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OPTIMAL A PRIORI ERROR BOUNDS FOR THE RAYLEIGH-RITZ

METHOD

GERARD L.G. SLEIJPEN�, JASPER VAN DEN ESHOF�, AND PAUL SMITy

Abstract. We derive error bounds for the Rayleigh-Ritz method for the approx-

imation to extremal eigenpairs of a symmetric matrix. The bounds are expressed

in terms of the eigenvalues of the matrix and the angle between the subspace and

the eigenvector. We also present a sharp bound.
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1 Introduction

The Rayleigh-Ritz method (or subspace projection) is a widely used technique for
computing an approximation to the extreme eigenvalues and corresponding eigenvectors
of a matrix A. It is often an integral part of modern iterative methods for computing
approximations to eigenpairs of large sparse matrices. Examples of these methods for
the symmetric eigenproblem include the Lanczos method [5], the Davidson method [1],
and many others.

In this short note, we derive error bounds for the Rayleigh-Ritz approximation
to the eigenpair with the smallest eigenvalue of a symmetric matrix A. The bounds
are expressed in terms of the eigenvalues of A and the angle between the subspace
and the eigenvector of interest. We may therefore call these bounds truly a priori.
Obviously, all results can be transformed to statements about the largest eigenvalue
and corresponding eigenvector by replacing A with �A.

So, let A be a symmetric matrix with eigenpairs (�i; xi) and

�1 < �2 � : : :� �n�1 < �n :

Let V 2 Rk�n be an orthogonal matrix, of which the columns span the k dimensional
subspace V . The Rayleigh-Ritz approach gives k approximate eigenpairs (�i; ui), the
so-called Ritz pairs, by imposing the Ritz-Galerkin condition

Aui � �iui ? V with ui 2 Vnf0g;

or equivalently,

V TAV zi � �izi = 0 with ui � V zi 6= 0 :

We number the Ritz values such that

�1 � �2 � : : :� �k�1 � �k :
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2 Optimal a priori error bounds for the Rayleigh-Ritz method

We are interested in the Ritz pair, (�V ; uV), for which sin2\(uV ; x1) is minimal over all
Ritz vectors. This is the pair with the Ritz vector that makes the smallest angle with
x1 over all Ritz vectors. In the ideal case we would have that uV is a multiple of xV ,
where xV is the normalized projection of x1 on V . This would give sin2\(uV ; x1) =
sin2 \(V ; x1), which is optimal. Unfortunately, the approximation uV is not a multiple
of xV in general.

The following bound is discussed in Section 2 and is a consequence of well-known
bounds:

sin2\(u1; x1) � sin2 \(V ; x1) + �n � �2
�2 � �1

sin2\(V ; x1) :(1)

This upper bound shows that u1, corresponding to the smallest Ritz value, becomes
closer to x1, when the angle between V and x1 is decreased. This and the orthogonality
of the Ritz vectors guarantee that for small enough angles between V and x1, �V equals
�1. But although (1) is an elegant expression, it is not sharp. Following suggestions from
[8], we show that, using only the angle \(V ; x1) and information about the spectrum
of A, this bound in case sin2\(V ; x1) < �2��1

�n��1
can be improved to

sin2 \(u1; x1) � sin2\(V ; x1) + �

2
tan2\(V ; x1);(2)

with � � (�n��2)
2

(�n��1)(�2��1)
. Bound (2) shows that, besides a theoretical minimum of

sin2 \(V ; x1), we cannot loose more than an additional �
2 tan

2 \(V ; x1). This is at most

a factor 2�n��1
�n��2

smaller than the additional term in bound (1). This factor can be large
(if �2 � �n). However, the bound (2) itself is at most a factor two smaller than the
bound in (1) (if �2 � �1). The upper bound in (2) is also not sharp and we derive a
less elegant but optimal bound in Theorem 3.1 of which (2) is a simple corollary. We
furthermore show that under this same condition on sin2\(V ; x1), �V equals �1. This
is the subject of Section 3.

The new, sharper bounds can be used to improve a priori convergence bounds
for iterative eigenvalue methods. Often, the analysis of these methods can be split
in the construction of an upper bound on sin2\(V ; x1) and the analysis of the error
contributed by the Rayleigh-Ritz method. For example, Theorem 1 in [6] gives a
bound for the angle between x1 and Krylov subspaces. Combining this with (1) gives
precisely the bound for the �rst eigenvector of Kaniel [3] for the Lanczos method. In
literature, these bounds are often improved by (implicitly) constructing better bounds
for sin2\(V ; x1). However, in this note we focus on error bounds for the Rayleigh-Ritz
method and our results are not restricted to a speci�c method.

2 Some well-known upper bounds

Suppose that the angle \(V ; xj) between V and xj is small. Let �j be the eigenvalue
corresponding to xj , where �j is possibly in the interior of the spectrum. Then we
may ask if there is a Ritz value � close to �j . A simple application of the Bauer-Fike
Theorem (Th. 4.5.1 [5]) can answer this question a�rmatively: there exists a � such
that

j� � �j j � k(V TAV � �jI)V
TxVk2 = kV T (AxV � �jxV)k2(3)

� max
i
j�j � �ij j sin\(V ; xj)j:

See Section 4 in [2] for more discussion and analysis for general matrices.
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Unfortunately, for the Ritz vectors the situation is less attractive. A small residual,
(V TAV ��jI)V

TxV , is not su�cient for the existence of an eigenvector of V TAV that
makes a small angle with V TxV if there exist two Ritz values that are close to �j .
Indeed, Theorem 3 in [6] gives for all Ritz vectors ul:

sin2\(ul; xj) �
�
1 +

k(I � V V T )AV V T k22
mini6=l j�j � �ij2

�
sin2 \(V ; xj) :(4)

Since this bound is sharp (see Remark 3.4 in [4]) and since there is no guarantee that
mini6=j j�j � �ij is not very small, this bound for \(u; xj) can become arbitrary large.
See also the discussion in Section 5 in [2]. So, this suggests that it is not possible to
give meaningful error bounds for eigenvectors with eigenvalues in the interior of the
spectrum using information about \(V ; xj) and the spectrum of A only. Clearly, this
might well be a problem in practical applications of Rayleigh-Ritz for interior eigenpairs.
On the other hand, the bound (4) can be used as a good a posteriori estimate when
more information about the distribution of the Ritz values is at hand.

For the extremal eigenvalues the situation is di�erent. We know from Cauchy's
Theorem (Theorem 10.1.1 in [5]) that j�1 � �2j � j�1 � �2j and we can construct an
a priori estimate for the �rst eigenvector. Doing this using (4) and Cauchy's Theorem
gives, unfortunately, a large overestimation, as we will see below.

A better approach for obtaining a true a priori bound is suggested at the end of
Section 11.9 in [5]. The starting point is the well-known bound (see, for example,
Theorem 11.9.2 in [5]):

sin2 \(u1; x1) � �1 � �1
�2 � �1

:(5)

This bound is also sharp, which can be easily seen as follows. Take for V the span of
u1 = x1 cos�+ x2 sin� and uj = xj+1 for j = 2; : : : ; k. It is evident that these vectors
are also the Ritz vectors. For this space V , (5) becomes an equality.

In the remainder of this paper we use the notation � � sin2\(V ; x1). In Theorem 2.1,
bounds in terms of � are given for the Ritz value and Ritz vector when approximating
the �rst eigenpair.

Theorem 2.1.

�1 � �1 � (�n � �1)�:(6)

sin2\(u1; x1) � �n � �1
�2 � �1

� =

�
1 +

�n � �2
�2 � �1

�
�:(7)

Furthermore, inequality (6) is sharp.

Proof. The minmax property for Ritz values (Theorem 10.2.1 in [5]) gives that �1 �
xTVAxV , where xV is the normalized projection of x1 on V . This yields

�1 � �1 � xTV (A� �1I)xV � (�n � �1) sin
2
\(xV ; x1) = (�n � �1)� :

Equality in this expression is attained by considering the space V spanned by the vectors
u1 = x1

p
1� � + xn

p
� and uj = xj for j = 2; : : : ; k. Note that these ui's are also the

Ritz vectors and u1 = xV . We may conclude that (6) is sharp.
The second statement is a combination of (6) and (5).

Although (7) is a combination of the sharp bounds (6) and (5), there is no guarantee
that this bound is sharp itself. Since (5) attains equality if u1 has a component in the
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direction of x2, while for (6) equality is attained when there is a component in the
direction of xn, it is suggested that (7) may not be sharp. Indeed, in the next section
we improve this bound and construct a sharp bound when � < �2��1

�n��1
. Note that (7) is

not useful when this condition on � is not ful�lled.
Another question that we address is whether �V equals �1. This is important for

the selection problem, i.e. at some point, it is necessary to select the Ritz vector that
makes the smallest angle with x1.

3 Sharp upper bounds

In his PhD thesis [8] and in Technical Report [7], Smit addressed the problem of
obtaining optimal bounds for the Rayleigh-Ritz process. He derived such bounds for
the case dim(V) = 2 and generated approximations for the k dimensional case (k > 2)
by numerical experiments. On the basis of his numerical results, he conjectured that
when � < �2��1

�n��1
, the optimal bound for the k dimensional case equals the optimal

bound for the 2 dimensional case. In this section we prove that this is indeed correct.
For convenience we use the following notation. Let �V � min sin2\(uj ; x1), where

the minimum is taken over all Ritz vectors, uj , with respect to V . Put �V � sin2\(V ; x1).
For � > 0 we de�ne

�k(�) � maxf�V j dim(V) = k; �V � �g:
The following lemma is an adaption of Theorem 4.1 in [7]. We give a shorter proof

and have added the statement that �V = �1 in case � < �2��1
�n��1

.

Lemma 3.1. If dim(V) = 2 and � < �2��1
�n��1

, then �V = �1 < �2.

Furthermore,

�2(�) =

(
1
2(1 + �) � 1

2

p
(1� �)2 � �� if � < �2��1

�n��1
;

1
2(1 + �) if � � �2��1

�n��1
;

with � � (�n��2)2

(�n��1)(�2��1)
.

Proof. Let 0 < � < 1 be given (the proof for � = 0 and � = 1 is obvious), and let V
be such that sin2\(V ; x1) = �. We derive a sharp upper bound for the approximation
to x1 by the Ritz vectors with respect to V . Because this bound is monotonically
increasing this gives an expression for �k(�). Notice that the Rayleigh-Ritz procedure
is shift invariant and we are allowed to work with A� �1I .

Let (0; x1), (�1; w1) and (�2; w2) be the three Ritz pairs of the shifted matrix A��1I
with respect to the three dimensional subspace spanned by V and x1, where we have
numbered �1 and �2 such that �1 � �2. The vectors w1 and w2 are normalized. It
turns out that working with w1 and w2 simpli�es the calculations a bit.

We de�ne for each pair (c; s)T on the unit circle a subspace Vs as the span of:

v(1)s � x1
p
1� � + cw1

p
�+ sw2

p
� and v(2)s � �sw1 + cw2 :

For some pair (c0; s0)T we have that V = Vs0 .
With respect to this basis, the projected matrix As � V T

s (A� �1I)Vs is given by

As �
�
�(c2�1 + s2�2)

p
�sc(�2 � �1)p

�sc(�2 � �1) c2�2 + s2�1

�
:
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Note that if s = 0 or c = 0 the vector xV is a Ritz vector and we can exclude this
situation from our analysis.

Let ui � Vszi, with zi = (ti; 1)
T a scaled eigenvector of the projected matrix As.

Then

sin2\(ui; x1) = 1� t2i
1 + t2i

(1� �) =
1 + �t2i
1 + t2i

=
1

2
(1 + �)� 1

2
(1� �)

t2i � 1

t2i + 1
:(8)

We are interested in the smallest possible value of maxfjt1j; jt2jg. It su�ces to analyze
the eigenvectors of

A0
s �

1

�2c2
As =

�
�(� + �2)

p
��(1� �)p

��(1� �) 1 + �2�

�
; where � � �1=�2 and � = s=c:

The ratio of the coordinates of the equation A0
s(t; 1)

T = �0(t; 1)T is given by:

t�(� + �2) +
p
��(1� �) = t2

p
��(1� �) + t(�2� + 1) :

The vector (t; 1)T is an eigenvector of A0
s if and only if t satis�es this equation. We

investigate the possible values for t.

1� t2

t
= g(�) � �

�
+ ��; where � � 1� ��p

�(1� �)
; � � � � �p

�(1� �)
:

Because � < 1 and � � 1 we have that � > 0. We start by giving a proof for � > 0.
We �rst consider the case where � > 0, or, equivalently, � < �. Then g(�) takes

values between 2
p
�� and 1. Hence, t takes values between 0 and

p
�� + 1 � p��

and between �1 and �(p�� + 1 +
p
��). Because z1 ? z2, we know that t1 = �t�12

and it easily follows that there is a ti in each of the two intervals. De�ne t1 to be in
the negative interval and note that jt1j > jt2j. The value jt1j =

p
�� + 1 +

p
�� is the

smallest possible value for maxfjt1j; jt2jg, this gives:

t2 � 1

t2 + 1
=

s
��

�� + 1
=

s
1� (1� �)2

�

�

(1� �)2
:

Inserting this in (8) gives the expression for �k(�) when � < � and � > 0.
Now we show that in case � < � and � > 0, �V equals �1. Let (ti; 1)T be an eigen-

vector of As, then the second component of the vector As(ti; 1)T gives an expression
for �i:

�i = �2c
2
�
ti
p
��(1� �) + 1 + �2�

�
:

If we recall the signs of ti, we have that �1 < �2 and because jt1j > jt2j we get that
�V = �1.

If � � 0, or equivalently � � �, then g(�) takes all values. Therefore, t can take
all values between the same bounds. Consequently, there is a � for which t1 = 1
and t2 = �1 are solutions.This corresponds to the worst possible situation. In this
case we have two Ritz vectors, u1 and u2, that make the same angle with x1 and
sin2\(ui; x1) =

1
2(1 + �).

In case � < 0 the same reasoning can be used. The proof for the expression of �k(�)
is concluded by noting that � = �2��1

�n��1
is the smallest possible value for � and this is

the worst situation.
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Note that the bound (1 + �)=2 holds for any orthogonal basis for V . So, in case
� � �2��1

�n��1
, the Ritz vectors are not guaranteed to contain a better approximation than,

for example, simply the columns of the matrix V .
Now we are ready to give a proof for Conjecture 5.1 in [7]. This conjecture states

that, in case � < �2��1
�n��1

, �k(�) = �2(�). So, the expression for �k(�) is given by the
expression in Lemma 3.1.

Theorem 3.1. If � < �2��1
�n��1

, �V = �1 < �2.

For all k 2 f2; : : : ; n� 1g and all � < �2��1
�n��1

, we have:

�k(�) � 1

2
(1 + �)� 1

2

p
(1� �)2 � ��; with � � (�n � �2)

2

(�n � �1)(�2 � �1)
:(9)

Proof. Assume that �V < �2��1
�n��1

. Then �1 < �2 (see (6)). Consider the space V 0
spanned by u1 and xU , where xU is the normalized projection on U � span(u2; : : : ; uk).
Note that u1 and xU are Ritz vectors with respect to this 2 dimensional space V 0.
Lemma 3.1 states that for this 2 dimensional V 0, the angle between u1 and x1 is less
than the angle between xU and x1. Since the angle between xU and x1 is smaller than
the angle between any vector from U and x1, we may conclude that �V = �1.
Note that �V = �V 0 and �V = �V 0 � �2, which implies that �k � �2.

We now show that �2 � �k . Let dim(V) = 2, then select an orthogonal system
v3; : : : ; vk that is orthogonal to u1, u2, and Au1��1u1. Then (�1; u1) is also a Ritz pair
of the space V 0 spanned by u1; u2; v3; : : : ; vk. Since �1 < �2, Cauchy's Theorem (Th.
10.1.1 in [5]) guarantees that the extension does not introduce a Ritz value in [�1; �2).
As argued above, �V = �V 0 = �1. Moreover �V 0 � �V . Apparently, �V = �V 0 � �k .

We have that �2 = �k and Lemma 3.1 now gives the expression for �k .

We recall that the restriction on � in Theorem 3.1 in this situation does not make
the bounds more restrictive than the bound (7) in the previous section.

We mention a few consequences of Theorem 3.1. The Corollaries 3.1 and 3.2 gen-
eralize the Corollaries 4.3 and 4.4, respectively, in [7]. The next corollary describes the
behavior of the upper bound (9) for small �.

Corollary 3.1. For all k 2 f2; : : : ; n� 1g, we have:

�k(�) = �

�
1 +

1

4

(�n � �2)
2

(�n � �1)(�2 � �1)

�
+O(�2) for �! 0 :(10)

Proof. p
(1� �)2 � �� = 1� �� 1

2
�� + O(�2) for � ! 0

Inserting this in (9) and using the de�nition of � gives the required expression.

Inequality (7) is of a linear form. Using Theorem 3.1 we can improve this by at
most a factor two. Corollary 3.2 gives a linear bound that equals (9) in � = 0 and
� = �2��1

�n��1
. Note that �k(�) is a convex function in this interval and, hence, this is the

best linear bound possible.

Corollary 3.2. For all k 2 f2; : : : ; n� 1g and all � < �2��1
�n��1

, we have:

�k(�) � �

�
1 +

1

2

�n � �2
�2 � �1

�
:(11)
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Figure 1: Illustration di�erent bounds for �1 = 0, �2 = 1 with �n = 1:2 (left picture)
and �n = 5 (right picture).

The next corollary gives an upper bound for �k(�) that better approximates the
optimal bound (9) for small � and � � 1.

Corollary 3.3. For all k 2 f2; : : : ; n� 1g and all � < �2��1
�n��1

, we have:

�k(�) � �+
�

2

�

1� �
;(12)

with � � (�n��2)
2

(�n��1)(�2��1)
.

Proof. We rewrite the expression for �k(�) in (9) for � < �2��1
�n��1

.

�k(�) = �+
1

2
(1� �(1� p1� �) = � +

1

2
(1� �)

�

1 +
p
1� �

with � =
��

(1� �)2
:

Multiplying the nominator en denominator in the second term with 1 � � and using
�� < (1� �)2 gives the �rst inequality.

To give some feeling for the quality of the di�erent bounds, we have illustrated in
Figure 1 the known bound (7) and the new bounds (9), (11), and (12) for a matrix with
�1 = 0, �2 = 1 and two values for �n, �n = 1:2 and �n = 5. The left picture shows that
for well conditioned eigenvectors ((�n��1)=(�2��1) � 1), our bounds do not improve
much on the straightforward bound from the last section. In the right picture, the
ratio between spread and gap is a little larger and the improvement is more apparent.
Note that the �rst two terms of the expansion of �k(�) in (10) provide a lower bound
on �k(�). This shows that bound (7) at best can be improved by a factor 4.

With respect to the problem of selection, choosing the smallest Ritz pair seems safe
and guarantees correct selection asymptotically.

4 Future research: Harmonic Ritz vectors

For interior eigenvalues the situation is complicated, as we argued in Section 2. The
goal of this study was to clear the way for studying the more complicated Harmonic
Ritz vectors. The Harmonic Ritz pairs are the Ritz pairs with respect to the search
space V and test space (A � �I)V . The idea behind this is that, if � is the closest
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eigenvalue to � and � is simple, only one Harmonic Ritz value can get arbitrary close
to �. The lack of guaranteed separation of the Ritz values is the reason that there is a
problem with constructing true a priori bounds for Ritz vectors with eigenvalues in the
interior of the spectrum. Although, bounds like (4) cannot be used in the context of
Harmonic Ritz vectors, practical observations indeed suggest that there always seems
to be a good Harmonic Ritz vector. Understanding this by straightforwardly applying
well-known techniques, like in Section 2, seems to give large overestimations. The tech-
nique described in Section 3 can also be applied for Harmonic Ritz vectors. However,
the computations become much more involved. Furthermore, extra ideas need to be
developed for selecting the proper Harmonic Ritz vectors. This is the subject of another
paper.
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