A NOTE ON ROTATIONS AND INTERVAL EXCHANGE TRANSFORMATIONS ON 3-INTERVALS

KARMA DAJANI

ABSTRACT. We prove the conjecture that an interval exchange transformation on 3-intervals with corresponding permutation $(1, 2, 3) \rightarrow (3, 2, 1)$, and rationally independent discontinuity points, is never measure theoretically isomorphic to an irrational rotation.

1. INTRODUCTION

Interval exchange transformations were first introduced by Keane in $[K1]$, and are defined as follows. Let $I = [0, 1), n \geq 2$ and $\alpha = (\alpha_1, \dots, \alpha_n)$ a probability vector with $\alpha_i > 0$. Define $\beta_0 = 0$ and $\beta_i = \sum_{k=1}^i \alpha_k$, and set $I_i =$ $[\beta_{i-1}, \beta_i]$. Let τ be a permutation of $\{1, 2, \cdots, n\}$, and consider the probability vector $\alpha' = (\alpha_{\tau^{-1}(1)}, \cdots, \alpha_{\tau^{-1}(n)})$. Note that $\alpha_{\tau^{-1}(i)} > 0$ for all t. Let $p_0 = 0$ and $\beta_i^{\tau} = \sum_{k=1}^i \alpha_{\tau^{-1}(k)}$, and set $I_i^{\tau} = [\beta_{i-1}^{\tau}, \beta_i^{\tau}]$. Denne $I : I \rightarrow I$ by

 $1 x = x - \beta_{i-1} + \beta_{\tau(i)-1}$

if $x \in I_i$. T is called an (α, τ) interval exchange transformation on n intervals. It is clear that T is invertible, $I \nvert \rho_{i-1} = \rho_{\tau(i)-1}$ and T maps I_i isometrically onto $I_{\tau(i)}^{\tau}$. Further, T is continuous except possibly at $\{\beta_1, \cdots, \beta_{n-1}\}\$. At these points \cdots T is right continuous. Note that T is continuous at β_i if and only if $\tau(i + 1) =$ $\tau(i) + 1$. In other words, T is discontinuous at β_i if and only if $T\beta_{i-1}, T\beta_i$ do not appear in this order as consecutive terms in the ordered set $\{\beta_0^{\tau_n}, \cdots, \beta_{2n}^{\tau_n}\}.$ We say T is in *standard form* if T is discontinuous at β_i for all $i = 1, 2, \dots, n - 1$ or equivalently, if $\tau(i + 1) \neq \tau(i) + 1$ for all $i = 1, 2, \dots, n - 1$. Notice that any interval exchange transformation on ⁿ intervals can be written in standard form as an interval exchange transformation on m intervals with $m \leq n$. Since if T is not in standard form, then T is continuous at β_i for some i, then $\tau(i + 1) = \tau(i) + 1$; and so I maps the interval $[\beta_{i-1}, \beta_{i+1})$ isometrically onto $[\beta_{\tau(i)-1}^-, \beta_{\tau(i)+1}^+]$. Thus, we can redefine T on intervals with end points

$$
\{\beta_0,\cdots,\beta_{i-1},\beta_{i+1},\cdots,\beta_n\}.
$$

We repeat this process until all the remaining β 's are discontinuity points of T.

¹⁹⁹¹ Mathematics Subject Classification. 28D05.

Key words and phrases. Rotations, interval exchange.

The permutation τ corresponding to T is said to be irreducible if

$$
\tau(\{1, 2, \cdots, k\}) \neq \{1, 2, \cdots, k\}, \text{ for all } k = 0, 1, \cdots, n - 1.
$$

Note that if τ is reducible, then T can be decomposed into two interval exchange transformations, one on $[0, \beta_k)$ and the other on $[\beta_k, 1]$. We assume throughout this paper that T is irreducible.

Interval exchange transformations have been studied by several authors. Here we mention few of the known results. In [K1], Keane studied the minimality of such transformations, and in [K2] questions concerning unique ergodicity were investigated. It is easy to see that if $n = 2$, T corresponds to a rotation and if $n = 3$, then T can be seen as an induced transformation of a rotation. Thus, if the β 's are rationally independent, then in both cases T is uniquely ergodic. Keynes and Newton [KN], and also Keane [K2] gave examples of interval exchange transformations that are not uniquely ergodic. Masur [M], and independently Veech [V1, V2, V3, V4, V5] showed that almost every minimal interval exchange transformation is uniquely ergodic. Later Boshernitzan [B] gave another proof of this result by more elementary means. Some of the spectral properties were studied by Veech in a series of papers [V3,V4,V5]. Oseledets [O] and Goodson [G] constructed ergodic interval exchange transformations with simple spectrum. Recently, Berthe, Chekhova and Ferenczi [BCF] proved that every ergodic interval exchange transformation on three intervals has simple spectrum. The first interval exchange transformation with continuous spectrum was given by Katok and Stepin [KS], their example is also an exchange on three intervals. In [BCF], the authors gave other examples of exchanges on three intervals with continuous spectrum, and they conjectured that no non-trivial exchange on three intervals is measure theoretically isomorphic to an irrational rotation. In section 2 we prove this conjecture as a corollary of a recent result by Simin Li $[S]$, where he gave necessary and sufficient conditions for an interval exchange transformation to be conjugate to an irrational rotation.

2. Non-trivial exchanges on 3-intervals

Let $0 < l < m < 1$ with $1, l, m$ rationally independent. Consider the interval exchange transformation T given by

$$
Tx = \begin{cases} x+1-l & x \in [0,l), \\ x+1-l-m & x \in [l,m), \\ x-m & x \in [m,1). \end{cases}
$$

T corresponds to the permutation $(1,2,3) \rightarrow (3,2,1)$. Notice that T is the only interval exchange transformation on 3-intervals which is irreducible and in standard form. Moreover, by a result of Keane [K1], T is minimal. We call T a non-trivial exchange transformation on 3-intervals. It is well known that ^T is an induced transformation of the interval exchange transformation S defined on $[0, 1 - l + m)$ by

$$
Sx = \begin{cases} x + 1 - l & x \in [0, m), \\ x - m & x \in [m, 1 - l + m). \end{cases}
$$

Since after normalization S is isomorphic to an irrational rotation, S is minimal and uniquely ergodic, and hence so is T .

Let $\alpha = \frac{1}{1- l+m}$ and $\beta = \frac{1}{1-l+m}$. In [KS], the authors proved that if α has unded and if the partial quotients and if for some subsequence quotients η_{R} are denominated or a convergents of α , we have

$$
|\alpha-\frac{p_n}{q_n}|\frac{c}{q_n}
$$

for all r and some constant $c > 0$, then T is not measure theoretically isomorphic to an irrational rotation. In [BCF], it is proved that when α has bounded partial quotients, and $\beta \in K(\alpha)$ for some Cantor set $K(\alpha)$, then T is not measure theoretically isomorphic to an irrational rotation.

Simin Li [Li] gave recently necessary and sufficient conditions for an interval exchange transformation to be conjugate to an irrational rotation.

Theorem 1 (LI). Let 1 be an interval exchange transformation, and let $a(T⁺)$ be the number of aiscontinuities of I^+ . Then, I is conjugate to an irrational rotation if and only if (i) T^n is minimal for all $n \geq 1$, (ii) $\{d(T^n)\}\$ is bounded by some integer $N > 0$ and (iii) there exists $k > 0$ and $M \geq 2^{N^2+3N^2}$ such that $d(T^k) =$ $a(1 - 1) = \cdots = a(1 - 1)$.

Since a non-trivial interval exchange on 3-intervals is uniquely ergodic, to show that it is not measure theoretically isomorphic to an irrational rotation, we prove that $\{d(T^n)\}\;$ is an unbounded sequence.

Theorem 2. Let ^T be a non-trivial interval exchange transformation on 3-intervals with rationally independent discontinuity points. Let $D(T^*)$ be the set of discontinuity points of 1 $^{\circ}$, and let a(1 $^{\circ}$) denote the cardinality of D(1 $^{\circ}$). Then

$$
D(T^n) = \{T^{-i}l, T^{-j}m : 0 \le i, j \le n - 1\},\
$$

ana nence, $a(T) \equiv 2n$.

Proof: The proof is done by induction on n. The result is true for $n = 1$. Suppose

$$
D(T^k) = \{T^{-i}l, T^{-j}m : 0 \le i, j \le k - 1\},\
$$

for $k = 1, 2, \dots, n$. We prove the result for $k = n + 1$. Let

$$
0 < \beta_1 < \beta_2 < \cdots < \beta_{2n} < 1
$$

be the discontinuities of $Tⁿ$ written in increasing order. By the induction hypothesis,

$$
D(T^n) = \{ \beta_i : 1 \le i \le 2n \} = \{ T^{-i}l, T^{-j}m : 0 \le i, j \le n - 1 \}.
$$

Let $p_0 = 0$ and $p_{2n+1} = 1$. The underlying partition of T is given by

$$
\mathcal{P}(T^n) = \{ [\beta_i, \beta_{i+1}) : i = 0, 1, \cdots 2n \}.
$$

Let τ_n be the permutation corresponding to I " (notice that I " is an interval exchange transformation). Then,

$$
T^{n}\{\beta_{0},\beta_{1},\cdots,\beta_{2n}\}=\{\beta_{0}^{\tau_{n}},\beta_{1}^{\tau_{n}},\cdots,\beta_{2n}^{\tau_{n}}\}
$$

with $\beta_0 = \beta_0^{\ \alpha} = 0$, and $T^{\alpha} \beta_i = \beta_{T_n(i+1)-1}^{-1}$ for $i = 0, 1, \cdots, 2n$. Furthermore, since 1, l and m are rationally independent, and each β_i " is a linear combination of 1, l and m with integer coefficients, it follows that $l, m \notin \{\beta_0^{\tau_n}, \beta_1^{\tau_n}, \cdots, \beta_{2n}^{\tau_n}\}$. Now invertibility of T implies that $T\beta_0^{\;\;\;\;\;},\cdots,T\beta_{2n}^{\;\;\;\;\;\;},Tm,Tl$ are all distinct.

Suppose $l \in (\beta_{r-1}^{\prime,n}, \beta_{r}^{\prime,n})$, and $m \in (\beta_{s-1}^{\prime,n}, \beta_{s}^{\prime,n})$. We consider three cases.

Case 1. If $r = s$, then $T^{-n}l$, $T^{-n}m \in (\beta_{p-1}, \beta_p)$ where $p = \tau_n^{-1}(r)$. Since T is an order preserving isometry on $\vert \beta_{p-1}, \beta_p \rangle$, it follows that $T^{-n} l \leq T^{-n} m$. The underlying partition of T^{n+1} is then given by

$$
\mathcal{P}_1(T^{n+1}) = \{ [\beta_0, \beta_1), \cdots, [\beta_{p-2}, \beta_{p-1}), [\beta_{p-1}, T^{-n}l), [T^{-n}l, T^{-n}m), [T^{-n}m, \beta_p), \newline [\beta_p, \beta_{p+1}), \cdots, [\beta_{2n}, \beta_{2n+1}) \}.
$$

To prove the result, we need to show that

$$
\{\beta_1,\cdots,\beta_{p-1},T^{-n}l,T^{-n}m,\beta_p,\cdots,\beta_{2n}\}
$$

is the set of discontinuity points of $T \rightarrow 1$. Let

$$
D_1 = \{ \beta_0, \cdots, \beta_{p-1}, T^{-n}l, T^{-n}m, \beta_p, \cdots, \beta_{2n} \}
$$

and

$$
E_1 = \{ \beta_0^{\tau_n}, \cdots, \beta_{r-1}^{\tau_n}, l, m, \beta_r^{\tau_n}, \cdots, \beta_{2n}^{\tau_n} \},
$$

both considered as ordered sets. Then $ID_1 = E_1$, and by discontinuity of T^* at β_p , we have $T^n\beta_p \neq \beta_r^{\tau_n}$. Further, $\beta_i^{\tau_n} \in (0, l)$ for $1 \leq i \leq r-1$, and $\beta_i^{\tau_n} \in (m, l)$ for $r \leq i \leq 2n$, Hence,

$$
T^{n+1}D_1 = TE_1
$$

= { $Trm = 0, T\beta_r^{T_n}, \cdots, T\beta_{2n}^{T_n}, Tl = 1 - m,$
 $T\beta_0^{T_n} = 1 - l, T\beta_1^{T_n}, \cdots, T\beta_{r-1}^{T_n}.$

Here, the elements of TE_1 are listed in increasing order.

We first show that T^{n+1} is discontinuous at β_i for $i \neq p$. To do this, we need to prove that $T^{n+1}\beta_{i-1}$ and $T^{n+1}\beta_i$ do not appear in this order as consecutive terms in $I E_1$. By assumption, $I^{\prime\prime}$ is discontinuous at ρ_i , nence $I^{\prime\prime}\rho_{i-1}$ and $I^{\prime\prime}\rho_i$ do not appear as consecutive terms of the form $\beta_j^{\ldots}, \beta_{j+1}^{\ldots}$ in E_1 . Let $I_0 = [0, l)$, $I_1 = [l, m]$ and $I_2 = [m, 1]$. If $T^n \beta_{i-1}, T^n \beta_i \in I_i$ for some $j = 0, 2$, then since I maps I_i isometrically onto II; it follows that I^{n+1} ρ_{i-1} and I^{n+1} ρ_i cannot appear as consecutive terms in TE₁. If $T^n \beta_{i-1} \in I_j$ and $T^n \beta_i \in I_k$ for $j \neq k$, then either $T^n \beta_{i-1} \in I_0$ and $T^n \beta_i \in I_2$, or $T^n \beta_{i-1} \in I_2$ and $T^n \beta_i \in I_0$. In the first case we get $T^{++}p_i$ \lt 1 $\vdash m$ \lt 1 $\vdash p_{i-1},$ and in the second case, we get T^{++} p_{i-1} $<$ 1 – m $<$ 1 $^{\circ}$ n $_{i}$. Hence, $T^{+}p_{i-1}$ and $T^{+}p_{i}$ do not appear as consecutive terms of the form $\beta_i^{\;n}, \beta_{i+1}^{\;n}$ in E_1 , and so T^{n+1} is discontinuous at β_i .

Now, the discontinuity of T^n at β_p implies that $T^{n+1}\beta_p \neq T\beta_r^{\tau_n}$, and

$$
Tm = 0 < T\beta_r^{\tau_n} < T^{n+1}\beta_p \,.
$$

Hence $T^{n+1}(T^{-n}m) = Tm = 0$ and $T^{n+1}\beta_p$ do not appear as consecutive terms in TE₁. So T^{n+1} is discontinuous at β_p .

The discontinuity of T^{n+1} at T^{n+1} follows from the fact that $T^{n+1} \beta_{p-1}$ is an interior point of T_{2} , while $T^{n+1}(T^{n})=1-m$ is the left end-point of T_{1} . Finally, $T^{n+1}(T^{-n}m) = 0 \leq T \beta_r^{*n} \leq 1 - m = T^{n+1}(T^{-n}l)$ implies that T^{n+1} is discontinuous at $T^{-n}m$. Therefore, $D_1 = D(T^{n+1})$.

Case 2: If $r < s$ and $p = \tau_n^{-1}r < \tau_n^{-1}s = q$, then $T^{-n}l \in (\beta_{p-1}, \beta_p)$ and $T^{-n}m \in$ (β_{q-1}, β_q) . The discontinuity of T^n at β_p and β_q implies $T^n\beta_p \neq \beta_i^{T_n}$ and $T^n\beta_q \neq$ p_s^* . The underlying partition of T^{++} is easily seen to be

$$
\mathcal{P}_2(T^{n+1}) = \{ [\beta_0, \beta_1), \cdots, [\beta_{p-2}, \beta_{p-1}), [\beta_{p-1}, T^{-n}l), [T^{-n}l, \beta_p), \}
$$

 $[\beta_p, \beta_{p+1}), \cdots [\beta_{q-1}, T^{-n}m), [T^{-n}m, \beta_q), [\beta_q, \beta_{q+1}), \cdots, [\beta_{2n}, 1] \}$. To show the discontinuity of T^{n+1} at $\beta_1, \cdots, \beta_{2n}, T^{-n}l, T^{-n}m$, we consider the ordered sets

$$
D_2 = \{ \beta_0, \cdots, \beta_{p-1}, T^{-n}l, \beta_p, \cdots, \beta_{q-1}, T^{-n}m, \beta_q, \cdots, \beta_{2n} \}
$$

and

$$
E_2 = \{ \beta_0^{\tau_n}, \cdots, \beta_{r-1}^{\tau_n}, l, \beta_r^{\tau_n}, \cdots, \beta_{s-1}^{\tau_n}, m, \beta_s^{\tau_n}, \cdots, \beta_{2n}^{\tau_n} \}.
$$

Then, $T^n D_2 = E_2$. Notice that $\beta_1^{\;n}, \cdots, \beta_{r-1}^{\;n}$ are interior points of $I_0, \beta_r^{\;n}, \cdots, \beta_{s-1}^{\;n}$ are interior points of I_1 and $\beta_s^{n_1}, \cdots, \beta_{2n}^{n_n}$ are interior points of I_2 . Thus,

$$
T^{n+1}D_2 = TE_2
$$

= { $Im = 0, T\beta_s^{\tau_n}, \dots, T\beta_{2n}^{\tau_n}, TI = 1 - m,$
 $T\beta_r^{\tau_n}, \dots, T\beta_{s-1}^{\tau_{n}}, T\beta_0^{\tau_n} = 1 - l, \dots, T\beta_{r-1}^{\tau_{n}}.$

Here, the elements of TE_2 are listed in increasing order. We first prove that T^{n+1} is discontinuous at β_i for $i \neq p, q$. If $T^n \beta_{i-1}, T^n \beta_i \in I_j$, then since $T^n \beta_{i-1}, T^n \beta_i$ do not appear as consecutive terms in E_1 and since \tilde{T} is an isometry on I_i , we have that $T^{n+1}\beta_{i-1}$ and $T^{n+1}\beta_i$ are not consecutive terms of E_2 , and thus T^{n+1} is discontinuous at β_i . If $T^n\beta_i \in I_j$ and $T^n\beta_{i-1} \in I_k$ for $k \neq j$, then we consider several cases.

- \bullet If $T^n \beta_i \in I_2$ and $T^n \beta_{i-1} \in I_0$ or I_1 , then since $T^n \beta_{i-1} \neq l$ we have $T^{n+1} \beta_i < l_1$ $1 - m < T^{n+1} \beta_{i-1}$.
- \bullet If $T^n \beta_i \in I_1$ and $T^n \beta_{i-1} \in I_2$, then since $T^n \beta_i \neq l$ it follows that $T^{n+1} \beta_{i-1} < l_1$ $1 - m < T^{n+1} \beta_i$.
- If $T^n \beta_i \in I_1$ and $T^n \beta_{i-1} \in I_0$, then $T^{n+1} \beta_i < T^{n+1} \beta_{i-1}$.
- If $T^n \beta_i \in I_0$ and $T^n \beta_{i-1} \in I_1$, then since $i \neq q$ we have $T^{n+1} \beta_{i-1} < T \beta_{s-1}^{r_n} <$ $T\beta_0^{n_n} \leq T^{n+1}\beta_i$.
- If $T^n \beta_i \in I_0$ and $T^n \beta_{i-1} \in I_2$, then $T^{n+1} \beta_{i-1} < I m < T^{n+1} \beta_i$.

In all the above cases we see that T^{n+1} is not continuous at β_i .

The discontinuity of T^{n+1} at β_p and β_q follows from the fact that $T^{n+1}\beta_p \neq T\beta_r^{T_n}$
and $T^{n+1}\beta_q \neq T\beta_s^{T_n}$, so that neither $T^{n+1}\beta_p$ and $T^{n+1}(T^{-n}l)$ nor $T^{n+1}\beta_q$ and $T^{n+1}(T^{n}m)$ appear as consecutive terms in TE_2 . Finally, from $T^{n+1}(T^{n}l)$ = $1-m < 1-l < T\beta_{r-1}^{n}$ and $T^{n+1}(T^{n}m) = 0 < 1-m < T\beta_{s-1}^{n}$ we have that T^{n+1} is discontinuous at $T^{n+1}(T^{n}l)$ and $T^{n+1}(T^{n}m)$. Thus, $D_2 = D(T^{n+1})$.

Case 3: If $r < s$ and $p = \tau_n^{-1}r > \tau_n^{-1}s = q$, then the underlying partition of T^{n+1} is given by

$$
\mathcal{P}_3(T^{n+1}) = \{ [\beta_0, \beta_1), \cdots, [\beta_{q-2}, \beta_{q-1}), [\beta_{q-1}, T^{-n}m), [T^{-n}m, \beta_q), [\beta_q, \beta_{q+1}), \cdots, [\beta_{p-2}, \beta_{p-1}), [\beta_{p-1}, T^{-n}l), [T^{-n}l\beta_p), [\beta_p, \beta_{p+1}), \cdots, [\beta_{2n}, 1] \}.
$$

Let

$$
D_3 = \{ \beta_0, \cdots, \beta_{q-1}, T^{-n}m, \beta_q, \cdots, \beta_{p-1}, T^{-n}l, \beta_p, \cdots, \beta_{2n} \}
$$

and

$$
E_3 = \{\beta_0^{\tau_n}, \cdots, \beta_{r-1}^{\tau_n}, l, \beta_r^{\tau_n}, \cdots, \beta_{s-1}^{\tau_n}, m, \beta_s^{\tau_n}, \cdots, \beta_{2n}^{\tau_n}\}.
$$

Then,

$$
T^{n+1}D_3 = TE_3
$$

= $\{Tm = 0, T\beta_s^{\tau_n}, \cdots, T\beta_{2n}^{\tau_n}, Tl = 1 - m,$
 $T\beta_r^{\tau_n}, \cdots, T\beta_{s-1}^{\tau_{n-1}}, T\beta_0^{\tau_n} = 1 - l, \cdots, T\beta_{r-1}^{\tau_{n}}\}.$

The elements of D_3 , E_3 and TE_3 are listed in increasing order. A similar argument as in the above two cases shows that $D_3 = D(T^{n+1})$. Thus, the theorem is proved.

Theorem 3. Any non-trivial interval exchange transformation on 3-intervals with rationally independent discontinuity points is not measure theoretically isomorphic to an irrational rotation.

Proof: By theorem 2 and unique ergodicity, the result follows from Li's theorem.

In [BCF], the authors proved that every ergodic interval exchange transformation on three intervals has simple spectrum. Using this result and theorem 3, we have the following corollary.

Corollary 1. Every non-trivial interval exchange transformation on three intervals with rationally independent discontinuity points has either rational or continuous spectrum.

REFERENCES

- [BCF] Berthé, V., N. Chekhova and S. Ferenczi Covering numbers: arithmetics and dynamics for rotations and interval exchanges, J. D'Analyse Math. ⁷⁹ (1999), 1-31.
- [B] Boshernitzan, M. A condition for minimal interval exchange maps to be uniquely ergodic, Duke Math. J. ⁵² (1985), 723-752.
- [G] Goodson, G.R. Functional equations associated with the sectral properties of compact group extensions, Proceedings of Conference on Ergodic Theory and its connection with Harmonic Analysis, Alexandria 1993, Cambridge University Press, 1994, 309-327.
- [K1] Keane, M.S. Interval exchange transformations, Math. Z. ¹⁴¹ (1975), 25-31.
- [K2] Keane, M.S. Non-ergodic interval exchange transformations, Israel J. Math. ²⁶ (1977), 188-196.
- [KN] Keynes, H. and D. Newton A minimal non-uniquely ergodic interval exchange transformation, Math. Z. 148 (1976), 101-105.
- [KS] Katok, A.B. and A.M. Stepin Approximations in ergodic theory, Uspekhi Math. Nauk 22, 5 (1967), 81-106 (Russian), translated in Russian Mth. Surveys 22, 5 (1967), 76-102.
- [Li] Li, Simin A Criterion for an Interval Exchange Map to be Conjugate to an Irrational Rotation, J. Math. Sci. Univ. Tokyo ⁶ (1999), 679-690.
- [M] Masur, H. Interval exchange transformations and measured foliations, Ann. of Math. ¹¹⁵ (1982), 169-200.
- [O] Oseledets, V.I. On the spectrum of ergodic automorphisms, Doklady Akad. Nauk SSSR 168, 5 (1966),1009-1011 (in Russian), translated in Soviet Math. Doklady ⁷ (1966), 776- 779
- [R] Rauzy, G. Echanges d'intervalles et transformations induites, Acta Arith. 34 (1979),
- [V1] Veech, W.A. Interval exchange transformations, J. D'Analyse Math. ³³ (1978), 222-272.
- [V2] Veech, W.A. Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. ¹¹⁵ (1982), 201-242.
- [V3] Veech, W.A. The metric theory of interval exchange transformations. I Generic spectral properties, Amer. J. Math. ¹⁰⁶ (1984), 1331-1359.
- [V4] Veech, W.A. The metric theory of interval exchange transformations. II Approximation by primitive exchange, Amer. J. Math. ¹⁰⁶ (1984), 1361-1387.
- [V5] Veech, W.A. The metric theory of interval exchange transformations. III The Sah-Arnoux-Fathi invariant, Amer. J. Math. ¹⁰⁶ (1984), 1389-1422.

Universiteit Utrecht, Fac. Wiskunde en Informatica and MRI, Budapestlaan 6, P.O. Box 80.000, 3508 TA Utrecht, the Netherlands

 $E\text{-}mail$ $address:$ dajani@math.uu.nl