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Abstract. Complex dynamics of the most frequently used tritrophic food chain model are
investigated in this paper. First it is shown that the model admits a sequence of pairs of Belyakov
bifurcations (codimension-two homoclinic orbits to a critical node). Then fold and period-doubling
cycle bifurcation curves associated to each pair of Belyakov points are computed and analyzed. The
overall bifurcation scenario explains why stable limit cycles and strange attractors with di�erent
geometries can coexist. The analysis is conducted by combining numerical continuation techniques
with theoretical arguments.
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1. Introduction. For several decades, after the pioneering work of Lotka [34]
and Volterra [42], one of the topics of major concern in mathematical ecology has
been the study of ditrophic food chains. This has been accomplished by analyzing
a great number of second-order continuous-time dynamical models, usually called
prey{predator models (see, for example [2]). Existence of limit cycles, multiplicity
of attractors and catastrophic bifurcations are the characteristics of those models
which have been used to explain complex behaviors observed in the �eld. It is only
in the late seventies that some interest in the mathematics of tritrophic food chain
models (composed of prey, predator, and top-predator) emerged. With almost no
exception, the �rst contributions dealt with the problem of persistence [18, 19, 17]
and, therefore, did not provide information on the number and the geometry of the
attractors. This is a very unfortunate situation because the nature of the attractors
is often the most interesting feature of a dynamical system. An exception in this
respect was an almost unnoticed paper [25], where it was shown through simulation
that a particular food chain model can behave chaotically. This property was in
practice brought to the attention of the scienti�c community by a contribution [24]
that appeared much later and showed that food chains behave chaotically on a \tea-
cup" strange attractor provided the three populations have diversi�ed time responses
increasing from bottom to top. This condition on the time responses was used in the
same years [38, 39] to perform a singular perturbation analysis that indeed con�rms
that the tea-cup geometry is the result of the interactions between high frequency
(prey{predator) oscillations and low frequency (predator{top-predator) oscillations.
Since then, particular e�ort has been devoted to the study of the complex dynamics of
food chain systems and bifurcation analysis has been the major tool of investigation.
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The most recent studies [28, 37, 33, 11, 5] dealing with the so-called Rosenzweig-
MacArthur model show that its bifurcation structure is quite rich. In particular, it
comprises a complex cascade of tangent bifurcations of cycles intersecting with ip
bifurcation curves, thus delimiting a region of very complex behavior, sometimes called
the chaotic region [33]. Although these analyses were restricted to local bifurcations,
they clearly indicate the presence of global bifurcations. Indeed, homoclinic orbits,
i.e., orbits tending toward the same saddle equilibrium or saddle cycle forward and
backward in time, have been numerically detected in [37, 33, 5] and even proved to
exist through singular perturbation analysis in the case of trophic levels with time
responses increasing from bottom to top [12]. Similar analysis have been performed
on more complex food chain models [4, 23, 30, 40] and the results are qualitatively
the same: Homoclinic orbits exist and very complex behavior is possible.

Despite the e�orts devoted to the analysis of the Rosenzweig-MacArthur food
chain model, a systematic study of its chaotic region has not yet been attempted.
The aim of this paper is to accomplish this study by combining recent numerical
techniques for continuing homoclinic bifurcations [6, 7] with the analysis of a special
codim-2 homoclinic bifurcation �rst studied in [3] and here referred to as Belyakov

bifurcation. In particular, it will be shown that a number of homoclinic bifurcation
curves exists in a two parameter space and that two Belyakov points are located
on each of these curves. Since the original analysis in [3] was insu�cient for our
purposes, we have revisited Belyakov's proofs and have shown that three families
of subsidiary bifurcation curves (namely, tangent, ip, and double homoclinic) are
rooted at each Belyakov point. These points are therefore the organizing centers of
the overall bifurcation scenario. Another organizing feature of the two-parameter
bifurcation diagram is the sharp turn of the primary homoclinic curves.

The paper is structured as follows. In the next section some background infor-
mation on the Rosenzweig-MacArthur model is given, while in Sect. 3 the simplest
local bifurcations relative to equilibria and cycles are discussed. Then, in Sect. 4, the
bifurcation structure of the chaotic region is discussed in detail. The basic properties
of the Belyakov homoclinic points are presented in Appendix, where the asymptotic
expressions for the subsidiary bifurcation curves are derived.

The authors would like to thank Dr. A.J. Homburg (University of Amsterdam)
for useful discussions on Belyakov points.

2. The Model and Its Equilibria. The model we analyze in this paper de-
scribes a tritrophic food chain composed of a logistic prey (X), a Holling type II
predator (Y ) and a Holling type II top-predator (Z). It is, therefore, given by the
following system of ordinary di�erential equations (see [24] for more details):

dX

dT
= X

�
R

�
1� X

K

�
� A1Y

B1 +X

�
;(2.1a)

dY

dT
= Y

�
E1

A1X

B1 +X
� A2Z

B2 + Y
�D1

�
;(2.1b)

dZ

dT
= Z

�
E2

A2Y

B2 + Y
�D2

�
;(2.1c)

where T is time, R and K are prey intrinsic growth rate and carrying capacity,
the Ai's are maximum predation rates, the Bi's are half saturation constants, the
Di's are death rates and the Ei's are e�ciencies of predator (i = 1) and top-predator
(i = 2). In order to preserve the biological meaning of the model the parameters are
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assumed strictly positive. Furthermore, to avoid the case where predator and top-
predator cannot survive, even when their food is in�nitely abundant, we assume that
EiAi > Di; i = 1; 2.

By rescaling the variables,

x1 = X; x2 =
Y

E1
; x3 =

Z

E1E2
; t = T;

one obtains

dx1

dt
= x1

�
r
�
1� x1

K

�
� a1x2

1 + b1x1

�
;(2.2a)

dx2

dt
= x2

�
a1x1

1 + b1x1
� a2x3

1 + b2x2
� d1

�
;(2.2b)

dx3

dt
= x3

�
a2x2

1 + b2x2
� d2

�
;(2.2c)

where

r = R; a1 =
A1E1

B1
; b1 =

1

B1
; d1 = D1; a2 =

A2E1E2

B2
; b2 =

E1

B2
; d2 = D2:

Then, the above conditions for predator and top-predator persistence become ai >
bidi; i = 1; 2.

The reference parameter values used in this paper are those used in [33], namely

a1 = 5; a2 = 0:1; b1 = 3; b2 = 2; d1 = 0:4; d2 = 0:01;

while the two remaining parameters K and r are varied to perform the bifurcation
analysis. The reader interested in the biological interpretation of these parameter
values can refer to [36].

All coordinate axes and faces of the positive orthant are invariant sets of sys-
tem (2.2). There are three trivial equilibria:
{ the origin (0; 0; 0), which is always a saddle;
{ the point (K; 0; 0), corresponding to prey at carrying capacity and absence of
predator and top-predator;

{ the point

x(0) =
�
x
(0)
1 ; x

(0)
2 ; 0

�
=

 
d1

a1 � b1d1
;
r
�
a1 � d1

�
b1 +

1
K

��
(a1 � b1d1)

2 ; 0

!
;(2.3)

which is positive for a1 > d1
�
b1 +

1
K

�
and corresponds to prey{predator coexis-

tence and absence of top-predator.

The point x(0) can be either stable or unstable in the face (x1; x2). When it is unstable,
it is surrounded by a stable limit cycle [35], which is unique and globally attracting
in the plane x3 = 0 [9]. The transition between the two situations corresponds to a
supercritical Hopf bifurcation of the submodel (2.2a-2.2b) with x3 = 0 and occurs for

Kb1 (a1 � b1d1) = a1 + b1d1:(2.4)

Moreover, a second degeneracy of the point x(0) occurs when the term in the square
brackets of (2.2c) annihilates, namely when

r (a2 � b2d2) (K (a1 � b1d1)� d1) = d2K (a1 � b1d1)
2
:(2.5)
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It is a transcritical bifurcation giving rise to a strictly positive equilibrium for small
perturbations of the parameters.

As for nontrivial equilibria, it is possible to show that at most two of them can
be positive, namely:

x(1) =
�
x
(1)
1 ; x

(1)
2 ; x

(1)
3

�
= (�1; �; 1) ;(2.6)

x(2) =
�
x
(2)
1 ; x

(2)
2 ; x

(2)
3

�
= (�2; �; 2) ;(2.7)

where

� =
d2

a2 � b2d2
;(2.8a)

�1;2 =
1

2

2
4K � 1

b1
�
s�

K +
1

b1

�2
� 4

K

r

a1

b1
�

3
5 ;(2.8b)

1;2 =

(1 + b2�) (a1 � b1d1)

�
�1;2 � d1

a1 � b1d1

�
a2 (1 + b1�1;2)

:(2.8c)

Depending upon the parameter values, there are three possible cases: none of
these equilibria is strictly positive, only x(1) is strictly positive or both x(1) and x(2)

are strictly positive. When x(2) is positive it is always a repeller, while x(1) can be
either an attractor or a saddle.

3. Bifurcations of Equilibria and Local Bifurcations of Limit Cycles.

3.1. Codimension-two point M . If all parameters, except K and r, are �xed,
the planar Hopf bifurcation (2.4) and the transcritical bifurcation of equilibria (2.5)
occur along two curves in the (K; r)-plane, labeled by Hp and TCe in Fig. 3.1. These
curves intersect at a codimension-two point M with coordinates

M = (KM ; rM) =

 
1

b1

a1 + b1d1

a1 � b1d1
;
d2

a1

a21 � (b1d1)
2

a2 � b2d2

!

and the coordinates (see (2.3)) of the corresponding equilibrium point x(0)M (with one
zero eigenvalue and two purely imaginary eigenvalues) are

x
(0)
M

=
�
x
(0)
1M ; x

(0)
2M; x

(0)
3M

�
=

�
d1

a1 � b1d1
;

d2

a2 � b2d2
; 0

�

The analysis of the bifurcations in the vicinity of x
(0)
M for parameter values close to

(KM ; rM) can be performed using the normal form technique [1]. In particular, a
parameter-dependent normal form of the system near this point has been derived and
used to show [33] that �ve bifurcation curves emerge from this point. None of these
curves implies chaos, so that the codimension-two point M can not be considered as
the \origin" of chaos in food chains, as �rst argued in [28].

3.2. Bifurcation curves rooted at pointM . The bifurcation curves emerging
from point M have been continued numerically using locbif [27], see Fig. 3.1. The
curve Hp is a vertical straight line because r is not present in eq. (2.4); the curve Te is
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Fig. 3.1. Some local bifurcation curves of system (2:2) in the (K; r)-plane: Hp { Hopf bifur-

cation in the plane x3 = 0; TCe { transcritical bifurcation of equilibrium x(0); TCc { transcritical

bifurcation of cycle; H� and Te { Hopf and tangent bifurcations of positive equilibria; Tc { tangent

bifurcation of limit cycles; F (1) and F
(i)
1 { ip bifurcations of limit cycles. Codimension two bifur-

cation points: M { zero-Hopf bifurcation in the plane x3 = 0; DH { degenerate Hopf bifurcation; C
{ cusp bifurcation of limit cycles; D { degenerate transcritical bifurcation of limit cycles.

the tangent bifurcation curve for equilibria, where x(1) and x(2) collide and disappear
(annihilation of the radical in eq. (2.8b)); TCe is a transcritical bifurcation curve of
equilibria (see eq. (2.5)), where a strictly positive equilibrium emerges from point x(0);
TCc is a transcritical bifurcation curve for cycles, where a strictly positive limit cycle
emerges from the limit cycle in the plane (x1; x2); �nally, the curve H = H+ [H� is
a Hopf bifurcation curve. Crossing curve H�, the equilibrium x(1) looses its stability
and a stable limit cycle appears around it. By contrast, crossing curve H+, the
equilibrium x(1) looses its stability while an unstable cycle shrinks on it. The �rst
Lyapunov coe�cient associated with the Hopf bifurcation H (i.e., the real part of the
cubic coe�cient in the normal form [31]) is positive close toM and decreases fromM

to DH, where it vanishes. This means that the Hopf bifurcation is subcritical from
M to DH (segment H+) and supercritical elsewhere (segment H�). Therefore (see,
for example, [31]) there exists a tangent bifurcation of limit cycles Tc originating at
point DH and corresponding to the collision of two positive limit cycles. Numerical
continuation shows that curve Tc has a second codimension two singularity, namely a
cusp C, where three limit cycles collide simultaneously. The curve Tc terminates at a
point D on the transcritical bifurcation curve TCc, where a cycle passes through the
invariant plane x3 = 0: when approaching point D along Tc, the two colliding cycles
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\hit" the invariant face. Thus, the curve Tc connects the codimension-two bifurcation
points DH and D.

3.3. Cascades of ip bifurcations. The bifurcation curves described so far
form a bifurcation set connected with point M . However, the actual bifurcation di-
agram is much more complex and involves many other bifurcation curves that are

disconnected from the previous ones. Figure 3.1 shows four such curves F
(1)
, F

(2)
1 ,

F
(3)
1 and F

(4)
1 , computed with locbif [27] and auto97 [14]. These curves are part

of a bifurcation scenario, composed of Feigenbaum-like (period-doubling) cascades al-
ternated with chaotic windows. The continuation for decreasing values of K, of the
stable limit cycle existing in the right-upper corner of Fig. 3.1, reveals a ip bifurca-

tion curve F (1) followed by a Feigenbaum's cascade of ips F (2)
1 ; F

(2)
2 ; F

(2)
3 ; : : : ending

with a curve F
(2)
1 after which the attractor is a strange attractor. Notice that only the

�rst ip F
(2)
1 of this Feigenbaum's cascade is shown in Fig. 3.1. The chaotic region

delimited on the right by F
(2)
1 ends, on the left, with an \attractor crisis", namely with

the sudden disappearance of the strange attractor, which is substituted by a period-3
cycle, namely by a cycle characterized by three prey{predator oscillations per cycle,
i.e., by three minima of the prey x1 per cycle (see Fig. 3.2). Decreasing K further,

1.15 1.1562 1.1625 1.1687 1.175
0

0.075

0.15

0.225

0.3

K

x1min

F (1)F
(2)
1F

(3)
1F

(4)
1

F
(2)
2F

(2)
3

Fig. 3.2. One parameter bifurcation scenario with respect to K for the cycle existing in the

right-upper corner of Fig. 3.1 (r = 1:2).

the period-3 periodic window ends with the ip bifurcation F
(3)
1 shown in Figs. 3.1

and 3.2. Such a bifurcation is the �rst period-doubling of a new Feigenbaum's cascade

F
(3)
1 ; F

(3)
2 ; F

(3)
3 ; : : : ending at F

(3)
1 , where a new strange attractor appears. And the
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story repeats: The second chaotic region is followed by a period-4 periodic window,

which is then interrupted by the ip curve F
(4)
1 which is the �rst period-doubling of

a Feigenbaum's cascade F (4)
1 ; F

(4)
2 ; F

(4)
3 ; : : :F

(4)
1 . Figure 3.2 shows that the attractors

(cycles and strange attractors) of the system are obtained from \generating cycles"
through a series of bifurcations, and that each generating cycle is characterized by a
di�erent number i of prey{predator oscillations, namely by a di�erent number i of
minima of the prey (x1) per cycle.

It will be shown later that the generating cycles organize the overall bifurcation
structure. This is why a superscript (i) will characterize all bifurcation curves. For

example, the k-th ip bifurcation of the period-i generating cycle is called F
(i)
k . There

is, however, a hidden drawback in such notations, since the number i could change in
the continuation (see below).

Coming back to Fig. 3.1, we can notice that the left side of the chaotic region is
quite complex, because on that side the ip curves intersect one with each other (and
with other bifurcation curves not shown in the �gure). This problem will be studied
in the next section by focusing on the rectangular subregion indicated in Fig. 3.1.

4. Homoclinic Orbits and Associated Bifurcations. We show in this sec-
tion that limit cycle bifurcations characterizing the chaotic region are organized by
an in�nite family of U-shaped bifurcation curves h(i); i = 1; 2; : : :, corresponding to
the presence of orbits homoclinic to the saddle (or saddle-focus) x(1). For simplicity,
the �rst one of these bifurcation curves is called primary and all the others secondary.
We can anticipate that each homoclinic bifurcation corresponds to homoclinic or-
bits that di�er in the number of minima of the prey. These bifurcation curves are
computed using the numerical toolbox for homoclinic bifurcation analysis HomCont
[6, 7] incorporated into Auto97 [14]. It turns out that when the equilibrium x(1) is a
saddle-focus its complex-conjugate eigenvalues have positive real part and are closer
to the imaginary axis than the real eigenvalue, so that Shilnikov's theorem [31] implies
the existence of an in�nite number of saddle limit cycles for parameter values near
the homoclinic bifurcation curves. As shown in [21, 15, 22, 20], under the same con-
ditions at least three countable families of subsidiary bifurcations (ip, tangent, and
homoclinic) accumulate on each homoclinic curve. Moreover, two Belyakov points,
i.e., two codim-2 homoclinic bifurcation points where the transition from saddle-focus
to saddle of the equilibrium occurs, lie on each homoclinic bifurcation curve and are
the roots of the subsidiary bifurcations. Finally, the geometry of the subsidiary bi-
furcation curves is determined by the sharp U-turn of the homoclinic curves h(i).

All these facts imply that the chaotic region has a very complex structure and
is actually fractalized in regions where chaotic attractors coexist with cycles with
di�erent numbers of prey{predator oscillations per cycle.

4.1. Primary homoclinic and subsidiary bifurcations. Through the nu-

merical continuation in (K; r) of the ip curve F
(1)

(see Fig. 3.1), one can easily
discover that the period of the cycle becomes very large on the left branch of the
curve when r becomes slightly bigger than 4. This is a clear indication that the cycle
is very close to a homoclinic orbit. Further simulations, combined with suitable per-
turbations of the parameters, allow one to detect a homoclinic bifurcation point with
an associated homoclinic orbit characterized by a single minimum of the prey. Then,
through the two-parameter continuation, an entire homoclinic bifurcation curve h(1)

can be produced. Such a curve is U-shaped, as qualitatively sketched in Fig. 4.1. For
su�ciently high values of r the right branch of h(1) corresponds to homoclinic orbits
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K

r

B
(1)
0B

(1)
1

h(1)

F (1)

t
(1)
1,0

f
(2)
1,1

Fig. 4.1. Sketch of bifurcation curves associated with the �rst Belyakov pair B
(1)
0 and B

(1)
1 :

h(1) { primary homoclinic bifurcation; t
(1)
1;0 { tangent bifurcation of limit cycles; F (1) and f

(2)
1;1 { ip

bifurcations of limit cycles. The upper index (i) indicates the number of prey{predator oscillations

per cycle.

to a saddle with a single minimum of the prey. Going down along the right branch

we pass the �rst Belyakov point B
(1)
0 (K = 1:2202954903:::; r = 4:0263103008:::) and

below that point we have homoclinic orbits to a saddle-focus. Proceeding further, af-

ter a turning point we encounter the second Belyakov point B(1)
1 , after which we have

again homoclinic orbits to a saddle. While making the U-turn, the geometry of the
homoclinic orbit changes signi�cantly because a second minimumof the prey appears,
namely the homoclinic orbit makes then two global turns involving two oscillations of
the prey{predator subsystem. Figure 4.2 shows how the homoclinic orbits vary along
the bifurcation curve h(1). The homoclinic orbits associated to the right branch of
h(1) have a single prey{predator oscillation while those associated to the left branch
have two oscillations.

It has been proved in [3] that each Belyakov point is the origin of two in�nite
families of subsidiary bifurcation curves. One is a family of tangent bifurcations of
cycles and the other is a family of homoclinic bifurcations associated to homoclinic
orbits (called double) characterized by a number of global turns which is twice that
of the primary homoclinic orbit. We prove in the Appendix that an in�nite family of
ip bifurcation curves is also rooted there. All these curves accumulate exponentially
fast on the primary homoclinic curve h(1) and have in�nite-order tangency to it at the
Belyakov point. These accumulation properties are so strong that it is very di�cult to
numerically produce more than a few of these subsidiary curves. In the present case
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0
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0.5
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0.25
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0

0.5
9.25

10.25

0.25

1

0

0.5
9.25

10.25

B
(1)
1 B

(1)
0

h(1)

x2 x1

x2 x1

x1x2

x3 x3

x3x3

Fig. 4.2. Deformation of the homoclinic orbit along the curve h(1): the homoclinic orbits

associated to the right [left] branch of h(1) have one minimum [two minima] of x1 (t).

we were able to compute (through continuation) only the �rst tangent and the �rst ip
bifurcation curve of the corresponding families, as sketched in Fig. 4.1. The tangent

bifurcation t
(1)
1;0 starts from pointB

(1)
0 and has two cusps, while the ip bifurcation f

(2)
1;1

starts and returns to the same Belyakov point B
(1)
1 . Note that the cycles associated

to these bifurcation curves have one and two minima of the prey per cycle and this is
why the curves are identi�ed with the superscripts (1) and (2), respectively. In reality
the U-turn is very sharp (as noticed in [30] for a similar model) and the two Belyakov
points almost coincide. However, it is possible to distinguish them by zooming on
the corresponding homoclinic orbits in the vicinity of the saddle equilibrium x(1), as

shown in Fig. 4.3. Moreover, the four bifurcation curves F
(1)
, h(1), t

(1)
1;0 and f

(2)
1;1

shown in Fig. 4.1 practically coincide in the vicinity of the Belyakov points, while

the ip curve F
(1)

is well separated from h(1).

In conclusion, the bifurcation diagram associated to the primary homoclinic h(1)

is composed of h(1) itself, of the subsidiary bifurcations f
(1)
i;0 , t

(1)
i;0 , and h

(1)
i;0 ; i = 1; 2; : : : ;

associated with B
(1)
0 and of the subsidiary bifurcations f

(2)
i;1 , t

(2)
i;1 , and h

(2)
i;1 ; i = 1; 2; : : : ;

associated with B(1)
1 . These results are in agreement with the two-parameter analysis

performed in [20], where, nevertheless, the sharp geometry of the homoclinic curve
was not fully understood, since homoclinic orbits with two global turns were not even
taken into account. Figure 4.4 shows the partial bifurcation diagram we were able to
obtain: at that scale the two Belyakov points appear as a single point and the two
branches of the primary homoclinic are not distinguishable.
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0 0.35 0.7 1.05 1.4
9.4
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10.9
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x(1)x(1)

x1 x1

x3x3

Fig. 4.3. Resolution of the Belyakov points by zooming on the equilibrium x(1) : (a) { B
(1)
0 ; (b)

{ B
(1)
1 .

4.2. Secondary homoclinics and subsidiary bifurcations. The bifurcation
diagrams associated to the secondary homoclinics h(2), h(3), : : : have the same struc-
ture than the diagram associated to the primary homoclinic h(1). The homoclinic
orbits associated to the homoclinic bifurcation curves h(i) involve i or (i+ 1) minima
of the prey per cycle, instead of one or two. Figure 4.5 shows a qualitative sketch
of the diagram associated to h(2). The homoclinic bifurcation curve h(2) is U-shaped

and has two Belyakov points B(2)
0 and B(2)

1 . The homoclinic orbits associated to the
right branch of h(2) make two global turns, while those associated to the left branch
make three global turns, as clearly detectable in Fig. 4.6, where the homoclinic or-
bits at the Belyakov points are shown. Notice that, these two orbits are more easily
distinguishable than in the case of the primary homoclinic h(1).

The main di�erence between the bifurcation scenario associated with the primary
homoclinic (Fig. 4.1) and the scenario associated with the secondary homoclinics

(Fig. 4.5) is that in the last one a tangent bifurcation curve t(3)0;1 rooted at the left

Belyakov point B
(2)
1 is also present. As in the primary case, the two Belyakov points

are so close to appear as a single point, as shown in Fig. 4.7, reporting actual results
of our computations. At the scale of the �gure, the two branches of h(2) cannot be

distinguished and the bifurcation curves h(2), f
(3)
1;1 , t

(3)
0;1 and t

(2)
1;0 appear as a single

curve in the vicinity of the Belyakov points. The ip F
(2)
1 tends asymptotically to t

(2)
1;0

as r increases.
The same results can be obtained for a few other secondary homoclinic curves h(i).

Indeed, we have been able to perform the computations up to the �fth homoclinic
bifurcation h(5). Superimposing the �ve corresponding diagrams we have obtained
the bifurcation subset shown in Fig. 4.8.

In such a diagram the ten Belyakov points appear as a single point and the �ve
homoclinic curves h(i); i = 1; : : : ; 5 can be hardly distinguished. By contrast, the

subsidiary bifurcation curves t(i)1;0, t
(i+1)
0;1 , f (i+1)1;1 , F (i)

1 can be fairly well identi�ed.
Nevertheless, we like to stress that these curves represent only a very small fraction of
the complete bifurcation set. First of all, because each one of these curves is only one
representative of an in�nite family of similar bifurcation curves and, second, because
the subsidiary homoclinic curves are missing since we were unable to produce them
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(1)
0
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(1)
1

t
(1)
1,0

Fig. 4.4. Computed bifurcation curves associated with the �rst Belyakov pair. Labelling as in

Fig. 4.1. The two Belyakov points B
(1)
0 and B

(1)
1 are indistinguishable at this scale.

numerically. Moreover, we must also mention that there are other global bifurcations
involved such as the recently discovered [5] heteroclinic bifurcations, concerning orbits
connecting the saddle point x(1) to a saddle limit cycle.

5. Discussion. We have shown in the previous sections (see, in particular,
Fig. 4.8) that a family of homoclinic bifurcations organize the structure of the so called
chaotic region. This region is fractalized in subregions of chaotic and/or periodic be-
havior and the coexisting attractors (cycles and strange attractors) are characterized
by di�erent geometries, namely by a di�erent number of prey{predator oscillations.
The coexistence of di�erent attractors is due to the overlapping of the basic bifurca-
tion structures sketched in Figs. 4.1 and 4.5. The series of Feigenbaum-like cascades
that exists on the right side of the chaotic region is also organized by the same bifur-

cation structure. Indeed, the curves t(i+1)0;1 and F
(i)
1 on the right of Fig. 4.8 form the

skeleton of the series of Feigenbaum's cascades described in Sect. 3.3 and in Fig. 3.2.

In fact, the curve t(i+1)0;1 is the tangent bifurcation that opens the periodic window of

period-(i + 1) and the curve F
(i+1)
1 is the �rst ip of the period-(i+ 1) cycle.

In order to show how the attractors depend upon K and r we have plotted
in Fig. 5.1 the period T of the cycle born on the Hopf bifurcation curve H� of
Fig. 3.1. The period T has been computed through continuation with respect to r
for di�erent values ofK. The points marked with a triangle are ip points, while those
marked with a circle are tangent points, and the number of prey{predator oscillations
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K

r

t
(2)
1,0

h(2)

B
(2)
0B

(2)
1

F
(2)
1

f
(3)
1,1

t
(3)
0,1

Fig. 4.5. Sketch of bifurcation curves associated with the second Belyakov pair B
(2)
0 and B

(2)
1 :

h(2) { secondary homoclinic bifurcation; t
(2)
1;0 and t

(3)
0;1 { tangent bifurcations of limit cycles; F

(2)
1 and

f
(3)
1;1 { ip bifurcations of limit cycles. The upper index (i) indicates the number of prey oscillations

per cycle.

0

1.5

0

2
8

12

0

1.5

0

2
8

12

(b)(a)

x(1) x(1)

x1x2 x2 x1

x3 x3

Fig. 4.6. Homoclinic orbits corresponding to the Belyakov points: (a) { B
(2)
0 ; (b) { B

(2)
1 .

present in each cycle is indicated within parentheses. Moreover, Fig. 5.2 reports,
for four di�erent values of K, the bifurcation scenarios of the minima of x1 on the
attractors. Each scenario is accompanied by the two parameters bifurcation diagram
in the neighborhood of the K value characterizing the scenario.

For K < 0:87, i.e., when the bifurcations of Fig. 4.8 are not involved, there exists
only one stable cycle. Its period T , as well as the number of prey{predator oscillations,
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Fig. 4.7. Computed bifurcation curves associated with the second Belyakov pair. Labelling as

in Fig. 4.1.

increases with r as indicated in Fig. 5.1. Consistently, Fig. 5.2(a), obtained for
K = 0:85, shows that there is only one cycle and that the number of minima of x1 per
cycle increases from 1 to 5 in the interval 0:9 � r � 1:6. The values of r at which the
number of minima of x1 changes are values for which the periodic function x1 (t) has
an inection point with _x1 = 0. The locus where these inections occur is reported
in the two parameter bifurcation diagram with a dotted line.

For 0:87 < K < 1:05, i.e., from the �rst overlapping of ip and tangent bifurcation
curves to the (primary and secondary) homoclinic bifurcation curves h(1), h(2), : : : (see
Fig. 4.8), the period T of the cycle and the number of global turns still increase with
r (see Fig. 5.1) but coexistence of di�erent attractors with di�erent number of global
turns per cycle is possible. The bifurcation scenario of Fig. 5.2(b), obtained for
K = 0:96, clearly points out this possibility.

For 1:05 < K < 1:17, i.e.,from the homoclinic bifurcations h(i) to the end of the
ip and tangent overlapping (see again Fig. 4.8), the number of global turns of x1 (t)
per cycle still increases with r while the period T of the cycle increases and decreases
alternatively (see Fig. 5.1). The scenario in Fig. 5.2(c) shows that the previous well
organized structure is no longer present and that the minima of x1 in the strange
attractor do not belong to separated segments. This means that the geometry of the
strange attractor is no longer simple.

Finally, for K > 1:17 , i.e., when there are no ip and tangent overlapping (see
Fig. 4.8), a series of Feigenbaum's cascades alternated with chaotic windows can be
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Fig. 4.8. Detailed bifurcation structure of the chaotic region.

observed (see Fig. 5.2(d)). The fact that there is also a series of reversed Feigenbaum's
cascades is due to the curvature of the ip and tangent bifurcations.

All the results we have found through continuation are in agreement with simula-
tion experiments which are summarized in Fig. 5.3. In this �gure more intense gray
levels are associated with more complex attractors characterized by higher numbers of
prey{predator oscillations. The �gure clearly shows that the right side of the chaotic
region is regularly organized in bands of simple and complex attractors. By contrast,
the left side of the chaotic region is fractalized in subregions with simple and complex
behaviors. The �gure also points out the existence of an island of simple behavior
inside the chaotic region. This island, �rst discovered in [40], has been recently shown
to be related to heteroclinic orbits to a saddle cycle [5].

6. Concluding Remarks. We have studied in this paper the most common
model of tritrophic food chains by focusing on its local and global bifurcations. We
have discovered that the models has an in�nite number of homoclinic bifurcation
curves and that on each one of them there are two special points, namely, codim-2
Belyakov homoclinic bifurcation points. We have proved that three in�nite fami-
lies of subsidiary (ip, tangent and homoclinic) bifurcation curves emerge from each
Belyakov point. The numerical computation of these subsidiary bifurcations and the
analysis of their intertwining has allowed us to understand the structure of the so
called chaotic region. In particular, we have discovered that the number of oscilla-
tions per cycle of one of the three state variables turns out to be a useful complexity
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Fig. 5.1. The period T of the cycles in the chaotic region: circles and triangles represent

tangent and ip bifurcations, respectively.

index for encoding the attractors, and that one side of the chaotic region is nicely orga-
nized in bands of alternate high and low complexity, while the other side is completely
fractalized in terms of complexity.

From a theoretical point of view, our analysis is interesting because it contains new
results concerning ip bifurcation curves near Belyakov points (cf., [3]). Moreover,
the basic bifurcation scenario near the U-turn of each homoclinic curve (see Fig. 4.1
and Fig. 4.5) adds some details to the results described in [20], in particular about
homoclinic orbits with several global turns. But our study is also interesting from
the computational point of view because it shows how powerful the combination of
theoretical analysis and continuation techniques can be for understanding the behavior
of nonlinear dynamical systems.

The results pointed out in this paper can be interpreted biologically by noticing
that one of the two parameters of our discussion, namely the prey carrying capacity
K, can be controlled through enrichment or impoverishment of the habitat of the
prey population. In particular, our analysis shows that the dynamic complexity of
the ecosystem �rst increases and then decreases with enrichment. This result is par-
ticularly interesting because extensive simulations of the same model have pointed
out [11] that in the case when the top-predator is harvested at constant e�ort, also
the mean yield �rst increases and then decreases with enrichment and reaches its
maximum roughly on the right border of the chaotic region. We can therefore hope
that our results can be used for proving this important and intriguing property of
exploited renewable resources.
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(d) { K = 1:19.
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Fig. 5.3. Experimental two-parameter bifurcation diagram showing the complexity of the attrac-

tors. Intense gray levels correspond to attractors with a high number of prey{predator oscillations.

Finally, we like to mention that the study we have performed in this paper could
be repeated for a variety of di�erent but similarmodels that have been used to describe
various phenomena, like alternation between despotism and anarchy in ancient China
[16], electrical activity of pancreatic cells [8, 41], microbial dynamics in the chemostat
[29], autocatalytic enzymatic reactions [13, 26], and the use of electronic oscillators
as chaos generators for communication and arti�cial intelligence purposes [10].

Appendix A. Belyakov Bifurcation Revisited. In this Appendix we apply
the scaling techniques from [22] to analyze subsidiary bifurcations near the Belyakov
point. The resulting analysis is simpler but more complete than the one in the original
paper [3]. Namely, the following theorem will be proved.

Theorem A.1. Consider a generic smooth three-dimensional system of ordinary

di�erential equations depending upon two parameters, having at some parameter val-

ues a homoclinic orbit �1 to an equilibrium O with eigenvalues �1;2 = 0 < 0; �3 =
�0 > �0: Then the corresponding point in the parameter plane is the origin of three

countable sets of subsidiary bifurcation curves, namely:

(1) t(1)n { tangent bifurcation curves of periodic orbits making one global passage near

�1;

(2) f
(1)
n { ip bifurcation curves of periodic orbits making one global passage near

�1;

(3) h(2)n { bifurcation curves, corresponding to the existence of saddle-focus homo-

clinic orbits making two global passages near �1.

The curves t
(1)
n and f

(1)
n accumulate exponentially fast at both sides on the saddle-
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focus part of a bifurcation curve h(1) corresponding to the existence of a homoclinic

orbit to the equilibrium making one global passage near �1, while the curves h
(2)
n do

so at one side only. The orbits corresponding to the curves with bigger integer n 2 N
make more local turns near the equilibrium before the global passage.

The theorem is illustrated in Fig. A.1. The existence of the ip bifurcation curves was
not reported in [3], although probably known to the experts. It should be noted that
there are many other bifurcation curves in a neighborhood of the Belyakov point,
corresponding, for example, to triple homoclinic loops. Moreover, such homoclinic
curves may be not rooted at the Belyakov point [22].

h
(2)
n

h
(2)
n+1

h
(2)
n+2

h(1)

µ2

µ1
0

t
(1)
n+2

t
(1)
n+1

h(1)

µ2

µ1
0

t
(1)
n

f
(1)
n

f
(1)
n+1

f
(1)
n+2

t
(1)
n+3

f
(1)
n+3

Fig. A.1. Bifurcation curves rooted at the Belyakov point: t
(1)
n { primary tangent bifurcation

curves, f
(1)
n { primary ip bifurcation curves, h(1) and h

(2)
n { primary and secondary (double)

homoclinic bifurcation curves.

A.1. New coordinates and parameters. Any generic system satisfying the
theorem's conditions can be transformed near the critical parameter values (� = 0),
in a neighborhood of the equilibrium O, to the form:8<

:
_x = (�)x + y + f1(x; y; z; �)x+ f2(x; y; z; �)y;
_y = ��1x+ (�)y + g1(x; y; z; �)x+ g2(x; y; z; �)y;
_z = �(�)z;

(A.1)

where � = (�1; �2)
T are small parameters, the smooth functions (�) and �(�) satisfy

(0) = 0 < 0; �(0) = �0 > 0, while f1;2 and g1;2 are smooth functions of their
arguments. The transformation to the form (A.1) is achieved by smooth coordinate
and parameter changes and by a time reparametrization [3]. At � = 0, the system
(A.1) has a critical node O at x = y = z = 0 with eigenvalues

�1;2 = (0); �3 = �(0):

For �1 < 0, the eigenvalues of the equilibrium O are real and simple, while for �1 > 0
there is a simple pair of complex-conjugate eigenvalues and a positive eigenvalue.

For all su�ciently small k�k, the equilibrium O has a one-dimensional unstable
manifoldWu(O) composed of two outgoing orbits, �1 and �2, and a two-dimensional
stable manifold W s(O) composed of all incoming orbits (see Fig. A.2). In the co-
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Fig. A.2. Homoclinic orbit to a critical node at the Belyakov bifurcation. Local planar sections

�� are transverse to the homoclinic orbit �1 at points M�.

ordinates (x; y; z), the manifold Wu(O) locally coincides with the z-axis, while the
manifoldW s(O) is locally represented by z = 0. Let �1 depart from the equilibrium
O along the positive half of the z-axis.

By the theorem's conditions, at � = 0 the system (A.1) has a homoclinic orbit: �1
returns to the equilibrium O. Generically, upon return, it does not coincide with the
x-axis. Also generically, �1 misses the stable manifoldW s(O) near O by the �2-shift
in the z-direction, when �2 6= 0. This means, in particular, that for all j�1j small and
�2 = 0 the system (A.1) has a homoclinic orbit to O: It is homoclinic to the saddle
for �1 < 0 and to the saddle-focus for �1 > 0.

Our aim is to analyze the bifurcation diagram of (A.1) for small k�k in the half-
plane �1 > 0 in the Shil'nikov case:

�(0) > �(0):(A.2)

In the opposite case the bifurcation behavior of (A.1) is rather simple: A unique stable
limit cycle bifurcates from the homoclinic orbit for �2 > 0. In both cases, crossing
the line �2 = 0 when �1 < 0 results in the appearance of a single limit cycle.

A.2. Poincar�e map. The technique to analyze the behavior of (A.1) near the
bifurcation is rather standard and consists of reducing its analysis to that of a Poincar�e
map near the homoclinic orbit.

Let M� = (0; 0; z�), respectively M+ = (0; y+; 0), be a point at the departing,
respectively incoming, part of the homoclinic orbit �1 at � = 0. We introduce two
local cross-sections to �1 at these points: �

�(x1; y1; z�) and �+(0; y0; z0) (see Figure
A.2). Here the pairs of coordinates (y0; z0) and (x1; y1) are used to parameterize the
cross-sections. As usual, the Poincar�e map P : �+ ! �+ along orbits of the system
can be de�ned for all small k�k as a product of the singular map � : �+ ! �� (near
the equilibrium O) and the regular map Q : �� ! �+ (near the global part of the
homoclinic orbit):

P = Q ��:

The singular map �, that is mainly determined by the linear part of (A.1), has the
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form

x1 =
y0p
�1

� z0
z�

��
sin

�
�
p
�1

�
ln

z0

z�

�
+ o

�� z0
z�

���
;

y1 = y0

� z0
z�

��
cos

�
�
p
�1

�
ln

z0

z�

�
+ o

�� z0
z�

���
;

where

� = �
�
< 1:(A.3)

The rescaling

x1

y+
7! x1;

y0

y+
7! y0;

z0

z�
7! z0;

brings � to the form

� :

8<
:

x1 = 1p
�1
y0z

�
0 sin

�
�
p
�1
�

ln z0
�
+ o(z�0 );

y1 = y0z
�
0 cos

�
�
p
�1

�
ln z0

�
+ o(z�0 ):

(A.4)

The regular map Q, which is a di�eomorphism, can be written in the rescaled
coordinates in the form

Q :

�
y0 = 1 + ax1 + by1 +O(x21 + y21);
z0 = �2 + cx1 + dy1 + O(x21 + y21);

(A.5)

where a; b; c, and d are smooth functions of � such that a(0)d(0)� b(0)c(0) 6= 0.
Taking the product of the maps � and Q, de�ned respectively by (A.4) and (A.5),

we get

y00 = 1 +
ap
�1
y0z

�
0 cos

�
�
p
�1

�
ln z0 +	

�
+ o

�
z
�
0p
�1

�
;

z00 = �2 +
bp
�1
y0z

�
0 sin

�
�
p
�1

�
ln z0 +�

�
+ o

�
z
�
0p
�1

�
;

where 	 and � are functions of �, namely,

cos	 =
b

a

p
�1 + o(

p
�1); sin� = �d

b

p
�1 + o(

p
�1):

Finally, the substitution

z0 7! z0 exp

�
��p
�1

�
; �2 7! �2 exp

�
� ��p

�1

�
;

brings the Poincar�e map P to the form:

P :

8<
:

y00 = 1 + Ap
�1
y0z

�
0 cos

�
�
p
�1

�
ln z0 + �

�
+ o

�
z
�

0p
�1

�
;

z00 = �2 +
Bp
�1
y0z

�
0 sin

�
�
p
�1

�
ln z0

�
+ o

�
z
�

0p
�1

�
;

(A.6)

with � being some function depending on �, and

A = a exp

�
���d

b

�
; B = b exp

�
� (� � 1)�d

b

�
:
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A.3. Tangent and ip curves. A �xed point (y; z) of (A.6) satis�es the system8<
:

y = 1 + Ap
�1
yz� cos

�
�
p
�1
�

ln z + �
�
+ o

�
z�p
�1

�
;

z = �2 +
Bp
�1
yz� sin

�
�
p
�1

�
ln z
�
+ o

�
z�p
�1

�
:

Applying the Implicit Function Theorem to the �rst equation in a neighborhood of
y = 1; z = 0, we get

y = 1 +O

�
z�p
�1

�
:

Thus, the z-component of the �xed point satis�es the scalar equation

z = �2 +
Bp
�1
z� sin

�
�
p
�1

�
ln z

�
+ o

�
z�p
�1

�
;

or

z = G(z; �) + o

�
z�p
�1

�
;(A.7)

where

z 7! G(z; �) = �2 +
Bp
�1
z� sin

�
�
p
�1

�
ln z

�
:(A.8)

Tangent bifurcations of the �xed points in (A.6) correspond to double roots of
(A.7), i.e.

1 = Gz(z; �) + o

�
z��1p
�1

�
;(A.9)

whose leading term coincides with the tangent bifurcation condition for the map (A.8).
Similarly, one can see that ip bifurcations of the �xed points in (A.6) happen when

�1 = Gz(z; �) + o

�
z��1p
�1

�
:(A.10)

Also in this case, the leading term coincides with that of the ip bifurcation condition
for the map (A.8). For this reason we call (A.8) the normal form for the Belyakov
bifurcation.

Due to assumption (A.3), equation (A.7) has countably many roots near the origin
(z = 0), which can be isolated by writing

�
p
�1

�
ln z = �n+ �;(A.11)

where n 2 N is su�ciently big and � 2 ���
2 ;

�
2

�
. Having in mind (A.11), both tangent

condition (A.9) and ip condition (A.10) can be rewritten in terms of (�; n) as

0 = � sin � �
p
�1

�
cos � + O

�
e
� np

�1

�
:
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Therefore, due to (A.3),

� = �
p
�1


+ o(

p
�1):

By substituting this expression into the �xed point equation (A.7) and by taking into
account (A.11), we obtain the following asymptotic representation for the tangent
bifurcation curve:

�2 =
(�1)nB

e
e
�np
�1 [1 + �1(�1)];(A.12)

where �1(�1) ! 0 as �1 ! 0. Thus, there is a countable set of tangent bifurcation

curves t
(1)
n of (A.8), accumulating on the primary homoclinic curve h(1) (�2 = 0) for

small �1 > 0. All these curves have in�nite-order tangency with that curve at �1 = 0.
Since the leading terms of the tangent and ip bifurcation conditions coincide,

(A.12) also gives (with another �1(�1)) a representation of the ip bifurcation curves

f
(1)
n near the origin (� = 0). This has been noticed in a di�erent context in [20].
Therefore, the Belyakov point is also the origin of a countable set of the ip bifurcation

curves f
(1)
n which have the same properties as t(1)n .

A.4. Secondary homoclinic curves. The point M� of the intersection of
�1 with the plane �� has the coordinates (x1; y1) = (0; 0) and is mapped by the
global map Q (see (A.5)) into a point M1 = Q(M�) 2 �+ with the coordinates
(y0; z0) = (1; �2). If the image point M2 = P (M1) returns to the stable manifold of
O, i.e. its z-coordinate happens to be zero, we have a double homoclinic orbit (see
Fig. A.3). Therefore, the bifurcation condition for (A.1) to have a double homoclinic

y

x

z

Π+Π−

µ2

M2

Γ1

M1

O

M−

Fig. A.3. Double homoclinic loop to a saddle-focus near the Belyakov bifurcation: M2 2W
s(O).

orbit to O can now be expressed using (A.6) as

0 = �2 +
Bp
�1
�2

� sin

�
�
p
�1

�
ln�2

�
+ o

�
�2

�

p
�1

�
:(A.13)

Provided (A.3) is true, this equation de�nes countably many functions representing

the double homoclinic bifurcation curves h
(2)
n for small �1 > 0. Indeed, writing

�
p
�1

�
ln�2 = �n+ �;(A.14)
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where n 2 N is su�ciently big and � 2 ���
2 ;

�
2

�
, it follows from (A.14) and (A.13)

that

exp

�
� (� + )p

�1
(�n+ �)

�
=

(�1)n+1Bp
�1

sin � + : : : ;

which gives

� = (�1)n+1
�p

�1

B
e�

(�+)�n
p
�1 + : : :

�
:

Substituting this expression back into (A.13) using (A.14), we get the following asymp-
totic expression for the double homoclinic bifurcation curves:

�2 = e
� ��np

�1 [1 + �2(�1)];(A.15)

where �2(�1)! 0 as �1 ! 0.
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h
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ln(z)

Fig. A.4. One-parameter continuation of the �xed point and period-2 cycles of the normal form

(A:8) for �1 = 1;B = 1; � = 1
2 ; � = 1

5 .

A.5. Bifurcations in a transversal one-parameter family. To get more in-
sight into possible bifurcations near the Belyakov point, consider bifurcations of �xed
points and cycles in the normal form (A.8), under variation of �2 with �xed �1 > 0.
This corresponds to bifurcations in a one-parameter family of systems (A.1) transver-
sal to the saddle-focus homoclinic branch of h(1). Fig. A.4, obtained numerically
using content [32], shows such bifurcations.
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In the �gure, a \wiggly" curve, originating in the upper right corner and ap-
proaching the line �2 = 0, is the branch of �xed points of (A.8). Each turning point
on this curve gives a tangent bifurcation (i.e., collision of two �xed points). The criti-

cal parameter values corresponding to the tangent bifurcations t
(1)
n clearly accumulate

on �2 = 0 from both sides. As is predicted by the theory, very close to each turning

point there exists a period-doubling bifurcation f
(1)
n . These points have dot markers

in the �gure. The corresponding parameter values also accumulate on �2 = 0 from
both sides. The numerical continuation of period-2 cycles bifurcating from the ip
points shows that these cycles approach some values of �2 > 0 as z ! 0 (ln z !�1).

These values correspond to the double homoclinic bifurcations h(2)n and accumulate
on �2 = 0 from the right (�2 > 0). Notice that only a point with the minimal z-value
on the period-2 cycle is plotted. The period-2 branches do not intersect and there

is one double homoclinic bifurcation h
(2)
n between each two tangent bifurcations t

(1)
n

and t
(1)
n+2. There are also sequences of tangent and ip bifurcations of period-2 cycles,

accumulating on each double homoclinic bifurcation curve, etc.
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