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1 Introduction

Partial combinatory algebras (pca's, for short), are well-known to form the ba-
sic ingredient for the construction of various realizability toposes, of which the
E�ective Topos is undoubtedly the most famous. There is more than one way to
present the realizability topos associated to a pca; one may take the exact com-
pletion of the category of partitioned assemblies (see [7]), or one can use tripos
theory. Triposes built from pca's are, together with those from locales, the most
important and most extensively studied instances of triposes, but from a struc-
tural point of view, there are important di�erences between the two; whereas
locales are organized in a well-behaved category, which is a re
ective subcate-
gory of the category of toposes, it is not immediately clear what an appropriate
category for pca's may look like. Moreover, there are various nice properties
in the localic case, such as the fact that there is a one-to-one correspondence
between maps of locales and geometric morphisms between the corresponding
sheaf toposes, and also the fact that this correspondence preserves epi-mono
factorizations; such an intimate connection is absent for pca's.

As it turns out, we are in a better position to formulate a reasonable answer
to the question how pca's should be organized from a categorical point of view,
when we consider a weakening of the notion of a pca. This weakening will enable
us to carry out constructions (which are impossible if we restrict ourselves to
ordinary pca's) that render a clear connection between maps on the level of our
combinatorial structures and on the topos/tripos- theoretic level.

The paper is organized in the following way: we start by de�ning the notion
of an ordered pca, and exhibit some properties of the associated tripos and
realizability topos. This section does hardly contain new and/or surprising
information. The basic de�nitions were laid down in [10], and the facts that
we mention are often an uncomplicated generalization of well-known properties
of the E�ective Topos. In section 3, we provide a categorical framework for
ordered pca's. We �rst de�ne an appropriate notion of a morphism of ordered
pca's, and then we investigate which morphisms induce geometric morphisms
between the triposes. We also exhibit a monad on the category of ordered pca's,
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an it turns out that the 2-category of realizability triposes over ordered pca's
(with geometric morphisms geometric morphisms as arrows) is equivalent (in a
suitable 2-categorical sense) to the Kleisli category of this monad. The last part
of this section is devoted to a brief study of the occurrence of local localic maps
between realizability toposes. This is essentially a translation of the work done
in [1] into our own framework.

Finally, section 4 deals with an application to chains of inclusions of realiz-
ability toposes. In his thesis [7], Menni discusses hierarchies of toposes of the
form (Creg(n))ex, where C is a category satisfying some conditions, (�)reg(n) de-
notes the n-fold regular completion, and (�)ex denotes the exact completion.
He conjectured, that there should be a tripos-theoretic presentation of this hi-
erarchy, making use of a certain operation on ordered pca's. We explain how
this works and show the conjecture to be true.
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2 Ordered PCA's

In this section we present a generalization of the notion of a pca, which we
will call an ordered partial combinatory algebra, ordered pca for short. We
investigate some basic properties of those objects, and some special cases. Then
we show that we can easily adapt the construction of a tripos for a pca, so that
we can associate a realizability topos with a given ordered pca. We show that a
lot of properties of the E�ective Topos generalize to these realizability toposes.
In particular, such toposes are exact completions.

2.1 Basics

De�nition 2.1 An ordered pca is a triple A = (A;�; �), where � partially
orders the set A, and where � is a partial function from A� A to A. We write
a � b# or ab# if (a; b) is in the domain of �, in which case a � b or ab denote the
value. We require that the following conditions are satis�ed:

1. For all a; b 2 A: if ab# , a0 � a and b0 � b, then a0b0# and a0b0 � ab.

2. There are elements k and s of A that satisfy

� for all a; b 2 A: ka# and kab# and kab � a,

� for all a; b; c 2 A: sa# and sab# and if (ac)(bc)# , then sabc# and
sabc � (ac)(bc).

The �rst remark is, that every ordinary pca can be seen as an ordered pca,
namely by taking the discrete ordering. The de�nition of an ordinary pca is
motivated by the fact that the combinators k and s ensure that the structure is
combinatorially complete. Now it is essential for our purposes that the way we
weakened the de�nition of a pca does not seriously a�ect this property:

Proposition 2.2 (Combinatorial completeness) Let A be an ordered pca.
For every term t composed of elements of A, application and the variable x, there
is an element [�x:t] in A, such that for all a 2 A: if t[a=x]# then [�x:t]a# and
[�x:t]a � t[a=x].

As was already remarked in [10], the proof is an easy adaptation of the case that
A is an ordinary pca. From this proposition it follows that there are pairing
operations, written j; j0; j1 that satisfy

j0(j(a; b)) � a; j1(j(a; b)) � b:

It is well-known that every pca is either in�nite or consists of only one element.
(One way of understanding this is to observe �rst that, using k and s one can
construct all the numerals �0; �1; : : : , and then to remark that these all have to
be distinct.) For ordered pca's there are somewhat more possible variations, so
let us introduce the following terminology:
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De�nition 2.3 An ordered pca is called trivial if it has a least element, and it
is called pseudo-trivial if there is an element that serves both as k and as s.

An example of a pseudo-trivial ordered pca that is not trivial is provided by
a meet-semilattice (without a least element, of course). We have the following
characterization:

Lemma 2.4 For any ordered pca A the following statements are equivalent:

1. A is pseudo-trivial,

2. there is an element u such that u � k = true and u � sk = false,

3. any two elements have a lower bound (not necessarily a meet),

4. there are natural numbers n;m such that n 6= m, but n and m have a
lower bound (n denotes the element that corresponds to n for some coding
of the natural numbers).

Proof. (1) ) (3): consider the element u = skkk = kskk. We have skkk �
kk(kk) � k, but also kskk � sk. Now kxy � x, so (skkk)xy � x. And skxy � y,
so (kskk)xy � y, and we have found that (skkk)xy = (kskk)xy = uxy is a lower
bound of any x and y.

(2)) (1): take u with u � k and u � sk. Then uks is a lower bound for k
and s, and this lower bound serves both as k and as s.

(3)) (1); (2); (4) are trivial.
(4)) (2): suppose m > n and x � m and x � n. We have, by combinatorial

completeness, terms zero and pred, that test for zero and take the predecessor.
To be more precise: zero � p � k if p = 0, and zero � p � sk if p 6= 0,
pred�p � p� 1_. Now we �nd that zero(predn�m) � sk and zero(predn�m) � k.
So for x this implies zero(predn � x) � sk and zero(predn � x) � k.

�

2.2 Triposes for ordered pca's

By now, the construction of a tripos, and hence of a realizability topos out of a
partial combinatory algebra is standard. (The reference [4] is just as standard.)
We give the straightforward generalization to ordered pca's.

So given a ordered pca A = (A;�; �), de�ne I(A ) as the set of all downsets
in A, that is,

I(A ) = f� � A j 8a 2 �; 8a0 2 A(a0 � a! a0 2 �)g:

This downset I(A ), of course, is just the powerset if the order on A is discrete.
A downset � is called a principal downset i� it is of the form � = fa 2 A j

a � bg for some element b 2 A.
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Next, consider the following operations, where �; � 2 I(A ):

�� � = #(fj(a; b) j a 2 �; b 2 �g)

�) � = fa 2 A j 8b 2 � : a � b# & a � b 2 �gY
x2X

�x =
\
x2X

(A) �x)

X
x2X

�x =
[
x2X

�x

Now we get a preorder on I(A )X by putting (for �;  2 I(A )X )

� `  i� 9a 2 A 8x 2 X 8b 2 �(x) : ab# & ab 2  (x)

The Heyting algebra operations on this preorder are given by pointwise appli-
cation of the operations de�ned above, for example (� ^  )(x) = �(x) �  (x).
For a function f : X ! Y , the quanti�ers are given by

(9f�)(y) =
X

f(x)=y

�(x); (8f�)(y) =
Y

f(x)=y

�(x)

This de�nes a tripos I(A )(�) , and hence a topos, call it RT[A ].
Remark. This certainly looks like the most natural generalization of the
ordinary construction of a tripos from a pca, but in those cases where the
following condition is satis�ed we have an interesting alternative (see [10]). We
say that an ordered pca A has the pasting property i� any two elements a; b that
have a lower bound also have a join (this amounts to saying that the underlying
poset has pushouts) and if application preserves this join in both variables, i.e.
c(a _ b) ' ca _ cb and (a _ b)c ' ac _ bc. If our ordered pca has this pasting
property then we can de�ne J(A ) � I(A ) as those downsets in A that are closed
under pushouts. Note that J(A ) = I(A ) if the ordering of A is discrete.

There is an inclusion map i : J(A ) ,! I(A ), which induces an indexed map of
preorders i : J(A )X ,! I(A )X . Left adjoint to this map is composition with the
operation Clp, which takes a downset to its closure under pushouts. From this it
is not hard to establish that there is a geometric inclusion of triposes J(A )(�) ,!
I(A )(�) , and hence an inclusion of toposes (denote the topos represented by the
tripos J(A )(�) by RT0[A ]), RT0[A ] ,!RT[A ].

A tripos equivalent to J(A )(�) was already used by Pitts [8] in order to
create a topos for extensional realizability, taking A to be the nonempty subsets
of the natural numbers.
Remark. It is easily seen that RT[A ] ' Set if A is trivial. Moreover, if A

is pseudo-trivial, then RT[A ] is a �lter-quotient of the presheaf topos SetA
op

(see [10] ).

2.3 Categorical properties

This section contains some straightforward generalizations of well-known facts
about the E�ective Topos. Since the proofs involve only minor adaptations,
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we omit them, providing the reader only with the de�nitions and constructions
involved.

Lemma 2.5 Let RT[A ] refer to the realizability topos introduced in the previous
section. Then Set ' (RT[A ]):: .

Proof. The geometric inclusion � a r is de�ned exactly as for the E�ective
Topos (see [3]).

�

De�nition 2.6 An object (X;=) of RT[A ] is called canonically separated i�
the equality on X satis�es [[x = x0]] 6= ; implies x = x0.

An object is separated for the double negation topology i� it is isomorphic to
some canonically separated object. Later on, we shall use the fact, that every
separated object embeds into a sheaf.

The next thing we mention is that the topos RT[A ] is an exact completion.
The method used to show this is directly taken from [9]. We now brie
y outline
this procedure.

De�nition 2.7 An object (X;=) of RT[A ] is called canonically projective i� it
is canonically separated and [[x = x]] is a principal downset for each x 2 X.

Lemma 2.8 Every object in RT[A ] can be covered by a canonically projective
object.

Proof. Given (X;=), de�ne Q = f(x; a) j a 2 [[x = x]]g, together with

[[(x; a) = (x0; a0)]] =

(
fb j b � ag if x = x0 and a = a0

; otherwise.

This clearly is a canonically projective object. The projection

Pr((x; a); x0) = fb j b � ag � [[x = x0]]

is easily seen to be an epimorphism.
�

Lemma 2.9 Consider the full subcategory of RT[A ] on the objects that are
isomorphic to some canonically projective object. This category is closed under
�nite limits.

Lemma 2.10 The canonically projective objects are, up to isomorphism, pre-
cisely the projective objects of RT[A ].

From these lemmas it follows that RT[A ] is the exact completion of its full
subcategory on the projectives. We also get the following:
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Corollary 2.11 (ProjRT[A] )Reg ' SepRT[A] .

Proof. Every separated object embeds into a sheaf, and sheaves are pro-
jective. Combined with the fact that there are enough projectives and that
Proj

RT[A] is left exact, we have ful�lled the necessary and su�cient conditions
for a regular category to be a regular completion.

�
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3 A 2-Category for ordered pca's

In Longley's thesis [6], we �nd a description of a 2-category of pca's. The def-
inition of a morphism between two pca's is chosen in such a way, that there is
a correspondence between such morphisms and certain exact functors between
the associated realizability toposes. One could, of course, generalize these con-
structions to ordered pca's, but we think that some adaptations are desirable.
First of all, in Longley's framework, a morphism � : A ! B of pca's is de�ned
to be a total relation from A to B , for which there is an element r 2 B such
that �(a; b) & �(a0; b0) & aa0# ) rbb0# & �(aa0; rbb0). Instead of relations, we
rather work with functions, since these are often easier to deal with.

Now the succes of Longley's de�nition is easily seen to depend crucially on
the following theorem by Pitts ( [8], section 4.9):

Theorem 3.1 There is a one-to-one correspondence between

1. Set-indexed functors from P (A ) to P (B) that preserve T;^ and 9 and

2. functions f : A ! P (B) such that f(a) 6= ; for all a, and moreoverT
a;a02Dom(�) f(a) ! (f(a0)! f(aa0)) 6= ;.

We will also base our de�nition on this theorem ourselves, but we are more inter-
ested in geometric morphisms than in exact functors commuting with 9, so an
important part of our approach will be a characterization of those functions be-
tween ordered pca's that induce geometric morphisms between the realizability
toposes.

3.1 The category OPCA

We �rst present a suitable category for ordered pca's, that is, as said before,
both an adaptation and a generalization of Longley's 2-category for pca's. The
objects are, of course, ordered pca's. For morphisms, we introduce the following
de�nition:

De�nition 3.2 Let A and B be ordered pca's, and let f : A ! B be a function.
We say that f is a morphism of ordered pca's if:

� f is order-preserving,

� there exists an element r 2 B such that aa0# ) (r � f(a)) � f(a0)# and
(r � f(a)) � f(a0) � f(aa0).

We will refer to the element r in the de�nition as the witness of f . It is easily
veri�ed that if r witnesses f : A ! B and r0 witnesses g : B ! C then g � f has
a witness �uv:r0 � (r0 � g(r) � u) � v. Therefore, composition is well-de�ned. We
will write OPCA for this category.

Next, we observe that the Hom-sets of this category are pre-ordered sets if
we de�ne, for f; g : A ! B : f � g i� 9b 2 B : b � f(a)# & b � f(a) � g(a)
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for all a 2 A . Since composition of morphisms preserves this ordering, in the
sense that f � g ) fh � gh and kf � kg, we see that OPCA is a pre-order
enriched category. We write f � g for f � g & g � f , and we say that f and g
are equivalent as morphisms.

It is good to observe that a map f : A ! B provides us with a description
of A as an internal ordered pca in the topos RT[B ]. The underlying set of
this (canonically projective) object is the underlying set of A , and the existence
predicate is given by Ef (a) = #(f(a)). Moreover, if we have f; g : A ! B , then
f � g i�, internally in RT[B ], the identity on A is a map (A ; Ef )! (A ; Eg ).
Remarks. The structure of the category OPCA is not particularly impres-
sive. We mention the following:

1. (This was already observed by Longley.) The terminal object in OPCA
is the one-point ordered pca. For any other trivial A , there is, for any
B , always a morphism f : B ! A . This f is unique up to equivalence of
morphisms. Trivial ordered pca's are also pseudo-initial, in the sense that
for any other ordered pca B , there is always a map into B , and any two
such maps are equivalent. To see why this must be the case, suppose that
A has least element ?, and consider two maps f; g : A ! B . Then for all
a 2 A we see that (�x:g(?)) � f(a) � g(a), and (�x:f(?)) � g(a) � f(a).

Apart from this, we can observe that any constant function between or-
dered pca's is a morphism, and that any two constant maps are equivalent.

2. The category OPCA has products: given A and B , we de�ne A � B

as A � B = (A � B; �;�) with (a; b) � (a0; b0) i� a � a0 and b � b0,
(a; b) � (a0; b0)# i� aa0# and bb0# , in which case (a; b) � (a0; b0) = (aa0; bb0).
The pairs (kA; kB); (sA; sB) serve as k and s in the product.

3. Monos and epis are just injective and surjective maps, respectively. For,
consider a map f : A ! B that is not injective, say f(a) = f(a0). Then
we take two (di�erent) maps 1! A sending the unique element to a and
a0, respectively. Their composites with f are obviously equal.

If f : A ! B is not surjective, then there is some element b0 2 B that is
outside the image of f . Consider the trivial structure Pconsisting of two
elements p; q with p � q. Now de�ne maps g; h : B ! Pby

g(b) =

(
q if b0 < b

p otherwise,
h(b) =

(
q if b0 � b

p otherwise.

It is not hard to verify that these are indeed morphisms in our category,
and that gf = hf , but not g = h.

4. If f : A ! B is any map, witnessed by some r 2 B , then we de�ne a
structure Im(f) = ( #(Im(f));�; �0), by taking � to be the ordering on
B restricted to the set #(Im(f)) = fb 2 B j 9a 2 A : b � f(a)g, and by
de�ning

b �0 b0 ' r � b � b0
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for any two elements b; b0 2 #(Im(f)). Now f factors as a map e : A !
Im(f) followed by m : Im(f) ! B . The map m is necessarily injective,
and hence mono. Unfortunately, the map e is in general not surjective, so
this procedure need not yield an epi-mono factorization of f . If, however,
the set Im(f) already is downwards closed in B , then e is an epimorphism.

5. Equalizers do not exist in OPCA. The reason is simple: if we have two
structures A , B , then we can take two di�erent constant maps. There
equalizer would have to have the empty set as underlying set, but no such
ordered pca exists.

6. (Generalizing an old theorem by Pitts:) As said before, a map f : A ! B

gives a way to consider A as an internal ordered pca in the topos RT[B ].
This gives rise to a RT[B ]- tripos, call it PA , in the evident way, so we
obtain another topos RT[B ](PA ). Pitts showed that, if A = N, the natural
number object in RT[B ], then the topos RT[B ](PA ) also comes from an
ordered pca. It turns out that this is true for arbitrary A . Given f : A !
B , we construct a new ordered pca, called A �f B . The underlying partial
order is the same as that of A � B , but application is de�ned as:

(a; b) �f (a
0; b0) ' (aa0; b � j(f(a0); b0)):

Now there is a projection map �A : A �f B ! A . For every �xed b0 2 B ,
the map a 7! (a; b0) is a section of �A . For the proof that the topos
RT[B ](PA ) is equivalent to RT[A �f B ], we refer to [8]. There is no
di�culty in adapting the proof presented there to the more general case.

3.2 The Downset-monad

Now we describe a monad (I�; �;[) on OPCA. On objects, we de�ne

I�A = (f� j � 2 IA ; � 6= ;g;�; �):

So the underlying set of I�A consists of all nonempty downsets in A . It is ordered
by inclusion, and partial application is de�ned by � � �# i� 8a 2 � 8b 2 � ab# ,
and if � � �# then � � � = #fab j a 2 �; b 2 �g. It is not hard to verify that this
gives again a ordered pca, with #(k) and #(s) serving as combinators. Also,
there is a map � : A ! I�A , given by �(a) = #(a).

For a morphism f : A ! B , we put I�f(�) =
S
a2� #(f(a)). If f has a

witness r, then I�f has #(r) as a witness, and if � � �0 then also I�f(�) �
I�f(�0), so I�f is a morphism. Finally, it is clear that composition and identities
are preserved, so I� is indeed an endofunctor. Actually, it is an endo-2-functor,
since it preserves (and re
ects) the ordering on morphisms.

Now let [ : I�I�A ! I�A be the map given by union: [� = fa 2 A j 9� 2
� : a 2 �g. The veri�cations that both � and [ are natural transformations,
and that the monad identities are satis�ed are left to the reader.

We observe in passing, that if f : I�A ! A is an algebra for this monad
then f is necessarily the supremum map (so A has suprema of all nonempty
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subsets). Conversely an opca A admitting all nonempty suprema is an algebra
if there is some a 2 A such that for all �; �0 2 I�A : ��0# ) a �

W
� �
W
�0#

& a �
W
� �
W
�0 �

W
��0.

The theorem by Pitts that we stated at the beginning of this section can now
be strengthened as follows: letKl(I�) denote the Kleisli category for the monad
(I�; �;[) (this is a 2-category, since the pre-ordering of the arrows is inherited
from OPCA). Let RTripExact denote the 2-category of realizability triposes
of the form I(A )(�) , with exact functors as arrows, and natural transformations
pre-ordering those exact functors. Then we obtain:

Theorem 3.3 Every map f : A ! I�B induces a Set-indexed functor from
I(A )(�) to I(B )(�) , that commutes with ^;> and 9. Moreover, every such Set-
indexed functor is, up to isomorphism, induced by a map f : A ! I�B . Hence
we have a 2-functor from the Kleisli category Kl(I�) to RTripExact. This
2-functor is full, and faithful up to isomorphism.

Proof. Given f : A ! I�B , de�ne �f (�) =
S
a2� f(a). Conversely, take

� : I(A ) ! I(B ) with the mentioned properties. By Pitts' theorem it follows
that there is a map � : A ! I�B such that � is naturally isomorphic to ��, andT
a;a02Dom(�) �(a) ! (�(a0) ! �(aa0)) 6= ;. This map � does not necessarily

preserve the ordering (i.e. a0 � a ) �(a0) � �(a) need not hold), but it does
so up to a realizer: consider the object X = f(a0; a)ja0 � ag, and the two
projections �1; �2 2 I(A )

X . Clearly �1 ` �2. Hence also ���1 ` ���2, so there
is a realizer c 2

T
a0�a(�(a

0)! �(a)). Now we de�ne �0(a) =
S
a0�a �(a

0). It is

now easily seen that �0 is a morphism of ordered pca's, and that the map �0 is
naturally isomorphic to ��.

�

This theorem shows, in e�ect, that our approach is an extension of Longley's,
because Longley's 2-category of pca's is a subcategory of KL(I�).

A �nal observation for this section: just as a map f : A ! B presents A as
a projective internal ordered pca in RT[B ], a map g : A ! I�B presents A as a
separated internal ordered pca in RT[B ].

3.3 Geometric Morphisms

For reasons that are about to become transparent, we now concentrate on mor-
phisms f : B ! A that satisfy the following property:

8a 2 A 9b 2 B8b0 2 B : a � f(b0)# ) bb0# & f(bb0) � a � f(b0) (y)

It is evident that the composition of two maps satisfying (y) is again such a map,
and that the identity map also has (y), so that we can form the subcategory
OPCAy. Moreover, the structure maps of the monad � and [ both satisfy (y),
and if f satis�es (y), then so does I�f . Therefore, the monad (I�; �;[) restricts
to a monad on OPCAy. From now on, we will only be interested in the monad
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on the smaller category OPCAy, so when we refer to the monad I�; �;[, or to
anything related to this monad, we always mean the monad on OPCAy.

Let us now explain what the relevance of this property (y) is. Consider a
morphism f : B ! I�A in OPCAy. First we will show that this induces a
geometric morphism of triposes:

I(A ) //
f�1

? I(B )
oo

�f

where the arrows �f and f�1 are de�ned as

�f (�) =
[
b2�

f(b); f�1(�) = fb 2 B j f(a) � �g:

First, let us see why �f is order-preserving (now, of course, we refer to the pre-
order on I(B ), considered as a Heyting pre-algebra). Suppose b 2 � !  ,
for �;  2 I(B ). The morphism f has a witness, say r, satisfying aa0 # )
r � f(a) � f(a0)# & r � f(a) � f(a0) � f(aa0). Now take any element d 2 f(b).
Then �x:r � d � x 2 �f(�)! �f ( ).

Second, �f (� ^ �) = [ff(j(a; b)) j a 2 �; b 2 �g, whereas �f (�) ^ �f (�) =
[ff(a) j a 2 �g ^ [ff(b) j b 2 �g. If we are given x 2 f(j(a; b)), then we use
that r � f(j0) � f(j(a; b)) � f(a) and r � f(j1) � f(j(a; b)) � f(b) and pairing
to �nd an element of f(a) ^ f(b). Conversely, given y 2 f(a); z 2 f(b), use the
fact that r � (r � f(j) � f(a)) � f(b) � r � f(ja) � f(b) � f(j(a; b)), to obtain an
element in f(j(a; b)). Combined with the fact that �f preserves the top element
(trivial) we have shown that �nite meets are preserved.

Third, f�1 is order-preserving. Suppose a 2 � !  . Use (y) to �nd b 2 B

with 8b0 2 B : #(a) � f(b0)# ) bb0# & f(bb0) � #(a) � f(b0). This b realises
f�1(�) ! f�1( ), since f(b0) � � ) # (a) � f(b0)# , so bb0# & f(bb0) � #
(a) � f(b0) �  .

Finally, we have �f ` f�1. The veri�cation of this fact goes along the same
lines as that of the previous facts. This completes the proof of the claim that we
have an induced geometric morphism of triposes. Note in particular that for any
map g : B ! A in OPCAy, composition with the structure map D : A ! I�A
of the monad induces a geometric morphism.

The next step is to show, that, up to isomorphism, any geometric morphism
of realizability triposes is induced by a morphism in OPCAy.

Lemma 3.4 Suppose we have a geometric morphism

I(A ) //
f�

? I(B ):
oo f�

Then there is a map f : B ! I�A such that �f a` f�; f�1 a` f�.
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Proof. As has already been shown by Pitts, putting f(b) = f�( #(b)) is the
only choice we have, since this gives f�(�) a`

S
b2� f(b) =

�f (�), because f�, as
a left adjoint, preserves unions.

We know that �ff�1(�) � � and � � f�1 �f(�). So we get f�1(�) ` f�(�).
Also, we �nd f�(�) ` f

�1 �ff�(�) ` f
�1(�), hence f�1 a` f�.

Next, we show that this f is a morphism in OPCAy. Suppose that it isn't,
that is, there is � 2 I�A for which we have

8b 2 B9b0 2 B : � � f(b0)# & :(b � b0# & f(bb0) � � � f(b0):

We may take a choice function k : B ! B , that satis�es

8b 2 B : � � f(k(b))# & :(b � k(b)# & f(b � k(b)) � � � f(k(b)):

Now de�ne D� = fb 2 B j � � f(b)# g. Consider the functions �;  : D� ! IA ,
given by �(b) = f(b),  (b) = � � f(b). Clearly, we have that any a 2 � satis�es
a 2
T
b2D�

�(b)!  (b). Now f�1 preserves the ordering, from which it follows

that there is an element x 2
T
b2D�

f�1�(b)! f�1 (b). We �nd in particular
that, taking b = k(x), 8y 2 B : f(y) � f(k(x)) ) xy# & f(xy) � � � f(k(x)).
If we take y = g(x) we obtain a contradiction.

�

This establishes, that geometric morphisms I(B )(�) ! I(A )(�) , are, up to iso-
morphism, the same as ordered pca morphisms A ! I�B that satisfy the (y)
property. But the latter are precisely the morphisms from A to B in the Kleisli
category Kl(I�) for the monad on OPCAy.

LetRTrip denote the 2-category with as objects triposes of the form I(A )(�)

for some ordered pca A , and as arrows geometric morphisms of triposes. For
two geometric morphisms (f�; f�); (g�; g�) from I(B )(�) to I(A )(�) , we say that
(f�; f�) � (g�; g�) i� for every set X and any � : X ! IA , f�� ` g��. This
makes RTrip into a preorder-enriched category. Moreover, let RTop be the 2-
category of toposes of the form RT[A ] for some ordered pca A , with geometric
morphisms commuting with the inclusion of Set, and natural transformations
between them. It is known that these categories are equivalent when we forget
about the 2-categorical structure. The following lemma shows that there is also
a correspondence between natural transformations on the tripos-level and on
the topos-level.

Lemma 3.5 Let A ; B be ordered pca's, an let f; g : A ! I�B be two maps
in OPCAy. Then �f � �g in RTrip i� there is a (necessarily unique) natural
transformation � : �f ! �g in RTop.

Proof. First assume that �f � �g in RTrip. This amounts to the existence of
an element b 2 B with the property that for all a 2 A : b � f(a)# & b � f(a) �
g(a). Now consider an object (X;=) in RT[B ]. The functor �f sends this object
to (X;=1) with [[x =f x

0]] = �f([[x = x0]]), and similarly, �g sends it to (X;=g).
De�ne �X(x1; x2) = [[x1 =f x2]]. This is easily seen to represent a map from
(X;=f ) to (X;=g). The �X form a natural transformation from �f to �g.
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Next, assume that �X : (X;=f ) ! (X;=g) is a natural transformation.
Taking (X;=) to be the separated object (I�B ; 9� (Id)), we �nd that �f � �g in
RTrip.

Finally, suppose that �X ; �X : (X;=f )! (X;=g) are both natural transfor-
mations. Observe that if an object (Q;=) is separated, then �Q : (Q;=f ) !
(Q;=g) is uniquely determined by =f , and so �Q = �Q. Recall that (X;=) can
always be covered by a separated object (Q;=), so that we have the following
commutative diagram in RT[A ]:

(Q;=f )

��

//�Q=�Q
(Q;=g)

��
(X;=f )

//�X

//
�X

(X;=g):

Because the cover is an epimorphism, it follows that �X = �X .
�

Now we relate the preorder on Hom-sets inOPCAy to the one on the Hom-Sets
in RTrip.

Lemma 3.6 Let f; g : A ! I�B be two maps in OPCAy, inducing two geo-
metric morphisms of triposes, ( �f ; f�1) and (�g; g�1). Then f � g i� ( �f ; f�1) �
(�g; g�1).

Proof. If f � g then there is an element b 2 B with the property that
b 2
T
a2A f(a) ! g(a). This implies that b 2

T
�2IA

�f (�) ! �g(�). Therefore
�f (�) ` �g(�) for any � : X ! IA .

Conversely, assume �f (�) ` �g(�) for any � : X ! IA . In particular, taking
X to be A and �(a) = #(a), we �nd �f (�)(a) = f(a), �g(�)(a) = g(a), and there
is an element b 2 B such that b 2

T
a2A f(a) ! g(a), proving f � g.

�

We can wrap up by saying that there is a 2-functor from the Kleisli 2-category
Kl(I�) to the 2-category RTrip of realizability triposes. This functor is full,
essentially surjective on objects and yields, for any pair of ordered pca's A , B , an
equivalence of categories Hom(A ; B ) ' Hom(I(B )(�) ; I(A )(�) ), where the �rst
pre-ordered Hom-set is taken in the Kleisli category, and the second in RTrip.

From this we obtain that there is, up to isomorphism, a one-one correspon-
dence between maps from A to B in Kl(I�), and geometric morphisms from
RT[B ] to RT[A ] over Set.

3.4 Local maps

Let B be some pca and let A be a sub-pca of B , that is, A is a subset containing k
and s that is closed under the partial application. In [1] the toposes RT[A ] and
RT[B ] are compared. In the previous section we saw that a geometric morphism
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from RT[B ] to RT[A ] is, up to isomorphism, the same as a map f : A ! I�B
that satis�es the property (y). Note, however, that this property implies that
8b 2 B9a 2 A : f(a) � b. Now for ordinary pca's this requirement reduces to
surjectivity of the map f , and from this it readily follows that there will never be
a geometric morphism from RT[B ] to RT[A ], except for the trivial case where
A = B . There is, however, a topos RT[B ; A ], called the relative realizability
topos, that has the property that there is a local localic geometric morphism
RT[B ; A ] ! RT[A ], and a logical functor L : RT[B ; A ] ! RT[B ]. (For more on
local maps we refer to [5].) In a picture:

RT[A ]
**

i

?

44
i�

?
RT[B ; A ]oo i�1 //L

RT[B ]

The intermediate toposRT[B ; A ] is constructed by taking the tripos I(B )(�) and
taking the following preorder: � `0  i� 9a 2 A : a 2

T
x2X�(x) !  (x). (All

the other structure is exactly as in the tripos I(B )(�) .) Now the maps i; i� and
i�1 are de�ned on the tripos-level, as follows (for � : X ! I(A );  : X ! B):

i(�)(x) = #(�(x)); i�1( )(x) =  (x) \ A ;

i�(�)(x) =
[

�2I(B)

(� ^ (A \ �!#(�(x)))):

Remarks.

1. First of all, we have given this de�nition in such a way, that it also applies
to ordered pca's. It is completely straightforward to check that this still
gives a local geometric morphism: one can copy the proof of theorem 3.1
in [1] almost literally.

2. Second, note that the functors i and i�1 are precisely the maps that are
induced by the inclusion A ,! B ,! I�B as in the previous section.

3. We also mention that the counit of the adjunction i�1 a i� is an isomor-
phism, just as the unit of i a i�1 is, so that T [A ] is actually a retract of
T [B ; A ].

Now for our purposes it will be interesting to know when the functor L is an
equivalence.

Proposition 3.7 If A is a sub-ordered pca of B , the functor L is an equivalence
if and only if 8b 2 B9a 2 A 8b0 2 B : bb0# ) i(a) � b0# and i(a) � b0 � bb0.
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Note that this requirement is actually a strengthening of saying that the inclu-
sion i satis�es (y).
Proof. ():) If L is an equivalence, then i�1, considered as a map from
I(B )X to I(A )X is order-preserving, from which it follows that 8b 2 B9a 2 A :
i(a) � b. This implies the condition, by de�nition of ordered pca.

((:) Take �;  : X ! I(B ), and assume that we have b 2 B with b 2T
x2X �(x) !  (x). We must show that 9a 2 A : i(a) 2

T
x2X �(x) !  (x).

Pick a 2 A as in the proposition. If b0 2 �(x), then bb0 #, therefore i(a) � b0 #.
Moreover bb0 2  (x), and i(a) � b0 � bb0, so i(a) � b0 2  (x), because  (x) is
downward closed.

�

Remarks.

1. In our opinion, this proposition can be taken as providing some evidence
for the claim that ordered pca's really are a useful generalization of or-
dinary pca's, because it shows us that there are non-trivial inclusions of
ordered pca's that induce topos morphisms, something that is impossible
for pca's.

2. If we have such a local localic map, induced by an inclusion A ,! B of
ordered pca's, then it follows that A is actually a retract of B in the Kleisli
category Kl(I�). The converse need not be true.

3. We said before, that an inclusion of ordinary pca's would never yield a
geometric morphism between the associated realizability toposes. It must
be stressed, however, that the proof of this fact relies on classical logic, and
does not remain true when we switch to an arbitrary base topos instead
of Set. In fact, in [2] the notion of an elementary subobject is introduced.
This de�nition is chosen in such a way, that if B is now a pca-object in
an arbitrary topos S, and A is a sub-pca of B , then the requirement that
A is an elementary subobject (rather than the maximal subobject) of B
is enough to guarantee that there is a local map between the realizability
toposes.
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4 Application

In this section we study iteration of the endofunctor I�. This gives rise to a
sequence of ordered pca's, and, as we will see, to a sequence of the corresponding
realizability toposes. It turns out, that these are not merely inclusions, but in
fact local maps of toposes. It was already predicted by Menni that certain chains
of realizability toposes could be obtained in this fashion.

4.1

Let us �x a ordered pca A . In the category OPCAy, we have a diagram

A //�
I�A //�

I�I�A //[
I�A

This composition equals the map � : A ! I�A (this is one of the monad identi-
ties), so in the category Kl(I�), A is a retract of I�A . Now the inclusion of A in
I�A is easily seen to satisfy the condition of proposition (3.5 ) of the previous
section. This means that there is an induced local localic geometric morphism.
On the tripos level, it looks like this:

I(A )
**

D

?

44
U

?
I(I�A ):oo P

Let us give a direct description of the functors in this diagram (take � 2 I(A )
and � 2 I(I�A )):

D(�) = #(f #(a) j a 2 �g); P (�) = #(�);

U (�) =
[
�2�

fa j a 2 �g:

We used the notation U , D, and P as to remind the reader of the words "union",
"discrete" and "principal", respectively.

On the level of toposes, we get the following, similar picture:

RT[A ]
**

D

?

44
U

?
RT[I�A ]:oo P

4.2

The next thing we wish to establish is a relation between the separated objects
in RT[A ] and the projective objects in RT[I�A ].

Theorem 4.1 There is an equivalence of categories ProjRT[I�A] ' SepRT[A] .
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Proof. We have already seen that the maps U and P have the property
that for principal downsets � 2 I(I�A ); UP (�) = �, and that for an arbitraty
downset � 2 I(A ), PU (�) = �. Now for separated objects, the direct image
functor P can be described by P (X;=) = (X;P (=) (in general, the direct image
functor that comes from a tripos morphism is not so easily described). This de-
scription establishes at once a one-one correspondence between the canonically
separated objects of RT[A ] and the canonically projective objects of RT[I�A ].

Now a morphism between separated objects can be viewed as a function
that is realized by some element. That is, a function f : X ! Y represents
a morphism in Sep

RT[A] i� there exists an element a 2 A such that for each
x 2 X; 8d 2 E(x) : a � d# & a � d 2 E(f(x)). Similarly, a function f : X ! Y
represents a morphism in Proj

RT[I�A] i� there is some � 2 A0 such that for all
x 2 X;��0 �x# & � �0�x �

0 �f(x). Now it is not hard to see that if a realizes f
as morphism of separated objects, then #fag serves as �, and conversely that
if � is given, then any a 2 � works.

�

We also have the following:

Theorem 4.2 There is an equivalence RT[I�A ] ' ((ProjRT[A] )reg)ex.

Proof. We know that each RT[I�A ] is the exact completion of its category
of projectives, which is the same as the category of separated objects in RT[A ].
But this latter category is the regular completion of the category of projectives
of RT[A ].

�

Remember from section 2.2 that in case the ordered pca has the pasting property,
we can also make use of the tripos J(A )(�) of nonempty downsets that are closed
under pushouts. To complete the picture, we remark that the local localic map
between RT[I�A ] and RT[A ] restricts:

RT0[A ] //?

P

��
`i

RT0[I�A ]
oo U

��
`i

//?

U

RT0[A ]
oo D

��
`i

RT[A ] //?

P

OO
Clp

RT[I�A ]
oo U

OO
Clp

//?

U

RT[A ]
oo D

OO
Clp

It is easiest to see why the functors U;P and D restrict if we consider them on
the tripos-level (again, we use the same notation for the functors on the tripos-
and on the topos-level). Note �rst that P (�) is trivially closed under pushouts,
since it is principal. Second, if � 2 I(A ) is closed under pushouts, then the
same holds for D(�), since if #fag; #fbg 2 D(�), then #fag[ #fbg � #fa _ bg.
Third, the map U also preserves the property of being closed under pushouts.
Now the adjointness is immediate, and so is the commutation of the diagram.
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4.3

We can iterate the downset-construction: starting with an arbitrary ordered
pca A = A 0 , we get a sequence A 0 ; A 1 ; A 2 ; : : : when we put A n+1 = (I�A n ).

This immediately gives us a sequence I(A 0 )(�); I(A 1 )(�); : : : of triposes, and
hence a sequence RT[A 0 ];RT[A 1 ]; : : : of toposes.

On the other hand, the results in [7] show that there are sequences of toposes
of the form (Creg(n))ex, (for appropriate categories C). With the previous results
in mind, the following theorem should not be all too surprising:

Theorem 4.3 For each n 2 N, there is an equivalence of categories RT[A n ] '
((Proj

RT[A0 ])reg(n))ex.

Proof. This goes by induction and is an immediate consequence of the facts
that we established concerning RT[A ] and RT[I�A ].

�

As a last observation, we mention the fact that there is also a chain of toposes
coming from the hierarchy J(A ); J(I� A ); : : : . This chain is included in the one
coming from I(A ); I(I�A ); : : : .
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