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Abstract. In this paper, we study Lagrangian submanifolds of the nearly K�ahler 6-sphere S6(1). It is well
known that such submanifolds, which are 3-dimensional, are always minimal and admit a symmetric
cubic form. Following an idea of Bryant, developed in the study of Lagrangian submanifolds of C3 , we
then investigate those Lagrangian submanifolds which at each point admit an isometry preserving this
cubic form. We obtain that all such Lagrangian submanifolds can be obtained starting from complex
curves in S

6(1) or from holomorphic curves in CP 2 (4). As a corollary we classify the Lagrangian
submanifolds which admit a Sasakian structure which is compatible with the induced metric. This last
result generalizes theorems obtained by Deshmukh and ElHadi.

Subject class: 53B25, 53D12

1. Introduction

It is well known that starting from the Cayley numbers, it is possible to introduce an almost complex
structure J on the 6-dimensional sphere S6(1) which is compatible with the standard metric. It was
shown by Calabi and Gluck, see [5] that this structure, from a geometric viewpoint, is the best possible
complex structure on S6(1). In the study of submanifolds, it is then natural to study submanifolds for
which J preserves the tangent space (and hence also the normal space) and those for which J interchanges
the tangent and normal spaces. The �rst class are called almost complex submanifolds and it was shown
by Gray that they have to be two dimensional (complex one dimensional). Further results about these
complex curves were obtained amongst others in [4], [10] and [2].

The second class of submanifolds mentioned, which by its de�nition have to be 3-dimensional, are
called Lagrangian submanifolds. They were �rst investigated by Ejiri, [13], who showed that a Lagrangian
submanifold is always orientable and minimal. Moreover, as is the case for Lagrangian submanifolds of
complex space forms, we have that the 3-form C de�ned by

C(X;Y; Z) =< h(X;Y ); JZ >;

where h denotes the second fundamental form of the immersion is always symmetric. This implies that
at every point p of M , we can introduce a symmetric polynomial fp by

fp(x; y; z) =< h(xe1 + ye2 + ze3; xe1 + ye2 + ze3); J(xe1 + ye2 + ze3) >;

where fe1; e2; e3g is an orthonormal basis at the point p. As M is minimal we see that the trace of this
polynomial with respect to the metric vanishes. As far as such symmetric polynomials with vanishing
trace on a 3-dimensional real vector space are concerned, we quote the following result by Bryant [3]:

Theorem 1. Let p 2M and assume that there exist an orientation preserving isometry which preserves
fp. Then there exists an orthonormal basis of TpM such that either

(i) fp = 0, in this case fp is preserved by every isometry,
(ii) fp = �(2x3 � 3xy2 � 3xz2), for some positive number � in which case fp is preserved by a
1-parameter group of rotations,
(iii) fp = 6�xyz for some positive number �, in which case fp is preserved by the discrete group A4
of order 12,
(iv) fp = �(x3�3xy2) for some positive number �, in which case fp is preserved by the discrete group
S3 of order 6,
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(v) fp = �(2x3 � 3xy2 � 3xz2) + �(y3 � 3xy2) for some �; � > 0, with � 6= p
2�, in which case fp is

preserved by the group Z3,
(vi) fp = �(2x3� 3xy2� 3xz2)+ 6�xyz, for some �; � > 0, with � 6= �, in which case fp is preserved
by the group Z2 of order 2.

In this paper, we will assume that one of the special cases of the above theorem is satis�ed at every
point of the Lagrangian submanifold. We call M a Lagrangian submanifold of Type (k) if and only if
Theorem 1(k) is satis�ed at every point p of M . As it turns out, several of these classes of Lagrangian
submanifolds have been previously studied. For example, the Lagrangian submanifolds of Type (iv)
correspond to the Lagrangian submanifolds which satisfy Chen's equality which were previously studied
in [11], [7] and [8].

The paper is organized as follows. In Section 2, we recall the construction of the almost complex
structure on S6(1), starting from the Cayley multiplication, as well as some basic facts about Lagrangian
submanifolds. Next, we start our investigation of Lagrangian submanifolds of Type (k). We start in
Section 3 with collecting all known results translated to this setting. Next we show that, in contrast to
the C 3 -case studied by Bryant [3], there does not exist any Lagrangian submanifold of Type (v). As a
corollary we remark that every Lagrangian submanifold of Type (k) which has constant scalar curvature
must be equivariant and thus congruent to one of the 5 immersions of SU (2) into S6(1), �rst described
by Mashimo in [16]. This gives evidence to the following conjecture:

Conjecture 1. Let  :M3 ! S6(1) be a Lagrangian immersion with constant scalar curvature. Then  
is congruent with an open part of one of the 5 previously mentioned equivariant immersions.

The above conjecture can be seen as the analog for Lagrangian submanifolds of the well-known con-
jecture by Chern which states that the set of all possible values for the scalar curvature of a compact
minimal hypersurface in a sphere is a discrete set.

As a Lagrangian submanifold M of S6(1) is always 3-dimensional, and thus odd-dimensional, it is a
natural question to ask whether M admits a Sasakian structure compatible with the induced metric.
This problem was �rst considered in [12], where some partial results were obtained. In Section 6, we
completely classify those Lagrangian submanifolds of S6(1) which admit such a Sasakian structure.

2. Preliminaries

We give a brief exposition of how the standard nearly K�ahler structure on S6(1) arises in a natural
manner from the Cayley multiplication. We also describe how we can use the vector cross product on
R7 in order to de�ne the Sasakian structure on S5(1). For further details about the Cayley numbers and
their automorphism group G2, we refer the reader to [18] and [15].

The multiplication on the Cayley numbers O may be used to de�ne a vector cross product � on the
purely imaginary Cayley numbers R7 using the formula

u� v =
1

2
(uv � vu);(1)

while the standard inner product on R7 is given by

(u; v) = �1

2
(uv + vu):(2)

It is now elementary [15] to show that

u� (v �w) + (u� v) � w = 2(u;w)v � (u; v)w � (w; v)u;(3)

and that the triple scalar product (u� v; w) is skew symmetric in u; v; w.
Conversely, Cayley multiplication on O is given in terms of the vector cross product and the inner

product by

(r + u)(s + v) = rs� (u; v) + rv + su+ (u� v); r; s 2 Re(O); u; v 2 Im(O)(4)

In view of (1), (2) and (4), it is clear that the group G2 of automorphisms of O is precisely the group of
isometries of R7 preserving the vector cross product.

An ordered basis u1; :::; u7 is said to be a G2-frame if

u3 = u1 � u2 ; u5 = u1 � u4 ; u6 = u2 � u4 ; u7 = u3 � u4:(5)
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For example, the standard basis e1; :::; e7 of R7 is a G2-frame. Moreover, if u1; u2; u4 are mutually
orthogonal unit vectors with u4 orthogonal to u1 � u2, then u1; u2; u4 determine a unique G2-frame
u1; :::; u7 and (R7;�) is generated by u1; u2; u4 subject to the relations :

ui � (uj � uk) + (ui � uj)� uk = 2�ikuj � �ijuk � �jkui:(6)

Therefore, for any G2-frame, we have the following very usefull multiplication table [18] :

x u1 u2 u3 u4 u5 u6 u7

u1 0 u3 �u2 u5 �u4 �u7 u6
u2 �u3 0 u1 u6 u7 �u4 �u5
u3 u2 �u1 0 u7 �u6 u5 �u4
u4 �u5 �u6 �u7 0 u1 u2 u3
u5 u4 �u7 u6 �u1 0 �u3 u2
u6 u7 u4 �u5 �u2 u3 0 �u1
u7 �u6 u5 u4 �u3 �u2 u1 0

The standard nearly K�ahler structure on S6(1) is then obtained as follows :

Ju = x� u; u 2 TxS6(1); x 2 S6(1):
It is clear that J is an orthogonal almost complex structure on S6(1). In fact J is a nearly K�ahler
structure in the sense that the (2; 1)-tensor �eld G on S6(1) de�ned by

G(X;Y ) = ( ~rXJ)Y;

where ~r is the Levi-Civita connection on S6(1) is skew-symmetric. A straightforward computation also
shows that

G(X;Y ) = X � Y � hx�X;Y i x:
For more information on the properties of :, J and G, we refer to [2] and [10].

Let M be a submanifold of S6(1). Then,M is called Lagrangian provided that J interchanges at every
point p ofM the tangent and the normal space. It is immediately clear that a Lagrangian submanifold is
3-dimensional. It was also shown by Ejiri, [13] that M is minimal, orientable and that for tangent vector

�elds X and Y to M , G(X;Y ) is normal to M . Decomposing ~rXY and ~rXJY into a tangential and a
normal component it follows that

r?XJY = JrXY +G(X;Y );

and that the form de�ned by

C(X;Y; Z) =< h(X;Y ); JZ >;

is symmetric in X, Y and Z.
Now, we �nish this section, by recalling some basic facts about the Hopf lift, which we will need

in some of the later sections. It is well-known (see for instance [1], page 32 or [11]) that the complex
structure of C 3 induces a Sasakian structure ('; �; �; g) on S5(1) starting from C 3 . This structure can
also be expressed using the vector cross product. We consider S5(1) as the hypersphere in S6(1) � R7
given by the equation x4 = 0 and de�ne :

j : S5(1)! C
3 : (x1; x2; x3; 0; x5; x6; x7) 7! (x1 + ix5; x2 + ix6; x3 + ix7):

Then at a point p = (x1; x2; x3; 0; x5; x6; x7), the structure vector �eld � is given by

�(p) = (x5; x6; x7; 0;�x1;�x2;�x3) = e4 � p;

and for any tangent vector v, we get that

'(v) = v � e4 � hv � e4; pi p:
Following [19], we call a submanifold Mn of S5 (1) invariant if '(TpM ) � TpM for every p. If n is
odd, then � is automatically tangent to M . Assume n = 3. The Hopf �bration h : S5(1) ! CP 2(4)
annihilates �, i.e. dh(�) = 0. Then if M3 is invariant, h(M3) is a holomorphic curve. Conversely, let
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� : N1 ! CP 2(4) be a holomorphic curve, let PN1 be the circle bundle over N1 induced by the Hopf
�bration and let � be the immersion such that the following diagram commutes :

PN1
 ����! S5(1)??y ??yh

N1
�����! CP 2(4)

Then  is an invariant immersion in the Sasakian space form S5(1) with structure vector �eld � tangent
along �.

3. Lagrangian submanifolds of Type (i) to (v)

In this section, we assume that M is a Lagrangian submanifold of S6(1) of Type (i) to (v). First,
we assume that M is either Type (i) or Type (iii). This means that at each point p there exists an
orthonormal basis fe1; e2; e3g such that

h(e1; e2) = �Je3; h(e2; e3) = �Je1; h(e3; e1) = �Je2;

h(e1; e1) = 0; h(e2; e2) = 0; h(e3; e3) = 0:

Substituting this in the Gauss equation implies that

bR(X;Y )Z = (1 � �2)(< Y;Z > X� < X;Z > Y ):

Consequently, Schur's lemma implies that � is a constant and that M has constant sectional curvature.
Thus, from the classi�cation of Lagrangian submanifolds with constant sectional curvature, see [13], it
follows that either M is totally geodesic, corresponding to the case that � = 0, or M is isometric to an
open part of the 3-dimensional sphere with constant sectional curvature 1

16 , corresponding to the case

that � =
q

15
16 . Moreover, in both cases, the immersion is unique up to applying an isometry of G2.

Using the description of [14] for the immersion with constant sectional curvature 1
16 , we can summarize

the above as follows:

Theorem 2. Let  : M ! S6(1) be a Lagrangian immersion of Type (i). Then M is congruent to an
open part of the immersion  1 : S3(1)! S6(1) : (y1; y2; y3; y4) 7! (y1; 0; y2; 0; y3; 0; y4).

Theorem 3. Let  : M ! S6(1) be a Lagrangian immersion of Type (i). Denote by � : S2 ! S6(1)
the Veronese immersion of S2 into S6(1) with constant Gaussian curvature 1

6 and immersed such that J
preserves the tangent space. Let � denote the second fundamental form of this immersion. Then,

 2 : US
2 ! S6(1) : v 7! cos 
� + sin 
v � �(v;v)

k�(v;v)k ;

where cos2 
 = 5
9 is a Lagrangian submanifold with constant sectional curvature 1

16 . Moreover, the
immersion  is locally congruent to an open part of the immersion  2.

Next, we consider the case that M is a Lagrangian submanifold of Type (iv). This means that at each
point p there exists an orthonormal basis fe1; e2; e3g such that

h(e1; e1) = �e1; h(e1; e2) = ��e2; h(e3; e1) = 0;

h(e2; e2) = ��e1; h(e2; e3) = 0; h(e3; e3) = 0;

where � is a positive number. From the above expression, it is clear that M realizes at every point
the equality in the following inequality, which was obtained by Chen in [6] and which specialized to
3-dimensional submanifolds of S6(1), states

�M (p) � 9

4
H2(p) + 2;(7)

for each p 2 M , where H denotes the length of the mean curvature vector and �M is the Riemannian
invariant, introduced by Chen in [6], de�ned by

�M (p) = � (p)� (infK)(p):
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Here

(infK)(p) = inf
�
K(�) j� is a 2-dimensional subspace of TpM

	
;

where K(�) is the sectional curvature of �, and � (p) =
P
i<jK(ei ^ ej) denotes the scalar curvature

de�ned in terms of an orthonormal basis fe1; e2; e3g of the tangent space TpM . Submanifolds realizing
the equality are called submanifolds satisfying Chen's equality. As a Lagrangian submanifold of S6(1)
is always minimal, it is clear that M realizes Chen's equality if and only if �M = 2. Such Lagrangian
submanifolds were classi�ed in [11].

Theorem 4. Let � : N1 �! CP 2(4) be a holomorphic curve in CP 2(4). Let PN1 be the circle bundle
over N1 induced by the Hopf �bration p : S5(1) ! CP 2(4) and let  be the isometric immersion such
that the following diagram commutes:

PN1
 ����! S5(1)??y ??yp

N1
�����! CP 2(4)

Then, there exists a totally geodesic embedding i of S5(1) into the nearly K�ahler 6-sphere such that the
immersion i �  : PN1 ! S6(1) is a 3-dimensional Lagrangian immersion in S6(1) satisfying Chen's
equality. Moreover, every Lagrangian submanifold which is contained in a totally geodesic S5(1) in S6(1)
can be obtained in this way.

Theorem 5. Let �� : N2 �! S6(1) be an almost complex curve (with second fundamental form �) without
totally geodesic points. Denote by UN2 the unit tangent bundle over N2 and de�ne a map

� : UN2 ! S6(1) : v 7! ��?(v) � �(v;v)
k�(v;v)k :

Then � is a Lagrangian immersion into S6(1) satisfying Chen's equality. Moreover, the immersion is
linearly full in S6(1). Conversely, every Lagrangian immersion satisfying Chen's equality can be obtained
in this way.

Using the above theorems it is straightforward to compute that a Lagrangian submanifold of Type
(iv) has constant scalar curvature if the underlying complex curve in CP 2(4) or S6(1), depending on the
case which we are considering, is not totally geodesic and has constant Gaussian curvature.

Finally, we consider the case that M is a Lagrangian submanifold of Type (ii) or Type (v). In that
case, we know that at each point p of M there exists an orthonormal basis fe1; e2; e3g such that

h(e1; e1) = 2�Je1; h(e1; e2) = ��Je1; h(e3; e1) = ��Je3;
h(e2; e2) = ��Je1 + �e2; h(e2; e3) = ��Je3; h(e3; e3) = ��Je1 � �Je2;

where � is a positive number and � 6= p
2�. IfM is of Type (ii) then � = 0, whereas ifM is of Type (vi)

then � > 0. Then, a straightforward computation using the Gauss equation shows that:

Ric(e1; e1) = 1� 3�2; Ric(e1; e2) = 0; Ric(e3; e1) = 0;

Ric(e2; e2) = 1� �2 � �2; Ric(e2; e3) = 0; Ric(e3; e3) = 1� �2 � �2;

where the Ricci tensor Ric is de�ned by

Ric(Y; Z) = 1
2 tracefX 7! R(X;Y )Zg

As �2 6= 2�2, we see as a consequence that the 1-1 symmetric tensor �eld P associated with the Ricci
tensor has at each point two di�erent eigenvalues, one with multiplicity 1, the other with multiplicity 2.
In particular this means that M is a quasi Einstein Lagrangian manifold. As, in this case, M does not
satisfy Chen's equality it follows from the main theorem of [9] that M can be obtained as follows:

Theorem 6. Let � : N2 ! S6 be a superminimal almost complex curve in S6(1) without totally geodesic
points and di�erent from the Veronese immersion. Denote by UN2 the unit tangent bundle of N2. De�ne

 
 : UN
2 ! S6 : v 7! cos 
� + sin 
v � �(v;v)

k�(v;v)k;
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where cos2 
 = 5
9 . Then  is a Lagrangian immersion on an open dense subset of UN2. Moreover  

is a Lagrangian immersion of Type (iv). Conversely, every Lagrangian submanifold of Type (iv) can be
obtained in this way.

Theorem 7. Let  : M ! S6(1) be a Lagrangian immersion of Type (ii). Denote by S3 the 3-
dimensional sphere and consider the map into S6(1) de�ned by:

~ : S3 ! S6(1) : (y1; y2; y3; y4) 7! (x1; x2; x3; x4; x5; x6; x7);

where

x1 =
1
9 (5y

2
1 + 5y22 � 5y23 � 5y24 + 4y1);

x2 = �2
3y2;

x3 =
2
p
5

9
(y21 + y22 � y23 � y24 � y1);

x4 =
p
3

9
p
2
(�10y3y1 � 2y3 � 10y2y4);

x5 =
p
3
p
5

9
p
2
(2y1y4 � 2y4 � 2y2y3);

x6 =
p
3
p
5

9
p
2
(2y1y3 � 2y3 + 2y2y4);

x7 =
p
3

9
p
2
(10y1y4 + 2y4 � 10y2y3);

and y21 + y22 + y23 + y24 = 1. Then ~ de�nes a Lagrangian immersion of Type (ii) with constant scalar

curvature. Conversely every Lagrangian immersion of Type (ii) is congruent with an open part of ~ .

Note that the induced metric on S3 by the above immersion is not the standard metric on S3.

4. Lagrangian submanifolds of Type (vi)

In this section, we assume that M is a Lagrangian submanifold of Type (vi). It is easy to see that this
implies that at each point p there exists an orthonormal basis fe1; e2; e3g such that

h(e1; e1) = �1Je1; h(e1; e2) = �2Je2; h(e3; e1) = �3Je3;

h(e2; e2) = �2Je1; h(e2; e3) = 0; h(e3; e3) = �3Je1;

where 0 < �1 = ��2 � �3 and 0 6= �2 6= �3 6= 0.
By a straightforward computation we obtain the following:

Lemma 1. Let fe1; e2; e3g be the orthonormal basis de�ned previously. Then it follows that

Ric(e1; e1) = 1� �22 � �23 � �2�3; Ric(e1; e2) = 0; Ric(e3; e1) = 0;

Ric(e2; e2) = 1� �22; Ric(e2; e3) = 0; Ric(e3; e3) = 1� �23:

Using the various conditions on �2 and �3, we see that the 1-1 symmetric tensor �eld P associated
with the Ricci tensor has at each point three di�erent eigenvalues, all with multiplicity 1. Hence there
exist orthonormal vector �elds fE1; E2; E3g de�ned on a neighborhood of the point p and a non vanishing
di�erentiable functions �2; �3, with �2 + �3 < 0 and �2 � �3 6= 0 such that

h(E1; E1) = �(�2 + �3)JE1; h(E1; E2) = �2JE2; h(E3; E1) = �3JE3;

h(E2; E2) = �2JE1; h(E2; E3) = 0; h(E3; E3) = �3JE1:

As G(E1; E2) = �JE3, we may, by replacing E3 with �E3 if necessary, assume that G(E1; E2) = JE3.
We then introduce local functions a1; : : : ; c3 by

rE1
E1 = a1E2 + a2E3; rE1

E2 = �a1E1 + a3E3; rE1
E3 = �a2E1 � a3E2;

rE2
E1 = b1E2 + b2E3; rE2

E2 = �b1E1 + b3E3; rE2
E3 = �b2E1 � b3E2 ;

rE3
E1 = c1E2 + c2E3; rE3

E2 = �c1E1 + c3E3; rE3
E3 = �c2E1 � c3E2;



LAGRANGIAN SUBMANIFOLDS 7

Computing now all components of the Gauss equation, it then follows by a long but straightforward
computation that the functions �2; �3; a1; : : : ; c3 have to satisfy the following system of partial di�erential
equations:

E2(a1)� E1(b1) = 1� 2�22 � �2�3 + a21 + b21 + b2c1 � b2a3 + a2b3 � a3c1;(8)

E3(a2)� E1(c2) = 1� 2�23 � �2�3 + a22 + c22 + b2c1 + b2a3 � a1c3 + a3c1;(9)

E2(a2)� E1(b2) = b1a3 + b1b2 + a1a2 � a1b3 + c2b2 � c2a3;(10)

E3(a1)� E1(c1) = a2c3 � a3c2 + a1a2 + b1c1 + c1c2 + b1a3;(11)

E2(c2)� E3(b2) = b1c3 � b3c1 � a2b2 + a2c1 � b2b3 � c2c3;(12)

E2(c1)� E3(b1) = b3c2 � c3b2 + a1c1 � a1b2 � c1c3 � b1b3;(13)

E3(a3)� E1(c3) = a1c2 � a2c1 + a2a3 + a3b3 + b3c1 + c2c3;(14)

E1(b3)� E2(a3) = b1a2 � a1b2 � a1a3 � b1b3 + a3c3 � c3b2;(15)

E3(b3)� E2(c3) = 1 + �2�3 + b23 + c23 + a3b2 � a3c1 + b1c2 � b2c1:(16)

The number of unknowns in the above equations can be reduced using the Codazzi equation which states
that (rh)(X;Y; Z) = (rXh)(Y; Z) = r?Xh(Y; Z) � h(rXY; Z) � h(Y;rXZ) is totally symmetric in X,
Y and Z. In particular we obtain that

Lemma 2. Let fE1; E2; E3g be the local orthonormal basis de�ned previously. Then, we have that there
exists a function c such that

b2 = �c1 = �a3 = 1
4 ;

a2 = (1� �3
�2
)b3;

a1 = (�2
�3
� 1)c3;

c2 = c�3;

b1 = c�2:

Moreover, the functions �2 and �3 satisfy the following system of di�erential equations:

E1(�2) = �c�2(3�2 + �3);

E2(�2) = 3c3�2(
�2
�3
� 1);

E3(�2) = b3(�2 � �3);

E1(�3) = �c�3(3�3 + �2);

E2(�3) = c3(�2 � �3);

E3(�3) = 3b3�3(1� �3
�2
):

Proof. As,

(rE2
h)(E3; E3) = E2(�3)JE1 + b1�3JE2 + (3b2 � 1)�3JE3;

and

(rE3
h)(E2; E3) = c3(�2 � �3)JE1 + c2�2JE2 + c1�3JE3;

it follows from the Codazzi equation (rE2
h)(E3; E3) = (rE3

h)(E2; E3) that

c1 = 3b2 � 1;(17)

�3b1 = c2�2;(18)

E2(�3) = b3(�2 � �3):(19)

Similarly, we obtain from (rE2
h)(E3; E2) = (rE3

h)(E2; E2) that

b2 = 3c1 + 1;(20)

E3(�2) = b3(�2 � �3):(21)

Combining (17) and (20) it then follows that c1 = �1
4 and b2 = 1

4 . The remaining equations follow
similarly from the other Codazzi equations.
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Using the previous lemma, the di�erential equations given by (10) to (16) now imply that

E2(c) =
1
2b3(

1
�2
� 1

�3
);

E3(c) =
1
2c3(

1
�3
� 1

�2
);

E1(c3) = �cc3�2 + 1
2b3;

E1(b3) = �b3c�3 � 1
2c3;

E3(c3) = 3b3c3 � 1
2c

�2�3
�2��3 ;

E2(b3) = �3b3c3 + 1
2c

�2�3
�2��3 :

We now compute some integrability conditions. As r is torsion free, we know that for any function
f , the following equations are satis�ed:

0 = E1(E2(f)) �E2(E1(f)) � (rE1
E2)(f) + (rE2

E1)(f);

0 = E1(E3(f)) �E3(E1(f)) � (rE1
E3)(f) + (rE3

E1)(f);

0 = E2(E3(f)) �E3(E2(f)) � (rE2
E3)(f) + (rE3

E2)(f):

It is straightforward to check that applying the above principle for the functions �2 and �3 does not
yield any new equations. However, applying the �rst principle for the function b3 yields the following
di�erential equation:

�2�3(�2 � �3)(E3(b3) + E2(c3)) + �22�
2
3E1(c)

= (�2 � �3)(c
2
3�2(�2 � 4�3) + b23�3(4�2 � �3))

Combining this equation, together with the remaining Gauss equations, we then obtain that

E3(b3) =
(�5�32b2

3
+16c2

3
)�3+2�2(5+16b

2

3
�8c2

3
�8�2

3
�8c2�2

3
)

16(�2��3) ;

E2(c3) =
(�5�32c2

3
+16b2

3
)�2+2�3(5+16c

2

3
�8b2

3
�8�2

2
�8c2�2

2
)

16(�2��3) ;

E1(c) =
�5�32b2

3
+16c2

3

16�2
+ �2(1 + c2 + c2

3

�2
3

)

�5�32c2
3
+16b2

3

16�3
+ �3(1 + c2 + b2

3

�2
2

):

Checking now the integrability conditions for c, c3 and b3 it immediately follows that c = c3 = b3 = 0.
Substituting these values in to the Gauss equations it follows that �2 = ��3 which is a contradiction.
Therefore, we have shown the following theorem:

Theorem 8. There does not exist a Lagrangian submanifold of Type (vi) in S6(1).

5. Lagrangian submanifolds admitting a Sasakian structure

Throughout this section, we will assume that M is a Lagrangian submanifold of S6(1) which admit a
Sasakian structure which is compatible with the induced metric < :; : > onM . This implies, see [1], that
there exists a unit-length vector �eld � on M , a 1-form � and an endomorphism � satisfying:

�(X) =< X; � >;

�2 = �I + � 
 �;

�(�) = 0;

� �� = 0;

< �X;�Y >=< X; Y > ��(X)�(Y );

(rX�)Y = �(Y )X� < X; Y > �:

Moreover, it is well known, see [1], that the above equations imply that

rX� = ��X;(22)

R(X;Y )� =< �; Y > X� < X; � > Y:(23)



LAGRANGIAN SUBMANIFOLDS 9

From [1], we recall the following theorem that the previous equation together with the fact that � is
a unit-length Killing vector �eld are the principal criteria for determining whether an odd-dimensional
manifold admits a Sasakian structure compatible with a given metric.

Lemma 3. Let M3 be a Riemannian manifold admitting a unit length Killing vector �eld � such that

R(X;Y )� =< �; Y > X� < �;X > Y;

then M admits a Sasakian structure which is compatible with the given metric.

Taking now an orthonormal basis fe1; e2; e3g at a point p of M3 such that e3 = �, it immediately
follows from (23) that

Ric(e1; e1) =
1
2(< R(e1; e2)e2; e1 > +1); Ric(e1; e2) = 0; Ric(e3; e1) = 0;

Ric(e2; e2) =
1
2(< R(e1; e2)e2; e1 > +1); Ric(e2; e3) = 0; Ric(e3; e3) = 1:

This implies that all sectional curvatures at the point p equal 1 or the associated endomorphism P has
two eigenvalues: one with multiplicity 1 and one with multiplicity 2. Moreover, in the second case,
the eigenvalue with multiplicity 1 equals 1 and the vector �eld � spans the corresponding 1-dimensional
eigenspace. We now recall the following lemma from [9] about quasi-Einstein submanifolds.

Lemma 4. Let M3 be a 3-dimensional Lagrangian submanifold of S6 with the second fundamental form
h. Then the Ricci endomorphism P , associated with the Ricci tensor Ric, satis�es:

(i) 1 is an eigenvalue of P ,
(ii) P has an eigenvalue with multiplicity at least 2,

if and only if p is a totally geodesic point or there exist a orthonormal basis fe1; e2; e3g of TpM such that
either

h(e1; e1) = �Je1; h(e2; e2) = ��Je1;
h(e1; e2) = ��Je2; h(e2; e3) = 0;

h(e1; e3) = 0; h(e3; e3) = 0;

where � is a non-zero number. Moreover, in the second case, the 1-dimensional eigenspace is determined
by e3.

It follows immediately from the above lemma that a Lagrangian submanifold which admits a Sasakian
structure satis�es Chen's equality. Moreover, if necessary by restricting to an open dense subset, we
may assume that either M is totally geodesic or in a neighborhood of any point p of M3 there exist an
orthonormal basis fE1; E2; E3g such that

h(E1; E1) = �JE1; h(E2; E2) = ��JE1; h(E1; E2) = ��JE2;
h(E2; E3) = 0; h(E1; E3) = 0; h(E3; E3) = 0;

where E3 = �. Now, we proceed as follows. We take the frame constructed in the previous lemma. As
G(E3; E1) is a normal vector which is orthogonal to both JE3 and JE1 it follows that G(E3; E1) = �E2.
Therefore, if necessary by changing the sign of E2, we may assume that G(E3; E1) = JE2. It then follows
that G(E1; E2) = JE3 and G(E2; E3) = JE1. Moreover, we also have that �E1 = �E2, where � = �1. It
then follows from (22) that

rE1
E3 = ��E2;

rE2
E3 = �E1;

rE3
E3 = 0:

Introducing now functions a, b and c, it follows that we can express the other components of the connection
r respectively by

rE1
E1 = cE2; rE1

E2 = �cE1 + �E3;

rE2
E1 = dE2 � �E3; rE2

E2 = �dE1;
rE3

E1 = fE2; rE3
E2 = �fE1:
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Using now the Codazzi equation, see also Lemma 5.3 of [8], it follows that f = �1
3 (1 + �). We now

consider two di�erent cases. First, we assume that � = �1. In that case, we have that

~rE1
JE3 = G(E1; E3) + J ~rE1

E3

= �JE2 + JE2 + h(E1; E3) = 0;

~rE2
JE3 = G(E2; E3) + J ~rE2

E3

= JE1 � JE1 + h(E2; E3) = 0;

~rE3
JE3 = J ~rE3

E3 = 0:

Hence, JE3 is a constant vector along M which is tangent to S6(1). Consequently M lies in the totally
geodesic S5(1) which is obtained as the intersection of S6(1) with the linear hyperplane orthogonal to
JE3. Using now the classi�cation of Lagrangian submanifolds contained in a totally geodesic subspace,
see Theorem 4, we obtain that M is locally congruent to the Hopf lift of a complex curve in CP 2(4) to
S5(1) and S5(1) is immersed in S6(1) as described in Section 2. As the Hopf lift of a complex curve is a
Sasakian manifold, the converse is obvious.

Finally, we consider the case that � = 1. In this case, we denote the immersion by F and proceed as
in [11] to show that the map JE3 = F � E3 de�nes an almost complex curve. Specializing the formulas
there, to our case, i.e. using that the functions a and b de�ned in [11] are respectively a = 0 and b = 1,
we get that:

DE1
(F �E3) = 2E1 � E3;

DE2
(F �E3) = 2E2 � E3;

DE3
(F �E3) = 0;

DE1
(E1 �E3) = (cE2 + �F � E1 � F )�E3 �E1 �E2 = cE2 � E3 � �E2 � 2F � E3;

DE2
(E1 �E3) = (dE2 � �F �E2)� E3 = dE2 � E3 � �E1;

DE1
(E2 �E3) = (�cE1 � �F �E2) �E3 = �cE1 �E3 � �E1;

DE2
(E2 �E3) = (�dE1 � �F � E1 � F )�E3 +E2 �E1 = �dE1 � E3 + �E2 � 2F � E3;

DE1
E1 = cE2 + �F � E1 � F = cE2 + �E2 � E3 � F;

DE1
E2 = �cE1 � �F � E2 + E3 = �cE1 + �E1 � E3 + E3;

DE2
E1 = dE2 � �F �E2 �E3 = dE2 + �E1 � E3 � E3;

DE2
E2 = �dE1 � �F � E1 � F = �dE1 � �E2 �E3 � F:

The above formulas now imply immediately that the complex curve de�ned by JE3 is superminimal. A
representation of superminimal complex curves was obtained in [4]. It now follows from [11] that M is
obtained as in Theorem 5, starting from a superminimal complex curve in S6(1).

In order to show that we can start with an arbitrary superminimal complex curve it is su�cient to
check that the vector �eld @

@t
, de�ned in the proof of Theorem 2 of [11], is a Killing vector �eld satisfying

the conditions of Lemma 3, which can be veri�ed by a straightforward computation. Therefore, we have
shown the following theorem:

Theorem 9. Let  : M3 ! S6(1) be a Lagrangian immersion. Then M admits a Sasakian structure
compatible with the induced metric if and only if locally M is congruent with

(i) a totally geodesic immersion,
(ii) the inverse image under the Hopf map of a holomorphic curve in CP 2(4), as described in Theorem
4,
(iii) the unit second normal bundle of a superminimal complex curve in S6(1), as described in Theorem
5.
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