
SPECIAL CLASSES OF THREE DIMENSIONAL AFFINE HYPERSPHERES

CHARACTERIZED BY PROPERTIES OF THEIR CUBIC FORM.

LUC VRANCKEN

Abstract. It is well known that locally strongly convex a�ne hyperspheres can be determined as solu-
tions of di�erential equations of Monge-Amp�ere type. The global properties of those solutions are well
understood. However, due to the nature of the Monge-Amp�ere equation, not much is known about
local solutions, particularly if the dimension of the hypersurface is greater then 2. By the fundamental
theorem, a�ne hyperspheres are completely determined by their metric h and their di�erence tensor K
which together build the symmetric cubic form C. Following an idea of Bryant [1], we want to investi-
gate a�ne hyperspheres for which at each point there exist isometries with respect to h preserving this
cubic form. The �rst non-trivial case is the case thatM is 3-dimensional which is also the case which is
investigated further in this paper.

Subject class: 53A15

1. Introduction

In this paper we study nondegenerate a�ne hypersurfaces Mn into Rn+1, equipped with its standard
a�ne connection D. It is well known that on such a hypersurface there exists a canonical transversal
vector �eld �, which is called the a�ne normal. With respect to this transversal vector �eld one can
decompose

DXY = rXY + h(X;Y )�;(1)

thus introducing the a�ne metric h and the induced a�ne connection r. The Pick-Berwald theorem

states that r coincides with the Levi Civita connection br of the a�ne metric h if and only if M is
immersed as a nondegenerate quadric. The di�erence tensor K is introduced by

KXY = rXY � brXY(2)

It follows easily that h(K(X;Y ); Z) is symmetric in X, Y and Z. The apolarity condition states that
traceKX = 0 for every vector �eld X. The fundamental theorem of Dillen, Nomizu and the author, see
[5] implies that an a�ne hypersurface is completely determined by the metric and the di�erence tensor
K.

Deriving the a�ne normal, we introduce the a�ne shape operator S by

DX� = �SX(3)

Here, we will restrict ourselves to the case that the a�ne shape operator S is a multiple of the identity,
i.e. S = HI. This means that all a�ne normals are parallel or pass through a �xed point. We will also
assume that the metric is positive de�nite in which case one distinguishes the following classes of a�ne
hyperspheres:

(i) elliptic a�ne hyperspheres, i.e. all a�ne normals pass through a �xed point and H > 0,
(ii) hyperbolic a�ne hyperspheres, i.e. all a�ne normals pass through a �xed point and H < 0,
(iii) parabolic a�ne hyperspheres, i.e. all the a�ne normals are parallel (H = 0).

Due to the work of amongst others Calabi [2], Pogorelov [15], Cheng and Yau [4], Sasaki [17] and Li [11],
positive de�nite a�ne hyperspheres which are complete with respect to the a�ne metric h are now well
understood. In particular, the only complete elliptic or parabolic positive de�nite a�ne hyperspheres are
respectively the ellipsoid and the paraboloid.

However, in the local case, one is far from obtaining a classi�cation. The reason for this is that a�ne
hyperspheres reduce to the study of the Monge-Amp�ere equations. In this paper we want to make a
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distinction between di�erent a�ne hyperspheres based on special properties of their di�erence tensor K.
In order to do so, we apply an idea of Bryant [1] to the case of a�ne hyperspheres. Namely we want to
make a distinction between di�erent a�ne hyperspheres based on the number of orientation preserving
isometries preserving the di�erence tensor K at a given point.

In case that the dimension is two, it is easy to verify that either K vanishes identically at a point or
K is preserved by rotations by an angle of 2�3 . So the �rst non trivial case is the case that the dimension
of M is 3. This is the case that we will consider in this paper. At every point p of M , we can introduce
a symmetric polynomial fp by

fp(x; y; z) = h(K(xe1 + ye2 + ze3; xe1 + ye2 + ze3); xe1 + ye2 + ze3);

where fe1; e2; e3g is an orthonormal basis at the point p. The apolarity condition implies that the trace of
this polynomial with respect to the metric vanishes. As far as such symmetric polynomials with vanishing
trace on a 3-dimensional real vector space are concerned, we quote the following result by Bryant:

Theorem 1. Let p 2M and assume that there exist an orientation preserving isometry which preserves
fp. Then there exists an orthonormal basis of TpM such that either

(i) fp = 0, in this case fp is preserved by every isometry,
(ii) fp = �(2x3 � 3xy2 � 3xz2), for some positive number � in which case fp is preserved by a
1-parameter group of rotations,
(iii) fp = 6�xyz for some positive number �, in which case fp is preserved by the discrete group A4
of order 12,
(iv) fp = �(x3�3xy2) for some positive number �, in which case fp is preserved by the discrete group
S3 of order 6
(v) fp = �(2x3� 3xy2 � 3xz2) + 6�xyz, for some �; � > 0, with � 6= �, in which case fp is preserved
by the group Z2 of order 2,
(vi) fp = �(2x3 � 3xy2 � 3xz2) + �(y3 � 3xy2) for some �; � > 0, with � 6= p2�, in which case fp is
preserved by the group Z3.

In this paper, we will assume that one of the special cases of the above theorem is satis�ed at every
point of the hypersphere. The paper is organized as follows. In Section 2, we will deal with the case
that at each point p, either Theorem 1(i) or (iii) is satis�ed. The case that M is an a�ne hypersphere
satisfying either Theorem 1(ii) or Theorem 1(vi) is studied in Section 3, whereas the case thatM satis�es
Theorem 1(iv), which also corresponds to Chen's equality studied in [18], [7] and [9], is considered in
Section 4. Finally, the case that M satis�es Theorem 1(v) at every point is investigated in Section 5. We
will call M an a�ne hyperpshere of Type k if and only if Theorem 1(k) is satis�ed at each point p ofM .
To conclude this introduction, we remark that the basic integrability conditions for an a�ne hypersphere
state that bR(X;Y )Z = H(h(Y; Z)X � h(X;Z)Y ) � [KX ;KY ]Z;(4)

(brXK)(Y; Z) = (brYK)(X;Z):(5)

Remark that by applying an a�ne transformation, we may always assume that H = �, where � 2
f�1; 0; 1g.

2. Affine hyperspheres of Type (i) or (iii)

First, we remark that if M is an a�ne hypersphere of Type (i) or Type (iii), there exists a local
orthonormal basis fe1; e2; e3g such that

K(e1; e2) = �e3; K(e2; e3) = �e1; K(e3; e1) = �e2;

K(e1; e1) = 0; K(e2; e2) = 0; K(e3; e3) = 0:

Substituting this in (4) implies that

bR(X;Y )Z = (H + �2)(h(Y; Z)X � h(X;Z)Y ):

Consequently, Schur's lemma implies that � is a constant and that M has constant sectional curvature.
Thus, from the classi�cation of positive de�nite a�ne spheres with constant sectional curvature, see [12],
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[8] or [19], it follows that M is a�ne congruent with a positive de�nite quadric, if � = 0, or with the
a�ne hypersphere described by x1 : : :xn+1 = 1, if � 6= 0. Summarizing the above we have that

Theorem 2. Let M be an a�ne hypersphere of Type (i). Then M is a�ne congruent with a positive
de�nite quadric.

Theorem 3. Let M be an a�ne hypersphere of Type (iii). Then M is a�ne congruent with the 
at
a�ne hypersphere described by x1 : : :xn+1 = 1.

3. Affine hyperspheres of Type (ii) or (vi)

In this section, we assume thatM is an a�ne hypersphere of either Type (ii) or Type (vi). This means
that at each point p there exists an orthonormal basis fe1; e2; e3g such that

K(e1; e1) = 2�e1; K(e1; e2) = ��e1; K(e3; e1) = ��e3;
K(e2; e2) = ��e1 + �e2; K(e2; e3) = ��e3; K(e3; e3) = ��e1 � �e2;

where � is a positive number and � 6= p
2�. If M is an a�ne hypersphere of Type (ii) then � = 0,

whereas if M is an a�ne hypersphere of Type (vi) then � > 0.
Let fe1; e2; e3g denote the orthonormal basis constructed before, and denote by

dRic(Y; Z) = 1
2 tracefX 7! bR(X;Y )Zg;

the Ricci tensor associated with the a�ne metric h. Then, by a straightforward computation using (4)
and the explicit expression for K it follows that:

Lemma 1. Let fe1; e2; e3g be the orthonormal basis de�ned previously. Then it follows that

dRic(e1; e1) = �+ 3�2; dRic(e1; e2) = 0; dRic(e3; e1) = 0;

dRic(e2; e2) = �+ �2 + �2; dRic(e2; e3) = 0; dRic(e3; e3) = �+ �2 + �2:

As �2 6= 2�2, we see as a consequence that the 1-1 symmetric tensor �eld P associated with the Ricci
tensor has at each point two di�erent eigenvalues, one with multiplicity 1, the other with multiplicity 2.
We then have

Lemma 2. Let M be an a�ne hypersphere of Type (ii) or (vi) and let p 2 M . Then there exist or-
thonormal vector �elds fE1; E2; E3g de�ned on a neighborhood of the point p and di�erentiable functions
� and �, with �2 6= 2�2 and � > 0 such that

K(E1; E1) = 2�E1; K(E1; E2) = ��E1; K(E3; E1) = ��E3;
K(E2; E2) = ��E1 + �E2; K(E2; E3) = ��E3; K(E3; E3) = ��E1 � �E2:

Moreover, if M is an a�ne hypersphere of Type (ii), then � = 0, whereas if M is an a�ne hypersphere
of Type (vi), then � > 0.

Proof. From Lemma 1 it follows that the eigenvalues of the di�erentiable operator P have constant
multiplicities. A standard result then implies that the eigendistributions are di�erentiable. We now take
E1 a local vector �eld spanning the 1-dimensional distribution and for E2 and E3 local orthonormal
vector �elds spanning the second distribution. As E1 is uniquely determined, it follows that there exists
a positive function � and di�erentiable functions � and � such that

K(E1; E1) = 2�E1; K(E1; E2) = ��E1; K(E3; E1) = ��E3;
K(E2; E2) = ��E1 + �E2 � �E3; K(E2; E3) = ��E2 � �E3; K(E3; E3) = ��E1 � �E2 + �E3:

If M is an a�ne hypersphere of Type (ii) then �2 + �2 = 0 and thus the proof is completed. Hence, we
may assume that M is an a�ne hypersphere of Type (vi) implying that �2 + �2 6= 0. Then, if we de�ne

F2 = cos �E2 + sin �E3;

F3 = � sin �E2 + cos �E3;
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we see that the basis fE1; F2; F3g satis�es the conditions of the lemma provided that

cos 3��� sin 3�� > 0;

cos 3�� + sin 3�� = 0:

As �2 + �2 6= 0, it is clear that a di�erentiable function � satisfying the above conditions exists.

In the remainder of this section, we will always work with the orthonormal basis constructed in the
previous lemma. We then introduce local functions a1; : : : ; c3 by

brE1
E1 = a1E2 + a2E3; brE1

E2 = �a1E1 + a3E3; brE1
E3 = �a2E1 � a3E2;brE2

E1 = b1E2 + b2E3; brE2
E2 = �b1E1 + b3E3; brE2

E3 = �b2E1 � b3E2 ;

brE3
E1 = c1E2 + c2E3; brE3

E2 = �c1E1 + c3E3; brE3
E3 = �c2E1 � c3E2;

We now will use the equations of Codazzi (5) and Gauss (4), in order to obtain more information
about the above de�ned functions.

Lemma 3. Assume that M is an a�ne hypersphere op Type (ii) or Type (vi). Denote by fE1; E2; E3g
the corresponding orthonormal basis. Then, we have

a2 = b2 = c1 = a1 = 0;

b2 = c1;

�a3 = 0;

and the functions �, � and b1 satisfy the following system of di�erential equations:

E1(�) = �4b1�; E1(�) = ��b1; E1(b1) = �� � b21 � 3�2;

E2(�) = 0; E2(�) = �3�c3; E2(b1) = 0;

E3(�) = 0; E3(�) = 3�b3; E3(b1) = 0:

Proof. We compute (brE1
K)(E1; E2) = (brE2

K)(E1; E1). On the one hand, we get that

(brE1
K)(E1; E2) = brE1

(��E2)�K(brE1
E1; E2)�K(E1; brE1

E2)

= �E1(�)E2 + 4a1�E1 � a1�E2 + a2�E3;

and on the other hand, we get that

(brE2
K)(E1; E1) = brE2

(2�E1)� 2K(brE2
E1; E1)

= 2E2(�)E1 + 4b1�E2 + 4b2�E3:

Comparing both sides it follows that

E1(�) = �a1�� 4b1�;(6)

E2(�) = 2a1�;(7)

a2� = 4b2�:(8)
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Similarly, using the other Codazzi equations, it follows that

�(c1 � b2) = 0;(9)

�(b2 + c1) = �2�a2 = �2�(3a3 � b2);(10)

�(b1 � c2) = 2a1�;(11)

4�(c2 � b1) = 2�a1;(12)

E3(�) = 2�a2;(13)

E2(�) = ��(c2 � b1);(14)

E3(�) = ��(b2 + c1);(15)

E1(�) = ��a1 � �c2;(16)

E2(�) = ��(b1 � c2) � 3�c3;(17)

E3(�) = ��(c1 � 3b2) + 3�b3:(18)

Moreover, computing all the components of the Gauss equation in a similar way, we also deduce that

E2(a1) �E1(b1) = �+ 3�2 + a21 + b21 + b2c1 � b2a3 + a2b3 � a3c1;(19)

E3(a2) �E1(c2) = �+ 3�2 + a22 + c22 + b2c1 + b2a3 � a1c3 + a3c1;(20)

E2(a2) �E1(b2) = b1a3 + b1b2 + a1a2 � a1b3 + c2b2 � c2a3;(21)

E3(a1) �E1(c1) = a2c3 � a3c2 + a1a2 + b1c1 + c1c2 + b1a3;(22)

E2(c2) �E3(b2) = b1c3 � b3c1 � a2b2 + a2c1 � b2b3 � c2c3;(23)

E2(c1) �E3(b1) = b3c2 � c3b2 + a1c1 � a1b2 � c1c3 � b1b3;(24)

E3(a3) �E1(c3) = a1c2 � a2c1 + a2a3 + a3b3 + b3c1 + c2c3;(25)

E1(b3) �E2(a3) = b1a2 � a1b2 � a1a3 � b1b3 + a3c3 � c3b2;(26)

E3(b3) �E2(c3) = �� �2 + 2�2 + b23 + c23 + a3b2 � a3c1 + b1c2 � b2c1:(27)

As � 6= 0, it follows �rst from (9) that c1 = b2. We now consider 2 cases. First, we assume that � = 0,
then it follows from (11) and (10) that a1 = a2 = 0. Combining (18) and (9), we get that c1 = b2 = 0.
The fact that b1 = c2 now follows from (12). In the case that � 6= 0, we proceed as follows. As c1 = b2
and � 6= 0, we deduce from (10) that a3 = 0. As �� 6= 0, it follows from combining (11) and (12) that
b1 = c2 and a1 = 0. Similarly, it follows from combining (10) and (8) that a2 = b2 = 0. The di�erential
equations for � and � now follow immediately from the remaining Codazzi equations. In order to obtain
the di�erential equations for b1 = c2, we use the Gauss equations (19), (23) and (24). These reduce to

E1(b1) = ��� 3�2 � b21;
E2(b1) = 0;

E3(b1) = 0:

This completes the proof.

Remark that, as � > 0, the vector �eld E1 is globally de�ned on M . As a consequence of the previous
lemma, we see that b1 is independent of the choice of E2 and E3 and is therefore globally de�ned on
M . It also follows immediately from the previous lemma that the distributions T1 = spanfE2; E3g and
T2 = spanfE1g are integrable and orthogonal with respect to the a�ne metric h. We also get that T2 is
autoparallel and T1 is spherical with mean curvature normal �b1E1. Therefore according to [10] we have
that (M;h) admits a warped product structure M = R�ef N2 with f : R! R satisfying

@f

@t
= b1;

@b1

@t
= �� � b21 � 3�2;

@�

@t
= �4b1�;



6 LUC VRANCKEN

where f , b1 and � only depend on the variable t, with @
@t

= E1 and the curvature of N2 is given by

K(N2) = e2f (� � �2 + 2�2 + b21):

which we verify by a straightforward computation is indeed independent of t. Remark that it follows
straightforward from the above di�erential equations that

@
@t
(� � �2 + b21) = �2b1(�� �2 + b21);

implying that either � � �2 + b21 vanishes identically on M or it vanishes nowhere on M . In the latter
case, we may, by translating f , i.e. by replacing N2 with a homothetic copy of itself, assume that
e2f (�� �2 + b21) = ~�, where ~� = �1. It is also clear that U1 = efE2 and U2 = efE3 form an orthonormal
basis on N2.

Next, we introduce a positive function �, depending only on the variable t, by the di�erential equation:

@
@t
� = �(b1 + �)

It then follows that

DE1
(�F + �) = 0;(28)

DE2
(�F + �) = 0;(29)

DE3
(�F + �) = 0;(30)

DE1
(�(�(b1 + �)E1 + �)) = �(b1 + �)(�(b1 + �)E1 + �)) + �(�+ b21 + 3�2)E1(31)

� 2�(b1 + �)�E1 � �(b1 + �)� + 4b1��E1 � ��E1 = 0;(32)

DE2
(�(�(b1 + �)E1 + �)) = ��(� + b21 � �2)E2;(33)

DE3
(�(�(b1 + �)E1 + �)) = ��(� + b21 � �2)E3:(34)

Now we consider di�erent cases. First, we assume that �+ b21��2 does not vanish identically onM , in
which case we have seen that the function vanishes nowhere on M . We then have the following theorem:

Theorem 4. Let  : N2 ! R3 be a proper, positive de�nite a�ne hypersphere and let 
 : I ! R2

be a curve. Let ~� = �1 denote the mean curvature of the 2-dimensional a�ne hypersphere and de�ne
F : I �N2 ! R3 : (t; u; v) 7! (
1(t) (u; v); 
2(t)).

(i) If 
 = (
1; 
2) satis�es
- (
01
2 � 
02
1)
2 6= 0
- ~�
2


0
1(


00
1 


0
2 � 
002 


0
1) < 0

- (
1
02 � 
01
2)
5 = � � 1
21


0
2
2(
001 


0
2 � 
002 
01),

then M is a 3-dimensional positive de�nite proper a�ne sphere,
(ii) If 
 = (
1; 
2) satis�es

- 
2

0
2 6= 0

- ~�
2

0
1(


00
1 


0
2 � 
002 


0
1) > 0

- 
01
5

41 = � � 1
02

2(
001 

0
2 � 
002 


0
1),

then M is a 3 dimensional positive de�nite improper a�ne sphere.

Conversely every a�ne hypersphere of Type (ii) or (vi) satisfying �+ b21+3�2 6= 0 can be obtained in this
way.

Proof. As �+ b21 � �2 vanishes nowhere on M , it follows from (32) to (34) that

� = �(�(b1 + �)E1 + �);(35)

de�nes a map from N2 into R4. Moreover, it follows that

DE2
�?(E2) = ��(� + b21 � �2)DE2

E2

= ��(� + b21 � �2)(�(b1 + �)E1 + �E2 + b3E3 + �)

= ��?(E2) + b3�?(E3)� (�+ b21 � �2)�

= ��?(E2) + b3�?(E3)� ~�e2f�:
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Similarly, we obtain that

DE2
�?(E3) = �b3�?(E2)� ��?(E3);

DE3
�?(E2) = (c3 � �)�?(E3);

DE3
�?(E3) = (�c3 � �)�?(E2)� ~�e2f�:

The above implies that � de�nes an immersion of N2 as an equia�ne sphere in a linear subspace R3 of
R4. The a�ne metric introduced by this immersion corresponds with the metric on N2.

Next, we remark that if we put

� = 1
�+b2

1
��2 (�F + �)� (b1+�)

�+b2
1
��2 (E1 � (b1 � �)F );(36)

it follows that

DE2
� = DE3

� = 0:

Hence � depends only on the variable t.
Now, we consider two cases. First, we assume that � 6= 0. In this case, we may by applying a translation

assume that � = ��F . Solving then (35) and (36) for F , we �nd that

F (t; u; v) = �(t)� 1
�(t)(�+b2

1
��2)�(u; v);

where u and v denote local coordinates on the surface N2. As

DE1
(E1 � (b1 � �)F ) = 2�E1 + � � (��� b21 � 3�2 + 4b1�)F � (b1 � �)E1

= (3�� b1)E1 + (b21 + 3�2 � 4b1�)F

= (3�� b1)(E1 � (b1 � �)F );

it follows that �0 and � are proportional. As F is linearly full this implies that � and � lie in mutually
transversal subspaces. Consequently there exists a curve 
 = (
1; 
2) in R2 such that after an a�ne
transformation F can be written as

F (t; u; v) = (
1(t); 
2(t)�(u; v));(37)

where � is a positive de�nite proper a�ne hypersphere. It follows that

Ft = (
01; 

0
2�)

Fu = (0; 
2�u)

Fv = (0; 
2�v):

As F is an immersion and F itself is a transversal vector �eld it follows that 
2 6= 0 and (
01
2�
02
1) 6= 0.
We also have that

Ftt = (
001 ; 

00
2�) = : : : Ft +

(
00

1

0

2
�
00

2

0

1
)

(
1
0

2
�
0

1

2)

F;

Ftu = (0; 
02�u) =

0

2


2
Fu;

Ftv = (0; 
02�v) =

0

2


2
Fv;

Fuu = (0; 
2�uu) = : : :Fu + : : :Fv + : : :Ft � ~�g(�u; �u)

2


0

1

(
0

1

2�
1
0

2
)F;

Fuv = (0; 
2�uv) = : : :Fu + : : : Fv + : : :Ft � ~�g(�u; �v)

2


0

1

(
0

1

2�
1
0

2
)F;

Fvv = (0; 
2�vv) = : : :Fu + : : : Fv + : : :Ft � ~�g(�v; �v)

2


0

1

(
0

1

2�
1
0

2
)F;

where g denotes the a�ne metric on the 2-dimensional a�ne hypersphere. Hence taking into account
that � is an equia�ne sphere with mean curvature ~�, it follows that F de�nes an equia�ne hypersphere
if and only if


42(
1

0
2 � 
01
2)

5 = �1
22
012(
001 
02 � 
002 
01);
whereas the condition that the induced metric is positive de�nite implies that

(
001 

0
2 � 
002 


0
1)~�
2


0
1 < 0:
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This completes the proof in this case. In the case that � = 0, we proceed as follows. We �rst remark that
(36) reduces to

�(t) = 1
b2
1
��2 � � 1

b1��E1 + F

= 1
b2
1
��2 (� � (b1 + �)E1) + F

= 1
�(b2

1
��2)�+ F:

Hence, we still have that

F (t; u; v) = �(t) � 1
�(b2

1
��2)�:

As

�0(t) = E1 � 1
�(b1��)�+

2b1
�(b2

1
��2)�

= E1 +
1

�(b1+�)
�

= E1 +
1

�(b1+�)
(�� � �(b1 + �)E1)

= 1
b1+�

�;

and by an a�ne transformation we may assume that � = (1; 0; 0; 0) , it still follows that if necessary after
applying a translation we may assume that there exists a curve 
 = (
1; 
2) in R2 such that

F (t; u; v) = (
1(t); 
2(t)�(u; v));(38)

where � : N2 ! R3 is a positive de�nite a�ne hypersphere. It follows that

Ft = (
01; 

0
2�);

Fu = (0; 
2�u);

Fv = (0; 
2�v):

As (1; 0; 0; 0) is a transversal vector �eld it follows that 
2
02 6= 0. We also have that

Ftt = (
001 ; 

00
2�) = : : :Ft +

(
00

1

0

2
�
00

2

0

1
)


0

2

�;

Ftu = (0; 
02�u) =

0

2


2
Fu;

Ftv = (0; 
02�v) =

0

2


2
Fv;

Fuu = (0; 
2�uu) = : : :Fu + : : :Fv + : : :Ft + ~�g(�u; �u)

2


0

1


0

2

�;

Fuv = (0; 
2�uv) = : : : Fu + : : :Fv + : : :Ft + ~�g(�u; �v)

2


0

1


0

2

�;

Fvv = (0; 
2�vv) = : : : Fu + : : :Fv + : : : Ft + ~�g(�v; �v)

2


0

1


0

2

�:

Hence taking into account that � is an equia�ne sphere with mean curvature ~�, it follows that F de�nes
an improper equia�ne hypersphere with a�ne normal (1; 0; 0; 0) if and only if


02
5

22 = �1
012(
001 
02 � 
002 
01);

whereas the condition that the induced metric is positive de�nite and non degenerate implies that

(
001 

0
2 � 
002 


0
1)~�
2


0
1 > 0:

which completes the proof of the theorem.

Next we consider that � = �1 and � + b21 � �2 vanishes identically on M . We then have the following
theorem:

Theorem 5. Let  : N2 ! R
3 : (u; v) 7! (u; v; f(u; v)) be an improper positive de�nite a�ne hypersphere

with a�ne normal (0; 0; 1) and let 
 : I ! R be a curve satisfying

(
1

0

2
�
2
0

1
)5
2

1

(
0

1

00

2
�
0

2

00

1
)
0

1

2 = c;
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where c is a non-zero constant. Then, F : I � N2 ! R
3 : (t; u; v) 7! (
1u; 
1v; 
1f(u; v) + 
2; 
1) de�nes

a proper a�ne hypersphere, which is positive de�nite provided

(
01
2 � 
1

0
2) 6= 0;

(
01

00
2 � 
001 


0
2)


0
1
1 > 0:

Conversely every proper a�ne hypersphere of Type (ii) or (vi) satisfying �+ b21 � �2 = 0 can be obtained
in this way.

Proof. From (28) to (34) it follows that we can introduce constant vectors C1 and C2 such that

�F + � = C1;

�(�(b1 + �)E1 + �) = C2:

Hence it follows that

�(�(b1 + �)E1 + C1 � �F ) = C2;

or equivalently

(b1 + �)E1 = �C2��1 +C1 � �F:(39)

Using that �+ b21 � �2 = 0, we can rewrite the above as

@
@t
F = (b1 � �)F � �C1(b1 � �) + C2�(b1 � �)��1:(40)

We now �x an initial value t0. As mentioned before, we know that the distribution T1 is integrable. Let
N0 denote the integral manifold through t0. As

DE2
E2 = �(b1 + �)E1 + �E2 + b3E3 + �

DE2
E3 = �b3E2 � �E3;

DE3
E2 = (c3 � �)E3;

DE3
E3 = (�c3 � �)E2 � (b1 + �)E1 + �:

and

DE2
(�(b1 + �)E1 + �) = 0 = DE3

(�(b1 + �)E1 + �)

it follows that this integral manifold is contained as an improper a�ne sphere in a 3-dimensional a�ne
subspace of R4 with a�ne normal a multiple of C2. Moreover, choosing the initial conditions for �
appropriately, we may assume that the a�ne normal actually is C2. Hence by applying a translation and
an a�ne transformation, we get that

F (t0; u; v) = (u; v; f(u; v); 0);(41)

where (u; v) 7! (u; v; f(u; v) de�nes an improper a�ne sphere with a�ne normal (0; 0; 1).
As the immersionF itself is nondegenerate it follows from (40) and (41) that the vector C1 is transversal

to the space spanned by F (t0; u; v). Therefore by applying an a�ne transformation, it follows that
C1 = (0; 0; 0; 1). We then get immediately from (40) and (41) that there exists a curve 
 = (
1; 
2) such
that

F (t; u; v) = (
1u; 
1v; 
1f(u; v) + 
2; 
1):(42)

It then follows that

Ft = (
01u; 

0
1v; 


0
1f(u; v) + 
02; 


0
1);

Fu = (
1; 0; 
1fu; 0);

Fv = (0; 
1; 
1fv; 0)
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and

Fuu = 
1fuu(0; 0; 1; 0);

Fuv = 
1fuv(0; 0; 1; 0);

Fvv = 
1fvv(0; 0; 1; 0);

Fut =

0

1


1
Fu;

Fvt =

0

1


1
Fv;

Ftt = : : :Ft +
(
0

1

00

2
�
00

1

0

2
)


0

1

(0; 0; 1; 0):

As

(0; 0; 1; 0) = 
0

1
F�
1Ft

(
0

1

2�
1
0

2
) ;

we see that the hypersurfaces de�ned by (42) de�nes an a�ne sphere provided that there exist a constant
c such that


2
1
(
2


0

1
�
0

2

1)

5


0

1

2(
00

1

0

2
�
0

1

00

2
)
= c;

where, in order for the immersion to be positive de�nite and nondegenerate, 
 satis�es moreover:

(
01
2 � 
1

0
2) 6= 0;

(
01

00
2 � 
001 


0
2)


0
1
1 > 0:

Finally we deal with the case that M is an improper a�ne hypersphere such that b21 � �2 = 0. Those
hyperspheres are obtained as in the next theorem:

Theorem 6. Let  : N2 ! R3 : (u; v) 7! (u; v; f(u; v)) be a positive de�nite improper a�ne sphere with
a�ne normal (0; 0; 1). Then

F (t; u; v) = (ut; vt; t; f(u; v)t+ ct4);

F (t; u; v) = (u; v; f(u; v) + ct3; t4);

where t > 0 and c is a positive constant, de�ne improper a�ne hyperspheres of Type (ii) or (vi). Con-
versely every improper a�ne hypersphere of Type (ii) or (vi) satisfying b21��2 = 0 can be locally obtained
in this way.

Proof. As b21 � �2 = 0 and � > 0, we have two cases to consider. First, we assume that b1 = � > 0. In
this case, the di�erential equation for � states that

@
@t
� = 2b1�;

from which we deduce that we can take � = 1p
b1
. Proceeding as in the previous theorem, we �nd that

there exist constant vectors C1 and C2, where C2 is a multiple of (0; 0; 1; 0) and C1 is a multiple of
(0; 0; 0; 1) such that

@
@t
F = � 1

2
p
b1
C2 +

1
2b1
C1;(43)

and such that the integral surface through the point t0 is given by

F (t0; u; v) = (u; v; f(u; v); 0);(44)

where (u; v) 7! (u; v; f(u; v)) describes an improper a�ne sphere with a�ne normal (0; 0; 1). Combining
(43) and (44) it is then clear that there exists a curve 
 = (
1; 
2) such that

F (t; u; v) = (u; v; f(u; v) + 
1(t); 
2(t)):(45)

As

Ft = (0; 0; 
01; 

0
2);

Fu = (1; 0; fu; 0);

Fv = (0; 1; fv; 0);
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and

Fuu = fuu(0; 0; 1; 0) = : : :Ft � fuu



0

2


0

1

(0; 0; 0; 1);

Fuv = fuv(0; 0; 1; 0) = : : :Ft � fuv

0

2


0

1

(0; 0; 0; 1);

Fvv = fvv(0; 0; 1; 0) = : : :Ft � fvv

0

2


0

1

(0; 0; 0; 1);

Fut = 0;

Fvt = 0;

Ftt = : : :Ft +
(
00

2

0

1
�
00

1

0

2
)


0

1

(0; 0; 0; 1);

we see that F de�nes an improper a�ne sphere with a�ne normal a constant multiple of (0; 0; 0; 1) if
and only if

(
00

2

0

1
�
00

1

0

2
)
0

2

2


0

1

5 = ~c;

where ~c is a constant. It then follows by reparameterizing such that 
1(t) = t, if necessary after applying

a translation, that 
2(t) = ct
4
3 .

Next, we consider the case that b1 = ��. By applying an a�ne transformation, we may assume that
� = (0; 0; 0; 1). Proceeding as before, we obtain that

F (t0; u; v) = (u; v; 0; f(u; v));

where (u; v) 7! (u; v; f(u; v)) de�nes an improper a�ne sphere with a�ne normal (0; 0; 1). As the function
� is deterermined by

@
@t
� = 4�2 > 0;(46)

it follows that after a translation of the t-variable, we may assume that �(t) = � 1
4t . As DE1

E1 =
2�E1 + �,we get that F is determined by the di�erential equation:

@2

@t2
F = � 1

2t
@
@t
F + �;(47)

with initial condition F (t0; u; v) = (u; v; 0; f(u; v)). As E1 � (b1 � �)F is constant along and transversal
to the integral submanifold we may, if necessary after applying an a�ne transformation, take as second
initial condition that

E1(t0; u; v) + 2�(t0)F (t0; u; v) = (0; 0; 1; 0):

As it follows from (46) that the map t 7! � is a di�eomorphism, we can take � as a variable. Then the
di�erential equations reduce to

16�4 @
2F
@�2

+ 24�3 @F
@�

= �;(48)

with initial conditions at the point �0 given by

F (�0; u; v) = (u; v; 0; f(u; v));

@F
@�

(�0; u; v) = (� u
2�0

;� v
2�0

; 1
4�2

0

;� f(u;v)
2�0

):

Solving the above di�erential equation (48), we �nd that

F (�; u; v) = C1(u; v)�
�1
2 + C2(u; v) +

1
48�

�2�:

Comparing now with the initial conditions it follows that

C2(u; v) = (0; 0; 1
2�0

; 348�
�2
0 );

C1(u; v) = (u�
1
2
0 ; v�

1
2
0 ;�1

2
�
�12
0 ; f(u; v)�

1
2
0 � 1

12
�
�32
0 ):

Hence applying an a�ne transformation and a change of variables it is then easy to check that F is
congruent with an open part of

F (t; u; v) = (ut; vt; t; f(u; v)t+ dt4)
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Remark 1. It is actually quite surprising that a 3-dimensional a�ne hypersphere of any type (elliptic,
hyperbolic or improper) can be constructed starting from a 2-dimensional a�ne hypersphere of arbitrary
type. In particular, a 3-dimensional elliptic a�ne hypersphere can be constructed starting from a 2-
dimensional hyperbolic a�ne hypersphere. This is not the case when studying minimal Lagrangian
submanifolds of the complex projective space, see [16]. There, it is shown that in order to obtain
a minimal Lagrangian submanifold for which the second fundamental form has a similar form as the
di�erence tensor in Type (ii) or (vi) one has to start from a minimal Lagrangian submanifold in CP 2(4).

Remark 2. If in the previous theorem, we assume that the starting hypersphere is hyperbolic, we see that
a special curve 
 is given by


(t) = (12e
t; 12e

�t):

In this case, the resulting solution is the well known Calabi product of hyperbolic a�ne hyperspheres,
see also [6] and [13].

Remark 3. It is well known that a 2-dimensional positive de�nite improper a�ne hypersphere can be
locally written as

(12(z � �G); 18 (z�z �G �G) + 1
2Re(

Z
G)� 1

4Re(G(z)z))

where G is a holomorphic function. Combining this with the previous theorems yields many explicit
examples of 3-dimensional positive de�nite a�ne hyperspheres.

4. Affine hyperspheres of Type (iv)

In this section, we assume that M is an a�ne hypersphere of Type (iv). This means that at each point
p there exists an orthonormal basis fe1; e2; e3g such that

K(e1; e1) = �e1; K(e1; e2) = ��e2; K(e3; e1) = 0;

K(e2; e2) = ��e1; K(e2; e3) = 0; K(e3; e3) = 0;

where � is a positive number. From the above expression, assuming that � = �1, it is clear that M
realizes at every point the equality in the following inequality, which was derived in [18] and which states

3�̂(p)� sup
�2G2(TxM)

K̂p(�) � 2�:

Here �̂ and K̂ denote respectively the normalized scalar curvature and sectional curvature. Furthermore,
G2(TxM ) denotes the Grassmannian of 2-dimensional subspaces of TxM . This inequality was motivated
by the work of Chen for submanifolds of real space forms ([3]). It was shown in [18] that a 3-dimensional
proper a�ne hypersphere realizes at every point the equality if and only ifM is a proper a�ne hypersphere
of Type (iv). As 3-dimensional elliptic and hyperbolic a�ne hyperspheres realizing the equality were
respectively classi�ed in [9] and [7], we will restrict ourselves in the remainder of this section to the case
that M is an improper a�ne sphere, i.e. � = 0.

First, we remark that a straightforward computation shows the following

Lemma 4. Let fe1; e2; e3g be the orthonormal basis de�ned previously. Then it follows that

dRic(e1; e1) = �2; dRic(e1; e2) = 0; dRic(e3; e1) = 0;

dRic(e2; e2) = �2; dRic(e2; e3) = 0; dRic(e3; e3) = 0:

We again see as a consequence that the 1-1 symmetric tensor �eld P associated with the Ricci tensor
has at each point two di�erent eigenvalues, one with multiplicity 1, the other with multiplicity 2. As in
the previous section we then can show that there exist orthonormal vector �elds fE1; E2; E3g de�ned on
a neighborhood of the point p and a non vanishing di�erentiable functions �, such that

K(E1; E1) = �E1; K(E1; E2) = ��E2; K(E3; E1) = 0;

K(E2; E2) = ��E1; K(E2; E3) = 0; K(E3; E3) = 0:

Remark that the choice of E1 and E2 is not unique. However it is possible to de�ne two distributions
T0 (the distribution determined by E3) and the distribution T1 (spanned by E1 and E2), which will play
a crucial role in the classi�cation. Computing now all components of the Gauss equation, it then follows
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by a long but straightforward computation that the functions �; a1; : : : ; c3 have to satisfy the following
system of partial di�erential equations:

E2(a1)� E1(b1) = 2�2 + a21 + b21 + b2c1 � b2a3 + a2b3 � a3c1;(49)

E3(a2)� E1(c2) = a22 + c22 + b2c1 + b2a3 � a1c3 + a3c1;(50)

E2(a2)� E1(b2) = b1a3 + b1b2 + a1a2 � a1b3 + c2b2 � c2a3;(51)

E3(a1)� E1(c1) = a2c3 � a3c2 + a1a2 + b1c1 + c1c2 + b1a3;(52)

E2(c2)� E3(b2) = b1c3 � b3c1 � a2b2 + a2c1 � b2b3 � c2c3;(53)

E2(c1)� E3(b1) = b3c2 � c3b2 + a1c1 � a1b2 � c1c3 � b1b3;(54)

E3(a3)� E1(c3) = a1c2 � a2c1 + a2a3 + a3b3 + b3c1 + c2c3;(55)

E1(b3)� E2(a3) = b1a2 � a1b2 � a1a3 � b1b3 + a3c3 � c3b2;(56)

E3(b3)� E2(c3) = b23 + c23 + a3b2 � a3c1 + b1c2 � b2c1:(57)

The number of unknowns in the above equations can be reduced using that K is a Codazzi tensor with
respect to the a�ne metric. In particular, we can show the following:

Lemma 5. We have

(i) c2 = c3 = 0,
(ii) c1 =

1
3b2,

(iii) a3 = �b2,
(iv) b3 = a2.

Moreover, the function � satis�es the following system of di�erential equations:

E1(�) = �3b1�;
E2(�) = 3a1�;

E3(�) = a2�:

Proof. From

(brE1
K)(E3; E3) = (brE3

K)(E1; E3);

it follows immediately that brE3
E3 = 0. Consequently c2 = c3 = 0. As

(brE1
K)(E2; E3) = (brE2

K)(E1; E3);

we deduce that K(E2; brE1
E3) = K(E1; brE2

E3). As � 6= 0, this implies that

b2 = �a3;
b3 = a2:

The other equations are obtained similarly.

As the connection is torsion free and thus

E1(E2(�)) �E2(E1(�)) = (brE1
E2 � brE2

E1)�;

we deduce from the di�erential equations for � that

E1(a1) + E2(b1) = �2
3a2b2:(58)

Using the previous lemma, the di�erential equations given by (49) to (57) now reduce to

E2(a1)� E1(b1) = 2�2 + a21 + b21 +
5
3b
2
2 + a22;(59)

E3(a2) = a22 � b22;(60)

E2(a2)� E1(b2) = 0;(61)

E3(a1)� 1
3
E1(b2) = a1a2 � 2

3
b1b2;(62)

E3(b2) = 2a2b2;(63)

1
3E2(b2) �E3(b1) = �2

3a1b2 � b1a2;(64)

E1(a2) + E2(b2) = 0:(65)
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Now, we want to solve the above system of di�erential equations explicitly. In order to do so, we
remark that by dividingM into several parts (and ignoring a set of measure zero), we may assume that
either

(i) the distribution spanned by E1 and E2 is integrable on M ,
(ii) the distribution spanned by E1 and E2 is nowhere integrable.

We start with the �rst case. As the distribution is integrable, it follows that b = 0. In this case, we have
the following theorem:

Theorem 7.

(i) Let � :M2 ! R3 : (u; v) 7! (u; v; f(u; v)) be an improper a�ne sphere with a�ne normal (0,0,1).
Then,

F (u; v; t) = (u; v; t; f(u; v) + 1
2t
2);

is an improper a�ne sphere of Type (iv) for which the distribution T1 is integrable.
(ii) Let � :M2 ! R

3 : (u; v) 7! (u; v; f(u; v)) be a proper elliptic a�ne sphere. Then,

F (u; v; t) = (t�(u; v); 12 t
2);

is an improper a�ne sphere of Type (iv) for which the distribution T1 is integrable.
(iii) Conversely, every 3-dimensional improper a��ne hypersphere of Type (iv) for which the distri-
bution T1 is integrable can be locally obtained in this way.

Proof. As b2 = 0, we have that both the distributions T0 and T1 are integrable. Hence there exist
coordinates t; u; v such that E3 = @t and @u and @v span the distribution T1. It follows from (60), (61)
and (65) that the function a2 is determined by

@ta2 = a22;

@ua2 = @va2 = 0:

First, we assume that a2 vanishes identically. In this case it follows that F (t0; u; v) de�nes an improper
a�ne sphere with a�ne normal �. Moreover, we have that along this surface, E3 is a constant vector.
Hence by applying an a�ne transformation, we may assume that F (t0; u; v) = (u; v; f(u; v); 0), � =
(0; 0; 1; 0) and E3(t0; u; v) = (0; 0; 0; 1). Taking into account that

@2

@t2
F = DE3

E3 = �;

it follows that F is congruent with

F (t; u; v) = (u; v; t; f(u; v) + 1
2 t
2):

This completes the proof in this case.
By the di�erential equation for a2, we may now assume that a2 is a nonvanishing function of t. If

necessary by replacing E3 with �E3, we may assume that a2 is positive. Solving the di�erential equation
explicitly, we may assume that after a translation in the t-coordinate we have that 1

a2
= �t. It now

follows that F (t0; u; v) is an elliptic proper a�ne sphere with a�ne normal E3 +
1
a2
�. Using again that

@2

@t2
F = DE3

E3 = �;

it now follows easily that we can write

F (t; u; v) = (t�(u; v); 12 t
2);

where (u; v) 7! (u; v; �(u; v)) de�nes an elliptic proper a�ne sphere in R3.

Next, we focus on the case that the distribution T1 is nowhere integrable, implying that the function
b2 is a nowhere vanishing function. In order to solve the system of di�erential equations (58)-(65) we
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introduce functions f; �1; �2; �1; �2 on M by

f = a2
a2
2
+b2

2

;(66)

�1 = E1(f);(67)

�2 = E2(f);(68)

(�1 + i�2)
3 = 1

�(a2�ib2)2 ;(69)

where �1 and �2 are well de�ned up to multiplication by e
2
3�i, due to the nonvanishing of b2. We then

have that

E3(f) = E3(
a2

a2
2
+b2

2

) = �1:
Consequently, we deduce that

E3(�1) = E3(E1(f))

= E1(E3(f)) + (brE3
E1 � brE1

E3)f

= �2
3b2�2 + a2�1:

Similarly, we deduce that

E3(�2) =
2
3b2�1 + a2�2;

E1(�2)�E2(�1) = 2b2 � a1�1 � b1�2;

E3(�1) = �a2�1 � 2
3b2�2;

E3(�2) =
2
3b2�1 � a2�2;

E1(�1)�E2(�2) = a1�2 + b1�1;

E1(�2) +E2(�1) = �a1�1 + b1�2:

A straightforward computation, using the above di�erential equations, then shows that the vector �elds
T ,U and V de�ned by

T = E3;

U = �1E1 + �2E2 + (�1�1 + �2�2)E3;

V = ��2E1 + �1E2 + (��2�1 + �1�2)E3;

satisfy that [T; U ] = [T; V ] = [U; V ] = 0. Consequently, we have that there exist local coordinates t, u
and v such that @

@t
= T = E3,

@
@u

= U and @
@v

= V .
Solving now �rst (60) and (63), which can be rewritten as

@
@t
(a2 + ib2) = (a2 + ib2)

2;

we �nd that there exists functions C1 and C depending on the variables u and v such that

a2 =
�t+C1

(�t+C1)2+C2 ;(70)

b2 = � C
(�t+C1)2+C2 :(71)

From the de�nition of �1 and �2 it then follows that C1 is a constant and thus by a translation of the
t-coordinate we may assume that C1 vanishes identically. Solving now the di�erential equation for �, we
�nd that there exist a function D depending on u and v such that

� = eDp
t2+C2

:(72)

Solving the di�erential equations (61) and (65) for �1 and �2 we deduce that

�1 = ��2@uC+�1@vC
�2
1
+�2

2

;

�2 =
�1@uC��2@vC

�2
1
+�2

2

:

Using then the di�erential equations for � to de�ne the functions a1 and b1, we �nd after a straightforward
computation that the di�erential equations (62) and (64) become trivially satis�ed. On the other hand,
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the di�erential equations (58) and (59) imply that the functions C and D satisfy the following system of
di�erential equations:

4C = �2CE�23D;(73)

4D = (3 + 6E2D)E�
2
3D:(74)

We now can formulate the following theorem:

Theorem 8. Let S be a open domain in R2 and let (C;D) be a solution of the system (73)-(74) such that
C is a nowhere vanishing function on S. Then S�R can be immersed as an improper a�ne hypersphere
of Type (iv). Conversely every improper a�ne hypersphere of Type (iv) for which the distribution T1 is
nowhere integrable can be characterized by giving a pair of nonzero functions satsifying the above system
of elliptic equations.

Proof. We de�ne functions a2, b2, �1, �2, �, �1, �2, a1 and b1 as described in the previous equations.
We de�ne vector �elds E1, E2 and E3 on S �R by

E1 =
�1

�2
1
+�2

2

@u � �2
�2
1
+�2

2

@v � �1@t
E2 =

�2
�2
1
+�2

2

@u +
�1

�2
1
+�2

2

@v � �2@t
E3 = @t:

We introduce a metric h on S � I by the assumption that E1, E2 and E3 form an orthonormal basis and
a di�erence tensor K by

K(E1; E1) = �E1; K(E1; E2) = ��E2; K(E3; E1) = 0;

K(E2; E2) = ��E1 + �E2; K(E2; E3) = 0; K(E3; E3) = 0:

We also de�ne a shape operator S = 0. It is then straightforward to check that h, K and S satisfy all the
conditions of the fundamental theorem of [5]. Consequently S� I can be immersed as an improper a�ne
hypersphere with a�ne metric h and di�erence tensor K. Clearly, it is an improper a�ne hypersphere
of Type (iv). It is straightforward to check that the distribution T1 is nowhere integrable. The converse
statement was proved immediately before we stated the theorem.

5. Affine hyperspheres of Type (v)

Finally, in this section, we assume that M is an a�ne hypersphere of Type (vi). It is easy to see that
this implies that at each point p there exists an orthonormal basis fe1; e2; e3g such that

K(e1; e1) = �1e1; K(e1; e2) = �2e2; K(e3; e1) = �3e3;

K(e2; e2) = �2e1; K(e2; e3) = 0; K(e3; e3) = �3e3;

where 0 < �1 = ��2 � �3 and 0 6= �2 6= �3 6= 0.
By a straightforward computation we obtain the following:

Lemma 6. Let fe1; e2; e3g be the orthonormal basis de�ned previously. Then it follows that

dRic(e1; e1) = �+ �22 + �23 + �2�3; dRic(e1; e2) = 0; dRic(e3; e1) = 0;

dRic(e2; e2) = �+ �22;
dRic(e2; e3) = 0; dRic(e3; e3) = �+ �23:

Using the various conditions on �2 and �3, we see that the 1-1 symmetric tensor �eld P associated
with the Ricci tensor has at each point three di�erent eigenvalues, all with multiplicity 1. Hence there
exist orthonormal vector �elds fE1; E2; E3g de�ned on a neighborhood of the point p and a non vanishing
di�erentiable functions �2; �3, with �2 + �3 < 0 and �2 � �3 6= 0 such that

K(E1; E1) = �(�2 + �3)E1; K(E1; E2) = �2E2; K(E3; E1) = �3E3;

K(E2; E2) = �2E1; K(E2; E3) = 0; K(E3; E3) = �3E1:



THREE DIMENSIONAL AFFINE HYPERSPHERES 17

Computing now all components of the Gauss equation, it then follows by a long but straightforward
computation that the functions �2; �3; a1; : : : ; c3 have to satisfy the following system of partial di�erential
equations:

E2(a1)� E1(b1) = �+ 2�2 + �2�3 + a21 + b21 + b2c1 � b2a3 + a2b3 � a3c1;(75)

E3(a2)� E1(c2) = �+ 2�23 + �2�3 + a22 + c22 + b2c1 + b2a3 � a1c3 + a3c1;(76)

E2(a2)� E1(b2) = b1a3 + b1b2 + a1a2 � a1b3 + c2b2 � c2a3;(77)

E3(a1)� E1(c1) = a2c3 � a3c2 + a1a2 + b1c1 + c1c2 + b1a3;(78)

E2(c2)� E3(b2) = b1c3 � b3c1 � a2b2 + a2c1 � b2b3 � c2c3;(79)

E2(c1)� E3(b1) = b3c2 � c3b2 + a1c1 � a1b2 � c1c3 � b1b3;(80)

E3(a3)� E1(c3) = a1c2 � a2c1 + a2a3 + a3b3 + b3c1 + c2c3;(81)

E1(b3)�E2(a3) = b1a2 � a1b2 � a1a3 � b1b3 + a3c3 � c3b2;(82)

E3(b3)�E2(c3) = �� �2�3 + b23 + c23 + a3b2 � a3c1 + b1c2 � b2c1:(83)

The number of unknowns in the above equations can be reduced using that K is a Codazzi tensor with
respect to the a�ne metric. In particular, by a straightforward computation we obtain the following:

Lemma 7. There exists a local function c such that

(i) b2 = c1 = a3 = 0,
(ii) a2 = (1� �3

�2
)b3,

(iii) a1 = (�2
�3
� 1)c3,

(iv) c2 = c�3,
(v) b1 = c�2.

Moreover, the functions �2 and �3 satisfy the following system of di�erential equations:

E1(�2) = �c�2(3�2 + �3);

E2(�2) = 3c3�2(
�2
�3
� 1);

E3(�2) = b3(�2 � �3);
E1(�3) = �c�3(3�3 + �2);

E2(�3) = c3(�2 � �3);

E3(�3) = 3b3�3(1� �3
�2
):

Using the previous lemma, the di�erential equations given by (77) to (83) now imply that

E2(c) = 0;

E3(c) = 0;

E1(c3) = �cc3�2;
E1(b3) = �b3c�3;
E3(c3) = 3b3c3;

E2(b3) = �3b3c3:
If we now introduce a function � by

E1(c) = �;

we deduce from (75) and (76) that

E2(c3) =
1

�2�3(�2��3) (c
2
3(��32 + �2�

2
3) + �33(b

2
3(�2 � �3)

+ �2(�+ �2(�� (c2 � 1)(2�2 + �3))));

E3(b3) =
1

�2�3(�2��3) (c
2
3�

2
2(��2 + �3) + �3(b

2
3(�

2
2 � �23)

+ �22(�+ �3(�� (c2 � 1)(�2 + 2�3)))):
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We now compute some integrability conditions. As br is torsion free, we know that for any function
f , the following equations are satis�ed:

0 = E1(E2(f)) �E2(E1(f)) � (brE1
E2)(f) + (brE2

E1)(f);

0 = E1(E3(f)) �E3(E1(f)) � (brE1
E3)(f) + (brE3

E1)(f);

0 = E2(E3(f)) �E3(E2(f)) � (brE2
E3)(f) + (brE3

E2)(f):

It is straightforward to check that applying the above principle for the functions �2 and �3 does not yield
any new equations. However, applying this principle for the functions c, c3 and b3 yields the following
system of di�erential equations for the function �:

E2(�) = ��c3(1� �2
�3
);

E3(�) = �b3(1� �3
�2
);

E1(�) = � 1
�2
2
�2
3

(c(4c23�
2
2(�2 � �3)2 + �23(4b

2
3(�2 � �3)2

+ �22(4�� 3�(�2 + �3) + 4(c2 � 1)(�22 + �2�3 + �23)))));

of which one can check that the integrability conditions are satis�ed.
We now consider several cases. By restricting to an open dense subset of M , we may assume that one

of the following holds:

(i) the functions b3 and c3 are non vanishing functions. In this case we introduce positive, nonvanishing
functions �1, �2 and �3 by

�1 = (�2�3)
� 1
4 ;

�2 = c
�13
3 �

�14
2 �

1
12
3 ;

�3 = b
�13
3 �

� 1
4

3 �
1
12
2 :

(ii) the function c3 vanishes identically on M and the function b3 is a non vanishing function. In this
case we introduce positive, nonvanishing functions �1, �2 and �3 by

�1 = (�2�3)
� 1
4 ;

�3 = b
�13
3 �

�14
3 �

1
12
2 ;

and the function �2 is determined by the following integrable system

E1(�2) = c�2�2;

E2(�2) = 0;

E3(�2) = �b3:
(iii) both the functions b3 and c3 vanish identically in which case we introduce the function �1 by

�1 = (�2�3)
� 1
4 ;

and the functions �2 and �3 are determined by the following integrable system of di�erential equa-
tions:

E1(�1) = �c�2�2; E1(�3) = �c�3�3;
E2(�2) = 0; E2(�3) = 0;

E3(�3) = 0; E3(rho3) = 0:

In all three cases, it follows that

[�1E1; �2E2] = [�2E2; �3E3] = [�1E1; �3E3] = 0;
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which implies that there exist local coordinates u, v and w such that
@
@u

= �1E1;

@
@v

= �2E2;

@
@w

= �3E3:

Replacing now the E1, 2 and E3 derivatives by derivatives with respect to u, v and w, we obtain a
completely integrable system. Using then the existence and uniqueness theorem of a�ne immersions, we
immediately obtain the following:

Theorem 9. Let M be an a�ne hypersphere of Type (v). Then, M is completely determined by giving
initial conditions for the functions �2, �3, b3, c3, c and � at a given point. Conversely,

(i) Given initial values for �2 and �3 at a point, we can construct an a�ne hypersphere of Type (v)
by assuming that b3 = c3 = 0, � = (c2 � 1)2(�2 + �3) and �+ �3�2(c2 � 1) = 0
(ii) Given initial values for �2, �3, b3 6= 0, c3 6= 0, c and � at a point, we can construct an a�ne
hypersphere of Type (v)
(iii) Given initial values for b3, �2, �3 and c at a point, we can construct an a�ne hypersphere of
Type (v) by assuming that c3 = 0 and � is determined by

b23(�2 � �3) + �2(� + �2(�� (c2 � 1)(2�2 + �3))):
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