Connections up to homotopy and characteristic classes *

Marius Crainic
Department of Mathematics, Utrecht University, The Netherlands

Introduction

The aim of this note is to clarify the relevance of "connections up to homotopy" $[4,5]$ to the theory of characteristic classes, and to present an application to the characteristic classes of algebroids $[3,5,7]$ (and of Poisson manifolds in particular $[8,13]$).

We have already remarked [4] that such connections up to homotopy can be used to compute the classical Chern characters. Here we present a slightly different argument for this, and then proceed with the discussion of the flat characteristic classes. In contrast with [4], we do not only recover the classical characteristic classes (of flat vector bundles), but we also obtain new ones. The reason for this is that (\mathbb{Z}_{2}-graded) non-flat vector bundles may have flat connections up to homotopy. As we shall explain here, in this category fall e.g. the characteristic classes of Poisson manifolds [8, 13].

As already mentioned in [4], one of our motivations is to understand the intrinsic characteristic classes for Poisson manifolds (and algebroids) of [7, 8], and the connection with the characteristic classes of representations [3]. Conjecturally, Fernandes' intrinsic characteristic classes [7] are the characteristic classes [3] of the "adjoint representation". The problem is that the adjoint representation is a "representation up to homotopy" only. Applied to algebroids, our construction immediately solves this problem: it extends the characteristic classes of [3] from representations to representations up to homotopy, and shows that the intrinsic characteristic classes $[7,8]$ are indeed the ones associated to the adjoint representation [5].

I would like to thank J. Stasheff and A. Weinstein for their comments on a preliminary version of this paper.

Non-linear connections

Here we recall some well-known properties of connections on vector bundles. Up to a very slight novelty (we allow non-linear connections), this section is standard [11] and serves to fix the notations.

Let M be a manifold, and let $E=E^{0} \oplus E^{1}$ be a super-vector bundle over M. We now consider \mathbb{R}-linear operators

$$
\begin{equation*}
\mathcal{X}(M) \otimes, E \longrightarrow, E, \quad(X, s) \mapsto \nabla_{X}(s) \tag{1}
\end{equation*}
$$

[^0]which satisfy
$$
\nabla_{X}(f s)=f \nabla_{X}(s)+X(f) s
$$
for all $X \in \mathcal{X}(M), s \in, E$, and $f \in C^{\infty}(M)$, and which preserve the grading of E. We say that ∇ is a non-linear connection if $\nabla_{X}(V)$ is local in X. This is just a relaxation of the $C^{\infty}(M)$-linearity in X, when one recovers the standard notion of (linear) connection. The curvature k_{∇} of a non-linear connection ∇ is defined by the standard formula
\[

$$
\begin{equation*}
k_{\nabla}(X, Y)=\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}:, E \longrightarrow, E . \tag{2}
\end{equation*}
$$

\]

A non-linear differential form ${ }^{1}$ on M is an antisymmetric (\mathbb{R}-multilinear) map

$$
\begin{equation*}
\omega: \underbrace{\mathcal{X}(M) \times \ldots \times \mathcal{X}(M)}_{n} \longrightarrow C^{\infty}(M) \tag{3}
\end{equation*}
$$

which is local in the X_{i} 's. It is easy to see (and it has been already remarked in [4]) that many of the usual operations on differential forms do not use the $C^{\infty}(M)$-linearity, hence they apply to non-linear forms as well. In particular we obtain the algebra $\left(\mathcal{A}_{\mathrm{nl}}(M), d\right)$ of non-linear forms endowed with De Rham operator. (This defines a contravariant functor from manifolds to dga's.) Considering, E-valued operators instead, we obtain a version with coefficients, denoted $\mathcal{A}_{\mathrm{nl}}(M ; E)$. Note that a non-linear connection ∇ can be viewed as an operator $\mathcal{A}_{\mathrm{n} 1}^{0}(M ; E) \longrightarrow \mathcal{A}_{\mathrm{n} 1}^{1}(M ; E)$ which has a unique extension to an operator

$$
d_{\nabla}: \mathcal{A}_{\mathrm{nl}}^{*}(M ; E) \longrightarrow \mathcal{A}_{\mathrm{nl}}^{*+1}(M ; E)
$$

satisfying the Leibniz rule. Explicitly,

$$
\begin{align*}
d_{\nabla}(\omega)\left(X_{1}, \ldots, X_{n+1}\right) & \left.=\sum_{i<j}(-1)^{i+j} \omega\left(\left[X_{i}, X_{j}\right], X_{1}, \ldots, \hat{X}_{i}, \ldots, \hat{X}_{j}, \ldots X_{n+1}\right)\right) \\
& +\sum_{i=1}^{n+1}(-1)^{i+1} \nabla_{X_{i}} \omega\left(X_{1}, \ldots, \hat{X}_{i}, \ldots, X_{n+1}\right) . \tag{4}
\end{align*}
$$

We now recall the definition of the (non-linear) connection on $\operatorname{End}(E)$ induced by ∇. For any $T \in, \operatorname{End}(E)$, the operators $\left[\nabla_{X}, T\right]$ acting on, (E) are $C^{\infty}(M)$-linear, hence define elements $\left[\nabla_{X}, T\right] \in, \operatorname{End}(E)$. The desired connection is then $\nabla_{X}(T)=\left[\nabla_{X}, T\right]$. Clearly $k_{\nabla} \in \mathcal{A}_{\mathrm{nl}}^{2}(M ; \operatorname{End}(E))$, and one has Bianchi's identity $d_{\nabla}\left(k_{\nabla}\right)=0$.

We will use the algebra $\mathcal{A}_{\mathrm{nl}}(M ; \operatorname{End}(E))$ and its action on $\mathcal{A}_{\mathrm{nl}}(M ; E)$. The product structure that we consider here is the one which arises from the natural isomorphisms

$$
\mathcal{A}_{\mathrm{nl}}(M ; E) \cong \mathcal{A}_{\mathrm{nl}}(M) \otimes_{C^{\infty}(M)},(E)
$$

and the usual sign conventions for the tensor products (i.e. $\omega \otimes x \cdot \eta \otimes y=(-1)^{|x||\eta|} \omega \eta \otimes x y$). The usual super-trace on $\operatorname{End}(E)$ induces a super-trace

$$
\begin{equation*}
T r_{s}:\left(\mathcal{A}_{\mathrm{nl}}(M ; \operatorname{End}(E)), d_{\nabla}\right) \longrightarrow\left(\mathcal{A}_{\mathrm{n} 1}(M), d\right) \tag{5}
\end{equation*}
$$

with the property that $\operatorname{Tr}_{s} d_{\nabla}=d T r_{s}$. We conclude (and this is just a non-linear version of the standard construction of Chern characters [11]):

[^1]Lemma 1 If ∇ is a non-linear connection on E, then

$$
\begin{equation*}
c h_{p}(\nabla)=T r_{s}\left(k_{\nabla}^{p}\right) \in \mathcal{A}_{\mathrm{nl}}^{2 p}(M) \tag{6}
\end{equation*}
$$

are closed non-linear forms on M.
Up to a boundary, these classes are independent of ∇. This is an instance of the ChernSimons construction that we now recall. Given $k+1$ non-linear connections ∇_{i} on $E(0 \leq i \leq$ k) we form their affine combination $\nabla^{\text {aff }}=\left(1-t_{1}-\ldots-t_{k}\right) \nabla_{0}+t_{1} \nabla_{1}+\ldots+t_{k} \nabla_{k}$. This is a nonlinear connection on the pullback of E to $\Delta^{k} \times M$, where $\Delta^{k}=\left\{\left(t_{1}, \ldots, t_{k}\right): t_{i} \geq 0, \sum t_{i} \leq 1\right\}$ is the standard k-simplex. The classical integration along fibers has a non-linear extension

$$
\begin{equation*}
\int_{\Delta^{k}}: \mathcal{A}_{\mathrm{nl}}^{*}\left(M \times \Delta^{k}\right) \longrightarrow \mathcal{A}_{\mathrm{nl}}^{*-k}(M) \tag{7}
\end{equation*}
$$

given by the explicit formula

$$
\left(\int_{\Delta^{k}} \omega\right)\left(X_{1}, \ldots, X_{n-k}\right)=\int_{\Delta^{k}} \omega\left(\frac{\partial}{\partial t_{1}}, \ldots, \frac{\partial}{\partial t_{k}}, X_{1}, \ldots, X_{n-k}\right) d t_{1} \ldots d t_{k} .
$$

We then define

$$
\begin{equation*}
c s_{p}\left(\nabla_{0}, \ldots, \nabla_{k}\right)=\int_{\Delta^{k}} c h_{p}\left(\nabla^{\mathrm{aff}}\right) . \tag{8}
\end{equation*}
$$

Using a version of Stokes' formula [2] (or integrating by parts repeatedly) we conclude
Lemma 2 The elements (8) satisfy

$$
\begin{equation*}
d c s_{p}\left(\nabla_{0}, \ldots, \nabla_{k}\right)=\sum_{i=0}^{k}(-1)^{i} c s_{p}\left(\nabla_{0}, \ldots, \widehat{\nabla}_{i}, \ldots, \nabla_{k}\right) . \tag{9}
\end{equation*}
$$

Connections up to homotopy and Chern characters

From now on, (E, ∂) is a super-complex of vector bundles over the manifold M,

$$
\begin{equation*}
(E, \partial): \quad E^{0} \underset{\partial}{\stackrel{\partial}{\leftrightarrows}} E^{1} . \tag{10}
\end{equation*}
$$

We now consider non-linear connections ∇ on E such that $\nabla_{X} \partial=\partial \nabla_{X}$ for all $X \in \mathcal{X}(M)$. We say that ∇ is a (linear) connection on (E, ∂) if it also satisfies the identity $\nabla_{f X}(s)=f \nabla_{X}(s)$ for all $X \in \mathcal{X}(M), f \in C^{\infty}(M), s \in, E$. The notion of connection up to homotopy $[4,5]$ on (E, ∂) is obtained by relaxing the $C^{\infty}(M)$-linearity on X to linearity up to homotopy. In other words we require

$$
\nabla_{f X}(s)=f \nabla_{X}(s)+\left[H_{\nabla}(f, X), \partial\right],
$$

where $H_{\nabla}(f, X) \in, \operatorname{End}(E)$ are odd elements which are \mathbb{R}-linear and local in X and f.
We say that two non-linear connections ∇ and ∇^{\prime} are equivalent (or homotopic) if

$$
\nabla_{X}^{\prime}=\nabla_{X}+[\theta(X), \partial]
$$

for all $X \in \mathcal{X}(M)$, for some $\theta \in \mathcal{A}_{\mathrm{nl}}^{1}(M ; \operatorname{End}(E))$ of even degree. We write $\nabla \sim \nabla^{\prime}$.

Lemma 3 A non-linear connection is a connection up to homotopy if and only if it is equivalent to a (linear) connection.

Proof: Assume that ∇ is a connection up to homotopy. Let U_{a} be the domain of local coordinates x^{k} for M, and put

$$
\nabla_{X}^{a}=\nabla_{X}+\left[u^{a}(X), \partial\right],
$$

where $u_{a} \in \mathcal{A}_{\mathrm{nl}}\left(U_{a} ; \operatorname{End}(E)\right)$ is given by

$$
u_{a}\left(\sum_{k} f_{k} \frac{\partial}{\partial x_{k}}\right)=-\sum_{k} H_{\nabla}\left(f_{k}, \frac{\partial}{\partial x_{k}}\right),
$$

for all $f_{k} \in C^{\infty}\left(U_{a}\right)$. Note that ∇_{X} is linear on X. Indeed, for any two smooth functions f, g and $X=g \frac{\partial}{\partial x_{k}}$ we have

$$
\begin{gathered}
\nabla_{f X}^{a}-f \nabla_{X}^{a}=\left(\nabla_{f X}+\left[u^{a}(f X), \partial\right]\right)-f\left(\nabla_{X}+\left[u^{a}(X), \partial\right]\right)= \\
=\left(\nabla_{f g \frac{\partial}{\partial x_{k}}}-\left[H_{\nabla}\left(f g, \frac{\partial}{\partial x_{k}}\right), \partial\right]\right)+f\left(\nabla_{g \frac{\partial}{\partial x_{k}}}-\left[H_{\nabla}\left(g \frac{\partial}{\partial x_{k}}\right), \partial\right]\right)= \\
=f g \nabla_{\frac{\partial}{\partial x_{k}}}-f g \nabla_{\frac{\partial}{\partial x_{k}}}=0 .
\end{gathered}
$$

Next we take $\left\{\nu_{a}\right\}$ to be a partition of unity subordinate to an open cover $\left\{U_{a}\right\}$ by such coordinate domains and put $\nabla_{X}^{\prime}=\sum_{a} \nu_{a} \nabla_{X}^{a}, u(X)=\sum_{a} \nu_{a} u^{a}(X)$. Then $\nabla^{\prime}=\nabla+[u, \partial]$ is a connection equivalent to ∇.

Lemma 4 If ∇_{0} and ∇_{1} are equivalent, then $\operatorname{ch}_{p}\left(\nabla^{0}\right)=c h_{p}\left(\nabla^{1}\right)$.
Proof: So, let us assume that $\nabla^{1}=\nabla^{0}+[\theta, \partial]$. A simple computation shows that

$$
\begin{equation*}
k_{\nabla_{1}}=k_{\nabla_{0}}+\left[d_{\nabla}(\theta)+R, \partial\right] \tag{11}
\end{equation*}
$$

where $R(X, Y)=[\theta(X),[\theta(Y), \partial]]$. We denote by $Z \subset \mathcal{A}_{\mathrm{nl}}(M ; \operatorname{End}(E))$ the space of nonlinear forms ω with the property that $[\omega, \partial]=0$, and by $B \subset Z$ the subspace of element of type $[\eta, \partial]$ for some non-linear form η. The formula

$$
[\partial, \omega \eta]=[\partial, \omega] \eta+(-1)^{|\omega|} \omega[\partial, \eta]
$$

shows that $Z B \subset B$, hence (11) implies that $k_{\nabla_{1}}^{p} \equiv k_{\nabla_{0}}^{p}$ modulo B. The desired equality follows now from the fact that Tr_{s} vanishes on B.

For (linear) connections ∇ on (E, ∂), $c h_{p}(\nabla)$ are clearly (linear) differential forms on M whose cohomology classes are (up to a constant) the components of the Chern character $C h(E)=C h\left(E^{0}\right)-C h\left(E^{1}\right)$. Hence an immediate consequence of the previous two lemmas is the following [4]

Theorem 1 If ∇ is a connection up to homotopy on (E, ∂), then $c_{p}(\nabla)=\operatorname{Tr}_{s}\left(k_{\nabla}^{p}\right)$ are closed differential forms on M whose De Rham cohomology classes are (up to a constant) the components of the Chern character $C h(E)$.

Flat characteristic classes

As usual, by flatness we mean the vanishing of the curvature forms. Theorem 1 immediately implies

Corollary 1 If (E, ∂) admits a connection up to homotopy which is flat, then $\operatorname{Ch}(E)=0$.
As usual, such a vanishing result is at the origin of new "secondary" characteristic classes. Let ∇ be a flat connection up to homotopy. To construct the associated secondary classes we need a metric h on E. We denote by ∂^{h} be the adjoint of ∂ with respect to h. Using the isomorphism $E^{*} \cong E$ induced by h (which is anti-linear if E is complex), ∇ induces an adjoint connection ∇^{h} on $\left(E, \partial^{h}\right)$. Explicitly,

$$
L_{X} h(s, t)=h\left(\nabla_{X}(s), t\right)+h\left(s, \nabla_{X}^{h}(t)\right) .
$$

The following describes various possible definitions of the secondary classes, as well as their main properties (note that the role of $i=\sqrt{-1}$ below is to ensure real classes).

Theorem 2 Let ∇ be a flat connection up to homotopy on $(E, \partial), p \geq 1$.
(i) For any (linear) connection ∇_{0} on (E, ∂) and any metric h,

$$
\begin{equation*}
i^{p+1}\left(c s_{p}\left(\nabla, \nabla_{0}\right)+c s_{p}\left(\nabla_{0}, \nabla_{0}^{h}\right)+c s_{p}\left(\nabla_{0}^{h}, \nabla^{h}\right)\right) \in \mathcal{A}_{\mathrm{nl}}^{2 p-1}(M) \tag{12}
\end{equation*}
$$

are differential forms on M which are real and closed. The induced cohomology classes do not depend on the choice of h or ∇_{0}, and are denoted $u_{2 p-1}(E, \partial, \nabla) \in H^{2 p-1}(M)$.
(ii) For any connection ∇_{0} equivalent to ∇, and any metric h,

$$
\begin{equation*}
i^{p+1} \operatorname{cs}_{p}\left(\nabla_{0}, \nabla_{0}^{h}\right) \in \mathcal{A}^{2 p-1}(M) \tag{13}
\end{equation*}
$$

are real and closed, and represent $u_{2 p-1}(E, \partial, \nabla)$ in cohomology.
(iii) If ∇ is equivalent to a metric connection (i.e. a connection which is compatible with a metric), then all the classes $u_{2 p-1}(E, \partial, \nabla)$ vanish.
(iv) If $\nabla \sim \nabla^{\prime}$, then $u_{2 p-1}(E, \partial, \nabla)=u_{2 p-1}\left(E, \partial, \nabla^{\prime}\right)$.
(v) If ∇ is a flat connection up to homotopy on both super-complexes (E, ∂) and $\left(E, \partial^{\prime}\right)$, then $u_{2 p-1}(E, \partial, \nabla)=u_{2 p-1}\left(E, \partial^{\prime}, \nabla\right)$.
(vi) Assume that E is real. If p is even then $u_{2 p-1}(E, \partial, \nabla)=0$. If p is odd, then for any connection ∇_{0} equivalent to ∇, and any metric connection ∇_{m},

$$
(-1)^{\frac{p+1}{2}} c s_{p}\left(\nabla_{0}, \nabla_{m}\right) \in \mathcal{A}^{2 p-1}(M)
$$

are closed differential forms whose cohomology classes equal to $\frac{1}{2} u_{2 p-1}(E, \partial, \nabla)$.
Note the compatibility with the classical flat characteristic classes, which correspond to the case where E is a graded vector bundle (and $\partial=0$), or, more classically, just a vector bundle over M. As references for this we point out [9] (for the approach in terms of frame bundles and Lie algebra cohomology), and [1] (for an explicit approach which we follow here). For the proof of the theorem we need the following

Lemma 5 Given the non-linear connections $\nabla, \nabla_{0}, \nabla_{1}$,
(i) If ∇_{0} and ∇_{1} are connections up to homotopy then $\operatorname{cs}_{p}\left(\nabla_{0}, \nabla_{1}\right)$ are differential forms;
(ii) If $\nabla_{0} \sim \nabla_{1}$, then $c s_{p}\left(\nabla_{0}, \nabla_{1}\right)=0$;
(iii) For any metric h, $c h_{p}\left(\nabla^{h}\right)=(-1)^{p} \overline{c h_{p}(\nabla)}$ and $c s_{p}\left(\nabla_{0}^{h}, \nabla_{1}^{h}\right)=(-1)^{p} \overline{c s_{p}\left(\nabla_{0}, \nabla_{1}\right)}$.

Proof: (i) follows from the fact that Chern characters of connections up to homotopy are differential forms. For (ii) we use Lemma 4. The affine combination ∇ used in the definition of $c s_{p}\left(\nabla_{0}, \nabla_{1}\right)$ is equivalent to the pull-back $\tilde{\nabla}_{0}$ of ∇_{0} to $M \times \Delta^{1}$ (because $\nabla=\tilde{\nabla}_{0}+t[\theta, \partial]$), while $c_{p}\left(\tilde{\nabla}_{0}\right)$ is clearly zero. If h is a metric on E, a simple computation shows that $k_{\nabla^{h}}(X, Y)$ coincides with $-k_{\nabla}(X, Y)^{*}$ where $*$ denotes the adjoint (with respect to h). Then (iii) follows from $\operatorname{Tr}\left(A^{*}\right)=\overline{\operatorname{Tr}(A)}$ for any matrix A.

Proof of Theorem 2: (i) Let us denote by $u\left(\nabla, \nabla_{0}, h\right)$ the forms (12). Since $\left(\nabla_{0}, \nabla_{0}^{h}\right)$ is a pair of connections on E, and $\left(\nabla, \nabla_{0}\right),\left(\nabla^{h}, \nabla_{0}^{h}\right)$ are pairs of connections up to homotopy on (E, ∂) and (E, ∂^{h}), respectively, it follows from (i) of Lemma 5 that $u\left(\nabla, \nabla_{0}, h\right)$ are differential forms. From Stokes formula (9) it immediately follows that they are closed. To prove that they are real we use (iii) of the previous Lemma:

$$
\begin{gathered}
\overline{u\left(\nabla, \nabla_{0}, h\right)}=(-i)^{p+1}\left(\overline{c s_{p}\left(\nabla, \nabla_{0}\right)}+\overline{c s_{p}\left(\nabla_{0}, \nabla_{0}^{h}\right)}+\overline{c s_{p}\left(\nabla_{0}^{h}, \nabla^{h}\right)}\right)= \\
\left.+(-i)^{p+1}(-1)^{p} c s_{p}\left(\nabla^{h}, \nabla_{0}^{h}\right)+c s_{p}\left(\nabla_{0}^{h}, \nabla_{0}\right)+c s_{p}\left(\nabla_{0}, \nabla\right)\right)= \\
=(-i)^{p+1}(-1)^{p}(-1) u\left(\nabla, \nabla_{0}, h\right)=u\left(\nabla, \nabla_{0}, h\right)
\end{gathered}
$$

If ∇_{1} is another connection, using (9) again, it follows that $u\left(\nabla, \nabla_{0}, h\right)-u\left(\nabla, \nabla_{1}, h\right)=$ $i^{p+1} d v$ where v is the (linear!) differential form

$$
v=c s_{p}\left(\nabla, \nabla_{0}, \nabla_{1}\right)-c s_{p}\left(\nabla^{h}, \nabla_{0}^{h}, \nabla_{1}^{h}\right)+c s_{p}\left(\nabla_{0}, \nabla_{0}^{h}, \nabla_{1}\right)-c s_{p}\left(\nabla_{0}^{h}, \nabla_{1}, \nabla_{1}^{h}\right) .
$$

(iii) clearly follows from (ii), which in turn follows from (ii) of Lemma 5 and the fact that $\nabla \sim \nabla_{0}$ implies $\nabla^{h} \sim \nabla_{0}^{h}$. To see that our classes do not depend on h, it suffices to show that given a linear connection ∇ on a vector bundle $F, c s_{p}\left(\nabla, \nabla^{h}\right)$ is independent of h up to the boundary of a differential form. Let h_{0} and h_{1} be two metrics. Although the proof below works for general ∇ 's, simpler formulas are possible when ∇ is flat. So, let us first assume that (actually we may assume that ∇ is the canonical connection on a trivial vector bundle). From Stokes' formula (9) applied to ($\nabla, \nabla^{h_{0}}, \nabla^{h_{1}}$), it suffices to show that $c s_{p}\left(\nabla^{h_{0}}, \nabla^{h_{1}}\right)$ is a closed form. We choose a family h_{t} of metrics joining h_{0} and h_{1}. One only has to show that $\frac{\partial}{\partial t} c s_{p}\left(\nabla^{h_{0}}, \nabla^{h_{t}}\right)$ are closed forms. Writing $h_{t}(x, y)=h_{0}\left(u_{t}(x), y\right)$, these Chern-Simons forms are, up to a constant, $\operatorname{Tr}\left(\omega_{t}^{2 p-1}\right)$ where

$$
\omega_{t}=\nabla^{h_{t}}-\nabla^{h_{0}}=u_{t}^{-1} d_{\nabla^{h_{0}}}\left(u_{t}\right)
$$

(here is where we use the flatness of ∇). A simple computation shows that

$$
\frac{\partial \omega_{t}}{\partial t}=d_{\nabla^{h_{0}}}\left(v_{t}\right)+\left[\omega_{t}, v_{t}\right]
$$

where $v_{t}=u_{t}^{-1} \frac{\partial u u_{t}}{\partial t}$. Since $d_{\nabla h_{0}}\left(\omega_{t}^{2}\right)=0$, this implies

$$
\frac{\partial \omega_{t}}{\partial t} \omega_{t}^{2 p-2}=d_{\nabla^{h_{0}}}\left(v_{t} \omega_{t}^{2 p-2}\right)+\left[\omega_{t}, v_{t} \omega_{t}^{2 p-2}\right] .
$$

Now, by the properties of the trace it follows that

$$
\frac{\partial}{\partial t} \operatorname{Tr}_{s}\left(\omega_{t}^{2 p-1}\right)=d T r_{s}\left(v_{t} \omega_{t}^{2 p-2}\right)
$$

as desired. Assume now that ∇ is not flat. We choose a vector bundle F^{\prime} together with a connection ∇^{\prime} compatible with a metric h^{\prime}, such that $\tilde{F}=F \oplus F^{\prime}$ admits a flat connection ∇_{0}. We put $\tilde{\nabla}=\nabla \oplus \nabla^{\prime}$ and, for any metric h on F, we consider the metric $\tilde{h}=h \oplus h^{\prime}$ on \tilde{F}. Clearly $c s_{p}\left(\tilde{\nabla}, \tilde{\nabla}^{\tilde{h}}\right)=c s_{p}\left(\nabla, \nabla^{h}\right)$. Using also (iii) of Lemma 5 and Stokes' formula, we have:

$$
\begin{aligned}
c s_{p}\left(\nabla, \nabla^{h}\right) & =c s_{p}\left(\nabla_{0}, \nabla_{0}^{\tilde{h}}\right)-c s_{p}\left(\nabla_{0}, \tilde{\nabla}\right)+(-1)^{p} \overline{c s_{p}\left(\nabla_{0}, \tilde{\nabla}\right)} \\
& +d\left(c s_{p}\left(\nabla_{0}, \tilde{\nabla}, \tilde{\nabla}^{\tilde{h}}\right)-c s_{p}\left(\nabla_{0}, \tilde{\nabla}_{0}, \tilde{\nabla}^{\tilde{h}}\right)\right)
\end{aligned}
$$

Hence, by the flat case, $c s_{p}\left(\nabla, \nabla^{h}\right)$ modulo exact forms does not depend on h.
For (iv) one uses Stokes' formula (9) and (ii) of Lemma 5 to conclude that $c s_{p}\left(\nabla^{\prime}, \nabla_{0}\right)-$ $c s_{p}\left(\nabla, \nabla_{0}\right)$ is the differential of the linear form $c_{p}\left(\nabla, \nabla^{\prime}, \nabla_{0}\right)$. To prove (v) we only have to show (see (i)) that there exists a linear connection ∇^{0} on E which is compatible with both ∂ and ∂^{\prime}. For this, one defines ∇^{0} locally by $\nabla_{f \frac{\partial}{\partial x_{k}}}^{0}=f \nabla_{\frac{\partial}{\partial x_{k}}}$, and then use a partition of unity argument.
We now assume that E is real. From Lemma 5,

$$
c s_{p}\left(\nabla_{m}, \nabla_{0}^{h}\right)=(-1)^{p} c s_{p}\left(\nabla_{m}^{h}, \nabla_{0}\right)=(-1)^{p+1} c s_{p}\left(\nabla_{0}, \nabla_{m}\right)
$$

Combined with Stokes' formula (9), this implies

$$
d c s_{p}\left(\nabla_{0}, \nabla_{m}, \nabla_{0}^{h}\right)=\left(1+(-1)^{p+1}\right) c s_{p}\left(\nabla_{0}, \nabla_{m}\right)-c s_{p}\left(\nabla_{0}, \nabla_{0}^{h}\right),
$$

which proves (vi).

Note that the construction of the flat characteristic classes presented here actually works for ∇ 's which are "flat up to homotopy", i.e. whose curvatures are of type $[-, \partial]$. Moreover, this notion is stable under equivalence, and the flat characteristic classes only depend on the equivalence class of ∇ (cf. (iv) of the Theorem). Note also that, as in [4] (and following [1]), there is a version of our discussion for super-connections [11] up to homotopy. Some of our constructions can then be interpreted in terms of the super-connection $\partial+\nabla$.

If E is regular in the sense that $\operatorname{Ker}(\partial)$ and $\operatorname{Im}(\partial)$ are vector bundles, then so is the cohomology $H(E, \partial)=\operatorname{Ker}(\partial) / \operatorname{Im}(\partial)$, and any connection up to homotopy ∇ on (E, ∂) defines a linear connection $H(\nabla)$ on $H(E)$. Moreover, $H(\nabla)$ is flat if ∇ is, and the characteristic classes $u_{2 p-1}(E, \partial, \nabla)$ probably coincide with the classical $[1,9]$ characteristic classes of the flat vector bundle $H(E, \partial)$. In general, the $u_{2 p-1}(E, \partial, \nabla)$'s should be viewed as invariants of $H(E, \partial)$ constructed in such a way that no regularity assumption is required. Let us discuss here an instance of this. We say that E is \mathbb{Z}-graded if it comes from a cochain complex

$$
\begin{equation*}
0 \longrightarrow E(0) \xrightarrow{\partial} E(1) \xrightarrow{\partial} \ldots \xrightarrow{\partial} E(n) \longrightarrow 0, \tag{14}
\end{equation*}
$$

In other words, it must be of type $E=\oplus_{k=0}^{n} E(k)$ with the even/odd \mathbb{Z}_{2}-grading, and with $\partial(E(k)) \subset E(k+1)$. As usual, we say that E is acyclic if $\operatorname{Ker}(\nabla)=\operatorname{Im}(\nabla)$ (i.e. if (14) is exact).

Proposition 1

(i) If (E, ∂) is acyclic, then any two connections up to homotopy on (E, ∂) are equivalent. Moreover, if E is \mathbb{Z}-graded, then $u_{2 p-1}(E, \partial, \nabla)=0$.
(ii) If $\left(E^{k}, \partial^{k}, \nabla^{k}\right)$ are $\mathbb{Z}_{\text {-graded }}$ complexes of vector bundles endowed with flat connections up to homotopy which fit into an exact sequence

$$
\begin{equation*}
0 \longrightarrow E^{0} \xrightarrow{\delta} E^{1} \xrightarrow{\delta} \ldots \stackrel{\delta}{\longrightarrow} E^{n} \longrightarrow 0 \tag{15}
\end{equation*}
$$

compatible with the structures (i.e. $[\delta, \partial]=[\delta, \nabla]=\left[\delta, H_{\nabla}\right]=0$), then

$$
\sum_{k=0}^{n}(-1)^{k} u_{2 p-1}\left(E^{k}, \partial^{k}, \nabla^{k}\right)=0
$$

Proof: The second part follows from (i) above and (v) of Theorem 2. To see this, we form the super-vector bundle $E=\oplus_{k} E^{k}$ (which is $\mathbb{Z}_{\text {- graded }}$ by the total degree) and the direct sum (non-linear) connection ∇ acting on E. Then ∇ is a connection up to homotopy in both (E, ∂) and $(E, \partial+\delta)$. Clearly $u_{2 p-1}(E, \partial, \nabla)=\sum_{k=0}^{n}(-1)^{k} u_{2 p-1}\left(E^{k}, \partial^{k}, \nabla^{k}\right)$, while the exactness of (15) implies that $\partial+\delta$ is acyclic. Hence we are left with (i). For the first part we remark that the acyclicity assumption implies that $\partial^{*} \partial+\partial \partial^{*}$ is an isomorphism ("Hodge"). Then any operator u which commutes with ∂ can be written as a commutator $[-v, \partial]$ where

$$
\begin{equation*}
v=u a, \quad a=-\left(\partial^{*} \partial+\partial \partial^{*}\right)^{-1} \partial^{*} \tag{16}
\end{equation*}
$$

This applies in particular to $u=\nabla^{\prime}-\nabla$ for any two connections up to homotopy on (E, ∂). We now have to prove that $c s_{p}\left(\nabla, \nabla^{h}\right)$ is zero in cohomology, where ∇ is a linear connection on (E, ∂), and h is a metric. For this we use a result of [1] (Theorem 2.16) which says that $c s_{p}\left(A, A^{h}\right)$ are closed forms provided $A=A_{0}+A_{1}+A_{2}+\ldots$ is a flat super-connection [11] on E with the properties:
(i) A_{1} is a connection on E preserving the \mathbb{Z}_{4}-grading,
(ii) $A_{k} \in \mathcal{A}^{k}\left(M ; \operatorname{Hom}\left(E^{*}, E^{*+1-k}\right)\right)$ for $k \neq 1$.

Lemma 6 Given a (linear) connection ∇ on the acyclic cochain complex (14), there exists a super-connection on E of type

$$
A=\partial+\nabla+A_{2}+A_{3}+\ldots: \mathcal{A}(M ; E) \longrightarrow \mathcal{A}(M ; E)
$$

which is flat and satisfies (i) and (ii) above.
Let us show that this lemma, combined with the result of [1] mentioned above, prove the desired result. Using Stokes' formula it follows that

$$
\begin{aligned}
c s_{p}\left(\nabla, \nabla^{h}\right) & =c s\left(A, A^{h}\right)+d\left(c s_{p}\left(\nabla, \nabla^{h}, A^{h}\right)-c s_{p}\left(\nabla, A, A^{h}\right)\right)+ \\
& +c s_{p}(\nabla, A)-c s_{p}\left(\nabla^{h}, A^{h}\right)
\end{aligned}
$$

and we show that $c s_{p}(\nabla, A)=0$ (and similarly that $c s_{p}\left(\nabla^{h}, A^{h}\right)=0$). Writing $\theta=A-\nabla$ and using the definition of the Chern-Simons forms, it suffices to prove that

$$
\operatorname{Tr}_{s}\left(\left(\left(1-t^{2}\right) \nabla^{2}+\left(t-t^{2}\right)[\nabla, \theta]\right)^{p-1} \theta\right)=0
$$

for any t. Since the only endomorphisms of E which count are those preserving the degree, we see that the only term which can contribute is $\operatorname{Tr}_{s}\left(\nabla^{2(p-2)}[\nabla, \theta] \theta\right)=\operatorname{Tr}_{s}\left(\nabla^{2(p-2)}\left[\nabla, A_{2}\right] \partial\right)$. But $\nabla^{2(p-2)}\left[\nabla, A_{2}\right] \partial$ commutes with ∂ hence its super-trace must vanish (since $T r_{s}$ commutes with taking cohomology).

Proof of Lemma 6: (Compare with [6]). The flatness of A gives us certain equations on the A_{k} 's that we can solve inductively, using the same trick as in (16) above. For instance, the first equation is $\left[\partial, A_{2}\right]+\nabla^{2}=0$. Since $u_{1}=\nabla^{2}$ commutes with ∂, this equation will have the solution $A_{2}=u_{1} a$ (with a as in (16)). The next equation is $\left[\partial, A_{3}\right]+\left[A_{1}, A_{2}\right]=0$. It is not difficult to see that $u_{2}=\left[A_{1}, A_{2}\right]$ commutes with ∂, and we put $A_{3}=u_{2} a$. Continuing this process, at the n-th level we put $A_{n+1}=u_{n} a$ where $u_{n}=\left[\nabla, A_{n}\right]+\left[A_{1}, A_{n-2}\right]+\ldots$ as they arise from the coresponding equation. We leave to the reader to show that the u_{n} 's also satisfy the equations

$$
u_{n}=u_{n-1}[\nabla, a]+\left(\sum_{i+j=n-1} u_{i} u_{j}\right) a^{2} .
$$

Since $[\partial, a]=-1, \partial$ will commute with both $[\nabla, a]$ and a^{2}, hence also with the u_{n} 's (induction on n). It then follows that A_{n+1} satisfies the desired equation $\left[\partial, A_{n+1}\right]=-u_{n}$.

Application to algebroids

Recall [10] that an algebroid over M consists of a Lie bracket $[\cdot, \cdot]$ defined on the space , \mathfrak{g} of sections of a vector bundle \mathfrak{g} over M, together with a morphism of vector bundles $\rho: \mathfrak{g} \longrightarrow T M$ (the anchor of \mathfrak{g}) satisfying $[X, f Y]=f[X, Y]+\rho(X)(f) \cdot Y$ for all $X, Y \in,(\mathfrak{g})$ and $f \in C^{\infty}(M)$. Important examples are tangent bundles, Lie algebras, foliations, and algebroids associated to Poisson manifolds. It is easy to see (and has already been remarked in many other places [10], [3], [7], etc. etc.) that many of the basic constructions involving vector fields have a straightforward \mathfrak{g}-version (just replace $\mathcal{X}(M)$ by, (\mathfrak{g})). Let us briefly point out some of them.
(a) Cohomology: the Lie-type formula (4) for the classical De Rham differential makes sense for $X \in, \mathfrak{g}$ and defines a differential d on the space $C^{*}(\mathfrak{g})=, \Lambda^{*} \mathfrak{g}^{*}$, hence a cohomology theory $H^{*}(\mathfrak{g})$. Particular cases are De Rham cohomology, Lie algebra cohomology, foliated cohomology, and Poisson cohomology.
(b) Connections and Chern characters: According to the general philosophy, g-connections on a vector bundle E over M are linear maps, $(\mathfrak{g}) \times, E \longrightarrow, E$ satisfying the usual identities. Using their curvatures, one obtains \mathfrak{g} - Chern classes $C h^{\mathfrak{g}}(E) \in H^{*}(\mathfrak{g})$ independent of the connection.
(c) Representations: Motivated by the case of Lie algebras, and also by the relation to groupoids (see e.g. [3]), vector bundles E over M together with a flat \mathfrak{g}-connection are called representations of \mathfrak{g}. This time ∇ should be viewed as an (infinitesimal) action of \mathfrak{g} on E.
(d) Flat characteristic classes: The explicit approach to flat characteristic classes (as e.g. in [1], or as in the previous section) has an obvious \mathfrak{g}-version. Hence, if E is a representation
of \mathfrak{g}, then $C h^{\mathfrak{g}}(E)=0$, and one obtains the secondary characteristic classes $u_{2 p-1}(E) \in$ $H^{2 p-1}(\mathfrak{g})$. Maybe less obvious is the fact that one can also extend the Chern-Weil type approach, at the level of frame bundles (as e.g. in [9]). This has been explained in [3], and has certain advantages (e.g. for proving "Morita invariance" of the $u_{2 p-1}(E)$'s and for relating them to differentiable cohomology).
(e) Up to homotopy: All the constructions and results of the previous sections carry over to algebroids without any problem. As above, a representation up to homotopy of \mathfrak{g} is a supercomplex (10) of vector bundles over M, together with a flat \mathfrak{g}-connection up to homotopy.
(f) The adjoint representation: The main reason for working "up to homotopy" is that the adjoint representation of \mathfrak{g} only makes sense as a representation up to homotopy [5]. Roughly speaking, it is the formal difference $\mathfrak{g}-T M$. The precise definition is:

$$
\begin{equation*}
\operatorname{Ad}(\mathfrak{g}): \quad \mathfrak{g} \underset{\rho}{\leftrightarrows} T M \tag{17}
\end{equation*}
$$

with the flat \mathfrak{g}-connection up to homotopy $\nabla^{a d}$ given by $\nabla_{X}^{a d}(Y)=[X, Y], \nabla_{X}^{a d}(V)=$ $[\rho(X), Y]$ (and the homotopies $H(f, X)(Y)=0, H(f, X)(V)=V(f) X)$, for all $X, Y \in$, $\mathfrak{g}, V \in \mathcal{X}(M)$.

Let us denote by $u_{2 p-1}^{\mathfrak{g}}$ the characteristic classes $u_{2 p-1}(\operatorname{Ad}(\mathfrak{g}))$ of the adjoint representation. The most useful description from a computational (but not conceptual) point of view is given by (vi) of Theorem 2 (more precisely, its \mathfrak{g}-version).

1 Definition We call basic \mathfrak{g}-connection any \mathfrak{g}-connection on $\operatorname{Ad}(\mathfrak{g})$ which is equivalent to the adjoint connection $\nabla^{\text {ad }}$.

It is not difficult to see that any such connection is also basic in sense of [7] (and the two notions are equivalent at least in the regular case). Hence we have the following possible description of the $u_{2 p-1}^{\mathfrak{q}}$'s, which shows the compatibility with Fernandes' intrinsic characteristic classes [7, 8]:

$$
u_{2 p-1}^{\mathfrak{g}}=\left\{\begin{array}{ll}
0 & \text { if } p=\text { even } \\
\frac{1}{2}(-1)^{\frac{p+1}{2}} \operatorname{cs}_{p}\left(\nabla_{\mathrm{bas}}, \nabla_{\mathrm{m}}\right) & \text { if } p=\text { odd }
\end{array},\right.
$$

where $\nabla_{\text {bas }}$ is any basic \mathfrak{g}-connection, and ∇_{m} is any metric connection on $\mathfrak{g} \oplus T M$. Hence the conclusion of our discussion is the following (which can also be taken as definition of the characteristic classes of $[7,8]$).

Theorem 3 If E is a representation up to homotopy then $C h^{\mathfrak{g}}(E)=0$, and the secondary characteristic classes $u_{2 p-1}(E) \in H^{2 p-1}(\mathfrak{g})$ of representations [4] can be extended to such representations up to homotopy. When applied to the adjoint representation $\operatorname{Ad}(\mathfrak{g})$, the resulting classes $u_{2 p-1}^{\mathfrak{g}}$ are (up to a constant) the intrinsic characteristic classes of \mathfrak{g} [7].

More on basic connections: Let us try to shed some light on the notion of basic $\mathfrak{g}-$ connection. In our context these are the linear connections which are equivalent to the adjoint connection, while in [7] they appear as a natural extension of Bott's basic connections
for foliations. Although not flat in general, they are always flat up to homotopy. The existence of such connections is ensured by Lemma 3 and it was also proven in [7]. There is however a very simple and explicit way to produce them out of ordinary connections on the vector bundle \mathfrak{g}.

Proposition 2 Let ∇ be a connection on the vector bundle \mathfrak{g}. Then the formulas

$$
\begin{gathered}
\check{\nabla}_{X}^{0}(Y)=[X, Y]+\nabla_{\rho(Y)}(X) \\
\check{\nabla}_{X}^{1}(V)=[\rho(X), V]+\rho\left(\nabla_{V}(X)\right)
\end{gathered}
$$

$(X, Y \in, \mathfrak{g}, V \in, T M)$ define a basic \mathfrak{g}-connection $\check{\nabla}=\left(\check{\nabla}^{0}, \check{\nabla}^{1}\right)$.
Proof: We have $\check{\nabla}=\nabla^{a d}+[\theta, \partial]$, where θ is the (non-linear) End $(\operatorname{Ad}(\mathfrak{g}))$-valued form on \mathfrak{g} given by $\theta(X)(V)=\nabla_{V}(X), \theta(X)(Y)=0$.

Depending on the special properties of \mathfrak{g}, there are various other useful basic connections. This happens for instance when \mathfrak{g} is regular, i.e. when the rank of the anchor ρ is constant. Let us argue that, in this case, the adjoint representation is (up to homotopy) the formal difference $K-\nu$, where K is the kernel of ρ, and ν is the normal bundle $T M / \mathcal{F}$ of the foliation $\mathcal{F}=\rho(\mathfrak{g})$. This time, Bott's formulas [2] trully make sense on ν and K, making them into honest representations of \mathfrak{g} :

$$
\begin{gather*}
\nabla_{X}(\bar{Y})=\overline{[X, Y]}, \quad \forall X \in, \mathfrak{g}, \bar{Y} \in, \nu \tag{18}\\
\nabla_{X}(Y)=[X, Y], \quad \forall X \in, \mathfrak{g}, Y \in, K \tag{19}
\end{gather*}
$$

Now, choosing splittings $\alpha: \mathcal{F} \longrightarrow \mathfrak{g}$ for ρ, and $\beta: T M \longrightarrow \mathcal{F}$ for the inclusion, we have induced decompositions

$$
\mathfrak{g} \cong K \oplus \mathcal{F}, \quad T M \cong \nu \oplus \mathcal{F}
$$

As mentioned above, the formal difference $K-\nu$ (view it as a graded complex with K in even degree, ν in odd degree, and zero differential) is a representation of \mathfrak{g}. On the other hand, any \mathcal{F}-connection ∇ on \mathcal{F} defines a \mathfrak{g}-connection on the super-complex

$$
D(\mathcal{F}): \mathcal{F} \underset{i d}{\leftrightarrows} \mathcal{F}
$$

(and its homotopy class does not depend on ∇). Hence one has an induced \mathfrak{g}-connection $\nabla^{\alpha, \beta}$ on $\operatorname{Ad}(\mathfrak{g})$, so that $\left(\operatorname{Ad}(\mathfrak{g}), \nabla^{\alpha, \beta}\right)$ is isomorphic to $(K-\nu) \oplus D(\mathcal{F})$. Explicitly,

$$
\begin{gathered}
\nabla_{X}^{\alpha, \beta}(Y)=[X, Y-\alpha \rho(Y)]+\alpha \nabla_{\rho(Y)}(\rho X) \\
\nabla_{X}^{\alpha, \beta}(V)=[\rho(X), V]-\beta[\rho(X), V]+\nabla_{\rho(X)}(\beta(V))
\end{gathered}
$$

for all $X, Y \in, \mathfrak{g}, V \in \mathcal{X}(M)$. Note that the second part of the following proposition can also be derived from (iv) of Proposition 1.

Proposition 3 Assume that \mathfrak{g} is regular. For any \mathcal{F}-connection ∇ on \mathcal{F}, and any splittings α, β as above, $\nabla^{\alpha, \beta}$ is a basic \mathfrak{g}-connection. In particular

$$
u_{2 p-1}^{\mathfrak{g}}=u_{2 p-1}(K)-u_{2 p-1}(\nu)
$$

where K and ν are the representations of \mathfrak{g} defined by Bott's formulas (18), (19).

Proof: We have $\nabla^{\alpha, \beta}=\nabla^{\text {ad }}+[\theta, \partial]$, where θ is the $\operatorname{End}(\operatorname{Ad}(\mathfrak{g}))$-valued non-linear form which is given by

$$
\theta(X)(V)=\alpha[\rho(X), \beta(V)]-\alpha \beta[\rho(X), V]-[X, \alpha \beta(V)]+\alpha \nabla_{\rho(X)} \beta(V)
$$

for $V \in,(T M)$, while $\theta(X)=0$ on \mathfrak{g} (we leave to the reader to check that the previous formula is $C^{\infty}(M)$-linear on $\left.V\right)$.

References

[1] J.M. Bismut and J. Lott, Flat vector bundles, direct images and higher real analytic torsion, J. Amer. Math. Soc. 8 (1995), pp. 291-363
[2] R. Bott, Lectures on characteristic classes and foliations, Springer LNM 279, 1-94
[3] M. Crainic, Differentiable and algebroid cohomology, van Est isomorphisms, and characteristic classes, Preprint 2000
[4] M. Crainic, Chern characters via connections up to homotopy, Preprint 2000 (available as math.DG/0008064)
[5] S. Evens, J.H. Lu and A. Weinstein, Transverse measures, the modular class, and a cohomology pairing for Lie algebroids, Quart. J. Math. Oxford 50 (1999), 417-436
[6] B. Fedosov, A simple geometrical construction of deformation quantization, J. Differential Geometry 40 (1994), 213-238
[7] R.L. Fernandes, Lie Algebroids, Holonomy and Characteristic Classes, preprint DG/0007132
[8] R.L. Fernandes, Connections in Poisson Geometry I: Holonomy and Invariants, to appear in J. of Differential Geometry (available as math.DG/0001129)
[9] F. Kamber and P. Tondeur, Foliated Bundles and Characteristic Classes, Springer LNM 493
[10] K. Mackenzie, Lie groupoids and Lie algebroids in differential geometry, Lecture Notes Series 124, London Mathematical Society, 1987
[11] D. Quillen, Superconnections and the Chern character, Topology 24 89-95 (1985)
[12] I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Birkhauser, 1994
[13] A. Weinstein, The modular automorphism group of a Poisson manifold, J. Geom. Phys. 23 (1997), 379-394

Marius Crainic,
Utrecht University, Department of Mathematics, P.O.Box:80.010,3508 TA Utrecht, The Netherlands, e-mail: crainic@math.ruu.nl
home-page: http://www.math.uu.nl/people/crainic/

[^0]: *Research supported by NWO

[^1]: ${ }^{1}$ as in the case of connections, the non-linearity referes to $C^{\infty}(M)$-non-linearity. As pointed out to me, the terminology might be misleading. Betters names would probably be "higher order connections" and "jet-forms"

