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Abstract

In recent papers by Sloan and Wendland (1999), Grigorieff and Sloan (1998)
and Grigorieff, Sloan and Brandts (2000), a formalism was developed that serves
many important and interesting applications in boundary element methods:
the “commutator property” for splines. Based on superapproximation results,
this property is, for example, a tool of central importance in stability and
convergence proofs for qualocation methods for boundary integral equations
with variable coefficients.

Another application is the transfer of superconvergence properties from
constant-coefficient boundary integral equations to the variable coefficient case.
The heart of the theory is formed by the concept “discrete orthogonal pro-
jection”, that arises when the LZ-orthogonal inner product is discretized by
possibly non-standard quadrature rules.

In this paper, we present an overview of the theory of discrete orthogonal
projections, and a new set of numerical experiments that confirm the theory.
The main conclusion is that the presence of variable coefficients of a certain
smoothness does not influence superconvergence in a negative way, and that
henceforth the use of superconvergence-based a posteriori error estimators in
this particular case is theoretically justified.

1 Introduction

This paper aims to summarize recent results in the area of discretization methods
for boundary integral equations. Those results were obtained by the use of a the-
ory that involves the concept of so-called discrete orthogonal projections. As we
will show, discrete orthogonal projections provide a connecting framework between
the left-bank of collocation methods and the right-bank of Galerkin boundary ele-
ment discretizations. We will, however, mainly concentrate on the massive river of
qualocation methods, which is situated in between.

1.1 Stability in L, of discrete orthogonal projections

Writing R), for a discretized version (to be specified in detail later on) of the Lo-
orthogonal projection P, on some spline finite element space S, we ask (and try to
answer) questions of the following nature. Firstly, under which conditions is discrete
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orthogonal projection p-stable, in the sense that, denoting the space of continuous
functions on the unit interval I by C' (),

VieC), [[Ruflly <Clflnyp (1)

for some corresponding discrete version | - |5, of the L,-norm on C'(I). Since the
L,-stability of the projection P} has already been established, see for example De
Boor [1] and Crouzeix and Thomée [2], one could try to adapt their proofs to the
discretized situation. Indeed, for continuous splines on arbitrary meshes this was
done in the paper [4] by Grigorieff and Sloan. Also, approximation properties and
the case of zero boundary conditions were considered in that paper.

For the important practical case of periodic boundary conditions, which corresponds
to the situation of functions living on a closed curve, refinements of the stability
theorems appeared necessary. The analysis leading to these refinements was given
by Grigorieff, Sloan and Brandts in Section 5 of [5].

1.2 Superapproximation, localization principle

Once the p-stability was established, more sophisticated questions could be posed.
In Prossdorf’s paper [7] it was remarked that many finite element spaces have the
property that

(I — P,)GP|l, =0, for h—0, (2)

where G : f — ¢ f stands for multiplication with a sufficiently smooth fixed function
g. A simple but important consequence of this property is the convergence in L,
of the underlying finite element method for the discretization of G. One could ask
if (2) also holds in the discrete sense, i.e. with P, replaced by Rj. This question
too has been answered affirmatively. In the case of periodic smoothest splines on
uniform grids it follows from a much stronger result by Sloan and Wendland in [9],
which involves a scale of Sobolev norms and a pseudo-differential operator L. In the
case L = I, their result reduces to a statement about (I — P,)GP),. For periodic
and non-periodic continuous splines on non-uniform meshes, results in the spirit of
(2) can be found in [5]. Contrary to [9], this paper contains only results in the L,
and I/Vp1 norms.

Remark 1.1 As one may expect, the periodic smoothest splines case in [9] was
tackled using a technically complicated Fourier analysis. This line of proof was
successfully abandoned in [5] in order to be able to include non-uniform grids, which
left the question whether it would be possible to reformulate the periodic smoothest
splines case without the Fourier analysis and perhaps obtain results for less restricted
meshes as well.

1.3 Commutator property

In the non-discrete case, it was fairly easy to obtain results for the dual operator
PyG(I — Pp) using duality between L, spaces. In the discrete case, however, one
had to reconsider the basic duality, since Ry is, contrary to P, not by default Lo
self-adjoint. Once this problem was solved, the equality

[G,Ry] == GRy — RyG = (I — Ry)GR), — RyG(I — Ry) (3)



combined the results of the two into one single statement, which is referred to as the
“commutator property”, while the results for the two separate parts is often referred
to as “superapproximation property” or “localization principle”. The commutator
property for the different settings can be found in the papers [9] and [5]. Again,
the results in [9] are formulated in a whole scale of Sobolev norms and involve a
pseudo-differential operator L, while in [5] the analysis is restricted to L, and Wpl.

1.4 Outline of this paper

We will start with defining discrete orthogonal projections in Section 2 and recalling
as well as illustrating some of their basic properties. We also consider the relatively
simple case of discrete projections on discontinuous splines. As far as we know. this
case was not studied in the literature, even though it could have implications for
fully discrete Galerkin methods for two-point boundary value problems. In Section 3
we concentrate on two applications of the commutator property, which show how to
deal with variable coefficients. It should be stressed that, even though the concept
is easy, it should not be underestimated that all results hold for non-uniform grids,
which means they are mathematically sound also in the case of adaptive grid refine-
ment.We also provide some numerical experiments that illustrate some subtleties
of the stability theory of [5] in the context of the discretization of the operator G.
Finally, in Section 5, we reflect on future research.

2 Discrete orthogonal projections

Discrete projections and inner products on spline spaces are defined using composite
non-standard quadrature rules relative to a given arbitrary partitioning. We refer
to [4] and [5] for more details on the continuous splines case. See also [3] and [6] for
related topics.

2.1 Spline spaces and partitioning

Let mp, := {0 = 29 < ¥y < --- < z, = 1} be a partitioning of the unit interval I.
Denote the space of continuous functions on I by C°(I), and the space of functions
that are piecewise continuous relative to m, by C~1(I). Define for each r > 1
and m € {—1,0} the spline-space S;"" of (dis-)continuous piecewise polynomials of
degree less than or equal to r — 1 relative to 7, by

S i={ e C™(I) |, € Pooi(I), k=0,-+-,n—1}, (4)
where Py(-) is the space of polynomials of degree less than or equal to d and [ :=
[2k, 2g41] for k € {0,---,n —1}. We will proceed to define discrete inner products
on the spaces S;"", distinguishing between m = —1 and m = 0.

2.2 Composite quadrature rules relative to m,

First, define a J-point quadrature rule @ on C°(I) by

J 1
Q=Y wigl€) ~ [ alw)de, (5



where the weights w; are positive and the sample-points &; are strictly increasing in
the unit interval. Transforming this quadrature rule to each of the subintervals [y
defined by the partitioning 7, gives rise to a composite rule on C'~1(I) as follows,

1

n—1 J
Qugi= 3 e Y wiglary) ~ [ gle)de, (6
k=0 7=1 0

where hy, 1= xp41 — ), denotes the length of Ij, and xy ; := 2} 4 hy&; is the position
of the j-th sample point in that sub-interval. We should use the quadrature rule
with care if g has discontinuities at the partitioning points: if zy; is a left (right)
boundary point of a subinterval, then g(zj ;) should be understood as the limiting
value of g(z) coming from the right (left). One can easily check that

(f7g)h ::Qh(fg)7 f7g€C(I)7 (7)

is a positive semi-definite Hermitian sesqui-linear form. We will formulate conditions
under which it gives rise to an inner product on the spline spaces.

2.3 Discrete inner products

In [4] it was shown that (-,-)p is an inner product on Sg’r if and only if J > r > 2.
An argument similar (but easier) to that in [4] shows that the same holds for S; .

Lemma 2.1 The form (-, )y is an inner product on Sh_l’r if and only if J > r > 1.

Proof. First, suppose J > r > 1. The only thing we need to show is that

Ve S (8, =0 ¢ =0. (8)

Since (1, ¢)p, = 0 if 7 and ¢ have disjoint supports, it is sufficient to show property
(8) only locally on each subinterval, which translates to

Yee P_i(I), Q(q*)=0sq=0. (9)

But this follows from the fact that if Q(]¢|?) = 0, then ¢ has at least J > r roots, so ¢
must be zero. The fact that if J < r we do not get an inner product is trivial: there
exist 0 # g € P,_1(I) zero in all J quadrature points. This proves the statement. O

Now, suppose we change the scene to periodic boundary conditions, or, equivalently,
to functions on the circle. Then Lemma 2.1 clearly still holds if and only if J > r > 1.
In the piecewise continuous case, however, there is a subtle difference, which is due
to the loss of one degree of freedom in the discrete space, caused by the condition
¥ (0) = 4 (1). Writing C™(I) and ST for the periodic counterparts of the spaces
o, 1],

C™(I):={feC): f(0)= f(1)}, and S]" =S} NnC™(I), (10)

the problem of characterizing (-, -), as an inner product on S} was solved in Section
5 of [5] as follows. Let ¢ be the polynomial of degree J defined by

J
#(&) = ] (€~ &), (11)

J=1

e



so it is the unique monomial that has its zeros in the quadrature points. The
following characterization is taken from [5].

Proposition 2.2 The positive semidefinite Hermitian sesqui-linear form (-,-), is
an inner product on S} if and only if either J > r, or J = r — 1 and one of the
following conditions is satisfied:

(1) [6(0)] # [¢(1)]
(2) $(0) = —¢(1) # 0 and n is odd.

As an illustration of which extra inner products the case J = r — 1 generates, con-
sider the space 52’2 where 7, is a uniform partition of the circle into n subintervals.
Let & = 0.5. If n is even, it is easy to construct a function 0 # v, € 52’2 such that
(¥n, ¥r)n = 0, namely, the continuous piecewise linear defined by the nodal values
¥(x;) = (—1)° (see Figure 1, left). Note that, in particular, 1,,(0) = v¥,(1). If n
is odd, however, the same construction shows that it is impossible to construct a
non-trivial ¢y, € S;’" that is zero on all quadrature points.

n EVEN, J=r-1=1, xi=0.5, NO INNER PRODUCT n EVEN, J=r-1=1, WELL-DEFINED INNER PRODUCT

0.5
0.5

-05

-0.5

Figure 1. [Illustration to Proposition 2.2.

In general, if J = r — 1 and condition (1) of Proposition 2.2 is satisfied, we may
assume, without loss of generality, that [¢(0)]| < |¢(1)|. Continuous gluing together
an arbitrary amount of copies of ¢ (transformed to each subinterval) results in
strictly increasing nodal values, so the resulting function can never be periodic and
continuous (see Figure 1, right). Note that this holds even if the partitioning is
non-uniform, and regardless of the number of subintervals.

2.4 Discrete orthogonal projections

From well-defined discrete inner products one can derive in a consistent way discrete
orthogonal projections R, : C"™(I) — S;"" as follows. For convenience, we will
suppress the superscripts m and r unless they are relevant.

Rupf € Sn,  (Buf,¥n)n = (f,n)n forall ¥y, € 5. (12)



From this definition it might become intuitively clear that Rjf can be a good ap-
proximation to f even for non-accurate (possibly even divergent) quadrature rules,
since anything the rule “does wrong”, it does so on both sides of the equality sign.
To study the approximation quality of a family {Rp} of discrete orthogonal projec-
tions, we define the semi-norms | - |, on C71(I), as discrete counterparts of the
p-norms || - ||, on L,(I) as follows,

flhp = Qu (I/INY7 for 1< p<oo, and |fle = max{|f(rx )} (13)

Based on the fact that if J > r > 2, the mapping ¢ — +/]¢]? defines a norm on
P,_1(I), it was proved in [5] that | - [, and || - ||, are equivalent on S;". The same
argument can in fact be used to prove that this equivalence also holds on Sh_l’r if
J > r > 1, where again it does not matter if the periodic or non-periodic case is
considered. Clearly, ¢ +— \/[¢]? does not define a norm on P._;(I) if J <r—1, and
equivalence on S} (if present) should be proved differently. That the equivalence
does not hold for the inner products generated by case (2) of Lemma 2.1 proves the
following counter-example.

Proposition 2.3 If the norm |- |, is generated by an inner product satisfying case
(2) of Lemma 2.1, it is not equivalent to the norm || - ||,.

Proof. Consider the piecewise linear case, with a quadrature rule defined by a
weight w = 1 and a quadrature point & = % Given a partition 7 into an odd
number n of sub-intervals, define v, € ST by

¢h($j) = (_1)j7 (] =1, '7n)7 ¢h($0) = (_1)71‘

On all intervals except the first, we have defined scaled copies of the function ¢ so
1y, is zero at all the quadrature points except for the point x = %ho. There it has
the value —1 and therefore,

|¢h|%,2 = ho.

Concerning the norm ||¢]|2, we first note that for a linear function on the interval
[a,b] with left- and right boundary values L and R,

br/b— g r—a 2 b—a
L R) de = ——(L?>+ LR+ R?).
/a<b—a +b—a ) ¢ 3 (L7+ + 1)

This gives us that

n—1

=1
This presents a counter example for the equivalence of the norms in the case r = 2.

Clearly, a similar construction can be employed to disprove equivalence for other
(even) values of r. ]

Definition 2.4 Let m € {0,1, 7} and let { Ry} be a well-defined sequence of discrete
orthogonal projections Ry, : C™(I) — S;"". Then this sequence is called p-stable if

Vi e (D), |[Baflly < Clf g (14)



Sufficient conditions for p-stability can be found in [4] and [5]. This includes con-
ditions for the periodic piecewise continuous case (circumventing the technical dif-
ficulty that N does not define a norm on P._;(I) if J < r —1). For projections
on Sh_l’r7 the p-stability can be derived from the p-stability of projections on Sg’r
with the trivial partition 7, = {0, 1} and the fact that projection on Sh_l’r is a local
matter.

In the cases that discrete projections are p-stable, they inherit the optimal order ap-
proximation properties of the projections Py, : C™(I) — S;" in both the L,-norm
and its discrete version. This is due to the estimate

1Brf = Sllp < WEA(S = Pn)llp + 11 = ©nllp < CUf = Ynlnp + L = dnllp- (15)

which transforms the question of finding a priori L,-bounds for Ry f, into one of
approximation theory.

2.5 The Commutator Property

In many applications, the following question is of interest. Does it matter if we
change the order of the two operations “projection on a spline space” and “multipli-
cation with a smooth function”? First we will discuss a special case. The following
fact is well-known, and shows when R} reduces to a collocation operator.

Proposition 2.5 Let{,=0,§, =1 and J =r, and S}, = Sg’r. Then (Rpf)(z;x) =
f(z; ) for all j and k, i.e., Ry, is an interpolation operator. This is also the case if

S:Sh_l’r and J =r.

Proof. Under the given conditions, the space S}*" has a nodal basis, which means,
a basis {#; 1} which has the property ¥, 1(2y,,) = 6;4,0%,. This leads to

wi R f(x;6) = (Rof, V5000 = (f,050)0 = wie f(25 k), (16)

which proves the statement. In the discontinuous setting and for rules which include
one or both boundary points, the proper limiting values of the functions involved
should be taken. a

In case the discrete projection is an interpolation, clearly GRy(2;%) = RpG(z; k),
where G stands for multiplication with a function g. The expectation is that for
other quadrature rules, the equality will be lost, but not dramatically, in the sense
that the difference will still be small. For continuous splines, this was proved in [5]
where it was formulated as follows.

Theorem 2.6 Let m € {0,7}. Let p € [1,00] and assume that {R)""} is p-stable
and ¢-stable, where ]l)—l— % = 1. Then for all f € C™ (1),

(G Ry = BaG) flnp + (G RE = RaG) fllp < ChIG Nl 1001 fl1p- (17)

For the discontinuous setting, we will now formulate and prove a similar result. The
proof is based on a Bramble-Hilbert like argument and much less complicated than
the proof for Theorem 2.6.



Theorem 2.7 Let p € [1,00] and assume that {R;l’r} is p-stable. Then for all
fec,

(G Ry = BuG) flrp + (G RE = BLG) fllp < CRIlg 0,00l f11.p- (18)

Proof. First note that, due to the local character of projection on Sh_l’r7 for all
by, € Sh_l’l we have that ¥, Ry, = Rptpn. This gives, using p-stability twice, that for
all 4y, € S;7 1,

(G Ry, — BaG) fll,

(G = n) B f = Bu(G = ) flly

(G = n) B fllp + [1BA(G = ) fllp

lg = Dullocll B fllp + Clg = ¥n) flnp
C'llg = ¥nllec + 19 = Palnoo) [ flnp- (19)
Applying standard approximation theory completes the first part of the proof. The

second part is similar, but also uses the equivalence of norms to conclude that

[Biflhp < ClIERfllp < Clflnp O

IN A IA

3 Application of the Commutator Property

Here we will present two easy examples of situations in which the commutator prop-
erty can be successfully applied to deal with variable coefficients. For the more
realistic applications, we suggest to use the smoothest-spline commutator property
in [9] which we did not treat in this paper, but which has more potential due to the
formulation in the context of pseudo-differential operators. A direct application can
be found in [10] by the same authors.

3.1 Weighted discrete inner products

We will show here that a smooth weight function defining a weighted discrete in-
ner product does not influence the corresponding discrete projection very much.
Alternatively, one could interpret the result as a superconvergence result for the
qualocation discretization of the operator G.

Suppose we want to solve ¢ from G¢ = f by qualocation. We assume that G is
bounded above and below by positive numbers. Then the equation defining the
discrete solution ¢y, is

(Gon, ¥n)n = (f,¥n)n, or equivalently, R,G(¢— ¢p) =0. (20)

The first formulation clearly shows a possible interpretation as projection in a
weighted discrete inner product Gp(-,-) := (G-, -)s, while the second reveals the
qualocation orthogonality. Note that if G is constant, ¢ = Rp¢. For smooth but
not constant G, we will study the difference ¢, — Rp¢, assuming that there exists a
solution ¢, of (20).

Remark 3.1 Note that existence and uniqueness of a solution of (20) would follow
immediately from the Lax-Milgram lemma if we would have proved explicitly that
G(-,-) defines an inner product on the discrete space, but we choose to follow a
different line of proof.



Theorem 3.2 There exists a number hg > 0 such that for all 0 < h < hg, there
exists a unique solution ¢y, € Sy, of (20) that satisfies

|¢ - ¢h|h,p < (1 + Ch)|¢ - Rh¢|h,p' (21)

Proof. Assume that for some given ¢, there exists a ¢, satisfying (20). Then, an
easy manipulation, using (20) and Rp¢p = ¢, shows

G(on — Rng) = [Rp, G] (60 — ¢) - (22)

This means that, for g smooth enough, each of the commutator properties in Ths.
2.6 and 2.7 leads to

[6n = Brolly < Chld = Pnln.p, (23)
where the constant C' depends on norms of derivatives of g corresponding to which

spline space was used to project upon. A simple triangle inequality, together with
the equivalence of || - ||, and | - |, on Sy, gives

|én — Rudll, < Chld— dplnp (24)
< Chl¢ — Rpdlnp + Chlon — Rpdln,p
< Chl¢ — Rpdlnp+ Chllon — Rudllhp,

which, for all & smaller than some hg > 0, results in

[6n = Baolly < Chlé — Ryolnp. (25)

Now, let ¢ = 0, then Rp¢ = 0. Clearly, ¢, = 0 is a solution of (20). Let 1, be
any (possibly other) solution of (20). For this solution, the above analysis holds,
resulting in ¢, = 0 for all h < hg, concluded from (25). So, ¢, = 0 is the unique
discrete solution belonging to ¢ = 0. By linearity, existence and uniqueness also
follow for general ¢p. For this ¢, we also find

|6 — Dulny < [0 — Rudlnyp+ |00 — Ridlnyp (26)
¢ — Rpdlnp + Chl[¢ — Rpol[n,p-
|6 = Rpo|np + Chlo — Rpdlnp.

<
<

This proves the theorem. a

The above analysis shows that the presence of a variable coefficient results in a
qualocation approximation that is only a higher order perturbation of the constant
coeflicient approximation. Or, put differently, if ¢ solves the variable coefficient
equation, then its qualocation approximation does not differ much from the qualo-
cation approximation of the constant coefficient equation with the right hand side
adapted in such a way, that again ¢ is the exact solution. Or, again put differently,
if we write R for weighted discrete projection, we have found that

1(&), = Ba)ollp = || Ba(ky, — Dl < CRI(R] = 1)|1,p- (27)

Again, note that for h small enough, we can replace the Rj in the right-hand side
by Rj by using a triangle inequality and the equivalence of norms.



3.2 A variable coefficient operator equation

A second application is of similar nature. We consider the difference between qualo-
cation approximation in the weighted and the non-weighted version of the discrete
inner product. Let L : C'(I) — C'(I) satisfy the following conditions,

Vo € Sy, [(Lbn, ¥n)n] > Blenlt, and Vi€ C(I), |Lvo|hz < M|[¥|l2, (28)

where 3 and M are constants independent of h. In some situations, these properties
can be directly derived from the corresponding non-discrete properties of coercivity
and continuity. Then, for fixed exact solution ¢, consider the equations

Lé=f and GLé=GF. (29)

The respective qualocation approximations ¢y and ¢7 in Sg’r are uniquely defined
by the qualocation orthogonality relations

RyL(¢— ¢p) =0 and RL(¢—¢7) =0, (30)
as we will prove along the way, while comparing the two discrete solutions.

Proposition 3.3 For each ¢ € C(I), there exists exactly one ¢y, € Sg’r such that
RpL(¢ — ¢r) = 0.

Proof. For ¢ = 0, there exists, obviously, at least one discrete solution ¢, = 0.
Now suppose 1, is any solution (for ¢ = 0). Then,

B1nl7 o < [(Ltbn, Yn)nl = [(Le, ¥n)n] = 0. (31)

So, 1, = 0. By linearity of the problem, this means that the discrete system matrix
is invertible, hence existence and uniqueness follow. a.

Theorem 3.4 There exists a number hg > 0 such that for all h < hg and for each
¢ € C(I) there exists exactly one ¢7 € Sg’r such that Ry L(¢ — ¢7) = 0. Moreover,

o = 7lla < (14 Ch)||¢ = ¢nll2- (32)

Proof. Assume that for some given ¢ there exists a solution ¢. As in the previous
section, we will compare the (or better, any) solution ¢7 of the variable coefficient
equation with the constant coefficient solution ¢;. From the orthogonalities (30) it
immediately follows that

Ry L(¢] — ¢n) = (B — RY)L(d} — @), (33)
which leads to
Bl¢5 — dnlh o < HL(SY — bn), 8% — n)nl = [(RRL(9] — 1), & — dn)nl

< |(Ry — R)L(¢] — D) |naldn — & n2- (34)

10



Using the result (27) of the previous section together with 2-stability of Rj and the
orthogonality R)L(¢] — ¢) = 0, we conclude,

61 = dhlna < SHILEO = h)lna < hll0 = oo (3)

Again, let ¢ = 0, then ¢ = 0 is a discrete solution. Also, for ¢ = 0 we have
that ¢, = 0. For any discrete solution ¢7 we conclude from (35) that (using the
equivalence of norms on SY),

|97 1h,2 < Ch|[¥f]la < Chldia (36)

which means that, for A small enough, ¢ = 0 is the unique solution. So, for h small
enough, the system matrix is invertible, and existence and uniqueness follows also
for all other ¢ € C'(I). For those ¢ we also have

16— hll2 16— dnllz + [lPn — #ll2 (37)

|6 — onlla + Clon — dhln2

CM
< ¢ = onllz + ThHCb — onll2,

<
<

where in the last step we used (35) with ¢ replaced by ¢, which is (with a different
constant C') possible for h small enough after a triangle inequality. a.

From this, we also conclude again that the presence of a variable coefficient can be
dealt with by means of the commutator property. Existence and uniqueness as well
as stability and convergence follow from the constant coefficient case.

Remark 3.5 In the paper [10], the commutator property for smoothest splines is
used to prove stability and convergence, and even superconvergence, for qualocation
methods for an operator that is the sum of an even and an odd pseudo-differential
operator, both with variable coefficients. Because of the very technical character
of that paper we will not include details here, but once again stress the practical
importance of the commutator property.

4 Numerical experiments

We now test the results so far by running some numerical experiments. We set up a
qualocation method on the circle using continuous piecewise linear approximations
on uniform grids (the first three experiments) and on a non-uniform grid (fourth
experiment) and compare the projections Rj and R for the weight-function ¢ and
exact solution ¢ given by (see Figure 2)

1
g(x) = 1+ exp(sin(27z)) sin* (27 (x + 0.1)), and ¢(z) = cos® (27 sin(ym))/g(x).
In the first experiment, we took the interpolatory rule & = 0 and & = 1 with both

weights wy = wg = 0.5. In the second experiment, we used the p-stable one-point
rule £ = 0.4 with weight w = 1. Finally, in the third and fourth experiment, we took

11



the p-stable rule &, = 1/7,& = 1/v/2, &3 = 1 with weights wy = V2, wy = 7, w3 = 1.

The weight function g exact solution
T T T

35 1
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Figure 2. The weight function ¢ (left) and the exact solution ¢ (right).

The results are summarized in the following tables, in which we present (from left
to right) the number of intervals, the exact error ||¢ — R, ||z, the reduction of those
errors, the difference ||(R) — R};)®|lco and the reduction of these differences.

First experiment

As expected, we see that for the interpolatory projection, there is no difference be-
tween the projections R and RJ. This follows immediately from the fact that the
nodal basis is also orthogonal with respect to the weighted inner product. One could
conclude the same by noticing from (22) that the spline ¢, — Rp¢ must have two
zeros per sub-interval.

A" [ 1l — Rall2
4 [2.9715¢ — 001

‘ red. error

‘ I(RY — Rp) ¢l ‘ red. supcv. ‘

8

5.4673e — 002

5.4350e + 000

16

2.3205e — 002

2.3561e + 000

32

6.4725e¢ — 003

3.5852¢ + 000

64

1.6399¢ — 003

3.9469¢ + 000

128

4.1134e — 004

3.9868¢e + 000

256

1.0292¢ — 004

3.9967¢ + 000

jen)l en]l ev] Hen) Nen ) Nen ) Han)

Second experiment

| h7 | ]l¢ — Rrgllz | red. error | [|(R] — Rp) ¢ | red. supev. |

4 3.7306e—001 | --- 2.0338¢ - 002 | ---

8 || 3.4907e — 002 | 1.0687e 4- 001 1.2792e — 002 | 1.5898e + 000

16 || 1.6379e — 002 | 2.1313e 4- 000 2.9543e — 003 | 4.3301e + 000

32 || 3.6650e — 003 | 4.4689¢ + 000 4.4491e — 004 | 6.6401e 4- 000

64 || 7.9783e — 004 | 4.5937¢ + 000 5.8508e — 005 | 7.6042¢ + 000

128 || 1.8648e — 004 | 4.2783¢ + 000 7.3815e — 006 | 7.9264e + 000

256 || 4.5097e — 005 | 4.1351e 4- 000 9.2232¢ — 007 | 8.0032¢ + 000
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In the above tabular we see that the two projections are not equal anymore. Also,
the difference between the two is clearly of the expected higher order A3,

Third experiment

Also the results from the “nonsense” (though p-stable) quadrature rule
1
| F@)de % Va7 £(/V2) + £1) (38)
0

are according to the theory. Optimal order convergence for the projections, and
supercloseness between the two different projections themselves clearly show.

| h7 | ]l¢ — Rrgllz | red. error | I(R] — Rp) oo | red. supev.

4 3.2632¢—-001 | --- 1.4799e — 001 | - --

8 || 5.1389e — 002 | 6.3501e 4- 000 4.5285e — 002 | 3.2679¢ 4- 000

16 || 1.5543e — 002 | 3.3063e 4- 000 1.3705e — 002 | 3.3044¢ + 000

32 | 3.3991e — 003 | 4.5727¢ + 000 2.1003e — 003 | 6.5250e + 000

64 || 7.5254e — 004 | 4.5168e + 000 2.7336e — 004 | 7.6834e + 000

128 || 1.7769e — 004 | 4.2351e + 000 3.4648e — 005 | 7.8895e + 000

256 || 4.3241e — 005 | 4.1094e 4- 000 4.3567e — 006 | 7.9529¢ 4- 000

Fourth experiment

Finally, we tested the theory with respect to the effects of non-uniform meshes.
Typically, the following behavior could be observed. We defined, from a uniform

1

mesh 7, a non-uniform mesh z(m,) with z(z) = sin’(372

) for some value of .
For the quadrature rule of the third experiment, and with ¢ = 4, we obtained the

following results. Asymptotically, our expectations are confirmed.

| 271 [ |6 — Riollz | red. error

‘ I(RY — Rp) @~ ‘ red. supcv. ‘

41 2.8655e—-01 |0 1.1330e—-01 |0
8| 2.1172e — 01 | 1.3535e 4 00 1.3823e — 01 | 8.1967e — 01
16 || 3.2044e — 02 | 6.6070e 4 00 8.2309¢ — 03 | 1.6794e 4 01
32 || 1.2203e — 02 | 2.6259e 4 00 1.7638e — 03 | 4.6665e + 00
64 || 2.3322e — 03 | 5.2324e 4 00 1.8058e — 04 | 9.7675e + 00
128 || 5.4762¢ — 04 | 4.2589¢ + 00 6.5817¢ — 06 | 2.7437e¢ 4 01
256 || 1.3482e — 04 | 4.0619¢ 4 00 3.7351e — 07 | 1.7621e 4 01
512 || 3.3576e — 05 | 4.0153e 4 00 2.2797e — 08 | 1.6384e 4 01

5 Further topics of interest

There is a large number of unsolved problems in the setting of discrete projections.
Even though theory has been developed for derivatives (discrete H' results) in [5],
a smooth theory for fully discrete Galerkin methods for two-point boundary value
problems is still missing. This is mainly due to the lack of an equivalent of “inte-
gration by parts”, i.e., symbolically,

(DF,G), # FG|) — (F, DG)y, (39)

13



not even for F' and (G in the spline space, unless the integration rule has a certain
accuracy (which is what we did not want to assume in the first place). It seems logical
that in a context of numerical integration, a corresponding numerical differentiation
operator needs to be defined which has the desired properties.

An even more important extension of the theory would be the extension to two space
dimensions. Discrete orthogonal projection theory for tensor product spaces does
not seem to be a real problem, but it is unclear what to do in the simplectic case.
Research is in progress.
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