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Introduction

The aim of this note is to clarify the relevance of \connections up to homotopy" [4, 5] to
the theory of characteristic classes, and to present an application to the characteristic classes
of algebroids [3, 5, 7] (and of Poisson manifolds in particular [8, 13]).

We have already remarked [4] that such connections up to homotopy can be used to
compute the classical Chern characters. Here we present a slightly di�erent argument for
this, and then proceed with the discussion of the 
at characteristic classes. In contrast with
[4], we do not only recover the classical characteristic classes (of 
at vector bundles), but we
also obtain new ones. The reason for this is that (Z2-graded) non-
at vector bundles may
have 
at connections up to homotopy. As we shall explain here, in this category fall e.g. the
characteristic classes of Poisson manifolds [8, 13].

As already mentioned in [4], one of our motivations is to understand the intrinsic char-
acteristic classes for Poisson manifolds (and algebroids) of [7, 8], and the connection with the
characteristic classes of representations [3]. Conjecturally, Fernandes' intrinsic characteristic
classes [7] are the characteristic classes [3] of the \adjoint representation". The problem is
that the adjoint representation is a \representation up to homotopy" only. Applied to alge-
broids, our construction immediately solves this problem: it extends the characteristic classes
of [3] from representations to representations up to homotopy, and shows that the intrinsic
characteristic classes [7, 8] are indeed the ones associated to the adjoint representation [5].

I would like to thank J. Stashe� and A. Weinstein for their comments on a preliminary
version of this paper.

Non-linear connections

Here we recall some well-known properties of connections on vector bundles. Up to a
very slight novelty (we allow non-linear connections), this section is standard [11] and serves
to �x the notations.

Let M be a manifold, and let E = E0 � E1 be a super-vector bundle over M . We now
consider R-linear operators

X (M)
 �E �! �E; (X; s) 7! rX(s) (1)
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which satisfy

rX(fs) = frX(s) +X(f)s

for all X 2 X (M), s 2 �E, and f 2 C1(M), and which preserve the grading of E. We say
that r is a non-linear connection if rX(V ) is local in X . This is just a relaxation of the
C1(M)-linearity in X , when one recovers the standard notion of (linear) connection. The
curvature kr of a non-linear connection r is de�ned by the standard formula

kr(X; Y ) = [rX ;rY ]� r[X;Y ] : �E �! �E : (2)

A non-linear di�erential form1 on M is an antisymmetric (R-multilinear) map

! : X (M)� : : :�X (M)| {z }
n

�! C1(M) (3)

which is local in the Xi's. It is easy to see (and it has been already remarked in [4]) that
many of the usual operations on di�erential forms do not use the C1(M)-linearity, hence
they apply to non-linear forms as well. In particular we obtain the algebra (Anl(M); d) of
non-linear forms endowed with De Rham operator. (This de�nes a contravariant functor
from manifolds to dga's.) Considering �E-valued operators instead, we obtain a version with
coe�cients, denoted Anl(M ;E). Note that a non-linear connection r can be viewed as an
operator A0

nl(M ;E)�! A1
nl(M ;E) which has a unique extension to an operator

dr : A�
nl(M ;E)�! A�+1

nl (M ;E)

satisfying the Leibniz rule. Explicitly,

dr(!)(X1; : : : ; Xn+1) =
X
i<j

(�1)i+j!([Xi; Xj]; X1; : : : ; X̂i; : : : ; X̂j; : : :Xn+1))

+
n+1X
i=1

(�1)i+1rXi
!(X1; : : : ; X̂i; : : : ; Xn+1): (4)

We now recall the de�nition of the (non-linear) connection on End(E) induced by r.
For any T 2 �End(E), the operators [rX ; T ] acting on �(E) are C1(M)-linear, hence de�ne
elements [rX ; T ] 2 �End(E). The desired connection is then rX(T ) = [rX ; T ]. Clearly
kr 2 A2

nl(M ; End(E)), and one has Bianchi's identity dr(kr) = 0.
We will use the algebra Anl(M ; End(E)) and its action on Anl(M ;E). The product

structure that we consider here is the one which arises from the natural isomorphisms

Anl(M ;E) �= Anl(M)
C1(M) �(E)

and the usual sign conventions for the tensor products (i.e. !
 x � �
 y = (�1)jxjj�j!�
 xy).
The usual super-trace on End(E) induces a super-trace

Trs : (Anl(M ; End(E)); dr) �! (Anl(M); d) (5)

with the property that Trsdr = dTrs. We conclude (and this is just a non-linear version of
the standard construction of Chern characters [11]):

1as in the case of connections, the non-linearity referes to C1(M)-non-linearity. As pointed out to me, the
terminology might be misleading. Betters names would probably be \higher order connections" and \jet-forms"
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Lemma 1 If r is a non-linear connection on E, then

chp(r) = Trs(k
p
r) 2 A2p

nl (M) (6)

are closed non-linear forms on M .

Up to a boundary, these classes are independent of r. This is an instance of the Chern-
Simons construction that we now recall. Given k+1 non-linear connections ri on E (0 � i �
k) we form their a�ne combinationra� = (1�t1�: : :�tk)r0+t1r1+: : :+tkrk. This is a non-
linear connection on the pullback of E to �k�M , where �k = f(t1; : : : ; tk) : ti � 0;

P
ti � 1g

is the standard k-simplex. The classical integration along �bers has a non-linear extensionZ
�k

: A�
nl(M ��k) �! A��k

nl (M) (7)

given by the explicit formula

(

Z
�k

!)(X1; : : : ; Xn�k) =

Z
�k

!(
@

@t1
; : : : ;

@

@tk
; X1; : : : ; Xn�k)dt1 : : : dtk :

We then de�ne

csp(r0; : : : ;rk) =

Z
�k

chp(ra�) : (8)

Using a version of Stokes' formula [2] (or integrating by parts repeatedly) we conclude

Lemma 2 The elements (8) satisfy

dcsp(r0; : : : ;rk) =
kX
i=0

(�1)icsp(r0; : : : ;cri; : : : ;rk) : (9)

Connections up to homotopy and Chern characters

From now on, (E; @) is a super-complex of vector bundles over the manifold M ,

(E; @) : E0 //
@

E1 :
oo @

(10)

We now consider non-linear connectionsr onE such thatrX@ = @rX for allX 2 X (M). We
say that r is a (linear) connection on (E; @) if it also satis�es the identity rfX(s) = frX(s)
for all X 2 X (M), f 2 C1(M), s 2 �E. The notion of connection up to homotopy [4, 5]
on (E; @) is obtained by relaxing the C1(M)-linearity on X to linearity up to homotopy. In
other words we require

rfX(s) = frX(s) + [Hr(f;X); @] ;

where Hr(f;X) 2 �End(E) are odd elements which are R-linear and local in X and f .
We say that two non-linear connections r and r 0

are equivalent (or homotopic) if

r 0

X = rX + [�(X); @]

for all X 2 X (M), for some � 2 A1
nl(M ; End(E)) of even degree. We write r � r 0

.
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Lemma 3 A non-linear connection is a connection up to homotopy if and only if it is equiv-
alent to a (linear) connection.

Proof: Assume that r is a connection up to homotopy. Let Ua be the domain of local
coordinates xk for M , and put

ra
X = rX + [ua(X); @] ;

where ua 2 Anl(Ua; End(E)) is given by

ua(
X
k

fk
@

@xk
) = �

X
k

Hr(fk ;
@

@xk
) ;

for all fk 2 C1(Ua). Note that rX is linear on X . Indeed, for any two smooth functions f; g
and X = g @

@xk
we have

ra
fX � fra

X = (rfX + [ua(fX); @])� f(rX + [ua(X); @]) =

= (r
fg @

@xk

� [Hr(fg;
@

@xk
); @]) + f(r

g @
@xk

� [Hr(g
@
@xk

); @]) =

= fgr @
@xk

� fgr @
@xk

= 0 :

Next we take f�ag to be a partition of unity subordinate to an open cover fUag by such
coordinate domains and put r 0

X =
P

a �ara
X , u(X) =

P
a �au

a(X). Then r 0

= r+ [u; @] is
a connection equivalent to r.

Lemma 4 If r0 and r1 are equivalent, then chp(r0) = chp(r1).

Proof: So, let us assume that r1 = r0 + [�; @]. A simple computation shows that

kr1
= kr0

+ [dr(�) + R; @] ; (11)

where R(X; Y ) = [�(X); [�(Y ); @]]. We denote by Z � Anl(M ; End(E)) the space of non-
linear forms ! with the property that [!; @] = 0, and by B � Z the subspace of element of
type [�; @] for some non-linear form �. The formula

[@; !�] = [@; !]�+ (�1)j!j![@; �]

shows that ZB � B, hence (11) implies that kpr1
� k

p
r0

modulo B. The desired equality
follows now from the fact that Trs vanishes on B.

For (linear) connections r on (E; @), chp(r) are clearly (linear) di�erential forms on
M whose cohomology classes are (up to a constant) the components of the Chern character
Ch(E) = Ch(E0)� Ch(E1). Hence an immediate consequence of the previous two lemmas
is the following [4]

Theorem 1 If r is a connection up to homotopy on (E; @), then chp(r) = Trs(k
p
r) are

closed di�erential forms on M whose De Rham cohomology classes are (up to a constant) the
components of the Chern character Ch(E).
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Flat characteristic classes

As usual, by 
atness we mean the vanishing of the curvature forms. Theorem 1 immedi-
ately implies

Corollary 1 If (E; @) admits a connection up to homotopy which is 
at, then Ch(E) = 0.

As usual, such a vanishing result is at the origin of new \secondary" characteristic classes.
Let r be a 
at connection up to homotopy. To construct the associated secondary classes
we need a metric h on E. We denote by @h be the adjoint of @ with respect to h. Using
the isomorphism E� �= E induced by h (which is anti-linear if E is complex), r induces an
adjoint connection rh on (E; @h). Explicitly,

LXh(s; t) = h(rX(s); t) + h(s;rh
X(t)) :

The following describes various possible de�nitions of the secondary classes, as well as their
main properties (note that the role of i =

p�1 below is to ensure real classes).

Theorem 2 Let r be a 
at connection up to homotopy on (E; @), p � 1.

(i) For any (linear) connection r0 on (E; @) and any metric h,

ip+1(csp(r;r0) + csp(r0;rh
0) + csp(rh

0 ;rh)) 2 A2p�1
nl (M) (12)

are di�erential forms on M which are real and closed. The induced cohomology classes
do not depend on the choice of h or r0, and are denoted u2p�1(E; @;r)2 H2p�1(M).

(ii) For any connection r0 equivalent to r, and any metric h,

ip+1csp(r0;rh
0) 2 A2p�1(M) (13)

are real and closed, and represent u2p�1(E; @;r) in cohomology.

(iii) If r is equivalent to a metric connection (i.e. a connection which is compatible with a
metric), then all the classes u2p�1(E; @;r) vanish.

(iv) If r � r 0

, then u2p�1(E; @;r) = u2p�1(E; @;r 0

).

(v) If r is a 
at connection up to homotopy on both super-complexes (E; @) and (E; @
0

),
then u2p�1(E; @;r) = u2p�1(E; @

0

;r).
(vi) Assume that E is real. If p is even then u2p�1(E; @;r) = 0. If p is odd, then for any

connection r0 equivalent to r, and any metric connection rm,

(�1) p+12 csp(r0;rm) 2 A2p�1(M)

are closed di�erential forms whose cohomology classes equal to 1
2u2p�1(E; @;r).

Note the compatibility with the classical 
at characteristic classes, which correspond to
the case where E is a graded vector bundle (and @ = 0), or, more classically, just a vector
bundle over M . As references for this we point out [9] (for the approach in terms of frame
bundles and Lie algebra cohomology), and [1] (for an explicit approach which we follow here).
For the proof of the theorem we need the following
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Lemma 5 Given the non-linear connections r, r0, r1,

(i) If r0 and r1 are connections up to homotopy then csp(r0;r1) are di�erential forms;

(ii) If r0 � r1, then csp(r0;r1) = 0;

(iii) For any metric h, chp(rh) = (�1)pchp(r) and csp(rh
0;rh

1) = (�1)pcsp(r0;r1).

Proof: (i) follows from the fact that Chern characters of connections up to homotopy are
di�erential forms. For (ii) we use Lemma 4. The a�ne combination r used in the de�nition of
csp(r0;r1) is equivalent to the pull-back ~r0 ofr0 toM��1 (because r = ~r0+t[�; @]), while
chp( ~r0) is clearly zero. If h is a metric on E, a simple computation shows that krh(X; Y )
coincides with �kr(X; Y )� where � denotes the adjoint (with respect to h). Then (iii) follows
from Tr(A�) = Tr(A) for any matrix A.

Proof of Theorem 2: (i) Let us denote by u(r;r0; h) the forms (12). Since (r0;rh
0) is a

pair of connections on E, and (r;r0), (rh;rh
0) are pairs of connections up to homotopy on

(E; @) and (E; @h), respectively, it follows from (i) of Lemma 5 that u(r;r0; h) are di�erential
forms. From Stokes formula (9) it immediately follows that they are closed. To prove that
they are real we use (iii) of the previous Lemma:

u(r;r0; h) = (�i)p+1(csp(r;r0) + csp(r0;rh
0) + csp(rh

0 ;rh)) =

+(�i)p+1(�1)pcsp(rh;rh
0) + csp(rh

0 ;r0) + csp(r0;r)) =
= (�i)p+1(�1)p(�1)u(r;r0; h) = u(r;r0; h)

If r1 is another connection, using (9) again, it follows that u(r;r0; h)� u(r;r1; h) =
ip+1dv where v is the (linear!) di�erential form

v = csp(r;r0;r1)� csp(rh;rh
0 ;rh

1) + csp(r0;rh
0;r1)� csp(rh

0 ;r1;rh
1) :

(iii) clearly follows from (ii), which in turn follows from (ii) of Lemma 5 and the fact that
r � r0 implies rh � rh

0 . To see that our classes do not depend on h, it su�ces to show
that given a linear connection r on a vector bundle F , csp(r;rh) is independent of h up to
the boundary of a di�erential form. Let h0 and h1 be two metrics. Although the proof below
works for general r's, simpler formulas are possible when r is 
at. So, let us �rst assume
that (actually we may assume that r is the canonical connection on a trivial vector bundle).
From Stokes' formula (9) applied to (r;rh0;rh1), it su�ces to show that csp(rh0 ;rh1) is a
closed form. We choose a family ht of metrics joining h0 and h1. One only has to show that
@
@tcsp(rh0 ;rht) are closed forms. Writing ht(x; y) = h0(ut(x); y), these Chern-Simons forms

are, up to a constant, Tr(!2p�1
t ) where

!t = rht � rh0 = u�1t drh0 (ut)

(here is where we use the 
atness of r). A simple computation shows that

@!t
@t

= drh0 (vt) + [!t; vt] ;

where vt = u�1t
@ut
@t
. Since drh0 (!

2
t ) = 0, this implies

@!t
@t

!2p�2
t = drh0 (vt!

2p�2
t ) + [!t; vt!

2p�2
t ] :
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Now, by the properties of the trace it follows that

@

@t
Trs(!

2p�1
t ) = dTrs(vt!

2p�2
t )

as desired. Assume now that r is not 
at. We choose a vector bundle F 0 together with a
connection r 0

compatible with a metric h
0

, such that ~F = F � F
0

admits a 
at connection
r0. We put ~r = r�r 0

and, for any metric h on F , we consider the metric ~h = h�h 0

on ~F .
Clearly csp( ~r; ~r~h) = csp(r;rh). Using also (iii) of Lemma 5 and Stokes' formula, we have:

csp(r;rh) = csp(r0;r~h
0)� csp(r0; ~r) + (�1)pcsp(r0; ~r)

+d(csp(r0; ~r; ~r~h)� csp(r0; ~r0; ~r~h)):

Hence, by the 
at case, csp(r;rh) modulo exact forms does not depend on h.
For (iv) one uses Stokes' formula (9) and (ii) of Lemma 5 to conclude that csp(r 0

;r0) �
csp(r;r0) is the di�erential of the linear form csp(r;r 0

;r0). To prove (v) we only have to
show (see (i)) that there exists a linear connection r0 on E which is compatible with both @
and @

0

. For this, one de�nes r0 locally by r0
f @
@xk

= fr @
@xk

, and then use a partition of unity

argument.
We now assume that E is real. From Lemma 5,

csp(rm;rh
0) = (�1)pcsp(rh

m;r0) = (�1)p+1csp(r0;rm) :

Combined with Stokes' formula (9), this implies

dcsp(r0;rm;rh
0) = (1 + (�1)p+1)csp(r0;rm)� csp(r0;rh

0) ;

which proves (vi).

Note that the construction of the 
at characteristic classes presented here actually works
for r's which are \
at up to homotopy", i.e. whose curvatures are of type [�; @]. Moreover,
this notion is stable under equivalence, and the 
at characteristic classes only depend on the
equivalence class of r (cf. (iv) of the Theorem). Note also that, as in [4] (and following [1]),
there is a version of our discussion for super-connections [11] up to homotopy. Some of our
constructions can then be interpreted in terms of the super-connection @ +r.

If E is regular in the sense that Ker(@) and Im(@) are vector bundles, then so is the co-
homology H(E; @) = Ker(@)=Im(@), and any connection up to homotopy r on (E; @) de�nes
a linear connection H(r) on H(E). Moreover, H(r) is 
at if r is, and the characteristic
classes u2p�1(E; @;r) probably coincide with the classical [1, 9] characteristic classes of the

at vector bundle H(E; @). In general, the u2p�1(E; @;r)'s should be viewed as invariants of
H(E; @) constructed in such a way that no regularity assumption is required. Let us discuss
here an instance of this. We say that E is Z-graded if it comes from a cochain complex

0 �! E(0)
@�! E(1)

@�! : : :
@�! E(n) �! 0 ; (14)

In other words, it must be of type E = �n
k=0E(k) with the even/odd Z2-grading, and with

@(E(k)) � E(k + 1). As usual, we say that E is acyclic if Ker(r) = Im(r) (i.e. if (14) is
exact).
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Proposition 1

(i) If (E; @) is acyclic, then any two connections up to homotopy on (E; @) are equivalent.
Moreover, if E is Z-graded, then u2p�1(E; @;r) = 0.

(ii) If (Ek; @k;rk) are Z-graded complexes of vector bundles endowed with 
at connections
up to homotopy which �t into an exact sequence

0 �! E0 ��! E1 ��! : : :
��! En �! 0 (15)

compatible with the structures (i.e. [�; @] = [�;r] = [�;Hr] = 0), then

nX
k=0

(�1)ku2p�1(Ek; @k;rk) = 0 :

Proof: The second part follows from (i) above and (v) of Theorem 2. To see this, we form
the super-vector bundle E = �kE

k (which is Z-graded by the total degree) and the direct
sum (non-linear) connection r acting on E. Then r is a connection up to homotopy in
both (E; @) and (E; @+ �). Clearly u2p�1(E; @;r) =

Pn
k=0(�1)ku2p�1(Ek; @k;rk), while the

exactness of (15) implies that @+� is acyclic. Hence we are left with (i). For the �rst part we
remark that the acyclicity assumption implies that @�@ + @@� is an isomorphism (\Hodge").
Then any operator u which commutes with @ can be written as a commutator [�v; @] where

v = ua; a = �(@�@ + @@�)�1@� : (16)

This applies in particular to u = r 0 �r for any two connections up to homotopy on (E; @).
We now have to prove that csp(r;rh) is zero in cohomology, where r is a linear connection
on (E; @), and h is a metric. For this we use a result of [1] (Theorem 2.16) which says that
csp(A;Ah) are closed forms provided A = A0 + A1 + A2 + : : : is a 
at super-connection [11]
on E with the properties:

(i) A1 is a connection on E preserving the Z-grading,

(ii) Ak 2 Ak(M ; Hom(E�; E�+1�k)) for k 6= 1.

Lemma 6 Given a (linear) connection r on the acyclic cochain complex (14), there exists a
super-connection on E of type

A = @ +r+ A2 +A3 + : : : : A(M ;E) �! A(M ;E) ;

which is 
at and satis�es (i) and (ii) above.

Let us show that this lemma, combined with the result of [1] mentioned above, prove the
desired result. Using Stokes' formula it follows that

csp(r;rh) = cs(A;Ah) + d(csp(r;rh; Ah)� csp(r; A; Ah)) +

+csp(r; A)� csp(rh; Ah) ;

and we show that csp(r; A) = 0 (and similarly that csp(rh; Ah) = 0). Writing � = A � r
and using the de�nition of the Chern-Simons forms, it su�ces to prove that

Trs(((1� t2)r2 + (t � t2)[r; �])p�1�) = 0
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for any t. Since the only endomorphisms of E which count are those preserving the degree, we
see that the only term which can contribute is Trs(r2(p�2)[r; �]�) = Trs(r2(p�2)[r; A2]@).
But r2(p�2)[r; A2]@ commutes with @ hence its super-trace must vanish (since Trs commutes
with taking cohomology).

Proof of Lemma 6: (Compare with [6]). The 
atness of A gives us certain equations on
the Ak 's that we can solve inductively, using the same trick as in (16) above. For instance,
the �rst equation is [@; A2] + r2 = 0. Since u1 = r2 commutes with @, this equation will
have the solution A2 = u1a (with a as in (16)). The next equation is [@; A3]+ [A1; A2] = 0. It
is not di�cult to see that u2 = [A1; A2] commutes with @, and we put A3 = u2a. Continuing
this process, at the n-th level we put An+1 = una where un = [r; An] + [A1; An�2] + : : : as
they arise from the coresponding equation. We leave to the reader to show that the un's also
satisfy the equations

un = un�1[r; a] + (
X

i+j=n�1

uiuj)a
2:

Since [@; a] = �1, @ will commute with both [r; a] and a2, hence also with the un's (induction
on n). It then follows that An+1 satis�es the desired equation [@; An+1] = �un.

Application to algebroids

Recall [10] that an algebroid over M consists of a Lie bracket [� ; �] de�ned on the space
�g of sections of a vector bundle g over M , together with a morphism of vector bundles
� : g �! TM (the anchor of g) satisfying [X; fY ] = f [X; Y ]+�(X)(f) �Y for all X; Y 2 �(g)
and f 2 C1(M). Important examples are tangent bundles, Lie algebras, foliations, and
algebroids associated to Poisson manifolds. It is easy to see (and has already been remarked
in many other places [10], [3], [7], etc. etc.) that many of the basic constructions involving
vector �elds have a straightforward g-version (just replace X (M) by �(g)). Let us brie
y
point out some of them.

(a) Cohomology: the Lie-type formula (4) for the classical De Rham di�erential makes sense
for X 2 �g and de�nes a di�erential d on the space C�(g) = ���g�, hence a cohomology
theoryH�(g). Particular cases are De Rham cohomology, Lie algebra cohomology, foliated
cohomology, and Poisson cohomology.

(b) Connections and Chern characters: According to the general philosophy, g-connections on
a vector bundle E overM are linear maps �(g)��E �! �E satisfying the usual identities.
Using their curvatures, one obtains g- Chern classes Chg(E) 2 H�(g) independent of the
connection.

(c) Representations: Motivated by the case of Lie algebras, and also by the relation to
groupoids (see e.g. [3]), vector bundles E over M together with a 
at g-connection
are called representations of g. This time r should be viewed as an (in�nitesimal) action
of g on E.

(d) Flat characteristic classes: The explicit approach to 
at characteristic classes (as e.g. in
[1], or as in the previous section) has an obvious g-version. Hence, if E is a representation
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of g, then Chg(E) = 0, and one obtains the secondary characteristic classes u2p�1(E) 2
H2p�1(g). Maybe less obvious is the fact that one can also extend the Chern-Weil type
approach, at the level of frame bundles (as e.g. in [9]). This has been explained in [3],
and has certain advantages (e.g. for proving \Morita invariance" of the u2p�1(E)'s and
for relating them to di�erentiable cohomology).

(e) Up to homotopy: All the constructions and results of the previous sections carry over
to algebroids without any problem. As above, a representation up to homotopy of g is
a supercomplex (10) of vector bundles over M , together with a 
at g-connection up to
homotopy.

(f) The adjoint representation: The main reason for working \up to homotopy" is that the
adjoint representation of g only makes sense as a representation up to homotopy [5].
Roughly speaking, it is the formal di�erence g� TM . The precise de�nition is:

Ad(g) : g //
�

TM ;
oo 0

(17)

with the 
at g-connection up to homotopy rad given by rad
X (Y ) = [X; Y ], rad

X (V ) =
[�(X); Y ] (and the homotopies H(f;X)(Y ) = 0, H(f;X)(V ) = V (f)X), for all X; Y 2
�g, V 2 X (M).

Let us denote by ug2p�1 the characteristic classes u2p�1(Ad(g)) of the adjoint represen-
tation. The most useful description from a computational (but not conceptual) point of view
is given by (vi) of Theorem 2 (more precisely, its g-version).

1 De�nition We call basic g-connection any g-connection on Ad(g) which is equivalent to
the adjoint connection rad.

It is not di�cult to see that any such connection is also basic in sense of [7] (and the two
notions are equivalent at least in the regular case). Hence we have the following possible de-
scription of the ug2p�1's, which shows the compatibility with Fernandes' intrinsic characteristic
classes [7, 8]:

ug2p�1 =

(
0 if p = even
1
2(�1)

p+1

2 csp(rbas;rm) if p = odd
;

where rbas is any basic g-connection, and rm is any metric connection on g � TM . Hence
the conclusion of our discussion is the following (which can also be taken as de�nition of the
characteristic classes of [7, 8]).

Theorem 3 If E is a representation up to homotopy then Chg(E) = 0, and the secondary
characteristic classes u2p�1(E) 2 H2p�1(g) of representations [4] can be extended to such rep-
resentations up to homotopy. When applied to the adjoint representation Ad(g), the resulting
classes ug2p�1 are (up to a constant) the intrinsic characteristic classes of g [7].

More on basic connections: Let us try to shed some light on the notion of basic g-
connection. In our context these are the linear connections which are equivalent to the
adjoint connection, while in [7] they appear as a natural extension of Bott's basic connections
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for foliations. Although not 
at in general, they are always 
at up to homotopy. The existence
of such connections is ensured by Lemma 3 and it was also proven in [7]. There is however
a very simple and explicit way to produce them out of ordinary connections on the vector
bundle g.

Proposition 2 Let r be a connection on the vector bundle g. Then the formulas

�r0
X(Y ) = [X; Y ] +r�(Y )(X)

�r1
X(V ) = [�(X); V ] + �(rV (X))

(X; Y 2 �g, V 2 �TM) de�ne a basic g-connection �r = ( �r0; �r1).

Proof: We have �r = rad + [�; @], where � is the (non-linear) End(Ad(g))-valued form on
g given by �(X)(V ) = rV (X), �(X)(Y ) = 0.

Depending on the special properties of g, there are various other useful basic connections.
This happens for instance when g is regular, i.e. when the rank of the anchor � is constant.
Let us argue that, in this case, the adjoint representation is (up to homotopy) the formal
di�erence K � �, where K is the kernel of �, and � is the normal bundle TM=F of the
foliation F = �(g). This time, Bott's formulas [2] trully make sense on � and K, making
them into honest representations of g:

rX( �Y ) = [X; Y ]; 8 X 2 �g; �Y 2 �� (18)

rX(Y ) = [X; Y ]; 8 X 2 �g; Y 2 �K : (19)

Now, choosing splittings � : F �! g for �, and � : TM �! F for the inclusion, we have
induced decompositions

g �= K �F ; TM �= � �F :

As mentioned above, the formal di�erence K�� (view it as a graded complex with K in even
degree, � in odd degree, and zero di�erential) is a representation of g. On the other hand,
any F -connection r on F de�nes a g-connection on the super-complex

D(F) : F //
id

Foo 0

(and its homotopy class does not depend on r). Hence one has an induced g-connection r�;�

on Ad(g), so that (Ad(g);r�;�) is isomorphic to (K � �)�D(F). Explicitly,
r�;�
X (Y ) = [X; Y � ��(Y )] + �r�(Y )(�X)

r�;�
X (V ) = [�(X); V ]� �[�(X); V ] +r�(X)(�(V ))

for all X; Y 2 �g, V 2 X (M). Note that the second part of the following proposition can also
be derived from (iv) of Proposition 1.

Proposition 3 Assume that g is regular. For any F -connection r on F , and any splittings
�, � as above, r�;� is a basic g-connection. In particular

ug2p�1 = u2p�1(K)� u2p�1(�) ;

where K and � are the representations of g de�ned by Bott's formulas (18), (19).
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Proof: We have r�;� = rad + [�; @], where � is the End(Ad(g))-valued non-linear form
which is given by

�(X)(V ) = �[�(X); �(V )]� ��[�(X); V ]� [X;��(V )] + �r�(X)�(V )

for V 2 �(TM), while �(X) = 0 on g (we leave to the reader to check that the previous
formula is C1(M)-linear on V ). .
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