
Total Algorithms�

Gerard Tely

Department of Computer Science, University of Utrecht,

P.O. Box 80.089, 3508 TB Utrecht, The Netherlands.

email: gerard@cs.ruu.nl

April 1988
Revised November 1989 and February 1993

Abstract

We de�ne the notion of total algorithms for networks of processes. A total algorithm
enforces that a \decision" is taken by a subset of the processes, and that participation
of all processes is required to reach this decision. Total algorithms are an important
building block in the design of distributed algorithms. For some important network
control problems it can be shown that an algorithm solving it is necessarily total, and
that any total algorithm can solve the problem. We study some total algorithms for a
variety of network topologies. Constructions are shown to derive algorithms for Mutual
Exclusion, Election, and Distributed In�mum Approximation from arbitrary total
algorithms. The paper puts many results and paradigms about designing distributed
algorithms in a general framework.

This report outlines several other works of the author. Total algorithms, their
properties, and some additional examples, as well as traversal algorithms and the time
complexity of distributed algorithms are studied in [Tel94, Chap. 6]. The construction
of algorithms for distributed in�mum approximation is treated in [CBT94, Tel86] and
[Tel91, Sec. 4.1].

Key Words: Distrubuted Algorithms, Design methods, Broadcast, Mutual Exclusion,
Election, Termination Detection.

1 Introduction

Modular techniques have been advocated recently to facilitate the design and veri�cation
of distributed algorithms. Noteworthy examples are Gafni [Gaf86], Segall [Seg83], and
Korach et al. [KKM90]. Modular design techniques not only facilitate the design and ver-
i�cation of distributed algorithms, they also show that distributed algorithms for di�erent
tasks may share some common aspects. In this paper we show that this is indeed the case
for some common network control problems for asynchronous networks.

�This report has appeared (1) as Technical Report RUU{CS{88{16; (2) in M. Cosnard (ed.), Parallel
and Distributed Algorithms, Elseviers, 1989; (3) in F.H. Vogt (ed.), Concurrency88, LNCS 335, pp. 353{367,
1988; (4) in Algorithms Review 1 (1990) 13{42.

yThe work of this author was supported by ESPRIT Basic Research Action No. 7141 (project ALCOM
II: Algorithms and Complexity).

1

We will de�ne a total algorithm as an algorithm where the participation of all processes
in the network is required before a decision is taken. A formal de�nition will follow later
in this section. We study the relation between total algorithms and a number of network
control problems, namely Distributed In�mum computation, Resynchronization [Fin79],
Propagation of Information with Feedback [Seg83], Extrema Finding, and Connectivity.
For all these problems it will turn out that (1) any solution to these problems is necessarily
total, and (2) any total algorithm can be used to solve these problems. We will also see
that algorithms for Mutual Exclusion and for Distributed In�mum Approximation can
be constructed in a generic way, based on arbitrary total algorithms. The problem of
Distributed In�mum Approximation (de�ned in [Tel86]) includes both the Termination
Detection problem and approximation of Global Virtual Time. Thus the total algorithms
are a key concept in the design of network control algorithms. We present a number of
total algorithms and some constructions of other algorithms based upon them.

This paper is organized as follows. First we present a de�nition of totality of an
algorithm. In section 2 we study the relation between total algorithms and a number of
network control problems. In section 3 we give some total algorithms and their correctness
proof. In section 4 we consider the problem of Mutual Exclusion in distributed systems.
In section 5 we consider the problem of Distributed In�mum Approximation. In section 6
some more remarks about total algorithms are made.

1.1 De�nition of Total Algorithms

As usual we consider a �nite set P of processes, communicating only by exchanging mes-
sages. The system is asynchronous, i.e., there are no clocks and messages su�er an unpre-
dictable �nite delay. We assume the network is strongly connected and channels are fault
free.

We consider an execution of an algorithm as a sequence a1; : : : ; ak; : : : of events (cf.
Lamport [Lam78]). The occurrence of these events is according to the program that the
processes are running: an event takes place in a process only when the program of the
process speci�es the event and it is enabled. We roughly divide the events in three classes:
send, receive and internal events. In a send event a message is sent, but no message is
received. In a receive event a message is received, but no message is sent. In an internal
event no message is sent or received. All events can change the internal state of a process.

Send and receive events correspond naturally in a one-one way. A send event a and a
receive event b correspond if the same message is sent in a and received in b. If this is the
case, event a must occur earlier in the sequence of events than event b, because a message
can be received only after it is sent. We de�ne a partial order \precedes" on the events in
a particular execution as in [Lam78].

De�nition 1.1 Event a precedes event b, notation a � b, if

1. a = b, or a and b occur in the same process and a happens earlier than b,

2. a is a send, and b the corresponding receive event, or

3. there is an event c such that a � c and c � b.

Because � is de�ned inductively we can prove statements of the form \a � b implies
P (a; b)" by induction over the de�nition of �. If (1) a = b implies P (a; b), and (a and b

2

occur in the same process and a happens earlier than b) implies P (a; b); (2) a is a send,
and b the corresponding receive event implies P (a; b); and (3) P (a; c) and P (c; b) implies
P (a; b), then for all a and b, a � b implies P (a; b).

Because a message can be received only after it is sent, for any execution a1; : : : ; ak,
ai � aj implies i � j. Thus � is a well-founded partial ordering. Because � is a well-
founded partial ordering we can prove a property P of events using induction over �. If
for all a (8b : b � a) P (b)) implies P (a) then for all a P (a). In words, if P (b) for all b
that precede a implies P (a), then P (a) holds for all a.

For each p, let ep, the enroll event of p, be the �rst event that occurs in p (in a particular
execution). We say p is a starter if ep is a send or internal event, and p is a follower if ep
is a receive event.

Algorithms serve to compute some value or bring the network in a desired state. Hence
we postulate the possibility of some special internal event in which a processor \decides"
on the value that is to be computed or \concludes" that the network is in the desired state.
The exact nature of this event depends on the problem under consideration. In section 2,
where we consider some network control problems, its meaning will become clear for each
problem. A decision is taken at most once in every process, and we denote the event in
which it is taken in process p by dp. In a total algorithm it is required that a decision
is preceded by the enroll events of all processes. Furthermore, a decision must be taken
eventually in at least one process.

De�nition 1.2 An execution of an algorithm is total if at least one process p decides and,
for all q 2 P and for all p that take a decision, eq � dp. An algorithm is total if all its

executions are �nite and each completed execution is total.

This de�nition formalizes the idea that participation of all processes is required to take a
decision. Finally, we say an algorithm is centralized if it works correct only when there is
exactly one starter. An algorithm is decentralized if it works correct when any nonempty
subset of the processes are starters.

2 Some Direct Applications of Total Algorithms

In this section we study the relation between total algorithms and some network control
problems. We use the following well-known fact about asynchronous systems (which can
be seen as the characterizing property of asynchronous systems) to show that algorithms
for some problems are necessarily total. A proof is found in [Tel94, Sec. 2.3].

Fact 2.1 Let a1; : : : ; ak be a (�nite) execution of some algorithm A and let a�(1); : : : ; a�(k)
be a permutation of the events such that a�(i) � a�(j) implies i � j. Then a�(1); : : : ; a�(k)
is a possible execution of A also.

Informally, this theorem says that any reordering of the events in an execution that is
consistent with the partial ordering �, is also a possible execution.

2.1 Propagation of Information with Feedback

The problem of Propagation of Information with Feedback (PIF) is explained as follows
[Seg83]. Starters of a PIF algorithm have a message M . All starters (if there are more

3

than one) have the same message. This message must be broadcast, i.e., all processes must
receive and acceptM . The broadcast must be terminating, that is, eventually one or more
processes must be noti�ed of the fact that every process has accepted the message. This
noti�cation is what we referred to as a \decision" in the de�nition of total algorithms.

Theorem 2.2 Every PIF algorithm is total.

Proof. Assume P is a PIF algorithm. By de�nition it is required that in every execution at
least one (accept) event takes place in every process and in at least one process a decision
(noti�cation of completion of the broadcast) takes place. Assume there is an execution of
P where, for some process q, eq does not precede a decision. From fact 2.1 it follows that
we can construct an execution where a decision takes place earlier than the acceptance of
the message by q, so P is not correct. Hence all executions of P must be total. �

Theorem 2.3 A total algorithm can be used for PIF.

Proof. Let A be a total algorithm. Processes that initiate a broadcast act as starters in
A. To every message of the execution of A, M is appended. This is possible because (1)
starters of A know M by assumption and (2) followers have received a message, and thus
learnedM , before they �rst send a message. All processes q acceptM in eq. By totality of
A a decision is taken and for all q eq precedes a decision. Thus a decision event correctly
signals the completion of the broadcast. �

To decrease the number of bits to be transmitted, we remark that it su�ces to appendM
to the �rst message that is sent over every link.

2.2 Resynchronization

The Resynchronization (or, shortly, Resynch) problem was �rst described by Finn [Fin79].
It asks to bring all processes of P in a special state synch and then bring processes in a
state normal. The state changes must be such that all processes have changed their state
to synch before any of the processes changes state to normal, i.e., there is a point in time
where all processes are in state synch. In the Resynch problem we regard the state change
to normal as a \decision". (We drop the requirement of [Fin79] that all processes decide.)

Theorem 2.4 Every Resynch algorithm is total.

Proof. Assume R is a Resynch algorithm. By de�nition it is required that in every
execution of R at least one event takes place in every process and in at least one process
a decision takes place. Assume in some execution of R, for some process q, eq does not
precede a decision. From fact 2.1 it follows that we can construct an execution where a
decision takes place earlier than the state change by q to synch, so R is not correct. It
follows that all executions of R must be total. �

Theorem 2.5 Any total algorithm can be used for Resynch.

Proof. Let A be a total algorithm. We modify A as follows. Each process q changes
its state to synch upon �rst participation in A, i.e., in eq. Each process p changes state
to normal when it decides, i.e., in dp. The fact that A is a total algorithm implies the
correctness of the resulting Resynch algorithm. �

4

2.3 Distributed In�mum Computation

Assume X is a partially ordered set with a binary in�mum operator ^. The Distributed
In�mum computation problem asks for the following: suppose all processes p in P have
an input rp 2 X. Compute the in�mum J = inffrp : p 2 Pg. In the context of this
problem, by a \decision" we mean the decision on the �nal result of the computation. In
the following theorem it is assumed that X contains no smallest element, i.e., for all x 2 X
there is a y such that x 6� y.

Theorem 2.6 Every In�mum algorithm is total.

Proof. Suppose I is an In�mum algorithm and S is an execution of I where no enrollment
of q precedes a decision by p. Let x be the value on which p decides. Because no partic-
ipation of q precedes p's decision, we can simulate execution S up to p's decision, even if
we give q a di�erent input rq. Choose rq such that x 6� rq, we now have an execution in
which p decides on a wrong result. �

Theorem 2.7 Any total algorithm can be used as a Distributed In�mum algorithm.

Proof. Let a total algorithm A be given. Modify A as follows. Every process p is equipped
with a new variable ip, with initial value rp. Whenever a process sends a message (as part
of the execution of A) the value of ip is attached to it. Whenever p receives a message,
with i attached to it, p modi�es ip by executing ip := ip^ i. Internal and send events leave
ip unchanged. If and when p decides in A, p outputs ip as the result of the computation.

It must now be shown that this answer is correct. For an event a in process p, by i(a)

we denote the value of ip directly after the occurrence of a. Note that if a is a send event,
then i(a) is also the value, appended to the message sent in a. For any p, ip is decreasing
during the execution of A and thus i(ep) � rp. Furthermore, by induction on the de�nition
of � it is seen that a � b implies i(b) � i(a). Thus, by the totality of A, for any decision
event d, i(d) � i(eq) � rq for each q. So i(d) � J . It is easily seen that for all events a
i(a) � J . It follows that i(d) = J , and the constructed algorithm is correct. �

The problem of Distributed In�mum computation as described here is di�erent from
the problem of Distributed In�mum Approximation as described in [Tel86]. Here we
consider �xed values rp. In the Distributed In�mum Approximation problem changing
values xp are considered. The problem of Distributed In�mum Approximation is brie
y
addressed in section 5. The Connectivity problem, where processes are to compute the set
P, is a special case of In�mum Computation as P = [p2Pfpg.

2.4 Election

For some applications it may be necessary that one process in the network is elected
to perform some task or act as a \leader" in a subsequent distributed algorithm. An
Election algorithm selects one process for this purpose. In the context of this problem,
by a decision we mean the decision to accept some process as the leader. These decisions
must be consistent, i.e., if several processes decide, they must decide on the same value.
To make the problem non-trivial it is always required that a solution is decentralized and
symmetric. (If it is assumed that there is only one starter, this process can immediately
decide to choose itself as a leader.) By symmetric we mean that all processes are running

5

the same local algorithm. To make a solution possible at all, it is always assumed that
processes have distinct and known identi�cation labels. For simplicity we will assume that
each process p \knows" its own name p.

A large class of Election algorithms, the so-called Extrema Finding algorithms, always
elect the process with the largest (or, alternatively, the smallest) identity as the leader.
(It is assumed that there is a total ordering on the identities.)

Theorem 2.8 Every Extrema Finding algorithm is total.

Proof. As theorem 2.6. Now give q an identity larger than the one chosen to contradict
that the chosen identity is the largest. �

Theorem 2.9 Any decentralized and symmetric total algorithm A can be used as an Elec-

tion Algorithm.

Proof. As in the proof of theorem 2.7, A can be modi�ed to yield the largest identity
in the network upon a decision. To satisfy the requirement that an Election algorithm is
decentralized and symmetric we assumed A to be decentralized and symmetric . �

Not all Election algorithms are Extrema Finding algorithms. Totality of a subclass of
the can be proved, however. To this end it is necessary to make a (technical) restriction
on the algorithms considered, namely that they are comparison algorithms. A comparison
algorithm is an algorithm that allows comparison as the only operation on identities. For
a more precise de�nition, see Gafni et al. [GLT+85].

Theorem 2.10 Comparison Election algorithms for rings, trees, or general networks of

unknown size are total.

Proof. We prove the result for general networks. Assume some execution S of an Election
algorithm E decides on the identity of the leader in some network G without the partic-
ipation of a process q in G. Now we construct a network G0, consisting of two copies G1

and G2 of G, with one additional link q1q2 between the corresponding copies of q. The
processes in G2 can be renamed so that all identi�ers in G0 are unique, while preserving the
relative ordering of identities within G2. Because A is a symmetric comparison algorithm,
the execution S can be simulated in both G1 and G2, leading to an execution in which
decisions are taken on two di�erent values.

For rings and trees similar constructions can be given. �

Many known Election algorithms are total, but non-total ones are also known, for example
Peterson's algorithm for grid networks [Pet85] or Bar{Yehuda's alorithm for networks of
known size [BYKWZ87]. See also section 4.4.

2.5 Traversal

The purpose of a traversal algorithm is to pass a token, initiated by a single starter,
through every node in the network and return it to the starter. A traversal algorithm is
total and centralized by de�nition. For the application of Traversal algorithms in [KKM90]
it is required that the algorithm is sequential. That is, the starter sends out exactly one
message in the beginning, and thereafter a process can only send (at most) one message
after receiving a message. Thus, there is always at most one message in the system or

6

one active process. Finally the starter decides, when the token returns to it after having
visited all processes. Any Traversal algorithm is total by de�nition, but the reverse is not
true because a total algorithm is not necessarily centralized and sequential.

3 Some Examples of Total Algorithms

The total algorithms in this section appear in the literature but they are referred to as Dis-
tributed In�mum algorithm, PIF algorithm, etcetera, rather than as a \total algorithm".
Their correctness proof typically argues that some variable has the value of some (partial)
in�mum, or the receipt of some message implies that some subset of the processes has ac-
cepted the broadcasted message, that all processes will learn the identity of some process,
etc. Because in the previous section we demonstrated that the totality is the key property
of all these algorithms, we concentrate on this aspect only in the correctness proofs.

The algorithms include centralized as well as decentralized ones. Usually decentral-
ized algorithms are preferred because there is no need for a special process to start the
execution. Unfortunately their complexity is often larger. For a ring (of N processes)
there is a centralized algorithm (RING algorithm) that uses N messages, which is (order)
optimal, whereas for decentralized algorithms on a ring O(N logN) is optimal (Peterson's
algorithm). For a general network (of N processes and E edges) there is a centralized
algorithm using 2E messages (ECHO algorithm), which is (order) optimal, whereas for
decentralized algorithms on general networks O(N logN+E) is optimal (GHS algorithm).
Decentralization seems to cost O(N logN) messages. Surprisingly, the complexities of cen-
tralized and decentralized algorithms for trees are the same.

We say that a distributed algorithm is symmetric if the local algorithm is the same
for each process. The notion of symmetry is closely related to that of being or not being
decentralized. In most centralized algorithms the starter runs a local algorithm, di�erent
from that of the followers, and most decentralized algorithms are symmetric. The TREE
algorithm below is symmetric, but not decentralized.

In some algorithms all processes decide, in others only one or few. In the original
statement of some problems, e.g., Resynchronization [Fin79], it is explicitly required that
all processes decide. If, in some total algorithm, not all processes decide, the deciding pro-
cess(es) can
ood a signal over the network to make other processes decide also. Therefore
this aspect of total algorithms is of minor importance only.

3.1 RING Algorithm

A centralized total algorithm for a (unidirectional) ring. The starter sends out a token
on the ring, which is passed by all processes and �nally returns to the starter. Then the
starter decides. Assume each process p has a boolean variable Recp to indicate whether a
message has been received. Initially its value is false. Let <> denote an empty message.
As usual, the sentence between braces is a guard which must be true in order for the event
to execute. The program for the starter is:

Sp: f Spontaneous start, execute only once g
send <> to successor

Rp: f A message <> arrives g

7

begin receive <> ; Recp := true end

Dp: f Recp g
decide

and for all other processes:

Rp: f A message <> arrives g
begin receive <> ; Recp := true end

Sp: f Recp g
begin send <> to successor ; Recp := false end

For our analysis, assume the processes are numbered in such a way that process i + 1 is
the successor of process i (indices are counted modulo N). Call fi the event in which i
sends, gi the event in which i receives, di the event in which i decides (if this happens),
and l the starter. We have el = fl, and ei = gi for other i. From the algorithm text we
have gi � fi if i is not l, and we have fi � gi+1 because these are corresponding events.
Only the starter decides, and we have gl � dl directly from the algorithm text. Thus,
using the fact that there is only one starter, we �nd

el = fl � gl+1 = el+1 � fl+1 : : : � gi = ei � fi : : : � gl � dl;

which establishes the totality of A. The fact that a decision is at all taken in algorithm A
is trivial.

Our framework allows us to analyze the behavior of the algorithm in case two or more
processes act as a starter. Suppose l1 and l2 act as starters. Then we �nd

el1 = fl1 � gl1+1 = el1+1 � fl1+1 : : : � gi = ei � fi : : : � gl2 � dl2

and
el2 = fl2 � gl2+1 = el2+1 � fl2+1 : : : � gi = ei � fi : : : � gl1 � dl1 ;

but the execution is not necessarily total.
The RING algorithm is a centralized algorithm for a (unidirectional) ring. No FIFO

discipline on links or knowledge about the number of nodes is assumed. It is not required
that processes have identities. The message and time complexity are both N , and one bit
of internal storage su�ces.

3.2 TREE Algorithm

A total algorithm for a tree network. A tree network must have bidirectional links in order
to be strongly connected. A process that has received a message over all links except one
sends a message over this last link. Because leaves of the tree have only one link they
must be starters (possibly except one). A process that has received a message over all
links decides. In the following formal description of the algorithm, Neighp is the set of
neighbors of p, and p has a boolean variable Recp[q] for each q 2 Neighp. The value of
Recp[q] is false initially. Although this is not explicit in the following description, it is
intended that each process sends only once. Thus, a send action by p disables further send
actions in p.

8

Rp: f A message <> from q arrives at p g
begin receive <> ; Recp[q] := true end

Sp: f q 2 Neighp is such that 8r 2 Neighp; r 6= q : Recp[r] g
begin send <> to q end

Dp: f for all q 2 Neighp : Recp[q] g
begin decide end

In the following analysis, let fpq be the event that p sends a message to q, gpq the event
that q receives this message, and dp the event that p decides. Let Tpq be the subset of the
nodes that are reachable from p without crossing the edge pq (if this edge exists). By the
connectivity of the network we have

Tpq = fpg [
[

r2Neighp�fqg

Trp (1)

and
P = fpg [

[

r2Neighp

Trp: (2)

Lemma 3.1 For all s 2 Tpq; es � gpq.

Proof. By induction on �. Assume the lemma is true for all receive actions that precede
gpq. Let s 2 Tpq. By 1, s = p or s 2 Trp for some r 2 Neighp, r 6= q. We have fpq � gpq
because these events correspond, ep � fpq because ep precedes all events in p, so ep � gpq
follows. By virtue of the algorithm grp � fpq for all neighbors r 6= q of p, and by the
induction hypothesis es � grp for all s in Trp. So es � gpq follows. �

Theorem 3.2 For all s 2 P; es � dp.

Proof. By 2, for all s 2 P, s = p or s 2 Trp for some r 2 Neighp. We have ep � dp
as above. If s 2 Trp, then we have grp � dp by the algorithm, es � grp by the previous
lemma, and es � dp follows. �

In contrast with the RING algorithm, in this case it is not obvious that a decision is
reached at all. We will show by a simple counting argument that this is the case.

Theorem 3.3 Assume that events of the TREE algorithm that are enabled will eventually

be executed. Then a decision is eventually taken.

Proof. We �rst show that as long as no decision is taken there is always a next event
enabled to be executed. There are 2E = 2(N � 1) Rec-bits in the network. De�ne, for a
certain system state, F to be the number of Rec bits that are false, Fp the number of these
in process p, K the number of processes that have sent, and M the number of messages
underway. Observe F = 2N � 2 +M �K. If M > 0, there is a message underway and
eventually a receive event will occur. If M = 0, then F = 2N � 2�K < 2(N �K) +K.
It follows that (1) under the N �K processes that have not yet sent there is a process p
with Fp < 2 or (2) under the K processes that have sent there is a process with Fp < 1. In
case (1) this process will eventually send, in case (2) this process is ready to decide. Thus,

9

while no process has decided, there is always a next send, receive, or decide event that
will eventually take place. But then, because the total number of send actions is bounded
by N (each process sends at most once), it follows that a decision will be taken in �nite
time. �

Because all messages will be received and all processes send exactly once, a state is reached
where K = N and M = 0, thus F = N � 2. It follows that exactly two processes decide
(if there are at least 2 processes). It turns out that these two processes are neighbors.

Again, our framework allows us to analyze the behavior of the algorithm if it is used
on a network that is not a tree. Theorem 3.2 remains true (its proof relies on identities
1 and 2, and these follow from the connectivity of the network only), but theorem 3.3
fails (its proof relies on the fact that the number of edges is N � 1). In fact, it is easily
seen that if the network contains a cycle, no process on this cycle will ever send. Thus no
decision will be taken.

The TREE algorithm works on a tree network with bidirectional links. The processes
need not have distinct identities, it is enough that a process can distinguish between its
links. The algorithm is simple and symmetric. Its message complexity is N , its time
complexity is O(D) (the diameter of the tree). The internal storage in a process is a
number of bits of the order of its degree in the network.

For the assumption in theorem 3.3 it is necessary that all leaves (possibly except
one) are starters. Hence not every nonempty subset of the processes su�ces to start the
algorithm, and the algorithm is not decentralized. We can transform the TREE algorithm
to make it decentralized: starters
ood a \wake-up" signal over the tree to trigger execution
of the algorithm in every process. Assuming that nodes relay the wake-up message to every
neighbor except the one they received the signal from, the number of wake-up messages
is (N � 2) + s, where s is the number of starters. For starters that are leaves the wake-up
message can be combined with the message of the algorithm, so that only (N �2)+s0 new
message are necessary, where s0 is the number of starters that is not a leaf. This number
of messages must be added to the message complexity N of the given version of the TREE
algorithm.

3.3 ECHO Algorithm

A centralized total algorithm for general bidirectional networks. This algorithm is usually
referred to as Chang's Echo algorithm [Cha82]. The starter sends a message over all
links. Followers store the link over which they �rst received a message as their father.
Upon receiving their �rst message followers send a message to all neighbors except their
father. When a follower has received a message over all links it sends a message to its
father. When the starter has received a message over all links it decides. In the following
formal description of the algorithm, let Recp and Neighp be as in the description of the
TREE algorithm. The initial value of the variable fatherp is nil. In the program fragment
labeled with Sp several messages can be sent. This program fragment describes a sequence
of events, to be executed by the process, rather than a single event. We use this notation
for brevity. The same remarks apply to Rp below and later fragments. The program for
the starter is:

Sp: (* Spontaneous start, execute only once *)
forall r 2 Neighp do send <> to r

10

Rp: f A message <> arrives from q g
begin receive <> ; Recp[q] := true end

Dp: f 8q 2 Neighp : Recp[q] g
decide

The program for a follower is:

Rp: f A message <> arrives from q g
begin receive <> ; Recp[q] := true ;

if fatherp = nil then
begin fatherp := q ;

forall r 2 Neighp � fqg do send <> to r
end

end

Sp: f 8q 2 Neighp : Recp[q] g
send <> to fatherp

It turns out that the ECHO algorithm builds a spanning tree in the network and works
as the TREE algorithm on this (rooted) tree. The following correctness proof is found in
[Seg83]. Consider a (completed) execution S of the ECHO algorithm and observe that the
father �elds, once given a value 6= nil, are never changed thereafter. De�ne a directed
graph T , consisting of the processes as nodes and all links from p to fatherp (for all p
with fatherp 6= nil at the end of S) as edges.

Lemma 3.4 T is a rooted tree with the starter as root.

Proof. Observe that (1) each node of T has at most one outgoing edge, (2) T is cycle
free (because efatherp � ep is easily derived from the algorithm), and (3) each non-starter
has an outgoing edge (because, if a process p sends to its neighbor r, r eventually receives
this message and then (i) r is starter, (ii) r assigns the value p to fatherr, or (iii) fatherr
had a value already). Because there is only one starter the result follows. �

De�ne Tp to be the subtree under p, let dp, fpq, and gpq be as before, and let l be the
starter.

Theorem 3.5 For all q, eq � dl.

Proof. As in the proof of lemma 3.1 it can be shown that if rp is an edge, then for all q
in Tr er � grp. As in the proof of theorem 3.2 the result follows. �

Theorem 3.6 Assume that events of the ECHO algorithm that are enabled will eventually

be executed. Then the starter eventually decides.

Proof. We �rst show that until a decision is taken there is always a next event enabled
to be executed. If there is a message underway this message will eventually be received.
Assume that there is no message underway, it follows that each neighbor of a process that
has sent has received a message. Because a follower sends to every neighbor as soon as it

11

receives the �rst message, it follows that all processes have sent to every neighbor. Because
no messages are underway all processes have received a message from every neighbor, hence
the starter is ready to decide. Finally, remark that only �nitely many messages are sent
and received. �

Our framework allows us to analyze the behavior of the algorithm in case two or more
processes act as a starter. Then T will not be a rooted tree, but rather a rooted forest.
Each starter is the root of one tree. The decision of a starter is preceded by the enroll
events of the processes in the tree of which it is the root, and their neighbors. As in the
case of the RING algorithm, the execution is not necessarily total.

The ECHO algorithm works for bidirectional networks of arbitrary topology. It is cen-
tralized, and the processes need not have identities. The algorithm is simple. Its message
complexity is 2E (where E is the number of bidirectional edges), its time complexity is
O(D).

3.4 PHASE Algorithm

A decentralized total algorithm for general directed networks with known diameter D.
Each process sends D times a message to all of its out-neighbors. It sends the i + 1th

message only after receiving i messages from all of its in-neighbors. A process that has
receivedDmessages from all of its in-neighbors decides. A more precise description follows.
Let for each process p Inp be the set of its in-neighbors, Outp the set of its out-neighbors,
and assume p has a counter RCountp[q] for each q 2 Inp, and a counter SCountp. Initially
all counters are 0.

Rp: f A message <> arrives from q g
begin receive <> ;

RCountp[q] := RCountp[q] + 1 end

Sp: f 8q 2 Inp : RCountp[q] � SCountp and SCountp < D g
begin forall r 2 Outp do send <> to r ;

SCountp := SCountp + 1
end

Dp: f 8q 2 Inp : RCountp[q] � D g
decide

In this algorithm more than one message can be sent over a link. Let, if an edge pq exists,
f (i)pq be the ith event in which p sends to q, and g(i)pq be the ith event in which q receives
from p. If a FIFO discipline on links is assumed these events correspond, so that trivially
f (i)pq � g(i)pq . We do not assume a FIFO discipline so that the following result becomes
non-trivial.

Theorem 3.7 f (i)pq � g(i)pq .

Proof. De�ne mh such that f (mh)
pq corresponds with g(h)pq , i.e., in its hth receive event q

receives p's mth
h message. We have f (mh)

pq � g(h)pq . Each message is received only once, so
all mh are di�erent. This implies that at least one of m1; : : : ;mi is greater than or equal
to i. Let mj � i, then f (i)pq � f (mj)

pq � g(j)pq � g(i)pq . �

12

The lemma holds not only for the PHASE algorithm, but for any algorithm, even if
messages may get lost in the links. The only assumption that must be made about the
links is that every message is received only once, that is, that no duplication of messages
occurs. We continue the correctness proof of the PHASE algorithm.

Theorem 3.8 For all s 2 P; es � dp.

Proof. Let p0p1 : : : pl, l � D, be a path in the network. By the previous theorem we have
f (i+1)pipi+1

� g(i+1)pipi+1
for i < l and by the algorithm we have g(i+1)pipi+1

� f (i+2)pi+1pi+2
for i < l � 1.

Thus ep0 � g(l)pl�1pl . Because the network diameter is D, for every s and p there is a path

s = p0 : : : pl = p of length at most D. Thus es � g(l)pl�1p. By the algorithm g(l)pl�1p � dp, so
that the result follows. �

Theorem 3.9 Assume that all events of the PHASE algorithm that are enabled will even-

tually be executed. Then all processes will decide.

Proof. First we show that, until all processes have decided there is always a next event
enabled to execute. If there are messages underway, a receive event will be enabled.
Suppose there are no message underway, note that this implies RCountq[r] = SCountr
if rq is an edge. Let S be the smallest of all SCount variables in processes, and p be
such that SCountp = S. If S = D a decision is enabled in all processes. If S < D then
for all q 2 Inp, RCountp[q] = SCountq � SCountp and SCountp < D, so a send event
is enabled in p. Thus there is always an event enabled until all processes have decided.
Furthermore, only a �nite number of events can take place, namely DE send, DE receive,
and N decide events. It follows that all processes will decide. �

The PHASE algorithm is studied further in [Tel91, Sec 4.2.3]. The algorithm is decentral-
ized and works on any (directed) network. It is required that (an upper bound for) the
network diameter is known. The processes need not have distinct identities. The message
complexity is DE, the time complexity of the PHASE algorithm is D.

The algorithm can considerably be simpli�ed if it is used on a complete network (D =
1). All a process must do is sent a message to every other process, receive a message from
every other process (i.e., N � 1 messages altogether), and decide. Formally it is expressed
as follows (the initial value of RecCountp is 0):

Sp: (* Execute once *)
forall q 2 P� fpg do send <> to q

Rp: f A message <> arrives g
begin receive <> ; RecCountp := RecCountp + 1 end

Dp: f RecCountp = N � 1 g
decide

3.5 GOSSIP Algorithm

Another decentralized algorithm for general unidirectional networks. Each process pmain-
tains two sets of processor identities. Informally speaking, HOp is the set of processes p
has heard of, and OKp is the set of processes such that p has heard of all the in-neighbors

13

of these processes. Initially HOp = fpg, and OKp = ?. HOp and OKp are included in
every message p sends. Upon receiving a message (containing a HO and an OK set), p
replaces HOp and OKp by the union of the old and the received version of the set. When
p has received a message from all of its in-neighbors, p inserts its own identity p in OKp.
When HOp = OKp, p decides. A formal description of the algorithm follows. Let for each
process p, Inp be the set of its in-neighbors, Outp be the set of its out-neighbors, and p
has a boolean variable Recp[q] for each q 2 Inp. The value of Recp[q] is initially false and
indicates whether a message from q has been received. In the following algorithm, the S
and R fragments may be executed more than once.

Sp: send < HOp; OKp > to some q 2 Outp

Rp: f A message < HO;OK > from q arrives at p g
begin receive < HO;OK > ; Recp[q] := true ;

HOp := HOp [HO ; OKp := OKp [OK
end

Ap: f 8q 2 Inp : Recp[q] g
OKp := OKp [fpg

Dp: f HOp = OKp g
decide

Let ap denote the (�rst) execution of the A event in process p. For any event b (occurring
in process p), let HO(b) and OK(b) denote the value of HOp and OKp immediately after
the occurrence of b.

Lemma 3.10 If eq � b then q 2 HO(b).

Proof. The updates of the HO sets in processes and messages imply, as in the proof
of theorem 2.7, that for any two events b and c, c � b implies HO(c) � HO(b). By the
algorithm q 2 HO(eq), so the result follows. �

Lemma 3.11 If q 2 OK(b) then for all r 2 Inq; er � b.

Proof. First we prove by induction on � that q 2 OK(b) implies aq � b. Let p be the
process where b occurs and let b0 be the �rst event in p such that q 2 OK(b0). Now b0 � b
and before b0 q 62 OKp, because initially OKp was empty. b0 is either a receive event or
ap, for send and decide events leave OKp unchanged. If b0 = ap then p = q and aq � b
follows. If b0 is a receive event, q was contained in the OK set received. Use (the induction
hypothesis on the corresponding send event c) aq � c and conclude aq � b. Thus q 2 OK(b)

implies aq � b.
From the algorithm it follows that for all r 2 Inq, er � aq, from which the result

follows immediately. �

Theorem 3.12 For all r, er � dp.

14

Proof. Trivially ep � dp. If q is a process such that eq � dp, then by 3.10 q 2 HO(dp), so
by HO(dp) = OK(dp) we have q 2 OK(dp), and by 3.11 we �nd that for all r 2 Inq, er � dp.
The result follows from the strong connectivity of the network. �

The message complexity of the GOSSIP algorithm as given is unbounded, because a send
event can in principle be repeated in�nitely often. We restrict sending of messages by
p in such a way that sending is allowed only if OKp or HOp has a value that was not
sent to the same process before. In that case the message complexity is bounded by 2NE
messages (where E is the number of unidirectional edges). Under this restricted sending
policy we can prove:

Theorem 3.13 Assume all events of the GOSSIP algorithm that are enabled will even-

tually be executed. Then all processes will decide.

Proof. We �rst show that, until all processes have decided, there is always a next event
enabled to execute. If there is a link pq such that the current value of HOp and OKp

has not been sent over it, a send event is enabled. Assume (1) that for each link pq the
current value of HOp and OKp has been sent over it. If there is a link pq such that this
value has not been received by q, a receive event is enabled. Assume (2) that for each
link this value has been received. Then for each q the addition of q to OKq is enabled.
Assume (3) that this addition has taken place for all q. From assumption (2) follows that
HOp � HOq, thus by the strong connectivity of the network, all HO are equal. From
r 2 HOr for all r follows HOp = P for all p. From assumption (2) we can also derive that
all OK sets are equal and, using assumption (3), that OKp = P for all p. But then for
all p OKp = HOp, and a decision is enabled in all processes. Thus an execution does not
come to a halt before all processes have decided. Because only 2NE send, 2NE receive,
N addition, and N decision events are possible, it follows that all processes will decide. �

The GOSSIP algorithm is in fact Finn's Resynch algorithm [Fin79]. To see this, �rst
observe that always OK � HO for all processes and messages. Thus, the two sets can
be represented by a vector as follows. In this vector there is an entry for each potential
member of P. The entry can be 0, 1, or 2. A 0 entry means the process is neither inHO nor
in OK, a 1 entry means the process is in HO but not in OK, a 2 means that the process
is in both HO and OK. The test OK = HO now reads: the vector contains no 1's. Two
di�erences between the GOSSIP algorithm and Finn's are important to mention. First,
Finn assumes bidirectional links, where we assume strong connectivity of the network.
If links are assumed bidirectional, (weakly) connected components of the network are
strongly connected. Finn uses the algorithm to determine the nodes in one component
and synchronize this component only. A second di�erence is that Finn's algorithm also
provides a mechanism to restart the algorithm after a topological change. This mechanism
was described separately by Segall [Seg83].

A consequence of the material in this section is that the Resynch problem [Fin79] can
be solved by an algorithm using fewer messages. In Finn's work bidirectional channels are
assumed, so the GOSSIP algorithm can be replaced by e.g. the GHS algorithm. For the
resynchronization of unidirectional networks the algorithm of Gafni and Afek [GA84] can
be used instead. An advantage of the GOSSIP algorithm over the others is its low time
complexity.

The GOSSIP algorithm is decentralized and works on any (directed) network. Pro-
cesses must have distinct identities. The message complexity is (at most) O(NE) messages

15

(of size N identities) and the time complexity is D.
It is interesting to compare the TREE, ECHO, PHASE, and GOSSIP algorithms.

The TREE algorithm assumes a tree topology, the ECHO algorithm assumes there is
exactly one starter, the PHASE algorithm assumes the network diameter to be known,
and the GOSSIP algorithm assumes processes have identities. It can be shown that at
least one of these assumptions is necessary: there exists no decentralized total algorithm
for anonymous, general networks with no bound on the diameter.

3.6 Other Total Algorithms

We brie
y describe a few other total algorithms, without correctness proof.
The REPLY algorithm. A centralized total algorithm for complete networks. The

starter sends a message to every other process. A follower acknowledges the receipt of a
message. The starter decides when it has received enough acknowledgements.

The GHS algorithm. Gallager, Humblet, and Spira's algorithm for distributed Min-
imum Spanning Tree construction [GHS83]. This is a decentralized algorithm for gen-
eral bidirectional networks. Distinct identities are required. The message complexity
is O(N logN + E), which is provably optimal, and its time complexity is O(N logN).
Noteworthy is the adaptation by Gafni and Afek to directed networks [GA84].

Many algorithms have been given for Election on (unidirectional) rings. Their com-
plexity is typically O(N logN). Peterson's algorithm [Pet82] is noteworthy because it runs
on unidirectional rings and has a message complexity of O(N log s), where s is the number
of starters.

Distributed Depth First Search (DDFS) [Tel94, Sec. 6.4]. The classical DDFS algo-
rithm [Che83] is a centralized algorithm for general bidirectional networks. It is sequential,
i.e., DDFS is a Traversal algorithm in the sense of [KKM90]. Both its message and time
complexity are 2E. The processes need not have distinct identities. Intricate variants with
an O(N) time complexity exist (see e.g. Awerbuch [Awe85] or [Tel94]), but these variants
are no longer sequential. A version for directed networks exists [GA84].

4 Mutual Exclusion and Election

Mutual Exclusion is a fundamental problem in the design and implementation of parallel
and distributed systems. It must be solved if the system contains resources, such as
printers, shared variables, or telephone connections, that can be used by several processes,
but by at most one at a time. To model such resources, we assume that the code of
processes may contain so-called critical sections. At any time at most one process may
be executing in its critical section. This means that before entering its critical section, a
process must go through a protocol to ensure that no other process is in its critical section
or will enter it while the critical section is executed. If necessary the entering of the critical
section is deferred.

The protocol that is used for this task is called a Mutual Exclusion protocol. This
protocol must satisfy the following criteria.

1. Mutual Exclusion (or safety): at most one process is in its critical section at a time.

2. Starvation-freeness (or liveness): a process that starts the protocol to enter its critical
section will in �nite time be enabled to enter its critical section.

16

To satisfy starvation-freeness, the assumption must be made that if a process is in its
critical section, it will leave it in �nite time.

In this section we will show that a Mutual Exclusion protocol can be obtained by a
superimposition on a suitable total algorithm. In fact, the superimposition is a generaliza-
tion of the Mutual Exclusion algorithm of Ricart and Agrawala [RA81]. Their algorithm
is obtained by applying the superimposition to the REPLY algorithm of section 3. Appli-
cation of the superimposition to the ECHO algorithm yields an algorithm, very similar to
that of H�elary et al. [HPR88].

The idea of the algorithm is very simple and ressembles the bakery principle. Each
request to enter the critical section is assigned a unique identi�cation label v. Before
entering the critical section, the requesting process starts an execution A(v) of the total
algorithm to certify that its label is the smallest in the network. A process, executing
or requesting to execute a critical section with a label w < v defers its participation in
A(v). A process that has participated in A(v) will thereafter never issue a request with an
identi�cation w � v. A process enters its critical section labeled v if the correspondingA(v)

has lead to a decision. Upon leaving the critical section, deferred executions are resumed.
The Mutual Exclusion algorithm does not rely on a special message, a token, possession

of which is necessary to enter the critical section. Thus it is not necessary to select one
process as the original possessor of the token, and there is no danger of token loss when a
process crashes. The algorithm is symmetric, but to break ties it is required that processes
have a unique identity.

We see that in the Mutual Exclusion algorithm several executions of the underlying
total algorithm take place. A similar approach has been used for the construction of
Election algorithms. Here the aim is to construct a decentralized Election algorithm,
based upon centralized total algorithms, such as the RING, ECHO, or REPLY algorithm
of section 3. The idea is that starters of the Election algorithm start a copy of the
underlying centralized total algorithm, and these copies compete until �nally one copy
results in a decision. We mention some of these constructions because there turns out to
be a connection between these constructions and the construction of Mutual Exclusion
algorithms.

In section 4.1 describe how a class of algorithms for the Mutual Exclusion problem can
be constructed, based on suitable total algorithms. The algorithms are easy to understand,
to implement, and to prove correct. Because they do not rely on the possession of a unique
message, a token, to obtain access to the critical section, they can easily be made fault-
tolerant. In section 4.2 we give its correctness proof. In section 4.3 we deal with the
construction of Election algorithms. It turns out that totality is too strong a requirement
for the underlying algorithm in these constructions. Therefore in section 4.4 we de�ne
the weaker notion of dominating algorithms. We conjecture that dominating algorithms
also allow elegant constructions yielding algorithms for Mutual Exclusion and Election,
but the details of the construction are left open for further research. A thorough study
of dominating algorithms was not the aim of this section. Investigations in this direction
may lead to the development of new and e�cient algorithms for these problems.

4.1 Construction of Mutual Exclusion Algorithms

In the following A stands for a total algorithm. A must satisfy the following requirement:
If there is one starter (in a particular execution) then this process eventually decides. This

17

is not equivalent to A being centralized, as de�ned in section 3. Executions of A are
tagged with an execution identi�cation v. This means that messages of the execution are
augmented with v, and separate state variables exist in each process for each execution.
Each execution has only one starter, but several executions can take place simultaneously.
Executions do not in
uence each other (except via the superimposition we will describe).
We refer to the execution tagged with v as A(v).

A tag v consists of two components v:1 and v:2, where v:1 is a sequence number, unique
for a process, and v:2 is the identity of the process that started the execution. We order
the tags totally by a lexicographical order, i.e., v � w means v:1 < w:1 or (v:1 = w:1 and
v:2 � w:2).

The algorithm consists of the following procedures. The procedure RequestCS is
executed when a process wants to enter its critical section. A unique sequence number is
chosen and an execution of A started. The procedure Decide(v) is called when algorithm
A(v) decides. The critical section is entered if the corresponding request was issued in this
process. The procedure LeaveCS is executed when the process leaves its critical section.
Deferred executions of A are resumed.

Whenever an event of an execution A(w) of A is enabled, w is compared to the identity
v of a possibly pending request of the process itself. If v � w the execution of the event is
deferred. If it is a receive event, the message is stored in a queue MesQ. To simplify the
description of the algorithm we assume that a process is involved in at most one request
or critical section at a time. That is, when a process has a request pending or is in its
critical section, no new requests are generated in the process.

Variables of a process are the following. A booleanRequestp indicates whether or not p
has a request outstanding. If this is the case, ReqIDp contains the label of the outstanding
request. SeqNRp contains the highest sequence number (i.e., �rst component of any tag)
p has seen so far. MesQp contains messages of A whose receipt has been deferred.

RequestCSp: (* p wants to enter its critical section *)
begin SeqNRp := SeqNRp + 1 ;

ReqIDp := (SeqNRp; p) ;
Requestp := true ;
START A(ReqIDp) ; (* start a new execution of A *)

end

Decide(v)p : (* p decides in execution A(v) *)
begin if v:2 = p then (* this was \my" execution *)

enter critical section
end

LeaveCSp: (* p leaves critical section *)
begin Requestp := false ;

Execute all deferred events of A, using MesQp

end

f A message M of A(v) arrives g
begin receive M ;

SeqNRp := max(SeqNRp; v:1) ;

18

if Requestp and ReqIDp < v
then append M to MesQp

else execute receive event of A(v)

end

f A send or internal event e of A(v) is enabled g
begin if Requestp and ReqIDp < v

then defer e
else execute e

end

4.2 Correctness of the Algorithm

Each request to enter the critical section is assigned a request label, consisting of a sequence
number and a process identity. We use the label to identify the request itself, the resulting
execution of A, and the corresponding execution of the critical section as well.

Lemma 4.1 Request labels are unique, i.e., di�erent requests have di�erent labels.

Proof. As the second component of the request label is the processor identity, requests
of di�erent processes have di�erent labels. As SeqNRp is incremented to compute the
request label (see procedure RequestCSp), requests of the same process have increasing,
and thus di�erent, labels. �

Theorem 4.2 (Mutual Exclusion) At most one process is executing in its critical section

at a time.

Proof. From the algorithm it follows that after e(v)p , p will not issue a request with label
w < v or execute a critical section with label w < v. (e(v)p is the enroll event of p in A(v).)
Entering of a critical section with request label v is preceded by a decision in A(v), and
thus, by totality of A, by e(v)p , for all p. Thus, by the previous remark, a critical section
with request label v is not executed concurrently with a critical section with a label w < v.
Because labels are unique, Mutual Exclusion follows. �

Theorem 4.3 (Starvation freeness) A process, requesting to enter its critical section, will

be enabled to do so within �nite time.

Proof. Assume there are pending requests to enter the critical section. Consider the
request with lowest label v. A(v) is deferred only by nodes with a pending request or an
executing critical section with a label smaller than v. Critical sections are eventually left
and undeferred executions of A eventually decide. It follows that within �nite time a new
request (with label < v) is generated or request v is granted. The corresponding critical
section will be entered and, by assumption, be left in �nite time. So, a next critical section
will always be entered or a new request with a smaller label will be generated in �nite
time. Critical sections are always executed in strictly increasing order of request labels.
For each request, there is only a �nite number of possible requests with a smaller label.
Thus all requests will lead, in �nite time, to the entering of the corresponding critical
section. �

19

4.3 Construction of Election Algorithms

In the usual statement of the Election problem it is required that a solution is decen-
tralized. In this section we give some constructions that build Election algorithms from
centralized total algorithms: Extinction (see below), Korach et al.'s construction, and At-
tiya's construction. In all constructions, starting an election is done by starting a copy of
the centralized algorithm, in which messages are tagged with the initiator's identity. The
copies run concurrently and compete, until �nally a decision is taken in one of them. The
initiator of this copy is then elected.

Construction 1: (Simple Extinction) We construct an Election algorithm E from a
centralized total algorithm C. A starter p of E starts a copy Cp of C, with all messages
tagged with p. Each p maintains mp, the highest identity p has seen so far (initially p).
On receipt of a message from C, tagged with q < mp, p starts a copy of C (unless it did so
earlier), but does not participate in Cq, i.e., it does not execute any event of the execution
Cq. If q � mp, p updates mp and participates in Cq. If a decision is taken in Cq, this is
regarded as a decision in E, and q is elected.

Let m be the highest identity of any process. By construction, only in Cm a decision
can be taken, and Cm will start eventually. If the message and time complexity of C areM
and T , respectively, then the message and time complexity of E are bounded by O(NM)
and O(NT), respectively.

The Extinction construction can be improved as follows. When a process p has not
started Cp (yet) and receives a message it participates in the corresponding execution and
never starts Cp thereafter. Let M and T be as before, and s be the number of starters.
Then the message and time complexity of the constructed algorithm are now O(sM) and
O(sT), respectively. The algorithms of Chang and Roberts [CR79] is obtained by applying
Extinction to the RING algorithm. The algorithm by Hirschberg [Hir80] is obtained by
applying Extinction to the ECHO algorithm.

Construction 2: (Korach et al., [KKM90]) Starting from a traversal algorithm with
message complexity f(N), Korach et al. construct an Election algorithm with message
complexity O((f(N) +N) log s).

Construction 3: (Attiya, [Att87]) Starting from a traversal algorithm with message
complexity f(N), Attiya constructs an Election algorithm for bidirectional networks with
a message complexity of

PN

k=1 f(
N

k
).

Constructions 2 and 3 use fewer messages than construction 1, but they are less general,
for they require a traversal algorithm while construction 1 can use a centralized, but not
sequential, total algorithm.

4.4 Dominating Algorithms

For the purpose of Election and Mutual Exclusion the requirement that enrollment of
every process precedes a decision is too strong. Already in section 2.4 we saw that not
all Election algorithms are total. For these problems it su�ces that no two processes
can decide independently. We restrict ourselves now to algorithms with the mentioned
property that if the algorithm is started by a single process p, p will eventually decide.
Let B be such an algorithm. We refer to an execution in which p is the starter as B(p).

20

Events in B(p) are denoted by e(p)q , d(p), etc.

De�nition 4.4 B is dominating if for any two executions B(p) and B(q) there is a process

r such that e(p)r � d(p) and e(q)r � d(q).

It appears that a dominating algorithm B can be used to construct an Election algo-
rithm. To start an Election, a process p starts B(p). When B(p) decides p declares itself
leader. Because B is dominating, it is impossible that two processes p and q both declare
themselve leader if any process r refuses to take part in both B(p) and B(q). Con
icts of
this type must be solved, but we did not yet work out a construction to do this.

It appears that a dominating algorithm B can be used to construct a Mutual Exclusion
algorithm. To request the critical section, a process chooses a unique request label v =
(SeqNR; p) as in our construction, and starts B(v). Upon decision of B(v) p enters the
critical section. An execution B(v) is now deferred not only by processes with a pending
request with smaller label, but also by processes that are \blocked" by having participated
in an algorithm B(w), w < v. Upon leaving the critical section p again executes B(p), now
to release the blocked processes. Note that for this purpose B must be deterministic in the
sense that each execution of B(p) involves the same set of processes. Additional control is
necessary to prevent deadlock in this scheme.

In both cases the constructions are more complex than similar constructions from total
algorithms. Of course the concept of dominating algorithms is useful only if dominating
algorithms are not the same as total algorithms. This is the case indeed. On the one hand,
total algorithms are dominating: in a total algorithm A, for each process r, e(p)r � d(p) and
e(q)r � d(q). On the other hand, not all dominating algorithms are total. With an argument
similar to the one used in theorem 2.10 it is easily seen that a dominating algorithm for
rings, trees, or general networks of unknown size is necessarily total. In such networks an
unvisited node may \hide" a large subnetwork where an identical execution can take place,
thus violating the assumptions of the algorithm. There exist some non-trivial dominating
algorithms, which have a message complexity or other properties that can not be attained
by total algorithms.

Algorithm 1: For networks with known size N . The starter
oods a request through
the network and decides when it has received replies from bN=2c processes. The message
complexity is of the same order as of the REPLY algorithm, but this algorithm is highly
fault-tolerant. It is the basis of an Election algorithm by Kutten [BYKWZ87].

Algorithm 2: For networks with a designated process L. L replies to received messages
by sending a message back. The algorithm for a starter p consists of sending a message to
L, and awaiting the reply. Algorithm 2 implements centralized control of the network.

Algorithm 3: For grid or torus networks. The starter sends tokens along its column
and row, and receives them back. This algorithm is dominating because each row crosses
each column. A similar approach can be used in networks whose topology is a projective
plane. The message complexity can be O(

p
N). This algorithm underlies the Election

algorithm of Peterson [Pet85] (torus) and the Mutual Exclusion algorithm of Maekawa
[Mae85] (projective plane).

21

5 Distributed In�mum Approximation

Distributed In�mum Approximation was de�ned in [Tel86] as an abstraction of several
control problems in distributed systems, including Termination detection and evaluation
of Global Virtual Time. Several constructions of algorithms for the problem were given in
[Tel86]. This section contains a brief overview of the material contained in that paper.

5.1 De�nition of the Problem

Each process p is equipped with a variable xp with values in a partially ordered domainX.
A so{called basic computation manipulates these local variables according to the following
rules:

send Whenever p sends a message it includes the current value of xp in the message and
xp remains unchanged.

receive Whenever p receives a message with a value x contained in it, p assigns to xp the
in�mum of xp and x: xp := xp ^ x.

internal If an internal event in p changes the value of xp, it only increases this value: xp
is assigned a value x0 � xp.

A function on global system states is de�ned as follows (x(S)p denotes the value of variable
xp in state S):

F (S) = inf(fx(S)p : p 2 Pg [fx : x is contained in any message in Sg):
From the rules of the computation, given above, it follows that F is a monotone function,
that is, if S2 is a later system state than S1, F (S1) � F (S2).

The Distributed In�mum Approximation problem asks to superimpose an algorithm
on this basic computation such that an approximation f of F is maintained, satisfying

1. (Safety) f � F at any time, and

2. (Progress) if F � k (for some k 2 X) then within �nite time f � k also.

To show that the Termination Detection problem is an instance of Distributed In�-
mum Approximation, take X = factive; passiveg ordered such that active < passive and
observe that the computation is terminated if and only if F = passive.

5.2 Construction of Distributed In�mum Approximation Algorithms

In this paper we only give a construction for a special case of the problem, namely, where
communication in the basic computation is instantaneous. In this case

F (S) = inf(fx(S)p : p 2 Pg):
To compute successive approximations f the execution of a total algorithm, say A,

is repeated many times. Repeated execution is also required in other applications, such
as the algorithm for distributed selection of Santoro et al. [SSS88]. Iteration schemes
based on repeated executions of total algorithms were studied also by H�elary and Raynal
[HR88]. In all these applications it is required that subsequent executions of the algorithm
are disjoint. Let A be a total algorithm which is executed repeatedly, and let e(i)p denote
p's enroll event in the ith execution of A.

22

De�nition 5.1 A series of executions of A is called disjoint if for all p; q, and i: e(i)p �
e(i+1)q .

An easy way to achieve disjointness is by adopting the following rule:

Rule: A process may act as a starter in execution i+ 1 only if it has decided
in execution i.

In any execution of A, for all q there is a p such that p is a starter and ep � eq. This fact,
together with the rule, implies indeed that the subsequent executions are disjoint. The al-
gorithmAmust be such that if the deciders are starters in a next round, the next execution
is guaranteed to be total also. This condition is satis�ed if A is decentralized (PHASE,
GOSSIP), but also if there is one starter and one decider (RING, ECHO, REPLY).

By a superimposition on A as in section 2.3 it is arranged that A(i) computes the
in�mum of values r(i)p , provided by the processes in event e(i)p . The value r(i)p is computed
by process p by observation of the basic computation in process p between e(i�1)p and e(i)p .
(For convenience, denote by e(0)p the start of the basic computation in p.) Of course the
local observations must be such that the outcomes of the series of executions of A satisfy
the requirements for f . In the case we consider here (instantaneous communication of the
basic computation) the value r(i)p is simply the in�mum over all values of xp between e

(i�1)
p

and e(i)p . Assume that between enroll events this value is maintained in the variable rp.
Then the construction of a DIA algorithm can be summarized in the following rules:

R1 Initially rp = xp. Whenever xp changes value, execute rp := rp ^ xp.
R2 Modify A as to compute in�mums and such that a process that decides starts a next

execution.

R3 Upon each enroll event of an execution of A in p, p uses rp as input for A and sets
rp := xp.

R4 Initially f = ?. The outcome of an execution is assigned to f .

5.3 Correctness Proof

The proof of safety of the described algorithm is based on the fact that there is a system
state S1 that lies between two consequtive \waves" of enroll events.

Theorem 5.2 f � F .

Proof. Let S2 be any system state after the assignment of the outcome of A(i) to f . By
the disjointness of the series of executions of A there is a system state S1 such that, for
each process p, e(i�1)p takes place before S1 and e(i)p takes place after S1. So by virtue of
the observation mechanism, r(i)p � x(S1)p and thus infp2Pr

(i)
p � infp2Px

(S1)
p = F (S1). The

left hand side of this inequation is the value assigned to f , while the right hand side is
smaller that F (S2) by the monotonicity of F . �

Theorem 5.3 If F � k then within �nite time f � k.

Proof. Let i be the number of the �rst execution of A that starts after F � k. Now for
all p r(i+1)p � k so after completion of the (i+ 1)th execution f � k. �

Examples of these constructions are found in [Tel86] and [Tel91].

23

6 Conclusions

Total algorithms are an important building block in the design of distributed algorithms
for a wide range of network problems. Algorithms for Propagation of Information with
Feedback, for Resynchronization, for In�mum Computation, and for Connectivity can be
constructed by adding information to the messages of any total algorithm. Algorithms for
Mutual Exclusion and Election can be obtained by a more complex superimposition on a
total algorithm. Algorithms for Distributed In�mum Approximation can also be obtained
by a construction based on total algorithms.

The notion of total algorithms and the results in section 2 establish an equivalence
between communication (Propagation of Information with Feedback), computation (Dis-
tributed In�mum), and synchronization (Resynch). This equivalence follows from fact 2.1
and holds in asynchronous networks only. In fact, in synchronous systems it is possible to
achieve synchronization using clocks instead of communication.

The concept of total algorithms allows us to abstract away from the network topology
when designing an algorithm. The underlying total algorithm is designed separately. Until
now, independency of the topology was always achieved by using an algorithm for general
networks [SE85, Fin79, HPR88]. Our approach combines separation of concerns with the
possibility to use more e�cient total algorithms whenever a particular topology allows to
do so.

Reasoning in this paper was based on considering complete executions and a partial
order � on the events. This can be seen as an alternative for reasoning about system
states only, as advocated for example in [CM88]. The partial order allows us to express
relations necessary for example in the proof of theorem 2.7. Thus, although it is generally
felt to be less error{prone to reason about system states only, it is doubtfull whether all
our results could be obtained by it.

Why are total algorithms so important? An execution of a total algorithm involves all
processes, and can spread information to all processes as well as collect information from
all processes. In fact, to execute a total algorithm the processes of a distributed system
cooperate as one. The main burdens of distributed programming, namely lack of global
view and lack of global control, are thus lifted from the fragile shoulders of the humble
programmer.

References

[Att87] Attiya, H. Constructing e�cient election algorithms from e�cient traversal algo-
rithms. In Proc. 2nd Int. Workshop on Distributed Algorithms (Amsterdam, 1987),
J. van Leeuwen (ed.), vol. 312 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 377{344.

[Awe85] Awerbuch, B. A new distributed depth �rst search algorithm. Inf. Proc. Lett. 20
(1985), 147{150.

[BYKWZ87] Bar-Yehuda, R., Kutten, S., Wolfstahl, Y., and Zaks, S. Making dis-
tributed spanning tree algorithms fault-resilient. In Proc. Symp. on Theoretical As-

pects of Computer Science (1987), F. J. Brandenburg et al. (eds.), vol. 247 of Lecture
Notes in Computer Science, Springer-Verlag, pp. 432{444.

24

[CBT94] Charron-Bost, B. and Tel, G. Approximation d'une borne inf�erieure r�epartie.
Rapport de Recherche LIX/RR/94/06, Ecole Polytechnique, 1994. Submitted to
RAIRO.

[Cha82] Chang, E. J.-H. Echo algorithms: Depth parallel operations on general graphs.
IEEE Trans. Softw. Eng. SE{8 (1982), 391{401.

[Che83] Cheung, T.-Y. Graph traversal techniques and the maximum
ow problem in
distributed computation. IEEE Trans. Softw. Eng. SE{9 (1983), 504{512.

[CM88] Chandy, K. M. and Misra, J. Parallel Program Design: A Foundation. Addison-
Wesley, 1988 (516 pp.).

[CR79] Chang, E. J.-H. and Roberts, R. An improved algorithm for decentralized
extrema �nding in circular arrangements of processes. Commun. ACM 22 (1979),
281{283.

[Fin79] Finn, S. G. Resynch procedures and a fail-safe network protocol. IEEE Trans.

Commun. COM{27 (1979), 840{845.

[GA84] Gafni, E. and Afek, Y. Election and traversal in unidirectional networks. In
Proc. Symp. on Principles of Distributed Computing (1984), pp. 190{198.

[Gaf86] Gafni, E. Perspectives on distributed network protocols: A case for building blocks.
In Proc. MILCOM (Monterey, California, 1986), pp. 1{5.

[GHS83] Gallager, R. G., Humblet, P. A., and Spira, P. M. A distributed algorithm
for minimum weight spanning trees. ACM Trans. Program. Lang. Syst. 5 (1983),
67{77.

[GLT+85] Gafni, E., Loui, M. C., Tiwari, P., West, D. B., and Zaks, S. Lower bounds
on common knowledge in distributed systems. In Proc. Distributed Algorithms on

Graphs (1985), E. Gafni and N. Santoro (eds.), Carleton University Press, pp. 49{67.

[Hir80] Hirschberg, D. S. Election processes in distributed systems. Tech. rep., Dept
Computer Science, Rice University, Houston, Texas, 1980.

[HPR88] H�elary, J.-M., Plouzeau, N., and Raynal, M. A distributed algorithm for
mutual exclusion in an arbitrary network. Computer J. 31 (1988), 289{295.

[HR88] H�elary, J.-M. and Raynal, M. Un sch�ema (abstrait) d'it�eration r�epartie. Rap-
port de Recherche 417, IRISA, Rennes, 1988.

[KKM90] Korach, E., Kutten, S., and Moran, S. A modular technique for the design
of e�cient leader �nding algorithms. ACM Trans. Program. Lang. Syst. 12 (1990),
84{101.

[Lam78] Lamport, L. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21 (1978), 558{564.

[Mae85] Maekawa, M. A
p
N algorithm for mutual exclusion in decentralized systems. ACM

Trans. Comput. Syst. 3 (1985), 145{159.

[Pet82] Peterson, G. L. An O(n logn) unidirectional algorithm for the circular extrema
problem. ACM Trans. Program. Lang. Syst. 4 (1982), 758{762.

[Pet85] Peterson, G. L. E�cient algorithms for elections in meshes and complete networks.
Tech. Rep. TR 140, Dept Computer Science, University of Rochester, Rochester NY
14627, 1985.

[RA81] Ricart, G. and Agrawala, A. K. An optimal algorithm for mutual exclusion in
computer networks. Commun. ACM 24, 1 (1981), 9{17.

25

[SE85] Skyum, S. and Erikson, O. Symmetric distributed termination. In The Book of

L, G. Rozenberg and A. Salomaa (eds.), Springer-Verlag, 1985.

[Seg83] Segall, A. Distributed network protocols. IEEE Trans. Inform. Theory IT{29

(1983), 23{35.

[SSS88] Santoro, N., Scheutzow, M., and Sidney, J. B. On the expected complexity
of distributed selection. J. Parallel and Distributed Computing 5 (1988), 194{203.

[Tel86] Tel, G. Distributed in�mum approximation. Tech. Rep. RUU{CS{86{12, Dept
Computer Science, Utrecht University, The Netherlands, 1986.

[Tel91] Tel, G. Topics in Distributed Algorithms, vol. 1 of Cambridge Int. Series on Parallel

Computation. Cambridge University Press, 1991 (240 pp.).

[Tel94] Tel, G. Introduction to Distributed Algorithms. Cambridge University Press, 1994.

Contents

1 Introduction 1

1.1 De�nition of Total Algorithms : 2

2 Some Direct Applications of Total Algorithms 3

2.1 Propagation of Information with Feedback : 3
2.2 Resynchronization : 4
2.3 Distributed In�mum Computation : 5
2.4 Election : 5
2.5 Traversal : 6

3 Some Examples of Total Algorithms 7

3.1 RING Algorithm : 7
3.2 TREE Algorithm : 8
3.3 ECHO Algorithm : 10
3.4 PHASE Algorithm : 12
3.5 GOSSIP Algorithm : 13
3.6 Other Total Algorithms : 16

4 Mutual Exclusion and Election 16

4.1 Construction of Mutual Exclusion Algorithms : 17
4.2 Correctness of the Algorithm : 19
4.3 Construction of Election Algorithms : 20
4.4 Dominating Algorithms : 20

5 Distributed In�mum Approximation 22

5.1 De�nition of the Problem : 22
5.2 Construction of Distributed In�mum Approximation Algorithms : : : : : : : : : : 22
5.3 Correctness Proof : 23

6 Conclusions 24

26

