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ACCURATE APPROXIMATIONS TO EIGENPAIRS USING THE

HARMONIC RAYLEIGH-RITZ METHOD

GERARD L.G. SLEIJPEN� AND JASPER VAN DEN ESHOF�

Abstract. The problem in this paper is to construct accurate approximations from a
subspace to eigenpairs for symmetric matrices using the harmonic Rayleigh-Ritz method.
Morgan introduced this concept in [14] as an alternative for Rayleigh-Ritz in large scale
iterative methods for computing interior eigenpairs. The focus rests on the choice and
inuence of the shift and error estimation. We also give a discussion of the di�erences
and similarities with the re�ned Ritz approach for symmetric matrices. Using some nu-
merical experiments we compare di�erent conditions for selecting appropriate harmonic
Ritz vectors.

Key words. Rayleigh-Ritz; Harmonic Rayleigh-Ritz; re�ned Ritz; Lehmann intervals
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1 Introduction

In some applications it is necessary to compute a few eigenvectors corresponding to eigenvalues
in the interior of the spectrum of a symmetric matrix A. Or for short, �nd a pair (�; x) (with
x 6= 0) that satis�es

Ax = �x :

Iterative methods are often the only option when the matrix A is very large and sparse.
Well-known examples of such methods include the Lanczos method [17, Chapter 13], the
Davidson method [4] and Jacobi-Davidson [20], to mention only a few. All methods mentioned
(implicitly) build up a subspace that contains an approximation for the desired eigenvector
and subsequently apply a projection technique to construct an approximate eigenpair from
the obtained subspace. The subspace projection is often seen as a way to accelerate the
convergence of a simple iteration in a similar fashion as, for example, GMRES can be viewed
as an accelerated version of Richardson iteration. However, in the context of eigenvalue
methods the situation is often more complicated because an approximate eigenpair from the
subspace is frequently used in the computation of a vector to expand the subspace or for
restarts. Then the success of such a method crucially depends on the success of the subspace
projection in constructing a good eigenvector approximation.

The best known method for obtaining approximations from a subspace is Rayleigh-Ritz.
This method is optimal for exterior eigenvalues, see for example Section 11.4 in [17]. However,
when searching for eigenvectors with eigenvalues in the interior of the spectrum, the situation
can be less favorable [18, 9, 14].

There are various e�orts to overcome this problem. For example, Scott [18] discusses
that working with a shifted and inverted operator in the Rayleigh-Ritz method is preferable.
Morgan recognized and proposed in [14] that the required inversion of the operator can be

�Department of Mathematics, Utrecht University, P.O. Box 80.010, NL-3508 TA Utrecht, The Netherlands.

E-mail: sleijpen@math.uu.nl, eshof@math.uu.nl.



handled implicitly with a particular choice for the subspace. The resulting method has been
given the name harmonic Rayleigh-Ritz in [16]. The eigenvalue approximations corresponding
to this method (harmonic Ritz values) have received considerable attention due to their
connection with the polynomials of iterative minimal residual methods for linear systems
(Kernel polynomials), see [5, 13, 16] for some recent work, and have also been studied in the
context of Lehmann's optimal intervals [11, 12, 17, 1].

In this paper we discuss some observations on the harmonic Rayleigh-Ritz method when
used to compute approximate eigenpairs for symmetric matrices. The paper is organized as
follows. In Section 2 we give a de�nition of harmonic Rayleigh-Ritz and in Section 3 some
useful properties are summarized. The question of which shift results in the best eigenvector
approximation is treated in Section 4. This is done by exploiting a relation between re�ned
Ritz vectors [8] and the harmonic Ritz vectors. Section 5 contains a discussion on a priori
error bounds for the harmonic Ritz pairs.

By changing the shift in the harmonic Rayleigh-Ritz method di�erent intervals can be
obtained that at least contain one eigenvalue. In Section 6 we give a condition for a posteriori
choosing a new shift that results in a smaller inclusion interval. Applying this condition
repeatedly will ultimately result in an, evidently appealing, optimal interval with respect to
the given information. Some more speci�c relations between the harmonic Ritz pairs and
Ritz pairs for Krylov subspaces is given in Section 7. Finally, Section 8 illustrates a few
numerical experiments with di�erent conditions for the selection of an appropriate harmonic
Ritz vector.

2 Harmonic Rayleigh-Ritz

The matrix A is n by n and symmetric and we assume that the eigenpairs of which the
eigenvalue is close to some shift � are of importance. The eigenpairs (�j ; xj) ofA are numbered
such that

�1 � �2 � : : : � �n:

Let V 2 Rk�n be an orthonormal matrix, whose columns span the k dimensional subspace
V . We are interested in techniques that compute approximations to (interior) eigenpairs, only
using information about V and AV . The most important method in this class is Rayleigh-Ritz.

The Rayleigh-Ritz approach gives k approximate eigenpairs (�i; ui), the so-called Ritz
pairs, by imposing the Ritz-Galerkin condition

Aui � �iui ? V with ui 2 Vnf0g;

or equivalently,

V TAV zi � �izi = 0 with ui � V zi 6= 0 :(1)

The vector ui is called a Ritz vector, the corresponding eigenvalue approximation (Ritz value)
can be computed from the Ritz vector by using the Rayleigh quotient

�i = �(ui) where �(v) � vTAv

vTv
:

From (1) it easily follows that the Ritz values are real. We assume that they are ordered and
kuik2 = 1.
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It is well-known that Rayleigh-Ritz is not optimal for eigenpairs with eigenvalues in the
interior of the spectrum, see [18], [17, Section 11.6], [9]. The problem is that the eigenvectors
of the projected system (V TAV ) can be ill-conditioned if two Ritz values are close. This can
cause that there are no Ritz vectors o�ering a good approximation to the eigenvector x, even
if V makes a small angle with x. Due to the Interlace property of the Ritz values (Theorem
10.1.1 in [17]) we know that there cannot be two Ritz values arbitrary close to �1 (or for that
matter �n) and, therefore, the Rayleigh-Ritz method is robust for eigenvalues in the exterior
of the spectrum.

A simple strategy to make Rayleigh-Ritz work for interior eigenpairs is to apply it to
(A� �I)2 if the interesting eigenvalues are close to � , e.g. [14]. This gives

(A� �I)2bui � b�ibui ? V with bui 2 Vnf0g;
or,

V T (A� �I)2V bzi � b�ibzi = 0 with ui � V bzi 6= 0 :(2)

A potential problem with this approach is that squaring a matrix with a shift close to an
eigenvalue in general squares the condition number of the eigenvector (see [2, Section 2.3] for
a de�nition). This can result in loss of precision. Applying Rayleigh-Ritz on (A � �I)�1 is
then preferable. Morgan [14] proposed to use a subspace (A��I)V to circumvent the explicit
inversion of the matrix A, which results in harmonic Rayleigh-Ritz. We use the following
equivalent de�nition [20, Theorem 5.1] which does not require the existence of the inverse of
A. The harmonic Ritz pairs (e�i; eui) w.r.t. a shift � are given by imposing the Petrov-Galerkin
condition

(A� e�iI)eui ? (A� �I)V with eui 2 Vnf0g;
or as generalized eigenvalue problem,

V T (A� �I)2V ezi � (e�i � �)V T (A� �I)V ezi = 0 with eui � V ezi 6= 0 :(3)

The harmonic Ritz values (e�i) can be computed from the harmonic Ritz vectors eui by using the
harmonic Rayleigh-quotient (sometimes referred to as Temple quotient [3, Equation (8.31)])

e�i = e��(eui) where e��(v) � � +
vT (A� �I)2v

vT (A� �I)v
:(4)

In principle it can happen that euT (A � �I)eu = 0 in (4), in this case we will write e� = 1.
Furthermore, we index the harmonic Ritz values as follows

e��l � : : : � e��1 < � < e�1 � : : : � e�k�l:

Whereas the harmonic Ritz approach is related to Rayleigh-Ritz on (A � �I)�1, naively
we would expect that choosing � equal to the eigenvalue of interest results in an optimal
eigenvector approximation. It turns out, however, that due to the special structure of the
test- and search-space this is not necessary optimal. Two of the questions we address in this
paper are the inuence of the shift � on the quality of the harmonic Ritz vector and if this
method o�ers advantages over (2), see Section 4.
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3 Some useful properties

We summarize some properties of the harmonic Rayleigh-Ritz method that turn out to be
useful in the rest of this paper. For simplicity it is assumed, without loss of generality, that
� = 0.

Lemma 3.1. Let AV have full rank, � = 0, dim(V) = k and let there be l negative Ritz
values and let zero be a Ritz value with multiplicity m (� 0).
Then there exist k real reciprocals of harmonic Ritz values e��1i , of which l are negative and
m are zero. To match them there are k linear independent eui.
Moreover, euTi Aeuj = 0; euTi A2euj = 0; if i 6= j:

Proof. The matrix V TA2V is symmetric. Since it also has full rank it is positive de�nite
and the Cholesky decomposition LLT = V TA2V exists. Then ezi = LTyi with (e��1i ; yi) an

eigenpair of B = L�1V TAV L�T . The e��1i are real, possibly zero, because of the symmetry of
this operator. Sylvester's law of inertia (Fact 1.6 in [17]) shows that the number of positive,
negative and zero eigenvalues of V TAV equals these numbers for B. Finally, the A- and
A2-orthogonality follow easily from the orthogonality and B-orthogonality of the yi.

This lemma shows that the number of zero Ritz values equals the number of reciprocals of
harmonic Ritz values that are zero (remember that we write e� =1 in this case).

A useful characterization of the harmonic Ritz values is the following formulation of the
minmax property, see also [11, Satz 5]

Lemma 3.2. Let AV have full rank, dim(V) = k, � = 0 and let there be l negative Ritz
values and let zero be a Ritz value with multiplicity m. In this case

1e�j = max
S�V;dim(S)=j

min
u2S;u 6=0

uTAu

uTA2u
j 2 f1; : : : ; k � l �mg

1e��j

= min
S�V;dim(S)=j

max
u2S;u 6=0

uTAu

uTA2u
j 2 f1; : : : ; lg:

Proof. Using the matrix B de�ned in the proof of Lemma 3.1, the minmax characterization
(Theorem 10.2.1 in [17]) yields for j > 1

1e�j = max
S�Rk;dim(S)=j

min
y2S;y 6=0

yTBy

yTy
= max

S�Rk;dim(S)=j
min

ez2S;ez 6=0

ezTV TAV ezezTV TA2V ez
= max

S�V;dim(S)=j
min

eu2S;eu6=0

euTAeueuTA2eu:
A similar argument can be used for the negative harmonic Ritz values.

The following lemma is an application of the minmax property.

Lemma 3.3. Let AV have full rank, � = 0 and let there be l negative and k� l positive Ritz
values. Then

0 < �l+j � e�j j 2 f1; : : : ; k� lg
0 > �l+1�j � e��j j 2 f1; : : : ; lg:
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Proof. We proof the �rst statement. With T � V TAV and R � AV � V T we have that
AV = V T + R and V TR = 0. Hence, V TA2V = T 2 + RTR � T 2. We know from Lemma
3.1 that �l+j and e�j for j � 1 are positive. Since Tzi = �izi, Tzi = ��1i T 2zi and using the
minmax property for generalized eigenvalue problems gives

1

�l+j

= max
S�Rk;dim(S)=j

min
y2S;y 6=0

yTTy

yTT 2y

� max
S�Rk;dim(S)=j

min
y2S;y 6=0

yTTy

yT (T 2 +RTR)y
=

1e�j :

The last lemma can be seen as a variant of Theorem 2.1 from [1] for positive de�nite matrices.
It shows that there are no harmonic Ritz values closer to the origin than a Ritz value.

Just like the Ritz values, the harmonic Ritz values provide information about the eigen-
values that is optimal in some sense. Paige, Parlett and Van der Vorst [16] pointed out an
important relation between Lehmann intervals and harmonic Rayleigh-Ritz. They showed
that the harmonic Ritz values with respect to the shift � give Lehmann's optimal intervals.

Proposition 3.1 (Lehmann [11, Satz 9]). Let � be any number.
Each interval [e��i; �],i = 1; : : : ; l contains at least i eigenvalues of A. Each interval [�; e�i],
i = 1; : : : ; k � l, contains at least i of A's eigenvalues. Moreover there exists an A with only
eigenvalues at the end points of all these intervals.

This shows that the harmonic Ritz values provide outer bounds for the eigenvalues. An-
other consequence is that if �p�1 < � < �p < �p+1 there can at most be one harmonic Ritz

value in the interval [�p; �p+1) and no e� such that 0 � e� < �p. Lemma 3.3 could have been
obtained as a corollary of this theorem. Furthermore, note that from the optimality of the
Ritz values it follows that there is no real di�erence in writing e� = �1 from e� =1 if e��1 = 0.

Kahan derived an explicit matrix with only eigenvalues at the end points of the intervals.
This matrix can be used to compute the harmonic Ritz values, which can o�er computational
advantages, for example, when V is a Krylov subspace. See [16],[17, Section 10.5] for details.

Although the harmonic Ritz values provide optimal information about the spectrum of
A, their convergence speed can be too slow for practical purposes, see also the a priori error
bounds in Section 5. Several authors note (i.e. [14, 21, 15]) that "better" eigenvalue estimates
are given by the so-called �-values

�i � �(eui) = euTi Aeui:
We note that for � = 0 and �p�1 < 0 < �p,

�1e�1 = kAeuik22 � �2p > 0;

and

0 = � � �1 =
(euT1Aeu1)2eu1Aeu1 � euT1A2eu1eu1Aeu1 = e�1:

The second inequality follows from an application of Cauchy-Schwarz. By generalizing this
argument it easily follows that the �-value is always between the shift � and the corresponding
harmonic Ritz value. This was also observed by Morgan and Zeng, who derived this as a
corollary of the following lemma. This lemma from [15] allows for a cheap calculation of the
norm of the residu of a harmonic Ritz vector.
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Lemma 3.4 (Morgan, Zeng [15, Theorem 2.1]). Let ri = Aeui � �ieui, then
krik22 = (�i � �)(e�i � �i):(5)

Proof. Using the fact that (A� e�iI)eui ? (A� �I)eui and (A� �iI)eui ? eui leads to
krik22 = (Aeui � �ieui)T (Aeui � �ieui) = (Aeui � e�ieui)T (Aeui � �ieui)

= (Aeui � �ieui)T (�eui � �ieui) = (�ieui � e�ieui)T (�eui � �ieui) = (�i � �)(e�i � �i):

We note that the expression in (5) is very natural given the results of Temple, e.g. [2, Lemma
1.27] and [3, pp. 116].

4 A comparison with re�ned Rayleigh-Ritz

It is needless to say that it is of practical interest to have some understanding of how the
shift � inuences the quality of the computed harmonic Ritz vectors. In this section we try
to give some heuristics on this subject by restricting us to the harmonic Ritz values closest
to the shift.

We assume that the eigenpair (�p; xp) is of interest. For Rayleigh-Ritz with subspace V
on the operator (A��I)�1, picking � close to the eigenvalue �p results in a good eigenvector
approximation. The reason is that the spread/gap ratio, for example, for � < �p,

�p�1 � �p
�p+1 � �p

�p+1 � �

�p�1 � �
! 1 if � ! �p:

Theorem 2.1 from [19] now gives that the Ritz vector approaches the projection of xp on V ,
which is optimal. In harmonic Rayleigh-Ritz, however, we work with the space (A � �I)V .
If � is close to �p the approximation of xp in (A � �I)V is very poor. On the other hand,
if � is chosen at some distance from �p, Rayleigh-Ritz on (A� �I)�1 becomes less e�ective.
In this section, we try to give some heuristics on how the quality of the harmonic Ritz
vector depends on the choice of the shift �. We do this by using a relation with the re�ned
Rayleigh-Ritz method, a di�erent method for constructing eigenvector approximations for
interior eigenvectors popularized by Jia [8].

We �rst give a formal de�nition of re�ned Rayleigh-Ritz. Let � be a given approximate
eigenvalue for which we want an approximation for the corresponding eigenvector. Now, we
de�ne

�� � min
u2V;kuk2=1

kAu� �uk2 and bu � minargu2V;kuk2=1kAu� �uk2:

Therefore, bu can be viewed as the Ritz vector with smallest Ritz value of (A � �I)2 with
respect to V , see (2). The vector bu is called the re�ned Ritz vector of A with respect to the
approximate eigenvalue � and the search subspace V .

We use the following observation. If the approximate eigenvalue � is in the middle of the
interval with endpoints � and e� (= e��1), then the re�ned Ritz vector bu and the harmonic
Ritz vector eu (with harmonic Ritz value e�) coincide as we will show in the theorem below.
Moreover, the radius of the interval is exactly equal to the residual norm �� of the re�ned Ritz
vector: Fig. 1 illustrates this situation. This latter observation was also used by Lehmann in
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� � e�1
-�

��

Figure 1: The location of the shift � and the approximate eigenvalue � for which the harmonic
Ritz vector and the re�ned Ritz vector coincide (see Theorem 4.1).

a more general form in the construction of his optimal intervals [11, pp. 258] (see also [17,
pp. 219]). The situation of Fig. 1 can be enforced for a given shift � by selecting � as the
average of � and e�, and, for given � , by selecting � at distance �� from � .

Theorem 4.1. If � is given, then select � = 1
2(�+

e��1). If � is given, then select � = � ��� .

Then, in both cases, we have that e��1 = � ��� , �� = j12(�� e��1)j and if eu�1 and bu are unique
(up to a scalar), bu equals eu�1 up to a scalar.

Proof. We work out the details for e� = e�1. Consider a v 2 V and put e� � 1
2(� + e�) and

 � 1
2(
e� � �). Then v = eu i� Av � e�v ? (A� �I)V , or equivalently,

(A� �I)(A� e�I)v = (A� ~�I)2v � 2v ? V :(6)

Note that 2 = (e� � �)2=4 = k(A� e�I)vk22. Hence, eu1 satis�es (2). It must also correspond
to the smallest Ritz value, otherwise this would contradict the optimality of the Lehmann
interval from Proposition 3.1.

Furthermore, v = bu i�

(A� �I)2v � �v ? V(7)

for � as small as possible. Note that (7) implies that � = k(A� �I)vk22 = k(A� �I)buk22 = �2� .
Now, using the fact that (6) and (7) are equivalent for appropriate scalars � , e� ,  and �,

the theorem follows.

One nice consequence of this theorem is that for symmetric matrices it gives a method to
compute the roots of the re�ned Ritz polynomial: pick � = � � �� , then the roots are given
by the harmonic Ritz values, excluding the one at �+2�� . This can be an alternative for the
construction in Theorem 3.1 in [7].

Theorem 4.1 allows us to interpret the harmonic Ritz vector as a re�ned Ritz vector
with shift e� � (� + e�)=2 and using this interpretation we can try to explain some observed
di�erences in the behavior of both methods with respect to the quality of the eigenvector
approximation that is produced. We do this in Section 4.2.

4.1 The inuence of � on the quality of the re�ned Ritz vector

The term "quality" in the title of this section indicates the angle between the re�ned Ritz
vector and the unknown eigenvector (xp). For matrices that are non-normal it is necessary to
choose � close to the eigenvalue of interest, but in our situation the singular and eigenvectors
coincide, and it is unclear what shift � is best. In general it is di�cult to make rigorous
statements about this because the quality depends not only on eigenvalue distribution but
also on the structure of the space V . However, some general observations can be made. For
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example, if � does not depend on V and is such that �p is the closest eigenvalue to � then,
for small enough � (� sin2 \(xp;V)), we have the following sharp error bound for the re�ned
Ritz vector.

Proposition 4.1. Let

� 2
�
1

2
(�p�1 + �p);

1

2
(�p + �p+1)

�

and q � argmini 6=pj�i � � j, r � argmaxij�i � � j and � � sin2 \(V ; xp).
If

� < C�1
� ;(8)

then we have for all k 2 f2; : : : ; n� 1g:

sin2\(bu; xp) � 1

2
(1 + �)� 1

2

p
(1� �)2 � ���;(9)

with

�� � C� + C�1
� � 2 and C� � (�r � �)2 � (�p � �)2

(�q � �)2 � (�p � �)2
:(10)

Furthermore, bound (9) is sharp.

Proof. Apply Theorem 3.1 from [19] to (A� �I)2.

The constant C� can be interpreted as a condition number (see [2, Section 2.3]) for the
eigenvector xp of the matrix (A� �I)2. Hence, the choice of the shift � a�ects this condition
number. IFrom the fact that C� � 1 and �� � C� +C�1

� �2 it follows that without additional
information the shift � = �� that minimizes C� , results in the smallest attainable upper bound
and gives this bound the largest area of application.

If we take into account the di�erent choices for �q and �r in Proposition 4.1, then some
simple analysis shows that the shift

�� =
�p+1 + �p�1

2
(11)

minimizes C� and, therefore, without further information , is the best shift. Note that with
� = �� the eigenvalues �p�1 and �p+1 after shifting and squaring become one double eigen-
value. Another consequence is that picking � � �p is only expected to be optimal if the
eigenvalue distribution is uniform around �p.

We expect that (11) is, in general also a very good choice for larger values of �. But,
additionally, if V does not contain fairly good approximations for the eigenvectors with eigen-
values close to �p, we often see that the choice of � becomes relatively less important. This is
illustrated by Figure 2 (Left picture) for the matrix A = diag(1; 2; : : : ; 100; 110; 114; : : : ; 200)
and �p = 110. We have applied k iterations Lanczos with a starting vector with all compo-
nents equal and computed the re�ned Ritz vector for various choices of � . For this matrix we
expect from (11) that � = 107 is a good choice while the real minimum value, ��, is close to
this value. For the Lanczos method with more general matrices we see that the shift �� lies
more in the direction of �p�1 if xp�1 is relatively well represented in V .
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Figure 2: Left picture: The sine of the angle between the re�ned Ritz vector and xp. Right
picture: The sine of the angle between the harmonic Ritz vector (eu1 if � > 110 and eu�1
otherwise) and xp. In both cases for k = 25; 50; 75; 100 iterations Lanczos and for all lines a
smaller minimum value indicates more iterations Lanczos.

4.2 The inuence of � on the quality of a harmonic Ritz vector

We are now in a position to translate the observations in the previous section to the harmonic
Ritz method using Theorem 4.1. First, if e� is far from �p, then the shift e� � (� + e�)=2 can
be at some distance from ��. This is not necessarily a problem but can cause that the re�ned
Ritz approach picks up information about xp a little faster, see also the second experiment
in Section 8.

If �� is the best shift for the re�ned Ritz approach then the harmonic Ritz vector corre-
sponding to e��1 is the best possible approximation for xp if and only if �� = �� � ��� . On
the other hand if � ! 0 then ��� ! j�p � ��j. Hence, we expect the optimal shifts �� to
become arbitrary close to �p and 2�� � �p. More precisely, if �� is a bounded number, then
��� = O(

p
�) and the optimal shifts lie asymptotically at �p + O(

p
�) and 2�� � �p + O(

p
�).

So, if no additional information is at hand the optimal shifts for the harmonic Rayleigh-Ritz
method are at

�� = �p�1 + �p+1 � �p + O(
p
�) and �p + O(

p
�)

for � small enough.
The right picture in Figure 2 shows this. There are two optimal values for � that are

becoming arbitrary close to �p = 110 and 2�� � �p � 104 when the number of Lanczos
iterations increases. Although the optimal shift becomes closer and closer to �p = 110, the
shift � = 110 is not a very good candidate.

From our reasoning it is clear that comparing the quality of the re�ned Ritz and a certain
harmonic Ritz vector for e� ! �p amounts to comparing the shifts � and e� = (� + �p)=2.
Which methods works best depends on V and the distribution of the eigenvalues and di�ers
from situation to situation.

One of the advantages of the harmonic Rayleigh-Ritz method is that, with this shift for
xp, it can also provide good approximations for the eigenvector xp�1. For the re�ned Ritz
method a good shift, like in (11), introduces a double eigenvalue and therefore potentially a
poor approximation for xp�1 or xp+1. This seems less likely for the harmonic Rayleigh-Ritz
method (and somehow easier to detect). See also the numerical experiments and conclusion
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in [14]. The harmonic Ritz values provide valuable information about the spectrum of the
matrix, which is of course also an advantage.

5 A priori error estimation

For the Rayleigh-Ritz method the a priori error bounds

�1 � �1 � (�n � �1) sin
2
\(V ; x1)(12)

and

sin2\(u1; x1) � �1 � �1
�2 � �1

) tan2\(u1; x1) � �1 � �1
�2 � �1

(13)

are standard bounds for the smallest Ritz value and the corresponding Ritz vector [10] . The
�rst estimate is a consequence of the optimality property of the Ritz values. We translate
(12) and (13) to the harmonic Rayleigh-Ritz method. Similar statements can be found in [14,
Theorem 3].

For simplicity we, again, use that � = 0 and the eigenvalue of interest is �p > 0. Of course,
statements about the more general situation can be obtained by replacing A ! �(A � �I).
Let � � tan2 \(xp;V). We �rst give a variant of (13) for harmonic Ritz vectors.

Theorem 5.1. Let q = argmini6=pj�i� e�1=2j, if there exists a harmonic Ritz value �p � e�1 <
�p+1, then

tan2\(eu1; xp) � �p(e�1 � �p)

�q(�q � e�1) :
Proof. According to Theorem 4.1 the pair (e�21=4; eu1) is the Ritz pair of (A� e�1=2I)2 w.r.t. V
with the smallest Ritz value. Now, apply the second bound in (13) .

Besides the factor �p=�q (which can be less than one), the expression in this theorem is similar
to the second bound in (13). But it is well known that the convergence of the harmonic Ritz
values can be arbitrary slow. In fact it can even take some time before the �rst positive
harmonic Ritz values pops up. This is easily illustrated. Let u � p

1� �xp +
p
�x1 with

� = �=(1 + �). With V � span(u), the value e�(u) is the only harmonic Ritz value. We know
that 0 < e�(u) i� 0 < �(u) = (1 � �)�p + ��1. Apparently, we may not expect that there are
positive harmonic Ritz values if tan2\(xp;V) > ��p=�1. The following theorem shows that
for smaller angles, there is a positive harmonic Ritz value and gives an a-priori error estimate.

Theorem 5.2. Consider a search space V. If � � tan2\(V ; xp) < ��p=�1, then there is a

harmonic Ritz value e�1 of A with respect to V for which

0 � e�1 � �p � � max
i

�i(�i � �p)

�p + ��i
:

Proof. Let xV be the normalized projection of xp on V . Decompose xV =
p
1� �xp +

p
�e

with e ? xp and kek2 = 1. Then �(xV) > 0 and �p + ��1 > 0. Hence, because � = �=(1� �),
we have

e� � e�(xV) = (1� �)�2p + �eTA2e

(1� �)�p + �eTAe
=

�2p + �eTA2e

�p + �eTAe
:

10



Therefore, �p(e�� �p) = �eTA(A � e�I)e � ��i(�i � e�) with i = 1 (if e� > �1 + �n) or i = n

(otherwise), which implies e� � �p � �i(�i � �p)=(� + ��i). An application of Lemma 3.2
concludes the proof.

True a-priori bounds for small enough � can be obtained by substituting the result of The-
orem 5.2 in the bound of Theorem 5.1. This, shows that tan2\(eu1; xp) = O(�) for � ! 0.
Unfortunately, these bounds become more meaningless when �p lies closer to zero, because

the convergence of e�1 can be arbitrary slow for �p close to zero. Sharper asymptotic a-priori
bounds can, for example, be obtained, by combining Theorem 4.1 with Proposition 4.1 or us-
ing a technique as used in [19] for the Rayleigh-Ritz method. However, this does not remove
the problem of the small applicability for �p close to zero. The question is if this means that
all harmonic eigenvectors can be poor approximations to xp in some instances. If �p = 0,
then all the eigenvectors of the pencil [A;A2] can have arbitrary components in the direction
of xp. This non-uniqueness seems to cause in (3) that many harmonic Ritz vectors can point
in a direction close to xp. Also, if � is large compared to j�pj this behavior is often observed,
see [14]. It would be interesting to have an error bound for the harmonic Ritz vectors in case
�p = 0 to better understand this behavior. Numerical experiments suggest that this upper
bound only depends on the dimension of V and not on some measure of the gap as for �p 6= 0.
In fact, we expect that there is a harmonic Ritz vector eu such that tan2\(eu; xp) � k� , in
which case the angle between all harmonic Ritz vectors and xp is equal, this seems similar as
for Rayleigh-Ritz for larger angles, see [22]. However, we have no proof for this.

6 A posteriori error estimation

Useful information about the eigenvalues of a matrix can often be obtained by using projection
techniques. When a subspace is given the best one can do is to obtain intervals in which
at least one eigenvalue can be found. In iterative methods that use harmonic Rayleigh-
Ritz, Lehmann's optimal intervals from Proposition 3.1 are obtained as a cheap by-product.
However, the size of these intervals depends on the choice of the shift and they are in particular
not very small. In this section we are interested in how to choose the shift � such that we
have the distance between e� and � as small as possible (in contrast to Section 4 where we gave
a priori considerations for shifts that result in good eigenvector approximations). This means
that we have located an eigenvalue with maximal precision, see Proposition 3.1. Another
advantage of a small interval is illustrated in the next lemma.

Lemma 6.1. Let (e�; u) be a harmonic Ritz pair and � the corresponding �-value and de�ne
r � Aeu� �eu. Then

2krk2 � je� � �j
with equality i� � = (e� + �)=2.

Proof. From Lemma 3.4 it follows

4krk22 = 4(�� �)(e�� �):

This expression is maximal for � = (e� + �)=2.

From Lemma 6.1 we see that the harmonic Ritz vector corresponding to the harmonic Ritz
value closest to the shift necessarily has a small residu and therefore has a small backward
error. Hence, e� cannot be a so-called ghost eigenvalue.

11
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Figure 3: Size of Lehmann interval as a function of �.

We call a shift �� best if the distance between the shift and the closest harmonic Ritz
value e� is as small as possible. For the sake of clarity we start with a simple example. A
similar illustration can be found in [17, Section 10.5].

Example 6.1. Let the matrix A be 3 dimensional and diagonal with Aii = i and V = span(u)
with u = (1; 1=2; 1=2)T . The one harmonic Ritz value in this case is given by the harmonic
Rayleigh quotient

e� = e��(u) = � +
uT (A� �I)2u

uT (A� �I)u

and the only Ritz value is � = � = 1:5. Figure 3 shows the size of the Lehmann interval je���j
for some values of � < �. A simple computation shows that the smallest interval is attained
for �� = � � kAu� �uk2 � 0:74 for which je� � �j = 2kAu� �uk2 � 1:53. Note that there is
of course a second minimal value at � + kAu� �uk2.

Lemma 6.2. The shift �� is best i�

�� = u�TAu� � kAu� � (u�TAu�)u�k2(14)

and u� minimizes

kAu� � (u�TAu�)u�k2 :(15)

Proof. According to Theorem 4.1 minimizing je� � �j with respect to � is equivalent to mini-
mizing �� with respect to � . Since, kAu� (uTAu)uk2 � kAu� �uk2 for all normalized u and
� , we see that the claim follows.

In [17] it is remarked that no explicit expression is available for the best shift: considering
the nonlinearity of (15) it is not likely that such an expression exists. The two conditions do,
however, give a computable expression for the best shift. Note that this computation only
requires the knowledge of the low dimensional matrices V TA2V and V TAV and can be done

12



with a suitable iterative method. We propose a similar method for harmonic Rayleigh-Ritz
by adapting the shift �.

We now give a condition for, given a shift �, computing a new shift, �0, that results
in, at least, a smaller interval. The idea is as follows. Although the harmonic Ritz values
provide the best upper bound on the eigenvalues closest to �, they provide not better error
estimates for the computed �-value than a simple application of the Bauer-Fike theorem [17,
Theorem 4.5.1], see Lemma 6.1. Because in the Bauer-Fike interval ([��krk2; �+ krk2]) only
information is used about the vector eu it is suggested that we can �nd a smaller interval with
the same inclusion property. In combination with Lemma 3.4 this suggests a way, given an
interval with boundaries � and e� , for creating an even smaller interval by adapting our shift
to

�0 � ��
q
(e� � �)(�� �):(16)

Lemma 6.3. Let �0 as in (16) and e�01 the smallest harmonic Ritz value w.r.t. to this shift

for which e�01 > �0. Then

je�01 � �0j � je� � �j
with equality i� � = (e� + �)=2.

Proof. If � is not precisely in the middle of the Lehmann interval then

(e�01 � �0)2 � 4(e� � �)(�� �) < (e� � �)2:

The �rst inequality follows from Theorem 4.1 applied to the one dimensional subspace eu
followed by the minmax property of harmonic Ritz values (Lemma 3.2). If � is precisely in
the middle of the interval � = �0 which concludes the proof.

Note that the intersection of the Bauer-Fike interval and the Lehmann interval is nonempty
because � is in both intervals, on the other hand the Bauer-Fike interval cannot be strictly
contained in the Lehmann interval, this would contradict the optimality from Proposition 3.1.

We now give a simple illustration of (16) for post-processing which aims at making optimal
use of the information at hand (V and AV).

6.1 A simple experiment

The matrix A is 10 dimensional and diagonal with on the diagonal Aii = i � 6 for i =
1; 2; : : : ; 10. We are interested in a small interval containing at least one eigenvalue and
preferably in the neighborhood of zero. As a subspace we generated a random, 4 dimensional
space V with � = sin2\(V ; e6) and computed the harmonic Ritz vectors with initial shifts
�start = �0:1 and �start = 0. As initial interval we took the one with the harmonic Ritz
value corresponding to the smallest residu and repeatedly computed the harmonic Ritz values
according to the new shift (16). Tables 1 and 2 show the results for the two situations.

For �start = �0:1 a few steps give some improvement of the best known interval. How-
ever, for smaller � the gain is small. For �start = 0 there is no small Lehmann interval and
hence no guaranteed good approximation for the eigenvalue close to zero. But it turns out
there is one. In this case the Bauer-Fike intervals show some more possibilities for improve-
ment and a few steps remove the dependence of the initial approximation on the shift. In
these experiments one or two steps seem to be su�cient.
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� Step � Bauer-Fike Lehmann
interval size interval size

0.1 0 -0.1000 [-0.5807,0.9072] 1.4879 [-0.1000,2.2656] 2.3656
1 -0.5807 [-0.5894,0.8694] 1.4589 [-0.5807,0.8783] 1.4590
2 -0.5894 [-0.5897,0.8692] 1.4589 [-0.5894,0.8694] 1.4589
3 -0.5897 [-0.5897,0.8692] 1.4589 [-0.5897,0.8692] 1.4589

0.01 0 -0.1000 [-0.2271,0.2559] 0.4830 [-0.1000,0.5241] 0.6241
1 -0.2271 [-0.2275,0.2549] 0.4824 [-0.2271,0.2553] 0.4824
2 -0.2275 [-0.2275,0.2549] 0.4824 [-0.2275,0.2549] 0.4824
3 -0.2275 [-0.2275,0.2549] 0.4824 [-0.2275,0.2549] 0.4824

0.001 0 -0.1000 [-0.0752,0.0779] 0.1532 [-0.1000,0.0592] 0.1592
1 -0.0752 [-0.0752,0.0780] 0.1532 [-0.0752,0.0779] 0.1532
2 -0.0752 [-0.0752,0.0780] 0.1532 [-0.0752,0.0780] 0.1532
3 -0.0752 [-0.0752,0.0780] 0.1532 [-0.0752,0.0780] 0.1532

Table 1: Some numbers for �start = �0:1

7 Harmonic Rayleigh-Ritz and Lanczos

Krylov subspaces play an essential role in computational processes for eigenproblems. We
assume in this section that the space V is a Krylov subspace, this makes that AV �V (V TAV )
has rank one. The harmonic Ritz values in this situation are related to the roots of kernel
polynomials, and hence with the convergence of iterative methods for linear systems like
MINRES [16] and GMRES for non-Hermitian problems [6]. In this case the harmonic Ritz
pairs seem to have some additional properties.

Lanczos is characterized by the following relation

AV = V T + �veTk ; where T � V TAV :(17)

The harmonic Ritz values w.r.t. shift � = 0 can be interpreted as Ritz values for the Krylov
space generated by A�1 with the starting vector Akb, hence they are unique. Furthermore, if
det(T ) 6= 0 the harmonic Ritz values interlace the Ritz values and zero [16],

e��l � �1 � e��(l�1) � : : :� �l < 0 < �l+1 � e�1 � : : : � e�k�l :(18)

In Figure 4 we have reported the results for an experiment from [16]. The matrix A is
diagonal with elements f�7;�5;�3;�1; 1; 3; : : : ; 91g and the starting vector consists of all
ones. The frequent stagnation in the convergence of the harmonic Ritz values is apparent.
Note that this behavior is necessary to keep the harmonic Ritz values interlacing the Ritz
values as in (18). These stagnation points seem to coincide with a Ritz value being close to
zero. We analyze this a little further.

Suppose that in some iteration �j = 0 for some j. Consider ez = zi � �zj for some i 6= j.
Using (17) we get

(AV )T (AV )ez � e�V TAV ez = �2eke
T
k zi � ��2eke

T
k zj :

So, the pair (V ez; e�) de�nes a harmonic Ritz vector i�

� � eTk zi

eT
k
zj
:
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� Step � Bauer-Fike Lehmann
interval size interval size

0.1 0 0.0000 [-0.5939,0.9599] 1.5538 [0.0000,3.4805] 3.4805
1 -0.5939 [-0.5898,0.8691] 1.4589 [-0.5939,0.8650] 1.4589
2 -0.5898 [-0.5897,0.8692] 1.4589 [-0.5898,0.8691] 1.4589
3 -0.5897 [-0.5897,0.8692] 1.4589 [-0.5897,0.8692] 1.4589

0.01 0 0.0000 [-0.2459,0.2869] 0.5328 [0.0000,3.4805] 3.4805
1 -0.2459 [-0.2276,0.2548] 0.4824 [-0.2459,0.2378] 0.4837
2 -0.2276 [-0.2275,0.2549] 0.4824 [-0.2276,0.2548] 0.4824
3 -0.2275 [-0.2275,0.2549] 0.4824 [-0.2275,0.2549] 0.4824

0.001 0 0.0000 [-0.0829,0.0870] 0.1699 [0.0000,3.4805] 3.4805
1 -0.0829 [-0.0752,0.0779] 0.1532 [-0.0829,0.0710] 0.1539
2 -0.0752 [-0.0752,0.0780] 0.1532 [-0.0752,0.0779] 0.1532
3 -0.0752 [-0.0752,0.0780] 0.1532 [-0.0752,0.0780] 0.1532

Table 2: Some numbers for �start = 0
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Figure 4: Left picture: harmonic Ritz values (*) and Ritz values (+), right picture shows the
�-values

We can do this for all i 6= j, and if eTk zj 6= 0 these vectors are linearly independent and
are the harmonic Ritz vectors, together with uj .

The �-values in this situation are

� =
�ip

1 + �2
:(19)

So, if � is large the �-values are pushed towards 0. This appears to happen not very subtle.
Since

�2 =
kAui � �iuik22
kAuj � �jujk22

this attraction towards zeros can be larger if the residual of the Ritz value on zero is rel-
atively small. This probably explains that the behavior of the negative �-values in Figure
4 is less dramatic since, in this example, they are expected to correspond to more accurate
approximations.
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Because the harmonic Ritz values depend continuously on the shift we expect a similar
behavior in case some Ritz value is close to zero. If (V ez; e�) is a harmonic Ritz pair we get by
combining (3) and (17)

T (T � e�I)ez = ��2ek(eTk ez) :(20)

This shows that ez is a multiple of T�1(T � e�I)�1ek , hence
j cos\(eu; uj)j � kAuj � �jujk2

j�j(�j � e�)j
and eu has relatively large components in the direction of the Ritz vectors with Ritz values
close to e� and zero. If a relative accurate Ritz vector is found (kAuj � �ujk2 is small) the

harmonic Ritz vectors have a small component in the direction of this Ritz vector or j�j(e���j)j
is small. Using this coe�cients an expression for the corresponding �-value can be given, that
suggests a similar behavior as for (19) for exact zero Ritz values.

In [1, Section 6] Beattie studied the stagnation points of left-de�nite Lehmann bounds,
which give behavior similar to harmonic Ritz values. His explanation is based on an analog
relation to (20) for left-de�nite Lehmann bounds. However, there is no mention of Ritz values
being close to zero.

8 Numerical experiments

This section contains a few experiments with the harmonic Rayleigh-Ritz method related
to the problem of selection. This means, that given a shift �, we want to �nd a good
approximation for the eigenpair closest to this shift (later we will consider the situation when
the eigenvalue closest to the left or right of this shift is of interest).

Three conditions are considered. A straight-forward approach is to select the harmonic
Ritz vector corresponding to the harmonic Ritz value closest to � (mini je�i��j). We further-
more consider choosing the eui for which j�i � �j is smallest. A third selection condition is
given by the smallest value of

(�i � �)(e�i � �):(21)

Notice that since
(�i � �)(e�i � �) = kAeui � �euik22;

this condition guarantees asymptotically correct selection. All three conditions can be applied
cheaply. Because j�i � �j � je�i � �j

(�i � �)2 � (�i � �)(e�i � �) � (e�i � �)2:

The �rst experiment illustrates some properties of these three selection methods. We searched
for the eigenvalue �1 < � < 1 (closest to the origin) of the matrix

A =

2
4 � 0 0

0 �2 0
0 0 1

3
5 with V = V� �

2
4

p
1� � 0p
� sin(�) � cos(�)p
� cos(�) sin(�)

3
5 :

Note that sin2\(V ; e1) = �. For a �xed � we have applied harmonic Rayleigh-Ritz (zero shift)
for a number of values of �, applied the three selection conditions and calculated for the chosen
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Figure 5: Numerical approximation of the maximal error over � for the three di�erent selection
conditions and the theoretical situation the optimal approximation is selected for � = 0 (Left)
and � = �0:5 (Right)

�, the maximal angle between the selected harmonic Ritz vector and xV (the projection of e1
on V). Doing this for a number of values for � results in Figure 5.

From Section 5 it is clear that selection based on the harmonic Ritz value leads to correct
selection asymptotically if � is not equal to an eigenvalue. This can be seen from the �gure
for � = �0:5. In case � = 0 the graph for harmonic selection equals 1, this means that the
selected harmonic Ritz vector can be perpendicular to xV and this condition might perform
very poorly in this situation.

For selection based on the �-values the situation is the reverse. When � = 0 the �-
values provide useful information about the quality of the harmonic Ritz vector. However, if
� 6= 0 and some Ritz value is zero and this Ritz value is corresponding to a poor Ritz vector
(i.e. ghost Ritz value), then this results in a zero �-value and therefore misselection. This
can explain the phenomenon observed in the right picture. We expect �-selection not to be
robust if � is far from zero. Selection based on the product e�� gives a reasonable compromise
between the two conditions.

The second demonstration is adapted from an example in [14] and illustrates the use of
harmonic Rayleigh-Ritz in the Davidson method [4]. We searched for the eigenvalue closest
to 27:0 of the tridiagonal matrix A with 0:2; 0:4; : : : ; 58:8; 60:0 on the diagonal and one on the
sub- and super-diagonal. In every step of the solver the space V is expanded with a correction
v given by the Davidson correction-equation

v = (diag(A)� �I)�1r; with the residual r � (Aeu� �eu):
Here eu is the selected harmonic Ritz vector and � the corresponding �-value. Figure 6 shows
the convergence history for the di�erent selection conditions and the re�ned Ritz method.

The best strategy in this picture is the re�ned method with �xed shift although experi-
ments show that the di�erence becomes small when � becomes closer to 27:1. For � = 27:05
the �gure shows a very irregular behavior for the �-selection based method, the other two
selection conditions perform equal. When � is decreased to � = 27:0001 the convergence for
�-selection is still irregular but in the end not slower than for the (� � �)(e� � �)-selection.
In the setting discussed here this is not really a problem, but misselection at restarts may be
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Figure 6: Finding the eigenpair with eigenvalue closest to � with re�ned Ritz with shift � (..)
and harmonic Rayleigh-Ritz using harmonic selection (o), �-selection (*) and selection with
(21) (+). Harmonic selection in the right picture �nds the eigenvalue � 27:2, which is not
the eigenvalue closest to �

fatal. The on harmonic selection based method converges to a di�erent eigenpair, in contrast
to the other methods.

Now we search for the largest eigenvalue smaller than �, in other words the � for which
1=(���i) is maximal. It is not immediately clear how to adapt the re�ned Ritz method with
�xed shift for this situation. The three conditions from our last experiment are adapted by
selecting the harmonic Ritz vector, eui, for which 1=(�� e�i), 1=(���i) is maximal for the �rst
two conditions. The third condition is changed to choosing the harmonic Ritz vector that
maximizes

sign(� � e�i)
(�i � �)(e�i � �)

:(22)

Figure 7 illustrates the results. Again, the convergence for �-selection is quite irregular.
Selecting with harmonic Ritz values works in both situations, but again, if the shift is chosen
any closer to 27 the methods �nds the eigenvalue � 26:8. The convergence for condition (22)
is again smooth and robust in this situation. We conclude with the remark that (21) and (22)
can also be used for non-normal problems.

Acknowledgments The authors thank Jan Brandts for helpful comments.
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