A NOTE ON ROTATIONS AND INTERVAL EXCHANGE TRANSFORMATIONS ON 3-INTERVALS

KARMA DAJANI

ABSTRACT. We prove the conjecture that an interval exchange transformation on 3-intervals with corresponding permutation $(1, 2, 3) \rightarrow (3, 2, 1)$, and rationally independent discontinuity points, is never measure theoretically isomorphic to an irrational rotation.

1. INTRODUCTION

Interval exchange transformations were first introduced by Keane in [K1], and are defined as follows. Let $I = [0, 1), n \geq 2$ and $\alpha = (\alpha_1, \cdots, \alpha_n)$ a probability vector with $\alpha_i > 0$. Define $\beta_0 = 0$ and $\beta_i = \sum_{k=1}^i \alpha_k$, and set $I_i = \sum_{k=1}^i \alpha_k$. $[\beta_{i-1},\beta_i)$. Let τ be a permutation of $\{1,2,\cdots,n\}$, and consider the probability vector $\alpha^{\tau} = (\alpha_{\tau^{-1}(1)}, \cdots, \alpha_{\tau^{-1}(n)})$. Note that $\alpha_{\tau^{-1}(i)} > 0$ for all *i*. Let $\beta_0^{\tau} = 0$ and $\begin{array}{l} \beta_i^{\tau} = \sum_{k=1}^i \alpha_{\tau^{-1}(k)}, \, \text{and set } I_i^{\tau} = [\beta_{i-1}^{\tau}, \beta_i^{\tau}). \\ \text{Define } T: I \to I \text{ by} \end{array}$

 $Tx = x - \beta_{i-1} + \beta_{\tau(i)-1}^{\tau}$

if $x \in I_i$. T is called an (α, τ) interval exchange transformation on n intervals. It is clear that T is invertible, $T\beta_{i-1} = \beta_{\tau(i)-1}^{\tau}$ and T maps I_i isometrically onto $I_{\tau(i)}^{\tau}$. Further, T is continuous except possibly at $\{\beta_1, \dots, \beta_{n-1}\}$. At these points T is right continuous. Note that T is continuous at β_i if and only if $\tau(i+1) =$ $\tau(i) + 1$. In other words, T is discontinuous at β_i if and only if $T\beta_{i-1}, T\beta_i$ do not appear in this order as consecutive terms in the ordered set $\{\beta_0^{\tau_n}, \cdots, \beta_{2n}^{\tau_n}\}$. We say T is in standard form if T is discontinuous at β_i for all $i = 1, 2, \dots, n-1$ or equivalently, if $\tau(i+1) \neq \tau(i) + 1$ for all $i = 1, 2, \dots, n-1$. Notice that any interval exchange transformation on n intervals can be written in standard form as an interval exchange transformation on m intervals with $m \leq n$. Since if T is not in standard form, then T is continuous at β_i for some i, then $\tau(i+1) = \tau(i) + 1$, and so T maps the interval $[\beta_{i-1}, \beta_{i+1})$ isometrically onto $[\beta_{\tau(i)-1}^{\tau}, \beta_{\tau(i)+1}^{\tau})$. Thus, we can redefine T on intervals with end points

$$\{\beta_0, \cdots, \beta_{i-1}, \beta_{i+1}, \cdots, \beta_n\}.$$

We repeat this process until all the remaining β 's are discontinuity points of T.

¹⁹⁹¹ Mathematics Subject Classification. 28D05.

Key words and phrases. Rotations, interval exchange.

The permutation τ corresponding to T is said to be irreducible if

$$\tau(\{1, 2, \dots, k\}) \neq \{1, 2, \dots, k\}, \text{ for all } k = 0, 1, \dots, n-1.$$

Note that if τ is reducible, then T can be decomposed into two interval exchange transformations, one on $[0, \beta_k)$ and the other on $[\beta_k, 1)$. We assume throughout this paper that T is irreducible.

Interval exchange transformations have been studied by several authors. Here we mention few of the known results. In [K1], Keane studied the minimality of such transformations, and in [K2] questions concerning unique ergodicity were investigated. It is easy to see that if n = 2, T corresponds to a rotation and if n = 3, then T can be seen as an induced transformation of a rotation. Thus, if the β 's are rationally independent, then in both cases T is uniquely ergodic. Keynes and Newton [KN], and also Keane [K2] gave examples of interval exchange transformations that are not uniquely ergodic. Masur [M], and independently Veech [V1, V2, V3, V4, V5] showed that almost every minimal interval exchange transformation is uniquely ergodic. Later Boshernitzan [B] gave another proof of this result by more elementary means. Some of the spectral properties were studied by Veech in a series of papers [V3, V4, V5]. Oseledets [O] and Goodson [G] constructed ergodic interval exchange transformations with simple spectrum. Recently, Berthé, Chekhova and Ferenczi [BCF] proved that every ergodic interval exchange transformation on three intervals has simple spectrum. The first interval exchange transformation with continuous spectrum was given by Katok and Stepin [KS], their example is also an exchange on three intervals. In [BCF], the authors gave other examples of exchanges on three intervals with continuous spectrum, and they conjectured that no non-trivial exchange on three intervals is measure theoretically isomorphic to an irrational rotation. In section 2 we prove this conjecture as a corollary of a recent result by Simin Li [S], where he gave necessary and sufficient conditions for an interval exchange transformation to be conjugate to an irrational rotation.

2. Non-trivial exchanges on 3-intervals

Let 0 < l < m < 1 with 1, l, m rationally independent. Consider the interval exchange transformation T given by

$$Tx = \begin{cases} x+1-l & x \in [0,l), \\ x+1-l-m & x \in [l,m), \\ x-m & x \in [m,1). \end{cases}$$

T corresponds to the permutation $(1,2,3) \rightarrow (3,2,1)$. Notice that T is the only interval exchange transformation on 3-intervals which is irreducible and in standard form. Moreover, by a result of Keane [K1], T is minimal. We call T a non-trivial exchange transformation on 3-intervals. It is well known that T is an induced transformation of the interval exchange transformation S defined on [0, 1 - l + m)by

$$Sx \ = \ \left\{ \begin{array}{ll} x+1-l & x\in [0,m), \\ x-m & x\in [m,1-l+m) \end{array} \right.$$

Since after normalization S is isomorphic to an irrational rotation, S is minimal and uniquely ergodic, and hence so is T.

Let $\alpha = \frac{1-l}{1-l+m}$ and $\beta = \frac{1}{1-l+m}$. In [KS], the authors proved that if α has unbounded partial quotients and if for some subsequence q_n of denominators of convergents of α , we have

$$|\alpha - \frac{p_n}{q_n}| < o(\frac{1}{q_n^2}), \text{ and } |\beta - \frac{r}{q_n}| > \frac{c}{q_n}$$

for all r and some constant c > 0, then T is not measure theoretically isomorphic to an irrational rotation. In [BCF], it is proved that when α has bounded partial quotients, and $\beta \in K(\alpha)$ for some Cantor set $K(\alpha)$, then T is not measure theoretically isomorphic to an irrational rotation.

Simin Li [Li] gave recently necessary and sufficient conditions for an interval exchange transformation to be conjugate to an irrational rotation.

Theorem 1 (Li). Let T be an interval exchange transformation, and let $d(T^n)$ be the number of discontinuities of T^n . Then, T is conjugate to an irrational rotation if and only if (i) T^n is minimal for all $n \ge 1$, (ii) $\{d(T^n)\}$ is bounded by some integer N > 0 and (iii) there exists k > 0 and $M \ge 2^{N^3+3N^2}$ such that $d(T^k) =$ $d(T^{2k}) = \cdots = d(T^{Mk})$.

Since a non-trivial interval exchange on 3-intervals is uniquely ergodic, to show that it is not measure theoretically isomorphic to an irrational rotation, we prove that $\{d(T^n)\}$ is an unbounded sequence.

Theorem 2. Let T be a non-trivial interval exchange transformation on 3-intervals with rationally independent discontinuity points. Let $D(T^n)$ be the set of discontinuity points of T^n , and let $d(T^n)$ denote the cardinality of $D(T^n)$. Then

$$D(T^{n}) = \{T^{-i}l, T^{-j}m : 0 \le i, j \le n-1\},\$$

and hence, $d(T^n) = 2n$.

Proof: The proof is done by induction on n. The result is true for n = 1. Suppose

$$D(T^{k}) = \{T^{-i}l, T^{-j}m : 0 \le i, j \le k - 1\},\$$

for $k = 1, 2, \dots, n$. We prove the result for k = n + 1. Let

$$0 < \beta_1 < \beta_2 < \dots < \beta_{2n} < 1$$

be the discontinuities of T^n written in increasing order. By the induction hypothesis,

$$D(T^{n}) = \{\beta_{i} : 1 \le i \le 2n\} = \{T^{-i}l, T^{-j}m : 0 \le i, j \le n-1\}$$

Let $\beta_0 = 0$ and $\beta_{2n+1} = 1$. The underlying partition of T^n is given by

$$\mathcal{P}(T^n) = \{ [\beta_i, \beta_{i+1}) : i = 0, 1, \dots 2n \}.$$

Let τ_n be the permutation corresponding to T^n (notice that T^n is an interval exchange transformation). Then,

$$T^{n}\{\beta_{0},\beta_{1},\cdots,\beta_{2n}\} = \{\beta_{0}^{\tau_{n}},\beta_{1}^{\tau_{n}},\cdots,\beta_{2n}^{\tau_{n}}\}$$

with $\beta_0 = \beta_0^{\tau_n} = 0$, and $T^n \beta_i = \beta_{\tau_n(i+1)-1}^{\tau_n}$ for $i = 0, 1, \dots, 2n$. Furthermore, since 1, *l* and *m* are rationally independent, and each $\beta_i^{\tau_n}$ is a linear combination of 1, *l* and *m* with integer coefficients, it follows that $l, m \notin \{\beta_0^{\tau_n}, \beta_1^{\tau_n}, \dots, \beta_{2n}^{\tau_n}\}$. Now invertibility of *T* implies that $T\beta_0^{\tau_n}, \dots, T\beta_{2n}^{\tau_n}, Tm, Tl$ are all distinct.

KARMA DAJANI

Suppose $l \in (\beta_{r-1}^{\tau_n}, \beta_r^{\tau_n})$, and $m \in (\beta_{s-1}^{\tau_n}, \beta_s^{\tau_n})$. We consider three cases.

Case 1. If r = s, then $T^{-n}l, T^{-n}m \in (\beta_{p-1}, \beta_p)$ where $p = \tau_n^{-1}(r)$. Since T is an order preserving isometry on $[\beta_{p-1}, \beta_p)$, it follows that $T^{-n}l < T^{-n}m$. The underlying partition of T^{n+1} is then given by

$$\mathcal{P}_{1}(T^{n+1}) = \{ [\beta_{0}, \beta_{1}), \cdots, [\beta_{p-2}, \beta_{p-1}), [\beta_{p-1}, T^{-n}l), [T^{-n}l, T^{-n}m), [T^{-n}m, \beta_{p}) \\ [\beta_{p}, \beta_{p+1}), \cdots, [\beta_{2n}, \beta_{2n+1}) \}.$$

To prove the result, we need to show that

$$\{\beta_1, \cdots, \beta_{p-1}, T^{-n}l, T^{-n}m, \beta_p, \cdots, \beta_{2n}\}$$

is the set of discontinuity points of T^{n+1} . Let

$$D_1 = \{\beta_0, \cdots, \beta_{p-1}, T^{-n}l, T^{-n}m, \beta_p, \cdots, \beta_{2n}\}$$

and

$$E_{1} = \{\beta_{0}^{\tau_{n}}, \cdots, \beta_{r-1}^{\tau_{n}}, l, m, \beta_{r}^{\tau_{n}}, \cdots, \beta_{2n}^{\tau_{n}}\},\$$

both considered as ordered sets. Then $TD_1 = E_1$, and by discontinuity of T^n at β_p , we have $T^n\beta_p \neq \beta_r^{\tau_n}$. Further, $\beta_i^{\tau_n} \in (0, l)$ for $1 \leq i \leq r-1$, and $\beta_i^{\tau_n} \in (m, l)$ for $r \leq i \leq 2n$,. Hence,

$$T^{n+1}D_1 = TE_1$$

= { $Tm = 0, T\beta_r^{\tau_n}, \dots, T\beta_{2n}^{\tau_n}, Tl = 1 - m,$
 $T\beta_0^{\tau_n} = 1 - l, T\beta_1^{\tau_n}, \dots, T\beta_{r-1}^{\tau_n}$ }.

Here, the elements of TE_1 are listed in increasing order.

We first show that T^{n+1} is discontinuous at β_i for $i \neq p$. To do this, we need to prove that $T^{n+1}\beta_{i-1}$ and $T^{n+1}\beta_i$ do not appear in this order as consecutive terms in TE_1 . By assumption, T^n is discontinuous at β_i , hence $T^n\beta_{i-1}$ and $T^n\beta_i$ do not appear as consecutive terms of the form $\beta_j^{\tau_n}, \beta_{j+1}^{\tau_n}$ in E_1 . Let $I_0 = [0, l)$, $I_1 = [l, m)$ and $I_2 = [m, 1)$. If $T^n\beta_{i-1}, T^n\beta_i \in I_j$ for some j = 0, 2, then since T maps I_j isometrically onto TI_j , it follows that $T^{n+1}\beta_{i-1}$ and $T^{n+1}\beta_i$ cannot appear as consecutive terms in TE_1 . If $T^n\beta_{i-1} \in I_j$ and $T^n\beta_i \in I_k$ for $j \neq k$, then either $T^n\beta_{i-1} \in I_0$ and $T^n\beta_i \in I_2$, or $T^n\beta_{i-1} \in I_2$ and $T^n\beta_i \in I_0$. In the first case we get $T^{n+1}\beta_i < 1 - m < T^n\beta_{i-1}$, and in the second case, we get $T^{n+1}\beta_{i-1} < 1 - m < T^{n+1}\beta_i$. Hence, $T^n\beta_{i-1}$ and $T^n\beta_i$ do not appear as consecutive terms of the form $\beta_j^{\tau_n}, \beta_{j+1}^{\tau_n}$ in E_1 , and so T^{n+1} is discontinuous at β_i . Now, the discontinuity of T^n at β_p implies that $T^{n+1}\beta_p \neq T\beta_r^{\tau_n}$, and

$$Tm = 0 < T\beta_r^{\tau_n} < T^{n+1}\beta_n.$$

Hence $T^{n+1}(T^{-n}m) = Tm = 0$ and $T^{n+1}\beta_p$ do not appear as consecutive terms in TE_1 . So T^{n+1} is discontinuous at β_p .

The discontinuity of T^{n+1} at T^{-nl} follows from the fact that $T^{n+1}\beta_{p-1}$ is an interior point of TI_2 , while $T^{n+1}(T^{-n}l) = 1 - m$ is the left end-point of TI_1 . Finally, $T^{n+1}(T^{-n}m) = 0 < T\beta_r^{\tau_n} < 1 - m = T^{n+1}(T^{-n}l)$ implies that T^{n+1} is discontinuous at $T^{-n}m$. Therefore, $D_1 = D(T^{n+1})$.

Case 2: If r < s and $p = \tau_n^{-1}r < \tau_n^{-1}s = q$, then $T^{-n}l \in (\beta_{p-1}, \beta_p)$ and $T^{-n}m \in (\beta_{q-1}, \beta_q)$. The discontinuity of T^n at β_p and β_q implies $T^n\beta_p \neq \beta_r^{\tau_n}$ and $T^n\beta_q \neq \beta_s^{\tau_n}$. The underlying partition of T^{n+1} is easily seen to be

$$\mathcal{P}_2(T^{n+1}) = \{ [\beta_0, \beta_1), \cdots, [\beta_{p-2}, \beta_{p-1}), [\beta_{p-1}, T^{-n}l), [T^{-n}l, \beta_p) \}$$

 $[\beta_p, \beta_{p+1}), \cdots [\beta_{q-1}, T^{-n}m), [T^{-n}m, \beta_q), [\beta_q, \beta_{q+1}), \cdots, [\beta_{2n}, 1)\}.$ To show the discontinuity of T^{n+1} at $\beta_1, \cdots, \beta_{2n}, T^{-n}l, T^{-n}m$, we consider the ordered sets

$$D_{2} = \{\beta_{0}, \cdots, \beta_{p-1}, T^{-n}l, \beta_{p}, \cdots, \beta_{q-1}, T^{-n}m, \beta_{q}, \cdots, \beta_{2n}\}$$

and

 T^r

$$E_{2} = \{\beta_{0}^{\tau_{n}}, \cdots, \beta_{r-1}^{\tau_{n}}, l, \beta_{r}^{\tau_{n}}, \cdots, \beta_{s-1}^{\tau_{n}}, m, \beta_{s}^{\tau_{n}}, \cdots, \beta_{2n}^{\tau_{n}}\}$$

Then, $T^n D_2 = E_2$. Notice that $\beta_{1}^{\tau_n}, \dots, \beta_{r-1}^{\tau_n}$ are interior points of $I_0, \beta_r^{\tau_n}, \dots, \beta_{s-1}^{\tau_n}$ are interior points of I_1 and $\beta_s^{\tau_n}, \dots, \beta_{2n}^{\tau_n}$ are interior points of I_2 . Thus,

$$\begin{aligned} {}^{n+1}D_2 &= TE_2 \\ &= \{Tm = 0, T\beta_s^{\tau_n}, \cdots, T\beta_{2n}^{\tau_n}, Tl = 1-m, \\ &T\beta_r^{\tau_n}, \cdots, T\beta_{s-1}^{\tau_n}, T\beta_0^{\tau_n} = 1-l, \cdots, T\beta_{r-1}^{\tau_n}\}. \end{aligned}$$

Here, the elements of TE_2 are listed in increasing order. We first prove that T^{n+1} is discontinuous at β_i for $i \neq p, q$. If $T^n \beta_{i-1}, T^n \beta_i \in I_j$, then since $T^n \beta_{i-1}, T^n \beta_i$ do not appear as consecutive terms in E_1 and since T is an isometry on I_j , we have that $T^{n+1}\beta_{i-1}$ and $T^{n+1}\beta_i$ are not consecutive terms of E_2 , and thus T^{n+1} is discontinuous at β_i . If $T^n\beta_i \in I_j$ and $T^n\beta_{i-1} \in I_k$ for $k \neq j$, then we consider several cases.

- If $T^n \beta_i \in I_2$ and $T^n \beta_{i-1} \in I_0$ or I_1 , then since $T^n \beta_{i-1} \neq l$ we have $T^{n+1} \beta_i < 1 m < T^{n+1} \beta_{i-1}$.
- If $T^n \beta_i \in I_1$ and $T^n \beta_{i-1} \in I_2$, then since $T^n \beta_i \neq l$ it follows that $T^{n+1} \beta_{i-1} < 1 m < T^{n+1} \beta_i$.
- If $T^n\beta_i \in I_1$ and $T^n\beta_{i-1} \in I_0$, then $T^{n+1}\beta_i < T^{n+1}\beta_{i-1}$.
- If $T^n \beta_i \in I_0$ and $T^n \beta_{i-1} \in I_1$, then since $i \neq q$ we have $T^{n+1} \beta_{i-1} < T \beta_{s-1}^{\tau_n} < T \beta_0^{\tau_n} \leq T^{n+1} \beta_i$.
- If $\tilde{T}^n \beta_i \in I_0$ and $T^n \beta_{i-1} \in I_2$, then $T^{n+1} \beta_{i-1} < 1 m < T^{n+1} \beta_i$.

In all the above cases we see that T^{n+1} is not continuous at β_i .

The discontinuity of T^{n+1} at β_p and β_q follows from the fact that $T^{n+1}\beta_p \neq T\beta_r^{\tau_n}$ and $T^{n+1}\beta_q \neq T\beta_s^{\tau_n}$, so that neither $T^{n+1}\beta_p$ and $T^{n+1}(T^{-n}l)$ nor $T^{n+1}\beta_q$ and $T^{n+1}(T^{-n}m)$ appear as consecutive terms in TE_2 . Finally, from $T^{n+1}(T^{-n}l) =$ $1-m < 1-l < T\beta_{r-1}^{\tau_n}$ and $T^{n+1}(T^{-n}m) = 0 < 1-m < T\beta_{s-1}^{\tau_n}$ we have that T^{n+1} is discontinuous at $T^{n+1}(T^{-n}l)$ and $T^{n+1}(T^{-n}m)$. Thus, $D_2 = D(T^{n+1})$.

Case 3: If r < s and $p = \tau_n^{-1}r > \tau_n^{-1}s = q$, then the underlying partition of T^{n+1} is given by

$$\mathcal{P}_{3}(T^{n+1}) = \{ [\beta_{0}, \beta_{1}), \cdots, [\beta_{q-2}, \beta_{q-1}), [\beta_{q-1}, T^{-n}m), [T^{-n}m, \beta_{q}), [\beta_{q}, \beta_{q+1}), \cdots, \\ [\beta_{p-2}, \beta_{p-1}), [\beta_{p-1}, T^{-n}l), [T^{-n}l\beta_{p}), [\beta_{p}, \beta_{p+1}), \cdots, [\beta_{2n}, 1) \}.$$

 Let

$$D_3 = \{\beta_0, \cdots, \beta_{q-1}, T^{-n}m, \beta_q, \cdots, \beta_{p-1}, T^{-n}l, \beta_p, \cdots, \beta_{2n}\}$$

 and

$$E_3 = \{\beta_0^{\tau_n}, \cdots, \beta_{r-1}^{\tau_n}, l, \beta_r^{\tau_n}, \cdots, \beta_{s-1}^{\tau_n}, m, \beta_s^{\tau_n}, \cdots, \beta_{2n}^{\tau_n}\}.$$

Then,

$$T^{n+1}D_{3} = TE_{3}$$

$$= \{Tm = 0, T\beta_{s}^{\tau_{n}}, \cdots, T\beta_{2n}^{\tau_{n}}, Tl = 1 - m,$$

$$T\beta_{r}^{\tau_{n}}, \cdots, T\beta_{s-1}^{\tau_{n}}, T\beta_{0}^{\tau_{n}} = 1 - l, \cdots, T\beta_{r-1}^{\tau_{n}}\}$$

The elements of D_3 , E_3 and TE_3 are listed in increasing order. A similar argument as in the above two cases shows that $D_3 = D(T^{n+1})$. Thus, the theorem is proved.

Theorem 3. Any non-trivial interval exchange transformation on 3-intervals with rationally independent discontinuity points is not measure theoretically isomorphic to an irrational rotation.

Proof: By theorem 2 and unique ergodicity, the result follows from Li's theorem.

In [BCF], the authors proved that every ergodic interval exchange transformation on three intervals has simple spectrum. Using this result and theorem 3, we have the following corollary.

Corollary 1. Every non-trivial interval exchange transformation on three intervals with rationally independent discontinuity points has either rational or continuous spectrum.

References

- [BCF] Berthé, V., N. Chekhova and S. Ferenczi Covering numbers: arithmetics and dynamics for rotations and interval exchanges, J. D'Analyse Math. 79 (1999), 1-31.
- [B] Boshernitzan, M. A condition for minimal interval exchange maps to be uniquely ergodic, Duke Math. J. 52 (1985), 723-752.
- [G] Goodson, G.R. Functional equations associated with the sectral properties of compact group extensions, Proceedings of Conference on Ergodic Theory and its connection with Harmonic Analysis, Alexandria 1993, Cambridge University Press, 1994, 309-327.
- [K1] Keane, M.S. Interval exchange transformations, Math. Z. 141 (1975), 25-31.
- [K2] Keane, M.S. Non-ergodic interval exchange transformations, Israel J. Math. 26 (1977), 188-196.
- [KN] Keynes, H. and D. Newton A minimal non-uniquely ergodic interval exchange transformation, Math. Z. 148 (1976), 101-105.
- [KS] Katok, A.B. and A.M. Stepin Approximations in ergodic theory, Uspekhi Math. Nauk 22, 5 (1967), 81-106 (Russian), translated in Russian Mth. Surveys 22, 5 (1967), 76-102.
- [Li] Li, Simin A Criterion for an Interval Exchange Map to be Conjugate to an Irrational Rotation, J. Math. Sci. Univ. Tokyo 6 (1999), 679-690.
- [M] Masur, H. Interval exchange transformations and measured foliations, Ann. of Math. 115 (1982), 169-200.
- [O] Oseledets, V.I. On the spectrum of ergodic automorphisms, Doklady Akad. Nauk SSSR 168, 5 (1966),1009-1011 (in Russian), translated in Soviet Math. Doklady 7 (1966), 776-779.
- [R] Rauzy, G. Echanges d'intervalles et transformations induites, Acta Arith. 34 (1979), 315-328.
- [V1] Veech, W.A. Interval exchange transformations, J. D'Analyse Math. 33 (1978), 222-272.
- [V2] Veech, W.A. Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. 115 (1982), 201-242.
- [V3] Veech, W.A. The metric theory of interval exchange transformations. I Generic spectral properties, Amer. J. Math. 106 (1984), 1331-1359.
- [V4] Veech, W.A. The metric theory of interval exchange transformations. II Approximation by primitive exchange, Amer. J. Math. 106 (1984), 1361-1387.
- [V5] Veech, W.A. The metric theory of interval exchange transformations. III The Sah-Arnoux-Fathi invariant, Amer. J. Math. 106 (1984), 1389-1422.

Universiteit Utrecht, Fac. Wiskunde en Informatica and MRI, Budapestlaan 6, P.O. Box 80.000, 3508 TA Utrecht, the Netherlands

E-mail address: dajani@math.uu.nl