belonging to AH has interesting features when used in combination
with the space for A itself	 methods that aim to 
nd an approximation from the one
space� such that the residual is orthogonal to the other� give 
when carefully worked
out� tridiagonal projected matrices� even if A is not Hermitian� Those methods too�

��



have nice geometrical interpretations in the sense that the two spaces� of course�
coincide for Hermitian matrices� and bifurcate as AH continuously moves away from
A� The methods fall into the class of Petrov
Galerkin methods�

In the late 
fties� Rutishauser developed a predecessor of the QR�algorithm� and in
particular Wilkinson developed the convergence theory for the actual QR�algorithm
halfway the sixties� Only in ����� Sorensen found the connection between the QR�
algorithm and restarting the projection algorithm of Arnoldi� which resulted in what
is now widely known as the Implicitly Restarted Arnoldi Method�

Important contributions to stability issues for eigenvalue problems are due to Bauer
and Fike in ���� and Henrici in ����� The region in the complex plane where the
resolvent R has norm less than � is called the �
pseudospectrum of the matrix� This
concept is due to Trefethen in �����

The algorithms based on the inexact solution of Riccati equations are very recent�
Neglecting the quadratic term leads to the Jacobi
Davidson algorithm 
������ which
is named after combining the old orthogonal correction ideas of Jacobi 
����������
with the subspace expansion idea based on residuals by Davidson 
������ The pro�
jected Picard iteration approach leads to the Riccati algorithm 
������ The theory
behind the Riccati equation in connection with invariant subspaces goes back to
Stewart 
������ who derived perturbation theorems and stability results for invari�
ant subspaces from it�

Instead of giving an exhaustive bibliography� we prefer to mention a few good and
modern textbooks� which are� with a single exception� all from the last ten years� In
particular !�" treats almost all topics touched in this paper and gives many links to
the research literature� For stability issues� we advice !�"� !�"�!�" and !�"� For an easy
and very readable further introduction to general topics in numerical liner algebra�
try !��"� For eigenvalue problems� !�" and !�" are modern and readable textbooks�
Apart from those books� which do not include the recent developments� we mention
references !��" and !�"� and the book !�" on the Riccati equation�
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