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Deliberate Ill-Conditioning of Krylov Matrices

Jan Brandts�

February, 2001

Abstract

This paper starts o� with studying simple extrapolation methods for the
classical iteration schemes such as Richardson, Jacobi and Gauss-Seidel itera-
tion. The extrapolation procedures can be interpreted as approximate minimal
residual methods in a Krylov subspace. It seems therefore logical to consider,
conversely, classical methods as pre-processors for Krylov subspace methods, as
was done by Z��tko (1996) for the Conjugate Gradient method.

The observation made by Ipsen (1998) that small residuals necessarily imply
an ill-conditioned Krylov matrix, explains the success of such pre-processing
schemes: residuals of classical methods are (unscaled) power method iterates,
and building a Krylov subspace on such a classical residual will therefore lead
to expansion vectors that are at small angle to the previous Krylov vectors.
This results in an ill-conditioned Krylov matrix. In this paper, we present
a large number of experiments that support this claim, and give theoretical
interpretations of the pre-processing.

The results are mainly of interest in Krylov subspace methods for non-
Hermitian matrices based on long recurrences, and in particular for applications
with heavy memory limitations. Also, in applications in which minimal residual
methods stagnate due to a lack of ill-conditioning, the use of a classical pre-
processor can be a cheap and easily parallelizable remedy.

1 Introduction

Among the iterative methods for solving large and sparse linear systems of equations,
the Krylov subspace methods [4] are very popular. For special systems (i.e., posi-
tive de�nite and/or Hermitian matrices), elegant short recurrences lead to methods
like Conjugate Gradients (CG), Minimal Residuals (MinRes), Conjugate Residuals
(CR) and Symmetric LQ (SYMMLQ). Their generalizations, respectively the Full
Orthogonalization Method (FOM), Generalized MR (GMRES) and Generalized CR
(GCR) for non-Hermitian systems, use however necessarily long recursions for build-
ing orthogonal bases of the Krylov subspace, which, for large systems, becomes the
more (and very) expensive as the number of iterations increases. Therefore, it is
important to �nd ways, for example by suitable preconditioning, to keep this num-
ber as small as possible. If one is willing to sacri�ce the minimization properties of
the methods, one could consider using the bi-orthogonal Petrov-Galerkin approach
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leading to methods with short recurrences like BiCG, CGS and QMR. One could
also restart or truncate the method. Either way it is of interest to build Krylov
subspaces that contain good approximations of the initial residuals.

1.1 Aiming for ill-conditioned Krylov matrices

In this paper we investigate the e�ect of aiming the initial residual r0 of a Krylov
subspace method in the direction of a dominant eigenvector of the preconditioned
system matrix B := AK�1 through application of the K-preconditioned Richardson
iteration. Only afterwards, we will apply the Krylov subspace method. This would
force ill-conditioning of the Krylov matrix [r0; : : : ; B

k�1r0], which, as observed by
Ipsen [6], is a necessary condition for small minimal residuals.
One has to be cautious when working with vectors that are at close angle to one
another because of the unavoidable e�ects of �nite precision arithmetic [7], and
be aware of di�erences in true residuals and residuals obtained through updating
processes. It should be intuitively clear though, that when building a Krylov sub-
space on a random initial residual r0 in a high-dimensional space, it will in general
not contain good approximations of r0. Especially in long recurrences, it seems a
waist to keep such an irrelevant part of the subspace in memory and to use it in
computation. In asymptotic convergence rates of the methods, this waist is usually
not visible. However, aiming for as little iterations as possible, these asymptotics
hardly show up in the �rst place. In particular in non-normal applications, it is by
now well-known [15] that one should be more worried about the initial phase of an
iterative process. Therefore, in this paper, we concentrate on the start of Krylov
subspace methods, as opposed to their asymptotic behavior.

1.2 Outline

The outline of this paper is as follows. In Section 2 we recall iterative methods. Then,
in Section 3 we introduce extrapolation methods for classical iteration schemes.
A general reference for extrapolation is [2], and for some more recent work see
[8, 9, 18]. Alongside some numerical experiments we will discuss some stability
matters and preconditioning together in Section 4. Apart from being useful on their
own account, the extrapolation theory will serve as a tool for deriving, in Section 5,
asymptotical properties of the e�ect of preprocessing the initial residual in minimal
residual methods. In [17] this idea is worked out for the Conjugate Gradient method
while we also refer to [12] and the references therein. After a mathematical analysis
in Section 6 we see our expectations con�rmed by more numerical experiments in
Section 7. In Section 8 we comment on related topics and give our �nal conclusions.
In Appendix A we give details on the testmatrices used.

2 Iterative methods for linear systems of equations

Iterative methods for approximating the solution of a non-singular system of linear
equations Ax = b are based upon the following principle. Starting with an initial
guess x0 for the solution, the initial residual r0 := b � Ax0 is calculated and a
sequence xk with corresponding residuals rk = b � Axk is constructed, using only
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the action of A on speci�c vectors. Since x is unknown, it is not clear where xk
should converge to. However, we do know that we want the residuals rk to converge
to zero. Therefore, we are interested in identifying a so called "search direction"
uk for the approximation and a "correction direction" ck of the residual with the
property that

Auk = ck and krk � ckk < krkk: (1)

If we have found such a pair (uk; ck), then setting

xk+1 := xk + uk (2)

realizes the reduction of the norm of the residual as aimed for in (1), since

rk+1 = b� Axk+1 = b�A(xk + uk) = rk � ck: (3)

It is easy to generate pairs (uk; ck) at random such that Auk = ck; the problem is
to �nd them such that ck reduces the residual well. The ideal situation would be
to have uk = A�1rk since then ck = rk and we would have found x := xk + uk.
However, calculating A�1rk, or solving Auk = rk, is in general as least as di�cult
as solving our original problem Ax = b.

2.1 Classical iterative methods

In classical methods, the problem of generating pairs of vectors as in (1) is ap-
proached as follows. One looks for a matrix K that is, in some sense, an approx-
imation of A, and that is such, that solving Kuk = rk is relatively (very) easy.
Then, writing B := AK�1, we have ck = Auk = Brk � rk, since if K was supposed
to approximate A then B should be close to the identity. This gives the following
algorithm. Start with some x0 and corresponding r0, and repeat until the norm of
the residual is small enough

uk = K�1rk; ck = Auk; rk+1 = rk � ck; xk+1 = xk + uk ; k = k + 1: (4)

Combining the lines above, one can easily write this iteration into the more familiar
form

xk+1 = xk +K�1(b�Axk): (5)

The choice K = I is called the Richardson iteration, K = D, with D the diagonal
of A, the Jacobi iteration, and K = (L+D), with L the strict lower triangular part
of A, is the Gauss Seidel method.

Theorem 2.1 ([5]) The method (4) is convergent if and only if the spectral radius
of the iteration matrix I � B is less than one. Su�cient for convergence of the
Gauss-Seidel method is positive de�niteness of A. Su�cient for the Jacobi iteration
to converge is positive de�niteness of both A and 2D � A.

It has been observed in many practical applications that the convergence of classical
methods (if convergent at all) is very poor. This is due to the following. First note,
that the residual rk+1 can be expressed in terms of rk and hence, recursively, in
terms of the initial residual as follows. Writing M := I �B we have

rk+1 = rk � ck = Mrk = Mk+1r0: (6)
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The preconditioning K to A is often too poor. Either the spectral radius �(I � B)
of the residual reduction matrix M is (much) larger than one, or, if smaller, only
very little smaller than one. This leads in practice to a correction vector ck that is,
compared to rk, very small in magnitude, and therefore only a small change in the
norm of the residual is the result in each iteration step. Second, as already observed
in the introduction, as a result of non-normality of the matrix M , the condition
number �(V ) of (any) basis V of eigenvectors might ruin the convergence even in
case the spectral radius is small enough. Explicitly we have

krk+1k � kMk+1k � �(V )�(M)k+1kr0k; (7)

which does mean an upper bound that reduces by a factor �(M) in each iteration,
but the upper bound may start as an extremely large value. A simple example
illustrates that not only the upper bound is large; also the size of the residuals may
increase substantially before convergence.

Example 2.2 Suppose that v1 := (�; 1) and v2 := (�;�1) are eigenvectors of a two
by two matrix with respective eigenvalues 1

2
and 3

2
. Then the Richardson iteration

matrix I � B has the same eigenvectors but with eigenvalues 1

2
and �1

2
. Let r0 be

the vector v1 + v2, then kr0k = 2�. Applying I � B gives r1 =
1

2
(v1 � v2). In spite

of the spectral radius being one half, the norm of the �rst residual is kr1k = 1.

The pseudo-spectrum [15] ofM often gives a better bound on the norm of the powers
of a matrix, although the relevant pseudo-spectral radius is not easy to compute.

2.2 The Local Minimal Residual method

A �rst e�ort to overcome some of the problems of classical iterative methods is the
following. Having found a pair (uk; ck) such that Auk = ck, we know that for all
� 2 IR the pair

(ûk; ĉk) := (�uk; �ck) (8)

satis�es Aûk = ĉk. We can compute �k such, that �kck is the best possible correction
of the residual rk within the one-dimensional linear subspace spanned by ck (with
respect to the L2-norm). It is easy to see that �kck should be the L2 orthogonal
projection of rk on the space spanned by ck. Hence, �k be computed accordingly,
which leads to the following improvement over (4).

uk = K�1rk; ck = Auk ; �k =
r�kck
c�kck

; rk+1 = rk � �kck; xk+1 = xk + �kuk : (9)

This method is called a Local Minimal Residual (LMR) method, and clearly, the
residuals for this method are non-increasing. If one extends this idea, one arrives
at the Generalized Conjugate Residual method (GCR), which is mathematically
equivalent to Generalized Minimal Residuals (GMRES).

2.3 Minimal residual methods

In GCR, in each iteration step, all the information about the action of the inverse
A�1 that is obtained in previous iteration steps, is being used. Explicitly, after k
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iteration steps one has k + 1 sets of vectors uj ; cj such that AK�1uj = cj , and the
initial residual can therefore be corrected optimally in the space spanned by c0; � � � ; ck
by means of L2 orthogonal projection. In GCR, this projection is implemented by
means of a recursive orthogonalization procedure for the vectors cj . It can be seen
that the span of the ci is equal to the Krylov subspace K

k+1(AK�1; AK�1r0), where,
for general B and v, Kk(B; v) is de�ned by

Kk(B; v) := spanfv; Bv; � � � ; Bk�1vg: (10)

Explicitly, in GCR the following minimization problem is solved,

�nd ck 2 Kk(B;Br0) such that kr0 � ckk is minimal. (11)

Equivalently, since Kk+1(B;Br0) = BKk+1(B; r0), we could also solve

�nd u 2 Kk(B; r0) such that kr0 �Buk is minimal. (12)

An implementation based on this formulation leads to GMRES, which, though math-
ematically equivalent to GCR, is less expensive (and has di�erent stability proper-
ties). Given B and the initial residual r0, an orthogonal basis v1; � � � ; vk+1 for the
Krylov subspace Kk+1(B; r0) is computed using (for example) the Gram-Schmidt
process. Writing Vj for the matrix with columns v1; � � � ; vj(j � k + 1), this results
into the equivalent relations

BVk = Vk+1Hk+1;k and BVk = VkHk + hk+1;kvk+1e
�

k (13)

where Hk+1;k = (hij) is an upper Hessenberg matrix which contains the orthogo-
nalization and normalization coe�cients, and Hk its upper k � k block. Writing
v1 = r0=� with � := kr0k, the �rst relation in (13) is used to �nd the element Vkyk
from the column span Kk(B; v1) of Vk for which kBVkyk � r0k is minimal. Indeed,
using (13) we get kBVkyk � r0k = kVk+1Hk+1;kyk � �Vk+1e1k = kHk+1;kyk � �e1k
so yk is de�ned by a small least squares problem that can be solved by standard
methods.

In case B is Hermitian, GCR and GMRES reduce to CR and MR respectively. In
these methods, the orthogonalization reduces to a three term recursion, as opposed to
the long recurrences in GCR and GMRES. We will now de�ne extrapolation schemes
of classical methods that can be interpreted as inexact minimal residual methods
in a Krylov subspace, and encounter the �rst case of deliberate ill-conditioning of
Krylov matrices.

3 Extrapolation of classical methods

Let us �rst concentrate on the e�ect of one projection step of LMR, which, one
should note, requires the evaluation of two inner products. From Figure 1 it is clear
that one such a step has the most e�ect if rk and ck are almost linearly dependent,
which is the case when rk and the next classical residual rCk+1 := rk � ck make a
small angle. In equation (6) we have seen that the classical residuals are (unscaled)
power method iterates. So, the angle between consecutive residuals should become

5



smaller at the convergence rate of the power method. The same is valid for the
angle between the ck and rk. This raises the question if it would pay o� to apply the
projection in LMR not in each step (since in LMR one computes xLMR

k+1 such that
rLMR
k+1 is orthogonal to ck), but only after some more steps of the classical iteration,
in order to let the Power Method do its work and have rk and ck at small angle to
one another. This would be our �rst example of deliberate ill-conditioning in order
to speed up convergence. In the following we will give a mathematical analysis.

3.1 First extrapolation

Assume that k steps of a classical iteration have been performed, which resulted
in an approximation xk with corresponding residual rk := b � Axk . Application of
the next step of this classical iteration leads to a correction vector ck and a search
direction uk , and to the updated approximation xk+1 and corrected residual rk+1
as in (4). Alternatively, instead of the k + 1-st step of the classical iteration, we
can, after having determined ck and uk, compute ak = r�kck=c

�

kck, which leads to a
di�erent updated approximation and a di�erent corrected residual according to (9),
which we will denote from now on by sk+1 (Cf. Figure 1 and Alg.(3.1)). Clearly,

ksk+1k

krk+1k
� 1: (14)

For the time being, we interpret the computation of sk+1 as a post-processing or
extrapolation step that applied after some number k of classical iteration steps.
However, for the ease of theoretical discussion, in the algorithm below this extrap-
olate is constructed for each value of k. In practical situations, there is no need to
do this after each classical iteration step.

Algorithm 3.1: Extrapolated Classical Method.
input: A;K, b, x0, tolerance
r0 = b� Ax0
k = 0
while kskk2 > tolerance

uk = K�1rk
ck = Auk
�k = c�krk=(c

�

kck)
rk+1 = rk � ck
xk+1 = xk + uk
sk+1 = rk � �kck
yk+1 = xk + �kuk
k = k + 1

end (while)

In the following analysis, we will prove a more interesting bound than (14) for the
reduction factor resulting from the extrapolation.
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3.2 The improvement rate of the extrapolation

Recall the notation M = I�AK�1, and de�ne �k as the angle between rk and rk+1,
i.e. let

cos �k =
r�krk+1

krkkkrk+1k
=

r�kMrk
krkkkMrkk

: (15)

Assume M has a dominant single eigenvalue �1 with a corresponding eigenspace
spanned by the eigenvector v1. Let �2 be an eigenvalue of second-largest magnitude.

HHHHHHHHHHHHHHHHHHHHHHHH�k) (�k rk

ck

rk+1

hk

sk+1

((((
((((

((((
((((

(((((>>>

-�
�
�
�
�
�
�
�
�
�
��

Figure 1. sk+1 is the result
of the best correction of rk in
the one dimensional subspace
spanned by ck, on which the ac-
tion of A�1 is known.

Consider Figure 1. Using basic trigonometry and some additional notations intro-
duced in the picture, we can immediately write down

sin �k =
ksk+1k

krkk
=
khkk

kckk
; so,

ksk+1k

krk+1k
=
krkk

kckk
sin �k : (16)

On the left-hand side of the expression in the right, the extra reduction of the clas-
sical residual obtained by performing the extrapolation is given.

Let us now recall some well-known results about the convergence of the power
method. These results are already specialized for the situation in which the it-
eration matrix is M and the start vector r0 and in which no scaling is applied to
the iteration vectors. We refer to [3] for details.

Proposition 3.1 Suppose that r�0v1 6= 0 and let k be the angle between v1 and rk.
Then there exists a C > 0 such that for all k

j sin kj � C

�����2�1
����
k

: (17)

Proposition 3.2 Suppose that j�1j 6= 1. Then

krkk

kckk
!

1

1� j�1j
for k! 1: (18)

Combining the two propositions above with eq.(16) leads to the following upper
bound for the reduction of the residual after extrapolation.

Corollary 3.3 Applying one extrapolation step after k steps of the classical method
reduces the norm of the residual with an additional factor as follows. There exist
numbers N and C such that for all k � N

ksk+1k

krk+1k
� min

(
1;

2C

1� j�1j

�����2�1
����
k
)
: (19)
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Proof. The angle �k in eq.(16) is smaller than or equal to the sum of the angles
k and k+1. The same is valid for their sines. 2.

An interpretation of Corollary 3.3 is the following. A classical iterative method with
spectral radius almost one shows slow convergence. If this is caused by only one
single eigenvalue with modulus almost one, this can be corrected successfully by
extrapolation in a one-dimensional Krylov subspace. Indeed, the convergence rates
of the residuals krk and kskk are

krkk � C1j�1j
k and kskk � C2j�2j

k; (20)

respectively. One can interpret these results also as iterating with the deated matrix
after having found the dominant eigenvector. The deated matrix is never explicitly
constructed. Note that the asymptotics might take many iterations to show up if
the matrix M is far from normal. In case of high non-normality, it is not clear what
happens at early stages, although residuals will never increase.

3.3 Second extrapolation

Consider Figure 2, which is an extension of Figure 1. It contains not only the
extrapolated residual sk+1 := rk � �kck but also the next extrapolated residual
sk+2 := rk+1��k+1ck+1 that arises from approximation of rk+1 in the space spanned
by ck+1. In order to emphasize that rk+2 (and several other vectors) do not need to
be in the same plane as rk; rk+1; ck and sk+1, they are drawn as thick lines, indicating
that they might have a component orthogonal to this sheet of paper.

HHHHHHHHHHHHHHHHHHHHHHHH

sk+1

((((
((((

((((
((((

(((((>>>

rk

rk+2
rk+1

-

sk+2

�
�
�
�
�
�
�
�
�
�
��

tk+2

�
�
�
�
�
�
�
�
�
�
��

hhhh
hhhh

hhhh
hhhh

hhhh
hhhhh

ck+1

���
���

���
���

���
��:

�
�
�
�
�
��

B
B
B
BBM

Figure 2. The second ex-
trapolate tk+2 arising from
sk+1 and sk+2.

One might hope for the two vectors sk+1 and sk+2 to be close to linearly dependent
again. Their di�erence is

dk+1 := sk+1�sk+2 = (rk��kck)�(rk+1��k+1ck+1) = (1��k)ck+�k+1ck+1: (21)

This means, that we know the action of A�1 on the space spanned by dk+1.

vk+1 := A�1dk+1 = (1� �k)uk + �k+1uk+1: (22)

As before, we can now correct the extrapolated residual sk+2 in the space spanned
by dk+1 to obtain an extrapolated extrapolation, which we will denote by tk+2.

tk+2 := sk+2 � �k+1dk+1; where �k+1 =
s�k+2dk+1

d�k+1dk+1
: (23)

Obviously the residual tk+2 is always smaller in norm than sk+2.
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3.4 Some intuition on the improvement rate

We already noted that rk as well as ck converge towards the dominant eigenvector
direction v1 of M . This means, that the component in the direction of v1 in sk+1
is small, since sk+1 is the orthogonalization of rk to ck. The same is valid for sk+2.
Since a simple computation shows that

Msk+1 = sk+2 + (�k+1 � �k)ck+1; (24)

and also that
lim
k!1

(�k+1 � �k) = 0; (25)

we could therefore hope for the sequence sk to behave similarly as rk. The im-
provement of the second interpolate over the �rst will then be of order j�3=�2j and
hence

ktkk � C3j�3j
k: (26)

Note that he calculation of the correction direction dk+1 could become relatively
inaccurate since both sk+1 and sk+2 are the result of the subtraction of two almost
equal vectors, and are themselves subtracted from one another. We will pursue this
issue further in Section 4.

3.5 Further extrapolates

The process of extrapolation can be extended in a similar fashion. Taking two
vectors tk+1 and tk , we can consider their di�erence

ek+1 := tk � tk+1 = sk � �k�1dk�1 � sk+1 + �kdk = (1 + �k)dk � �k�1dk�1: (27)

We know from (22) that A�1dk = vk so we can correct tk+2 in the space spanned
by ek+1, leading to a new and smaller residual. We will not go into detail here, but
only state the following.

Remark 3.4 In exact arithmetic and for �xed m, assuming that the largest m
eigenvalues of M are single, the asymptotic behavior in k of the m-th extrapolate
of the k-th classical residual Rm

k is

kRm
k k � Cm+1j�m+1j

k: (28)

Moreover, the sequence kRm
k kis (non-strictly) monotonic decreasing in m.

Just for clarity of notation, we will add here the computational scheme of the ex-
trapolates. In order to be able to calculate a certain extrapolate, one only needs the
one directly left and the one left above from it.

r0 = R0
0

r1 = R0
1 s1 = R1

1

r2 = R0
2 s2 = R1

2 t2 = R2
2

r3 = R0
3 s3 = R1

3 t3 = R2
3 R3

3

r4 = R0
4 s4 = R1

4 t4 = R2
4 R3

4 R4
4

(29)
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For completion, we give below the algorithm that computes two extrapolates in
each iteration step. As mentioned before, in practice one should compute them only
occasionally.

Algorithm 3.2: Twice Extrapolated Classical Method.
input: A;K, b, x0, tolerance
r0 = b� Ax0
s0 = r0
��1 = 0
k = 0
while ktkk2 > tolerance

uk = K�1rk
ck = Auk
�k = c�krk=(c

�

kck)
rk+1 = rk � ck
xk+1 = xk + uk
sk+1 = rk � �kck
yk+1 = xk + �kuk
vk = (1� �k�1)uk�1 + �kuk
dk = sk � sk+1
�k = s�k+1dk=(d

�

kdk)
tk+1 = sk+1 � �kdk
zk+1 = yk+1 + �kvk
k = k + 1

end (while)

4 True residuals and preconditioning: experiments.

Our exposition so far has concentrated on taking advantage of iterates of the power
method that make a small angle to each other. Our mathematical analysis gives
statements that are asymptotically valid in exact arithmetic. In practice, we will
have to deal with the e�ects of �nite precision arithmetic, and this asks for special
care. In what follows, we will perform some numerical experiments and try to
identify points in the approach that need extra attention. We will comment on
the di�culty of �nding a (nearly) convergent classical method, and on true versus
updated residuals. For details on the testmatrices we refer to the Appendix.

4.1 True versus recursively computed residuals

In our �rst experiment, we solved a system Ax = b, where A is the non-Hermitian
SHERMAN3 matrix of dimension 5005 and b is the corresponding right-hand side
taken from [11]. As preconditioning we used Incomplete LU-factorization with
threshold 0.001, which we denote by ILU(0.001). We monitored the classical residu-
als and its �rst �ve extrapolates in logarithmic scale. The convergence history of the
recursively computed residuals is shown in the left picture of Figure 3. The upper
graph represents the classical residuals, going down we see the norms of the once

10



extrapolated residuals (the sk) and further down the second to the �fth extrapolate.
In the right picture we plotted the true residuals, i.e. the residuals directly com-
puted from the approximations.
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Figure 3. True versus recursively computed residuals for SHERMAN3,
incomplete LU preconditioned with threshold 0.001.

As has been observed in many iterative methods, there can be signi�cant di�erences
between the two. And indeed, here too we see that the true residuals do not become
smaller than about 1e-11 relatively, whereas the recursively computed residuals go
easily all the way down to 1e-18. This should be a guideline in the use of the
extrapolation: at least in the �nal stage, one should monitor the true residuals, as
the recursive ones can be inaccurate.

4.2 An alternative computational scheme

One of the key points in our algorithm (3.2) has been the property that we know the
action of A�1 on the di�erence of two consecutive iterates sk. Explicitly, we have

Avk := A ((1� �k�1)uk�1 + �kuk) = dk: (30)

However, the relation Avk = dk has not been established by direct calculation via
the use of the action of A on vk or A�1 on dk. It might therefore very well be that
in �nite precision arithmetic, the residual Avk � dk is non-zero, whereas when dk
was explicitly de�ned as dk := Avk, it would be zero. But since vk is computed
independent from dk, it is actually possible to replace the line dk = sk � sk+1 by
dk := Avk . This makes sure that the correction and updating of tk+1 and zk+1
happens with vectors �kdk and �kvk that have the property that dk := Avk as much
as is possible in �nite precision arithmetic. The same can be done for all further
extrapolates, and in particular when one plans to compute many of them, this might
add to the stability of the algorithm. We should however point out, that it did not
make any di�erence to the results of the experiments in this paper.
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4.3 Preconditioning

Extrapolation of a classical method makes sense if the classical method converges,
or, as we will see below, does not diverge to strongly. This rather seems to restrict
the range of application, since we have already noted that classical methods often
fail to converge. In the following experiments, we discuss suitable preconditioning.
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Figure 4. Preconditioning for three
di�erent matrices.

Left above: Poisson problem, size
4900, symmetric positive de�nite,
preconditioned with (non-symmetric)
lower triangular part (Gauss-Seidel).

Right above: SHERMAN5 problem,
size 3312, non-symmetric, precondi-
tioned with ILU, threshold 0.005.

Left below: SAYLR4, symmetric in-
de�nite matrix of size 3564, precondi-
tioned with ILU, threshold 0.1.

In all three examples, the true residuals are shown, which were (with the bare eye)
indistinguishable from the recursively computed ones.

First example. Left above a Poisson problem on a square is solved using standard
�nite di�erences on, leading to a positive de�nite system matrix of size 4900 for
which Gauss-Seidel converges (Cf.Th.2.1). As preconditioner we also tried ILU(0.1)
which gave a similar picture, but then in about 700 iterations instead of 2500.

Second example. The picture right above in Figure 4 shows the results for the
SHERMAN5 matrix, which is non-Hermitian and has size 3312. The problem was
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now which K to choose such that the classical method converges, since both Jacobi
as Gauss-Seidel showed divergence. We chose to use ILU(0.005). The computation
of the factorization costed only about half a percent of the computation of a com-
plete LU factorization, but already gives very good convergence of the extrapolates.

Third example. In the picture left below we took the symmetric inde�nite SAYLR4
matrix. Again we took ILU preconditioning, with threshold 0.1. Although the clas-
sical method hardly converges, the extrapolates converge quite well. Compare this
with the discussion after Corollary 3.3.

Remark 4.1 Let us stress once more that it is essential that the preconditioner
is constant in the iteration number. Hence, for example, the Richardson, Jacobi
and Gauss-Seidel method can be used, and also (Modi�ed) Incomplete LU decom-
position. In the course of the computation of the iterates one should monitor the
true residuals and not the recursively computed ones. For higher extrapolates, the
adapted method (Cf.Sect.4.2) could be considered.

4.4 Slowly divergent classical method

Here, we wish to pay some extra attention to the fact that even if the classical
method, after preconditioning, fails to converge, it is still possible that extrapola-
tion is e�ective. Consider the following example with divergent classical method.
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Figure 5. A divergent classical
method with convergent extrapolates.

The symmetric inde�nite matrix
LSHP3466 of size 3466 gives a diver-
gent classical method when ILU(0.01)
is used as preconditioner. In spite
of that, the extrapolates converge rel-
atively very fast, although comput-
ing higher extrapolates does not really
seem worthwhile.

4.5 A note on inexact extrapolation

Consider once more Figure 1. To get the best possible correction of rk in the space
spanned by ck, we have to evaluate two inner products. However, when rk and ck
are at small angle to each other then we can approximate the projection as follows.

r�kck
c�kck

�
krkk

kckk
�

krkk

krkk � krk+1k
=

1

1� krk+1k=krkk
!

1

1� �1
: (31)

This approximation involves two norms that have already been computed since they
are used as stopping criterion in the classical method. Since the approximation has
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no e�ect on the rk themselves, it will gradually improve, leading to almost the same
sk as without this approximation. The resulting algorithm 4.1 is studied from a
di�erent viewpoint in [9].

Algorithm 4.1: Inexact Extrapolated Classical Method.
input: A;K, b, x0, tolerance
r0 = b� Ax0
�0 = r�0r0
k = 0
while kŝkk2 > tolerance

uk = K�1rk
ck = Auk
rk+1 = rk � ck
xk+1 = xk + uk
�k+1 = r�k+1rk+1
k = 1=(1� �k+1=�k)
ŝk+1 = rk � kck
ŷk+1 = xk + kck
k = k + 1

end (while)

The approximation of inner products in this fashion can also be done for the higher
extrapolates; we expect that asymptotically, the convergence graphs will coincide
with those of the exact method. This was con�rmed by numerical experiments (not
shown in this paper).

5 Preprocessing of minimal residual methods

In this section we will use the extrapolation method of the previous section to study
some Krylov subspace methods. This is motivated by the fact that the �rst ex-
trapolation step is in fact the �rst step of minimal residual methods like GCR and
GMRES. Again we will write B for AK�1, though not implying that the precondi-
tioned matrix has been explicitly formed.

5.1 Upper bounds for minimal residual methods

Recall that, although their implementation di�ers, both GCR and GMRES, as well
as their Hermitian versions CR and MINRES, correct the initial residual by its best
approximation in the Krylov Subspace Kk+1(B;Br0) (Cf.Sect.2.3). Now, consider
the extrapolation method of Section 3. In particular, let k be �xed and consider the
sequence Rm

k for increasing m. Clearly, the �rst extrapolate sk = R1
k minimizes the

"initial" residual rk by optimal correction in K1(B;Brk). For the second extrapolate
tk = R2

k we already noticed that is was constructed by correcting R1
k in the space

spanned by dk. Remembering equation (21) tells us that this correction lies in
K2(B;Brk�1), since it uses ck and ck�1. One can easily check using induction
arguments that for higher iterates and higher extrapolations the same still holds.
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Lemma 5.1 For all k and all m, Rm
k � rk 2 Km(B;Brk�m). For application of m

extrapolation steps to rk one needs the m previous residuals.

So, because the extrapolations form a non-optimal Krylov subspace method, the
m-th iterate of a minimal residual method with start vector rk, has a norm that is
bounded by the norm of the m-th extrapolate of rk+m. This results in the following
theorem.

Notation. Denote by GCR(m)r and CL(k)r the residuals obtained after applying
to the initial residual r, m steps of GCR and the classical method respectively.

Theorem 5.2 The following asymptotics hold for GCR applied to a residual ob-
tained by the classical iteration method.

kGCR(m)CL(k)r0k � kRm
k+mk � Cm+1j�m+1j

k+m: (32)

This means, that a graph in which the convergence history of the classical method,
all its extrapolates and GCR are displayed, no graphs intersect. The un-extrapolated
classical method and GCR form their respective upper and lower bounds as illus-
trated in Figure 6 for a small convection-di�usion problem.
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Figure 6. Classical method (upper graph), GCR (lower graph) and the �ve
extrapolates in between for CONVDIFF400, right picture is a detail of the left.

Remark 5.3 Since the asymptotics for small m will need to be realized in practice
before the asymptotics for largerm can take place, we have informally re-derived the
superlinear upper bound for the convergence pattern of minimal residual methods
(Cf.[16]). In a logarithmic convergence history of a minimal residual method, the
norms of the residuals are bounded by a continuous piecewise linear graph of which
the slopes decrease for k tending to in�nity.

These observations naturally raise the question if it would pay o� to use a (few steps
of a) Krylov subspace minimal residual method as extrapolation. Alternatively, one
could consider the classical method as a preprocessing for this Krylov subspace
method. We will from now on continue our analysis from this point of view.
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5.2 Preprocessing

The right picture in Figure 6 (depicted again, and extended, in Figure 7) will serve
as a model for our further discussion. First note that in that picture, the GCR
graph stays quite close to the graph of the �fth extrapolate. It only starts to turn
away from it after iteration 25, roughly. A consequence of this proximity is the
following. Suppose that we do k � 20 classical iterations with the same starting
vector as before. Then, we use rk as initial residual for GCR. From Theorem 5.2 it
follows that the �rst �ve iterations of GCR must give residuals that are smaller than
or equal to the extrapolates kRm

k+mk; m = 0; � � � ; 5. And indeed , this is what we
clearly see in Figure 7. The stars '*' on the dotted lines indicate GCR convergence
histories that had initial residual r5; r10; � � � ; r25 (which, due to MatLab plotting,
have x-coordinates 6; 11; � � � ; 26).
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APPLYING GCR AFTER 5,10,...,25 CLASSICAL STEPS

Figure 7. As an example, let the
initial residual for GCR be r15 (sit-
uated at x = 16 as a result of r0 be-
ing at x = 1). The �rst GCR iter-
ate is equal to the �rst extrapolate
s16 = R1

16 of r16. The second GCR
iterate cannot be larger than second
iterate of r17, and so on. Since the
graph of the �fth extrapolate is still
close to the original GCR graph, the
graph of pre-processed GCR is nec-
essarily almost forced back onto the
original GCR graph.

In each iteration of GCR starting with a pre-processed initial residual, the graph of
the next extrapolate has to be passed. Since the GCR(�)r0 graph stays close to the
�fth extrapolate, the graphs of GCR(5)CL(`), for ` roughly smaller then 20, almost
catch up with the GCR(�)r0 graph. Of course it could be that for larger ` this still
happens, because it could be that the graphs of still higher extrapolates stick to the
GCR(�)r0 graph even longer than the �fth extrapolate's graph.

Remark 5.4 Starting GCR after a larger number of preprocessing iterations does,
of course, not need to produce a graph that falls back onto the original GCR graph.
Nor does it (for any number of preprocessing steps) have to stick onto this graph for
the rest of the convergence history. Nevertheless, according to our theory, the more
preprocessing steps are taken, the faster the upper bounds for GCR decay.

Before proceeding with a mathematical analysis of preprocessing, we will show, in
Figure 8, what happens if we preprocess the small CONVDIFF400 problem with
Gauss Seidel steps, in number varying from zero to �fty. We set the relative resid-
ual tolerance to 1e-14. In the picture left above, we see �fty convergence histories.
The lowest one, of course, is plain GCR, and the upper one is GCR pre-processed
with �fty Gauss-Seidel steps. The other graphs split o� the upper graph after a
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number of preprocessing steps and go GCR-like down. In the upper right picture,
the total number of iterations (Gauss-Seidel plus GCR) is given against the number
k of Gauss-Seidel steps. It is remarkable that this graphs stays constant until k = 12.
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Figure 8. Three aspects of prepro-
cessing.

Left above: Problem CONV-
DIFF400. Convergence graphs of
GCR with k = 0; 1; � � � ; 50 Gauss-
Seidel preprocessing steps.

Right above: Total number of iter-
ations (Gauss-Seidel steps plus GCR
steps) against number of preprocess-
ing steps.

Left below: Amount of ops against
number of preprocessing steps. Good
preprocessing gains a factor two.

This means that preprocessing GCR with 12 Gauss-Seidel steps needs only 35 GCR
iterations, while plain GCR needs 57. All the graphs with k � 12 preprocessing
steps "converged" to the original GCR graph, which emphasizes the success of pre-
processing. The dimension of the Krylov subspace reduced from 57 to 35, which is
interesting since the amount of work to build a k dimensional subspace is quadratic
in k.

Left below in Figure 8 we pictured the amount of oating point operations (ops)
against the number of preprocessing steps. Although this number is not totally reli-
able because we calculated the true residuals in each step, the general shape of the
graph shows that it saves quite a lot of work when preprocessing steps are done.
Also, one does not really have to be afraid of doing to many steps since there seems
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to be a relatively long at part of the graph. The up-down structure in the right
part of the graph is explained by the fact that there, where the graph goes down
a bit, another GCR step has been saved. It takes however to many preprocessing
steps to reduce the number of GCR steps by one, so it does not pay of in the total
amount of work done.

6 Mathematical aspects of the preprocessing

In this section we will try to analyze preprocessing from a number of di�erent view-
points. First we will see that it can be interpreted as changing the inner product of
the projection method, and provide some intuition on the remarkable phenomenon
visible in Figure 8, where we noticed that preprocessing can replace early minimal
residual iterations. Throughout this section we assume that �(M) < 1.

6.1 Preprocessing is changing the inner product

To start with, we will study the di�erence between the following two means to reduce
the initial residual. Write M = I � B.

(A) Apply m steps Classical Method followed by k steps Krylov Subspace method.
Denote the resulting residual by rak+m =GMRES(k)CL(m)r0.

(B) Apply k steps Krylov Subspace method followed by m steps Classical Method.
Denote the resulting residual by rbk+m =CL(m)GMRES(k)r0.

In the �rst approach (A), the initial residual r0 is �rst multiplied by Mm and then
optimally corrected in the Krylov Subspace Kk(B;BMmr0).

Proposition 6.1 B and I �B are commuting matrices, and hence

Kk(B;BMmr0) = MmKk(B;Br0): (33)

Corollary 6.2 The correction of Mmr0 is of the formMmca with ca 2 Kk(B;Br0)
where ca satis�es

8v 2 Kk(B;Br0) : (Mm(r0 � ca);Mmv) = 0: (34)

This makes ca into the best approximation of r0 in the space Kk(B;Br0) with
respect to the inner product generated by the Hermitian positive de�nite matrix
(Mm)�Mm, and hence the minimizer of the norm

krak+mk = kMm(r0 � ca)k = minfkMm(r0 � c)k j c 2 Kk(B;Br0)g: (35)

This means that the m pre-processing steps can be interpreted as changing the inner
product of the Krylov Subspace Method.

In the second approach (B), r0 is �rst approximated in Kk(B;Br0) and the resulting
corrected residual is multiplied by Mm, leading to

rbk+m = Mm(r0� cb); where kr0� cbk = minfk(r0� c)k j c 2 Kk(B;Br0)g: (36)

18



Theorem 6.3 The �rst approach (A) reduces the residual best.

krak+mk = kMm(r0 � ca)k � kMm(r0 � cb)k = krbk+mk: (37)

Proof. By de�nition, ca minimizes the norm kMm(r0 � �)k in Kk(B;Br0). 2

This result gives an interesting view on the preprocessing. It is well-know that
initially, a minimal residual method reduces the eigenvector components belonging
to the extremal eigenvalues best. Applying m steps of a classical method after
those components have been reduced, would therefore give much better residual
reduction (in these m steps) than applying m classical steps before starting the
minimal residual method.

GMRES(k)

CL(m)

GMRES(k)

CL(m)

approach (A)

approach (B)

Figure 9. Illustrating Theorem 6.3.
Residual reduction of approaches (A)
and (B) on the vertical axis, and iter-
ation number on the horizontal. The
method that is applied secondly, prof-
its from pre-processing by the �rst. In-
deed, the slope of CL(m) is larger in
(B) then in (A), and the slope of GM-
RES(k) is larger in (A) then in (B).
But GMRES as second method is al-
ways best.

Nevertheless, Theorem 6.3 shows that approach (A) gives a better total reduction
(for the combination of classical method and GMRES), which implies that pre-
processed GMRES behaves better than plain GMRES. Apart from that, the gain of
(A) over (B) is bigger than the gain a GMRES-pre-processed classical method has
over a plain classical method.

6.2 Explanation of GMRES(k)CL(m) � GMRES(k +m)

As observed in numerical experiments of previous and upcoming sections of this
paper, sometimes the pre-processing seems to replace a part of the optimal Krylov
subspace method, or, put di�erently, GMRES(k)CL(m)� GMRES(k+m). It would
be interesting to identify when this happens, because obviously, replacing the �rst
m steps of GMRES by a classical iteration would save memory and computational
costs. For ease of explanation, we analyze the case m = 1. First note that

Kk(B; (I �B)r0) � Kk+1(B; r0): (38)

The space on the left-hand side is the k-dimensional Krylov subspace in which the
pre-processed 'initial' residual (I�B)r0 is approximated. On the right-hand side we
have the (k+1)-dimensional subspace in which r0 is approximated. The question of
equality of both approaches can therefore be reformulated as the question when the
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minimizer y 2 Kk+1(B; r0) of the norm kr0�Byk happens to be in K
k(B; (I�B)r0)

as well. Now, recall that

8v 2 Kk+1(B; r0); v = P (B)r0 (39)

for some polynomial P of degree k + 1, and correspondingly,

8w 2 Kk(B; (I �B)r0); w = Q(B)(I �B)r0 (40)

for some polynomial Q of degree k. Since polynomials in B commute, the answer to
our problem is therefore given: if the polynomial P � de�ning the minimizer y has a
factor I � B, the second approach gives the same residual.

Since the zeros of P � are the eigenvalues of the projected matrixHk+1 := V �k+1AVk+1
(the so-called Ritz values, see (13)), the two convergence graphs of GMRES(k)CL(1)
and GMRES(k + 1) stick together from the point N onwards that Hj has a Ritz
value equal to one for all j � N . This would probably be a converged Ritz value,
and hence an eigenvalue of B, the preconditioned matrix AK�1. Since the goal of
preconditioning is to make B resemble the identity, it can be expected that B has
indeed eigenvalues close to one.

Observation 6.4 The success of the pre-processing of GMRES byK-preconditioned
Richardson iteration depends on the quality of the preconditioner. If B := AK�1 has
m eigenvalues close to one, and if the Ritz values of plain GMRES would converge
to those eigenvalues before the approximation to the solution of the linear system
Ax = b has been found with su�cient accuracy, then the use of m pre-processing
steps is suggested to save memory and computational costs.

Naturally, one does not know such detailed information on beforehand. Nevertheless,
as our computational examples suggest, and in particular for very large matrices, it
does not seem seldom that there are indeed converged Ritz values close to one. More-
over, in cases where pre-processing does not signi�cantly improve the procedure, it
does not seem to harm it either.

Remark 6.5 The analysis is not restricted to the classical iterations considered so
far. As a matter of fact, replacing I �B by zI �B shows that any complex value z
can be used to obtained the same e�ect. Good a priori guesses z for other eigenvalues
of B or for Ritz values would therefore lead to successful pre-processings as well.

7 More experiments with pre-processing

We will now proceed with presenting a few more experiments that will illustrate
the success of preprocessing. We employ the same presentation of results as was
done in Figure 8, so we show convergence histories of GMRES pre-processed with k
classical iteration steps for relevant k. Then we show the amount of ops against k,
and the total number of iterations against k. In some of the pictures it may seem
as if convergence graphs intersect others. This is not the case. Almost horizontal
lines are caused by a sequence of short horizontal lines each belonging to a di�erent
convergence graph. For details on the testmatrices, see the appendix and [11].
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7.1 SHERMAN3, non-Hermitian, size 5005, with ILU(0.001)

Our �rst experiment is with the SHERMAN3 matrix from Figure 3. From the at
start of the graph in the right picture we conclude that until eleven preprocessing
steps, the end of the twelve convergence graphs (nearly) coincide. From the middle
picture this is also clear by the reduction of the amount of ops until about k = 14.
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Figure 9. Preprocessing SHERMAN3. Convergence histories, number of ops, and
total number of iterations. The y-range of center and right picture starts at y = 0.

Also noteworthy and visible from the right picture is that plain GMRES requires 24
iterations, while GMRES pre-processed with 30 classical steps requires only 9.

7.2 SHERMAN5, non-Hermitian, size 3312, with ILU(0.05)

Our second experiment is with the SHERMAN5 matrix from Figure 4. The at
start of the graph in the right tells us that until �fteen preprocessing steps, the end
of the sixteen convergence graphs (nearly) coincide. The middle picture shows a
reduction of the amount of ops at k = 30 of almost a factor two.
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Figure 10. Preprocessing SHERMAN5. Convergence histories, number of ops,
and total number of iterations.

The amount of GMRES steps is reduced from 39 in the un-pre-processed case to 13
in the case with 50 preprocessing steps.

7.3 SAYLR4, symmetric inde�nite, size 3564, with ILU(0.1)

Third experiment is with the SAYLR4 matrix from Figure 4. The preprocessing
appears still e�ective, although the at part of the right picture is only seven pre-
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processing steps long. Again, there is a reduction of the amount of ops of almost
a factor two.

0 10 20 30 40 50 60 70 80
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

PREPROCESSING FOR SAYLR4

TOTAL NR OF ITERATIONS CL + CGR
0 10 20 30 40 50 60 70 80

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

7 PREPROCESSING FOR SAYLR4

TOTAL NR OF ITERATIONS CL + GCR

N
R

 O
F

 F
LO

P
S

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

110
PREPROCESSING FOR SAYLR4

NR OF PREPROCESSING STEPS

T
O

T
A

L 
N

R
 O

F
 C

L 
+

 G
C

R
 S

T
E

P
S

Figure 11. Preprocessing SAYLR4. Convergence histories, number of ops, and
total number of iterations. The y-range of center and right picture starts at y = 0.

In this experiment we were did not use a Krylov method for symmetric matrices like
MinRes because we could not �nd a suitable preconditioner for the symmetric case.
It should be noted that MatLab's Incomplete LU decomposition for symmetric ma-
trices gives factors L and U such that A � LU even though the product LU is not
always symmetric. The non-symmetric preconditioning caused MinRes to stagnate,
and that is why we used GMRES. The amount of GMRES steps is reduced from 64
in the un-pre-processed case to 30 in the case with 50 preprocessing steps.

7.4 LSHP3466, symmetric inde�nite, size 3466, with ILU(0.01)

Next experiment is with the matrix LSHP3466 from Figure 5, for which the classical
method ultimately diverges. Preprocessing is also in this case still e�ective, although
there is only a small reduction of the amount of ops.
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Figure 12. Preprocessing LSHP3466. Convergence histories, number of ops, and
total number of iterations. The y-range of center and right picture starts at y = 0.

The amount of GMRES steps is however drastically reduced from 24 in the un-pre-
processed case to 3 in the case with 30 preprocessing steps. The reason that this
does not show in the op count is due to the fact that matrix-vector multiplications
and preconditioning solves are considerably more expensive than inner products for
this matrix. Therefore it would also not have made a big di�erence if we could have
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used a Krylov subspace method for Hermitian matrices (see previous experiment).

7.5 POISSON and CONVDIFF, size 4900, with Gauss-Seidel

Last experiment is with the matrix POISSON 4900 from Figure 4. First we used
Gauss-Seidel preconditioning, which asks for a method for non-Hermitian matrices.
In spite of that, preprocessing is also in very e�ective, there is a considerable reduc-
tion of the amount of ops.
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Figure 13. Preprocessing POISSON4900. Gauss-Seidel preconditioning, and GM-
RES.

For completion, we will also show the e�ect of preprocessing in the symmetric pos-
itive de�nite case. For that, we applied diagonal preconditioning to POISSON4900
(Jacobi iteration) and changed GMRES to Conjugate Residuals. As already re-
marked before, we do not expect a big gain in ops since both Jacobi and CG need
one matrix vector multiplication, and CG three inner products per iteration. Our
expectations are con�rmed.
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Figure 14. POISSON4900 with Jacobi preprocessing for Conjugate Residuals.

To conclude, we added to the matrix POISSON4900 an non-Hermitian perturbation
due to convection resulting in a matrix CONVDIFF4900. Gauss-Seidel precondi-
tioning was used, which resulted in a divergent preprocessing. Nevertheless, pre-
processing is in this case still e�ective, although more than 20 steps should not be
taken since then the relative reduction of the residual (from more than 1e5 to less
than 1e-10) comes in the area of machine precision. So a disadvantage of a too fast
diverging classical method is that the �nal reachable precision is lower by about the
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amount of increase of the norm during the preprocessing.
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Figure 15. Preprocessing CONVDIFF4900 with a divergent classical method.

8 Conclusions

In this paper we have developed extrapolation methods for classical iteration schemes,
after which we used them as inspiration for the related topic of preprocessing in
Krylov subspace methods. Indeed, it all depends on your point of view whether to
call a Krylov subspace method that is applied after a classical method an extrapo-
lation method for this classical method, or to call a classical method that is applied
before a Krylov subspace method a preprocessing method for the Krylov subspace
method.
We have performed many numerical experiments that show the behavior of both,
and for a range of di�erent matrices arising from di�erent applications. They also
served as examples to illustrate the di�erent algorithms presented.
Finally we have made an e�ort to give mathematical foundation for the phenomena
that have been observed, in particular the counter-intuitive fact that sometimes, a
pre-processed minimal residual method's convergence graph becomes indistinguish-
able close to the un-pre-processed minimal residual method's graph. This would
mean that too much energy is put into building a too large Krylov subspace, in
which case the preprocessing really means a big decrease of the amount of work
needed to solve the system.

8.1 Additional remarks

On the whole, preprocessing and extrapolation both make use of the simple classical
iterative method. It should be noted that in particular with respect to parallelism
this is very interesting and rewarding. Classical methods are much better paral-
lelizable that Krylov subspace methods, so that the gain due to preprocessing in
terms of CPU-time can be much larger than in terms of oating point operations in
speci�c cases.

Apart from using preprocessing in the context of solving linear systems, the whole
idea of aiming a residual in the direction of the Krylov subspace to build can natu-
rally be applied to Arnoldi's method for eigenvalue approximation. This might lead
to improved approximations of the extremal eigenvalues. Also note, that the anal-
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ysis of Section 6.2. can be done di�erently using ideas of the Implicitly Restarted
Arnoldi (IRA) method [13, 10]. In this method, clever use is made of a relation be-
tween applying the �-shifted QR-eigenvalue algorithm to Hk and pre-multiplication
of the start-vector by �I � B . An analysis via IRA is given in [1]. The one in
Section 6.2. seems easier though.
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Appendix. More about the testmatrices

In this appendix we will present some details on the testmatrices that were used
in the numerical experiments. With a single exception, they are taken from the
Harwell-Boeing collection, which features as a part of Matrix Market [11] on the
Internet. For all matrices, we will give size, type, number of non-zeros, a MatLab
spy-plot, a two-norm condition number estimate, and an estimate for the following
measure for the deviation from normality,

�(A) :=
kA�A�AA�k

kA�Ak
: (41)
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SPARSITY PATTERN FOR SHERMAN3

SHERMAN3: Oil reservoir simulation chal-
lenge matrix from the Harwell-Boeing collection.
IMPES simulation of a black oil model.

Size: 5005 by 5005, 20033 non-zeros
Type: real, non-symmetric
Cond.nr. estimate: 6.9e+16
Estimate �(A): 1.4e-8
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SHERMAN5: Oil reservoir simulation chal-
lenge matrix from the Harwell-Boeing collection.
Fully implicit black oil model.

Size: 3312 by 3312, 20793 non-zeros
Type: real, non-symmetric
Cond.nr. estimate: 3.9e5
Estimate �(A): 9.8e-1
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SAYLR4: Saylor's petroleum engineer-
ing/reservoir simulation matrix from the Harwell-
Boeing collection.

Size: 3564 by 3564, 22316 non-zeros
Type: real, symmetric inde�nite
Cond.nr. estimate: 6.9e6
Exact �(A)= 0
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LSHP3466: Graded L-shapes patterns, matrix
from the Harwell-Boeing collection.

Size: 3466 by 3466, 13681 non-zeros
Type: real, symmetric inde�nite
Cond.nr. estimate: 1.2e5
Exact �(A)= 0
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CONVDIFF 4900: Standard discretisation of
a convection dominated convection-di�usion prob-
lem on a square using �nite di�erences. Taken
from [14].

Size: 4900 by 4900, 24220 non-zeros
Type: real, non-symmetric
Cond.nr. estimate: 3e3
Estimate �(A)= 1.3e-1
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SPARSITY STRUCTURE FOR CONVDIFF400

CONVDIFF 400: Standard discretisation of a
convection-di�usion problem with mild convection
term using �nite di�erences. Taken from [14].

Size: 400 by 400, 1920 non-zeros
Type: real, non-symmetric
Cond.nr. estimate: 1.3e2
Estimate �(A)= 6.1e-2
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