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Abstract

It is shown that the termination detection problem for distributed computations
can be modeled as an instance of the garbage collection problem. Consequently, algo-
rithms for the termination detection problem are obtained by applying transformations
to garbage collection algorithms. The transformation can be applied to collectors of
the \mark{and{sweep" type as well as to reference counting garbage collectors. As
examples, the scheme is used to transform the distributed reference counting protocol
of Lermen and Maurer, the weighted reference counting protocol, the local reference
counting protocol, and Ben{Ari's mark{and{sweep collector into termination detec-
tion algorithms. Known termination detection algorithms as well as new variants are
obtained.
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1 Introduction

A substantial amount of the research e�orts in distributed algorithm design has been de-
voted to the problem of detecting when a distributed computation has terminated. There
are several reasons for the impressive number of publications on this subject. First, be-
cause the problem has shown up under varying model assumptions and because there are
several solutions for each model, a very large number of di�erent algorithms has emerged.
All these algorithms were published separately, as unifying approaches treating a number
of algorithms as a class have been rare. Second, the problem of termination detection,
being su�ciently easy to de�ne and yet non{trivial to solve, has been seen as a good
candidate to illustrate the merits of design or proof methods for distributed algorithms.
Third, it has been observed that the fundamental di�culties of the termination detection
problem are the same as those of other important problems in distributed computing. In-
deed, termination detection algorithms are related to algorithms for computing distributed
snapshots [3, 19], detecting deadlocks [5, 23], and approximating a distributed in�mum
[31, 20]. Thus the problem is seen to be important both from a practical, algorithmical,
and from a theoretical, methodological point of view.

From both points of view we consider it useful to recognize general design paradigms
for distributed termination detection algorithms. One such paradigm was described by
Tel [32]. A new paradigm is presented in this paper: it is shown that the semantics
of the termination detection problem is fully contained in the semantics of the garbage
collection problem. As a result, termination detection algorithms are obtained as suitable
instantiations of garbage collection algorithms.

In the remainder of this section we �rst introduce the termination detection problem
and the distributed garbage collection problem. Section 2 then describes how the termi-
nation detection problem can be formulated as garbage collecting one hypothetical object
and derives the algorithmical transformation. Section 3 applies the transformation to four
known garbage collection algorithms and discusses the resulting termination detection
algorithms. Section 4 contains some additional remarks and comments.

1.1 The Termination Detection Problem

In a distributed system where processes communicate only via messages, in general no
process has a consistent and up to date view of the global state. As a result, it is non{
trivial to decide whether or not the global state is one in which a distributed computation
has terminated. Some processes may have �nished their local computations, while others
are still executing. But tasks may migrate from one process to another, new tasks may be
generated, or the receipt of a message may result in renewed computational activity. As
a consequence, �nished processes may later be computing again.

In general it is not possible for a process to decide whether it will later generate new
tasks. Therefore it is always assumed that for each process a local condition of stability is
de�ned. While this local condition holds, the process does not send messages (belonging
to the computation) to other processes, no new tasks are generated by the process, and
no initiative of the process itself falsi�es the condition of stability. Only the receipt of a
message can do so. It now follows that if a global state is reached in which the condition
of stability is satis�ed (simultaneously) in every process and no messages are in transit,
the computation is terminated. A control computation must be superimposed to detect
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Sp: f statep = active g
send a message hMi

Rp: f A basic message has arrived g
receive message hMi ; statep := active

Ip: f statep = active g
statep := passive

Algorithm 1: The actions of the basic computation.

this situation.

1.1.1 Description of the Problem

The problem is described formally as follows. A collection P of processes is considered,
communicating by message passing. A process is either passive (if its condition of stability
is satis�ed) or active (if the condition is not satis�ed). Active processes may send messages,
but passive processes don't. An active process may spontaneously become passive, but a
passive process may become active only on receipt of a message.

A full description of the possible actions of processes is given in Algorithm 1. Action
Sp is the sending of a message, action Rp the receipt of a message, and action Ip the
transition of a process from active to passive. Throughout the paper it is assumed that
each action is executed atomically. An action whose name is subscripted with p takes
place in process (or object) p. An assertion between braces (\f" and \g") is a guard and
means that the action can only be executed when the assertion is true. Comments are
placed between \(*" and \*)".

De�ne the termination condition as:

No process is active and no messages are in transit.

The termination condition is stable: once true, it remains so, because the actions are
all disabled if it holds. The problem of termination detection now is to superimpose
on the described basic computation a control computation which enables one or more of
the processes to detect when the termination condition holds. A process detects this by
entering a special state terminated. The following two criteria specify the correctness of
the control algorithm.

T1 Safety. If any process is in state terminated then the termination condition holds.

T2 Liveness. If the termination condition holds, then eventually a process will be in the
terminated state.

A passive process may take part in this control computation, and receiving control mes-
sages does not make a passive process active.

Under varying assumptions about the communication semantics the concise description
above still allows di�erent variants of the problem. Originally the problem emerged from
a CSP context, where the sending and receipt of a message are synchronized with each
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other. Thus messages in transit can be ignored; the termination condition for synchronous

communication simply reads \all processes are passive". The introduction of asynchronous
communication complicates the problem, as somehow it must be veri�ed that the channels
are empty. This can be done using special marker messages (in a FIFO environment) as
by Misra [22], acknowledgements as by Dijkstra and Scholten [11], counting of sent and
received messages as by Mattern [17], or by assuming an upper bound on message delay
as by Tel [32].

1.1.2 Solutions to the Problem

Several classes of solutions to the termination detection problem are known. The most
important ones are those based on probes and those based on acknowledgements.

Probe{based Algorithms. A probe is a distributed activity that \visits" all processes
in the network. (It can be implemented by a token circulating on a ring, by an echo
mechanism, or in many other ways, see Tel [33].) To detect termination using probes,
an attempt is made to maintain a state in which all visited processes are passive, and no
message is underway to a visited process. A violation of this aim occurs when a non{visited
process sends a message to a visited one. Usually, if this happens the current probe is
marked as unsuccessful, and after its completion a new probe is initiated. (This marking
can be done, for example, by assuming a di�erent \color" for processes that caused the
violation and probe messages that report about it.) Termination is detected when a probe
completes successfully. The best known example in this class is the algorithm by Dijkstra
et al. [9], a general treatment is given by Tel [32].

Acknowledgement{based Solutions. In these algorithms all messages of the basic
computation are acknowledged, but only after all computational activity resulting from it
has ceased. That is, if an active process receives a message, it acknowledges it immediately.
If a passive process receives a message and becomes active, it defers the acknowledgement
until it is passive again, and has received acknowledgements for all messages it sent during
the period of activity. When the initiators of the computation are passive and have received
an acknowledgement for all basic messages, termination is detected. The best known
example in this class is the algorithm of Dijkstra and Scholten [11]; generalizations of this
algorithm were given by Shavit and Francez [28] and Chandrasekaran and Venkatesan [8].

1.2 The Distributed Garbage Collection Problem

As our approach for deriving termination detection algorithms is based on solutions to
the garbage collection problem, we shall now describe this problem. From a practical
point of view, algorithms for the garbage collection problem are important for the storage
management of programming languages with dynamic objects. They are also used in
the implementation of functional programming languages as these languages operate on
directed graphs, represented by memory cells referencing each other through pointers.
An account of various garbage collection algorithms for multiprocessors and distributed
systems was given by Rudalics [25].

Di�erent models for the problem are found in the literature, here a model based on
the communicating objects paradigm is presented which is close to the model of Lermen
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and Maurer [16]. The advantage of this model is that it abstracts from aspects which are
not relevant to our purposes, such as processors, memory cells, and the di�erence between
\local" and \remote" references.

This model di�ers from the one used by Dijkstra et al. [10] in two important respects.
First, our model is based on addition and deletion of references, giving rise to a dynamic
number of references in each object. The model of [10] assumes that references are only
overwritten by other references, giving rise to a constant (viz., 2) number of references per
object. Where the latter assumption is justi�ed in the case of extremely simple objects
(e.g., Lisp storage cells), the former assumption is justi�ed when more sophisticated objects
are considered (as it is the case, for example, in object oriented programming languages
with dynamic data structures).

A second di�erence is the much coarser grain of atomicity that is assumed in our
model. As the algorithm of [10] was designed for processes communicating via shared
memory, a �ne grain of atomicity was desirable to minimize synchronization overhead. In
message passing systems (which are assumed in our model) a larger grain of atomicity is
permissible.

1.2.1 Description of the Problem

An (object{oriented) distributed system consists of a collection O of cooperating processes
called objects. A subset of O is designated as root objects. Objects are able to hold
references to other objects. These references can be transmitted in messages; see below.
A reference to an object r will be called an r{reference. An object r is a descendant of
q if q holds an r{reference or a message containing an r{reference is in transit to q. An
object is reachable if it is a root object or a descendant of a reachable object. An object p
holding an r{reference may delete it, after which p no longer holds this reference. Also, a
reachable object p holding an r{reference may copy the reference to another object q. It
is usually assumed that this happens only when q is also reachable, but this assumption
is not necessary for our purposes. To copy an r{reference, p sends the r{reference in a
message to q, and q will hold an r{reference after receipt of this message. (Note that only
reachable objects may copy references they hold. Since \being reachable" is a non-local
and non-stable property, this is a non-trivial requirement imposed on the implementation.
Fortunately, this is not a problem for our purpose because|as will become clear later|
those objects in our transformation which may copy references are always reachable by
de�nition.) An object can have multiple references to the same target object.

Formally, the allowed actions in this model are as in Algorithm 2. Here CRp is the
action by which p initiates the copying of an r{reference to q, RCp is the action by which
p inserts an r{reference as a result of copying, and DRp is the action by which p deletes
an r{reference. The formal similarity of the actions in Algorithm 1 and Algorithm 2 is
remarkable. Obviously, being active in the former model corresponds to holding an r{
reference in the latter model. This similarity will be investigated further down since it
plays a central role in our transformation.

We do not make any assumptions about the message communication system, such as
that message communication is synchronous or obeys the FIFO rule. Indeed, such assump-
tions are not necessary for our transformation|only when the transformation is applied
to a garbage collection scheme that relies on such assumptions (see, e.g., Section 3.1), they
must be made; then the resulting termination detection algorithm relies on them also.
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CRp: f p is reachable and holds an r{reference g
send a h cop; r i message to q

RCp: f A h cop; r i message has arrived g
receive the h cop; r i message ;
insert the r{reference

DRp: f p holds an r{reference g
delete the r{reference

Algorithm 2: Reference manipulation by the objects.

An object is called garbage if it is not reachable. As only references to reachable objects
are copied, a garbage object remains garbage forever. For reasons of memory management
it is required that garbage objects are identi�ed and collected. This task is taken care of
by a garbage collecting algorithm. The following two criteria de�ne the correctness of a
garbage collecting algorithm.

G1 Safety. If an object is collected, it is garbage.

G2 Liveness. If an object is garbage, it will eventually be collected.

1.2.2 Solutions to the Problem

Many solutions have been proposed to the distributed garbage collection problem, most
of which fall into one of two categories: collectors of the reference counting type and
collectors of the mark{and{sweep type. Both types of solutions have been known for over
30 years for classical, non{distributed systems [7, 21].

Reference Counting [2, 14, 15, 16, 24, 36]. Collectors of the �rst type maintain
for each non-root object a count of the number of references in existence to that object.
References in other objects as well as references in messages are taken into account. The
reference count is incremented when a reference to the object is copied, and decremented
when such a reference is deleted. When the count for an object drops to zero, it can be
concluded that the object is garbage and consequently the object can be collected.

A group of garbage objects, cyclically referencing each other, cannot be collected by
a reference counting algorithm, because no reference count drops to zero. Thus the algo-
rithms do not satisfy the liveness condition G2, but only the weaker condition

G3 If there are no references to a non{root object, it will eventually be collected.

When an object is collected its references are deleted, so that a \chain" of garbage objects
will eventually be collected entirely if G3 is satis�ed. To obtain an algorithm satisfying
G2, usually a supplementary algorithm (typically of the mark{and{sweep type) is used
to collect cyclic structures of garbage. In our application, however, cyclic structures of
garbage objects do not occur, and a supplementary algorithm is not necessary.
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Mark{and{sweep [1, 10, 29, 30]. Collectors of the second type mark all reachable
objects as such, starting from the roots and recursively marking all descendants of marked
objects. In this way all reachable objects become marked eventually. The design of
the marking algorithm is complicated by the possibility that references are inserted and
deleted during its operation. The objects in the system must cooperate with the marking
algorithm, e.g., by also marking objects when references are installed, copied, or removed.
A possible design, presented by Tel et al. [34] consists of an algorithm for the marking
proper, upon which a termination detection algorithm is superimposed. When the marking
phase is terminated, a sweep through all objects is made in which all unmarked objects
are collected. These two phases form one cycle of the collector, and cycles are repeated as
long as necessary.

2 Termination Detection Using Garbage Collection

In this section we describe how the distributed termination detection problem in general
can be modeled as an instance of the garbage collection problem. As a result, solutions
to the termination detection problem can be derived from garbage collection algorithms.
First the collection O of objects used for this purpose is described, as well as the behavior
of these objects. Next it is shown that the termination condition is equivalent to one
particular object becoming garbage. As a result, termination can be detected by a garbage
collection algorithm. Concrete examples of this will be presented in Section 3.

Recall that P is the set of processes whose termination is to be detected. The collection
O of objects consists of one root object Ap for every process p in P, and a single indicator
object Z. Object Ap mimics the behavior of process p as far as the basic computation
is concerned (it sends and receives p's basic messages, and has all the variables p has).
Object Ap is called passive (active) when process p is passive (active). As Ap is a root
object, it is always reachable.

The indicator object Z is not a root object. Its only purpose is to indicate the termi-
nation condition with its reachability status by the following equivalence, which will be
maintained during execution.

(IND) Z is garbage , the termination condition holds.

Theorem 2.1 IND holds when the following two rules are observed:

R1 An object holds a Z{reference if and only if it is active.

R2 Each message of the basic computation contains a Z{reference.

Proof. Z is garbage is equivalent to: Z is not a descendant of any of the Ap. By de�nition,
this means that no Ap holds a Z{reference, and to no Ap a message is in transit containing
a Z{reference. By R1 and R2 this is equivalent to: no Ap is active and to no Ap a message
(of the basic computation) is in transit. This is the de�nition of the termination condition.
�

It must be shown how R1 and R2 can be maintained. It is possible to ensure through
proper initialization that R1 and R2 hold initially. To this end, assume that active objects
are initialized with the necessary Z{reference, and passive objects without it, and that
messages in transit initially contain the reference also. To maintain R1 and R2 during
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Sp: f statep = active g
send a message hM; h cop; Z ii

Rp: f A basic message has arrived g
receive message hM; h cop; Z ii ; statep := active ;
insert the Z{reference

Ip: f statep = active g
statep := passive ;
delete all Z{references

Algorithm 3: The basic actions augmented with reference manipulation.

the distributed computation, each transmission of a message copies the Z{reference, and
processes delete their Z{references when they become passive. More explicitly, the actions
to be carried out by Ap are modi�ed as presented in Algorithm 3.

With these modi�cations R1 and R2 are maintained indeed. R1 is maintained because
Z{references are deleted in action Ip, and inserted in action Rp. The latter is possible
because the message contains a Z{reference by R2. R2 is maintained because in action
Sp a Z-reference is included in every message. This is possible because only active objects
send messages, and these objects contain a Z{reference by R1. Thus R1 and R2 are
maintained during the computation, and by Theorem 2.1 IND holds. To arrive at a
termination detection algorithm, superimpose a garbage collection algorithm upon the
objects as described. The garbage collection algorithm is then modi�ed so as to inform
the objects Ap when it identi�es Z as garbage. (When receiving this notice, the root
objects enter the terminated state. However, we omit this trivial operation from the
description of the algorithms that will follow.)

Theorem 2.2 The algorithm as constructed satis�es conditions T1 and T2.

Proof. To prove T1, assume any process enters the terminated state. This happens
upon notice that Z is collected. By the correctness of the garbage collection algorithm
(condition G1) this implies that Z is garbage. By IND the termination condition holds.

To prove T2, assume the termination condition holds. By IND, Z is garbage, hence, by
the liveness of the garbage collector (condition G2) Z will eventually be collected. Notice
of this will be sent to the processes, and these will enter the terminated state within �nite
time. �

It was remarked in Section 1.2.2 that garbage collectors of the reference counting type
are not able to collect cyclic structures of garbage, which may possibly harm the liveness
of the termination detection algorithm. It is, however, easily seen that Z is not part of
such a cyclic structure, and in fact the following, stronger equivalence holds.

There are no references to Z , the termination condition holds:

Hence, Theorem 2.2 also applies if the garbage collection algorithm satis�es only G1 and
G3 (as is the case for a reference counting algorithm).
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Summary of the Transformation. The construction of a termination detection algo-
rithm is summarized in the following four steps.

1. Form the set O of objects, consisting of the root objects Ap and one indicator object
Z.

2. Superimpose upon the actions of the basic computation the handling of the Z{
reference.

3. Superimpose upon this combined algorithm a garbage collection algorithm.

4. Replace the collection of Z by a noti�cation of termination.

3 Examples of the Transformation

The transformation described in the previous section can in principle be applied to any
garbage collection scheme, of the reference counting as well as the mark{and{sweep type,
or working according to other principles. In the next three subsections \simple" dis-
tributed, weighted, and local reference counting are considered and corresponding termi-
nation detection algorithms are derived. In Section 3.4 the transformation is applied to a
mark{and{sweep garbage collector.

3.1 Distributed Reference Counting

In this section we show how the distributed reference counting algorithm of Lermen and
Maurer [16] can be transformed into a termination detection algorithm. For each non{
root object o a reference count RCo is maintained. When an o{reference is copied from
object p to object q, p sends to q a copy message h cop; o i and to o an increment message
h inc; o; q i. When an o{reference is deleted by p, p sends a delete message (or decrement
message) hdec; o i to o.

The scheme is complicated because of the possibility that hdec; o i and h inc; o; q i
messages may arrive at o in a di�erent order than they are sent. This is possible even in a
system where message communication is FIFO, because these messages may be sent from
di�erent objects. (It is not possible, however, if message communication is synchronous or
causally ordered [6].) If an h inc; o; q i message is overtaken by a hdec; o i message, RCo
may temporarily drop to 0, causing o to be collected while it is reachable. It is possible
to overcome this problem by �rst sending the h inc; o; q i message and blocking the sender
until it receives an acknowledgement from o (and only then send the copy message).
Interestingly, Lermen and Maurer found a solution which avoids the delay caused by the
acknowledgement.

3.1.1 Description of the Scheme

The necessary synchronization between hdec; o i and h inc; o; q i messages is achieved by a
two{way strategy. First, object o learns about the creation of a certain o{reference before
it learns about the deletion of this o{reference. Second, o learns about the creation of
all copies of a certain o{reference before it learns about the deletion of this o{reference.
Lermen and Maurer show that this \causality preserving" protocol indeed implies the
safety of the scheme (as stated in Theorem 3.1 further down).
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CRp: f p is reachable and holds an o{reference g
send h cop; o i to q ; send h inc; o; q i to o

RCp: f A h cop; o i message has arrived at p g
receive h cop; o i ; insert the o{reference ;
if iRp(o) < 0 then aRp(o) := aRp(o) + 1 ;
iRp(o) := iRp(o) + 1

DRp: f aRp(o) > 0 g
send hdec; o i to o ; aRp(o) := aRp(o)� 1 ;
delete an o{reference

RIo: f An h inc; o; q i message has arrived at o g
receive h inc; o; q i ;
RCo := RCo + 1 ; send h ack; o i to q

RDo: f A hdec; o i message has arrived at o g
receive hdec; o i ; RCo := RCo � 1 ;
if RCo = 0 then collect o

RAp: f An h ack; o i message has arrived at p g
receive h ack; o i ;
if iRp(o) > 0 then aRp(o) := aRp(o) + 1 ;
iRp(o) := iRp(o) � 1

Algorithm 4: The Lermen{Maurer scheme.

To implement the �rst part, o sends to q an acknowledgement hack; o i for the message
h inc; o; q i it receives from p when an o{reference is copied from p to q. Note that the
communication scheme is triangular: p sends h cop; o i to q and h inc; o; q i to o, o sends
hack; o i to q, and q receives both a h cop; o i message (from p) and an hack; o i message
(from o). The hack; o i message informs q that o has learned about the creation of its
o{reference. q deletes an o{reference only if it is an acknowledged reference, that is, q
has received an hack; o i message for it. q maintains a count both of the number of its
acknowledged references to o and of the number of \surplus" copy messages it has received.

To implement the second part, Lermen and Maurer assume a FIFO discipline on the
links. As p sends h inc; o; q i messages concerning copies of its o{reference earlier than
the hdec; o i message, this ensures indeed that o is informed about the creation of copies
before it learns about the deletion of the reference.

A formal description of the actions in the scheme is given as Algorithm 4. The actions
to create a new object are omitted, because creation of objects does not occur when the
scheme is used for termination detection. Each object p keeps, besides its multiset of ref-
erences, for each non{root object o the two variables aRp(o), the number of acknowledged
o{references, and iRp(o), the di�erence between the number of h cop; o i messages and the
number of hack; o i messages received by p. The conditional assignments in actions RCp

and RAp cause p to increase its count of acknowledged o{references exactly in one of the
following cases:

1. A h cop; o imessage is received while there are unmatched hack; o imessages (iRp(o) <
0).
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2. An hack; o imessage is received while there are unacknowledged o{references (iRp(o) >
0).

Under the rules for the computation of the objects, an object already holding an o{
reference may receive yet another h cop; o i message. In order to send enough hdec; o i
messages in such a case, the action DRp is executed su�ciently often to make aRp(o)
equal to 0. An hack; o i message may even arrive when the reference is no longer needed,
in which case the execution of DRp is deferred until the receipt of the hack; o i message
(if RAp results in aRp(o) > 0). The termination detection algorithm, obtained from this
scheme in the next subsection, must also allow multiple execution of the corresponding
action, and may defer it until an hAck i message has been received (see also the remarks
at the end of Section 3.1.2).

Initially there are only acknowledged references (iRp(o) = 0 for all p; o), the reference
counts correctly re
ect their number (RCo =

P
p aRp(o)), and no messages are in transit.

The correctness of the protocol, as expressed in the following theorem, was proved by
Lermen and Maurer in [16].

Theorem 3.1 Algorithm 4 is a correct reference counting garbage collection algorithm,

that is, it satis�es G1 and G3.

3.1.2 Transformation into a Termination Detection Algorithm

In this section a termination detection algorithm is derived from the Lermen{Maurer
scheme. A discussion of the properties of the derived algorithm, called the Activity Count-
ing algorithm, is deferred to Section 3.1.3. The termination detection algorithm is derived
in the four steps described at the end of Section 2.

1. The set O of objects consists of the objects Ap and the indicator object Z.

2. Superimpose upon the actions of the basic computation the handling of the Z{
reference. Algorithm 3 is obtained.

3. Superimpose upon Algorithm 3 the garbage collection algorithm of Lermen and
Maurer. To this end, the CRp action is included in the Sp action, the RCp action
is included in the Rp action, and the DRp action is included in the Ip action. In all
cases Z is substituted for o. This operation yields Algorithm 5.

4. Replace the collection of Z by a noti�cation of termination. This is done by substi-
tuting

send h term i to all Ap

for \collect Z" in action RDZ . Upon receipt of this message, the processes enter
the terminated state.

The derivation of the termination detection algorithm is now complete. Finally, preserving
its correctness, the algorithm can be simpli�ed. Because there is only one non{root object,
the subscript Z may be dropped from all variables. Furthermore, the handling of the Z{
reference only serves to lead the garbage collection scheme in its actions. Now that these
actions have been correctly connected to the actions of the basic distributed computation,
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Sp: f statep = active g (* This implies p holds a Z{reference *)
send a message hM; h cop; Z ii to q ; send h inc; Z; q i to Z

Rp: f A basic message has arrived g
receive message hM; h cop; Z ii ; statep := active;
insert the Z{reference ;
if iRp(Z) < 0 then aRp(Z) := aRp(Z) + 1 ;
iRp(Z) := iRp(Z) + 1

Ip: f aRp(Z) > 0 g
statep := passive ;
send hdec; Z i to Z ; aRp(Z) := aRp(Z)� 1 ;
delete a Z{reference from the references of Ap

RIZ : f An h inc; Z; q i message has arrived at Z g
receive h inc; Z; q i ;
RCZ := RCZ + 1 ; send h ack; Z i to q

RDZ : f A hdec; Z i message has arrived at Z g
receive hdec; Z i ; RCZ := RCZ � 1 ;
if RCZ = 0 then collect Z

RAp: f An h ack; Z i message has arrived at p g
receive h ack; Z i ;
if iRp(Z) > 0 then aRp(Z) := aRp(Z) + 1 ;
iRp(Z) := iRp(Z)� 1

Algorithm 5: The basic computation with the Lermen{Maurer scheme.

this reference handling can be removed. The resulting Activity Counting algorithm is
given in Algorithm 6. The initial conditions for this algorithm are: iRp = 0 for all p;
aRp = 0 if p is passive, and aRp > 0 if p is active; RC =

P
p aRp; and no messages are in

transit.
The correctness of the algorithm, as expressed in the following theorem, is a direct

consequence of the properties of the Lermen{Maurer scheme and the validity of our trans-
formation.

Theorem 3.2 The Activity Counting algorithm is a correct termination detection algo-

rithm.

Proof. According to Theorem 3.1, the Lermen{Maurer scheme satis�es G1 and G3, and
hence by Theorem 2.2 (and the remark following it), the derived algorithm satis�es T1
and T2. �

A process may receive an activation message when it is already active, in which case
it does not become \even more active". In order to send enough hDec i messages, the
process must later execute action Ip as many times as it has received activation messages.
This is taken care of by the guard of this action, based on the proper administration of the
hAck i and hMi messages received (variables aRp and iRp). When the process is passive,
but has positive aRp, it eventually executes Ip and sends a hDec i message.
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Sp: f statep = active g
send a message hMi to q ; send h inc; q i to Z

Rp: f A basic message has arrived g
receive message hMi ; statep := active ;
if iRp < 0 then aRp := aRp + 1 ;
iRp := iRp + 1

Ip: f aRp > 0 g
statep := passive ;
send hDec i to Z ; aRp := aRp � 1

RIZ : f An h inc; q i message has arrived at Z g
receive h inc; q i ;
RC := RC + 1 ; send hAck i to q

RDZ : f A hDec i message has arrived at Z g
receive hDec i ; RC := RC � 1 ;
if RC = 0 then send h term i to all Ap

RAp: f An hAck i message has arrived at p g
receive hAck i ;
if iRp > 0 then aRp := aRp + 1 ;
iRp := iRp � 1

Algorithm 6: The Activity Counting termination detection algorithm.

3.1.3 Discussion of the Algorithm

The principle of the Activity Counting algorithm is simple. When a process activates
another process, it informs the central controller Z by sending an increment message
h inc; q i, and when a process becomes passive, it informsZ by sending a decrement message
hDec i. The controller tries to keep an account of the number of \currently" active

processes by counting the increment and decrement messages. When enough decrement
messages have been received to balance the increment messages and the initially active

processes, it signals termination. Unfortunately, the possible delay between a basic action
and its registration by Z render this over{simpli�ed scheme incorrect as the following
example shows.

1. Assume only p is active and RC = 1.

2. p sends an activation message to q and an increment message to Z.

3. q receives the activation message and becomes active. Then q becomes passive again
and sends a decrement message to Z.

4. Z receives the decrement message (before the increment message), and RC drops to
0 while p is still active.

The Activity Counting algorithm takes care of this and similar scenarios, because the
sending of the decrement message is deferred until an acknowledgement message hAck i
has been received. This implies that Z receives the decrement message after it has received
the corresponding increment message.

13



As the Activity Counting algorithm was derived from the Lermen{Maurer reference
counting scheme, it inherits properties of the latter algorithm, which will now be discussed.

1. Message Complexity. The message overhead of the new algorithm is considerable:
for each basic message of the computation the algorithm adds up to three control messages
(h inc; q i, hAck i and hDec i). A worst case lower bound for this overhead of one control
message per basic message was proved by Chandy and Misra [4], and this bound is achieved
by the algorithm of Dijkstra and Scholten [11].

2. FIFO Discipline on Links. For the correctness of the algorithm it is required that
links deliver messages in the order they were sent.

3. Central Controller. The central object Z acts as a central controller in the Activity
Counting algorithm. For each single transmission of a basic message up to two actions
are necessary in Z (RIZ and RDZ). The central process may become a bottleneck in
the computation and slow down the operation of the entire system. The local reference
counting algorithm described later in Section 3.3 also relies on a central controller, but
does not require its cooperation with each basic message transmission.

4. Inhibition. A control algorithm is said to be inhibitory if it may temporarily disable
actions of the basic computation. In the Lermen{Maurer scheme this is the case for
the delete action, which is deferred until the object has an acknowledged version of the
reference. As a consequence, in the Activity Counting algorithm becoming passive is
only allowed if aRp(o) > 0, thus formally the algorithm is inhibitory. This disadvantage
can be overcome by a slight modi�cation of the algorithm as follows. The object may
delete any reference, but the hdec; o i message is held back if the acknowledgement for
the reference was not yet received. A similar modi�cation makes the Activity Counting
algorithm non{inhibitory.

3.1.4 Related Algorithms

The Vector Counting Algorithm. Through the use of hAck i messages (and FIFO
channels) the Activity Counting algorithm guarantees that Z always has a causally con-
sistent (though possibly slightly outdated) view of the number of active (or activated)
processes in the system. By keeping more information in Z, however, it is also possible
to achieve this without actually sending hAck i messages. For this purpose Z keeps a
vector (i.e., an integer array) V with one component for each process. Whenever Z re-
ceives an h inc; q i message it increments q's component of V instead of sending an hAck i
message: V [q] := V [q] + 1. Action RAp and the variables iRp are no longer necessary: a
process increments aRp when it receives a basic message and sends aRp hDec i messages
to Z immediately when it becomes passive. When Z receives a hDec i message from q it
decrements the corresponding component of V : V [q] := V [q]� 1.

Notice that temporarily V [q] might become negative|this is the case if Z receives a
hDec i message before it receives the corresponding h inc; q i message. This is precisely
the situation which is avoided by use of hAck i messages in the original Activity Counting

14



algorithm. Because Z's view is inconsistent when a component of V is negative, nothing
is deduced in that case. It follows that Z can signal termination when V becomes the
null vector, and the RC counter is no longer necessary. Some further optimizations (e.g.,
batching h inc; q i and hDec i messages) yield a centralized variant of the so-called Vector

Counter termination detection algorithm proposed in [17]. This algorithm has lower mes-
sage overhead than the Activity Counting algorithm, does not rely on the FIFO property,
and can easily be realized in a distributed way as well.

Variations of the Lermen{Maurer Scheme. Two variants of the Lermen{Maurer
scheme were proposed by Rudalics [25]. We describe informally his three message protocol,
which does not rely on FIFO links. In the Lermen{Maurer scheme object q must receive
an hack; o i acknowledgement when an o{reference has been copied to it, but in the three
message protocol an object p must receive an acknowledgement when it has initiated a
copy of an o{reference. A delete message for the o{reference may be send only when all
acknowledgements have been received, and to this end an acknowledgement counter is
added to each reference. The protocol works as follows.

1. To copy an o{reference to q, p increments the acknowledgement count of its reference
and sends an increment message to o.

2. On receipt of this message, o increments its reference count and sends a copy message
to q.

3. On receipt of the copy message, q inserts the reference and sends an acknowledgement
to p.

4. On receipt of this acknowledgement, p decrements the acknowledgement count of
the o{reference.

When p deletes the reference, it holds back the delete message until all acknowledgements
have been received. To this end, the references are all installed with acknowledgement
count equal to 1, and deletion of the reference is done by decrementing the count. When
the count drops to zero (either by deletion of the reference or by receipt of an acknowl-
edgement) the delete message is sent.

A drawback of this algorithm is that the new reference can only be installed after two
messages have been propagated (one from p to o and one from o to q). In Rudalics' four
message protocol p also sends a copy message to q directly, and q installs the reference
when it receives a copy message either from p or from o. The acknowledgement is sent
when both copy messages have been received.

In a similar way as for the Lermen{Maurer scheme a termination detection algorithm
can be derived from the three and four message protocols by the transformation of Sec-
tion 2.

3.2 Weighted Reference Counting

In this section we consider the transformation of a garbage collection algorithm based on
weighted reference counting (WRC). The resulting termination detection algorithm turns
out to be an already known algorithm: it was proposed by Mattern [18].
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CRp: f p is reachable and holds a reference (o; w) g
send h cop; o; w=2 i to q ; w := w=2

RCp: f A message h cop; o; w i has arrived g
receive h cop; o; w i ;
if p has an o{reference

then add w to its weight
else insert the o{reference with weight w

DRp: f p holds a reference (o; w) g
send hdec; o; w i to o ; delete the o{reference

RDo: f A hdec; o; w i message has arrived at o g
receive hdec; o; w i ; RCo := RCo � w ;
if RCo = 0 then collect o

Algorithm 7: The weighted reference counting scheme.

As mentioned in the introduction of Section 3.1, hdec; o i and h inc; o; q i messages in
the \simple" distributed reference counting scheme must be synchronized because their
reordering may render the scheme unsafe. This need for synchronization can be avoided
using weighted reference counting. In this variant each reference has a positive weight. The
reference count of an object o now represents the total weight of all existing o{references
rather than their number. (We continue to use the word reference count although it may
no longer be completely appropriate.) When a reference is copied, its weight is split among
the existing and the new reference. Thus, although the number of references increases,
the weight remains the same, and the reference count need not be incremented and no
h inc; o; q i message need be sent. When an object deletes an o{reference, a decrement
message is sent to o, returning the weight of the deleted reference. Upon receipt of such
a message, o subtracts the weight from its reference count. The reference count monoton-
ically decreases, and the order in which control messages (i.e., delete messages) arrive at
the object becomes irrelevant. The object can be collected when its reference count drops
to zero.

3.2.1 Description of the Scheme

Distributed weighted reference counting schemes have been given by Bevan [2], Watson
andWatson [36], and others. The principle was attributed to Weng [35]. In its description,
see Algorithm 7, again the mechanism to create new objects is omitted. An o{reference is
now a tuple (o; w), where w denotes the weight of the reference. Initially for each non{root
object o, the reference count RCo equals the sum of the weights of all existing o{references.

Theorem 3.3 Algorithm 7 is a correct reference counting garbage collection algorithm,

that is, it satis�es G1 and G3.

Proof. A correctness proof and analysis of the scheme is given by Bevan [2] and by
Watson and Watson [36] and is based on invariance of the following two assertions:
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Sp: f statep = active g (* Thus p has a Z{reference (Z;w) *)
send a message hM; h cop; Z; w=2 ii to q ; w := w=2

Rp: f A basic message has arrived g
receive message hM; h cop; Z; w ii; statep := active;
if p has a Z{reference

then add w to its weight
else insert the Z{reference with weight w

Ip: f statep = active g
statep := passive ;
send hdec; Z; w i to Z ; delete the Z{reference

RDZ : f A hdec; Z; w i message has arrived at Z g
receive hdec; Z; w i ; RCZ := RCZ � w ;
if RCZ = 0 then collect Z

Algorithm 8: The basic computation with weighted reference counting.

1. Each reference has a positive weight; each delete message contains a positive weight.

2. RCo =
P

R=(o;w)w+
P

D=hdec o;wiw, where R ranges over all o{references in existence
(including those in copy messages) and D ranges over all delete messages in transit.

�

3.2.2 Transformation into a Termination Detection Algorithm

To transform the garbage collection scheme into a termination detection algorithm we
apply the four step construction of Section 2. Steps 1, 2, and 4 are as in Section 3.1.2.
In step 3 the actions of the weighted reference counting scheme are superimposed on the
program resulting from step 2 (Algorithm 3). To this end, action CRp is included in
action Sp, action RCp is included in action Rp, and action DRp is included in action Ip.
Again for o the object Z is substituted. This results in Algorithm 8.

The same simpli�cations as in Section 3.1.2 can be made. The actual handling of the
Z reference can be removed, and instead we simply equip every process p with a variable
Wp, representing the weight of p's (virtual) Z{reference (0 if p has no such reference).
The subscript Z is dropped. This �nally results in Algorithm 9, which is known as the
Credit Recovery algorithm [18]. The initial conditions for this algorithm are: Wp = 0 if p
is passive; Wp > 0 if p is active; RC =

P
pWp; and no messages are in transit.

Theorem 3.4 The Credit Recovery algorithm is a correct termination detection algo-

rithm.

Proof. According to Theorem 3.3, the weighted reference counting scheme satis�es G1
and G3, and hence by Theorem 2.2 (and the remark following it), the derived algorithm
satis�es T1 and T2. �
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Sp: f statep = active g (* Thus Wp > 0 *)
send a message hM;Wp=2i to q ; Wp := Wp=2

Rp: f A basic message has arrived g
receive message hM;W i; statep := active;
Wp := Wp +W

Ip: f statep = active g
statep := passive ;
send hdec;Wp i to Z ; Wp := 0

RD: f A hdec;W i message has arrived at Z g
receive hdec;W i ; RC := RC �W ;
if RC = 0 then send h term i to all Ap

Algorithm 9: The Credit Recovery termination detection algorithm.

3.2.3 Discussion of the Algorithm

Alternative Implementations of Action RCp. Action RCp of Algorithm 7 adds the
weight of the received reference if p already has an o{reference. There are two alternative
implementations of the algorithm. First, pmay return the received weight to o immediately
in a hdec; o; w i message. Second, p may store the weight separately and thus keep a
non{empty set of weights, one for each o{reference, rather than a single weight. Both
alternatives maintain the two invariants of the weighted reference counting algorithm and
are therefore also applicable to the credit recovery termination detection algorithm. A
consequence of the two alternative strategies is that all weights in the system are always
(negative) powers of 2, and can thus be represented concisely by their negative logarithm.

Weight Under
ow. The implementation of the weighted reference counting scheme
faces a di�culty that has not yet been discussed, and it is not surprising that the Credit
Recovery algorithm faces a similar di�culty. The problem arises because weights are
represented in a �nite number of bits: thus there is a smallest possible positive weight,
and if a reference of this weight is copied its weight cannot be split. The problem in the
Credit Recovery algorithm arises when a process with the smallest possible positive value
of Wp sends a message.

Also the solutions to these di�culties are similar in the two algorithms. In the weighted
reference counting algorithms, a new indirection object is created with a maximal reference
count, and the original reference is replaced by a reference to the indirection object,
with maximal weight. Next it can be copied without di�culties. In the Credit Recovery
algorithm, a process negotiates with Z to exchange its (minimal) credit for a new, maximal
credit. Then it can send the message. The operation results in an increase in the reference
count of Z.

These additions to the algorithms do not make them ine�cient or impractical, because
in both algorithms weight under
ow is supposed to be a very rare event. As remarked
above, it can be arranged that all weights are powers of 2, and can be represented by
their (negative) logarithm. When copying a reference, W := W + 1 is executed instead
of W := W=2, and the probability of over
ow in W should not be much greater than the
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Sp: f statep = active g
send (M; genp + 1) to q ;
sonsp := sonsp + 1

Rp: f A basic message (M; g) has arrived g
if statep = active

then send hpss; g; 0 i to Z
else statep; genp; sonsp := active; g; 0

Ip: f statep = active g
send hpss; genp; sonsp i to Z ;
statep := passive

RP: f A hpss; g; s i message has arrived at Z g
receive hpss; g; s i ; ActCount[g] := ActCount[g]� 1 ;
ActCount[g + 1] := ActCount[g + 1] + s ;
if 8i : ActCount[i] = 0 then send h term i to all Ap

Algorithm 10: The Generational termination detection algorithm.

over
ow probability in classical reference counting schemes.

Generational Reference Counting. Anonther reference counting principle, called
generational reference counting, has been proposed by Goldberg [14]. This scheme, like
weighted reference counting, avoids h inc; o; q i messages, but uses a di�erent strategy
for this. The communication pattern is the same as for the weighted reference counting
scheme: a control message is sent to o only upon deletion of an o{reference.

Each reference has a generation number, where a copy of a reference with generation
number i has generation number i + 1. An object keeps separate reference counts for
each generation. When an o{reference is deleted, a hdec; o; g; s i message is sent to o,
reporting the generation number g of the deleted reference and the number s of copies (with
generation number g+1) that were made of the reference. We omit a full description of the
scheme and the (straightforward) transformation into a termination detection algorithm.

The resulting Generational termination detection algorithm is given in Algorithm 10.
Each active process p has a generation number genp and a counter sonsp to count how many
activation messages it has sent (in its current active period). When a process becomes
passive it sends to Z a hpss; genp; sonsp i message to inform it that it has become passive
and sent sonsp activation messages (of generation genp + 1).

The central controller Z maintains an array ActCount of integers, where ActCount[g]
counts the active processes of th gth generation. When a hpss; g; s i message is received,
ActCount[g] is decremented and ActCount[g + 1] is increased by s, the number of newly
reported activations of generation g+1. Initially a process p is either active with genp = 1
or passive, ActCount[1] equals the number of active processes, ActCount[i] = 0 for i > 1,
and no messages are underway.

Theorem 3.5 The Generational termination detection algorithm is a correct termination

detection algorithm.
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Proof. This result follows from the correctness of the generational reference counting
scheme (as demonstrated by Goldberg [14]) and Theorem 2.2. �

We present this algorithm as another illustration of our transformation, but Goldberg's
remark: \it is not clear if there is any advantage to using the generational reference
counting scheme instead of the weighted reference counting scheme" seems to apply equally
to the resulting termination detection algorithms.

3.3 Local Reference Counting

In [15] Ichisugi and Yonezawa present an interesting distributed garbage collection scheme
they call local reference counting (LRC). Basically the same idea was found independently
by Piquer [24] (\indirect reference counting") and by Rudalics [26]. The proposed scheme
assumes that objects are partitioned into groups and each group is mapped onto a distinct
computing node. Thus, the model used here is slightly di�erent from the model described
at the beginning of Section 1.2. In particular, a di�erence between \local" and \remote"
objects and references is now made. An interesting feature of the LRC garbage collection
scheme is that it supports the migration of objects from one node to another node very
easily. The interested reader is referred to [24].

3.3.1 Description of the Scheme

For each (local or remote) object o which is referenced by a local object of node N , N
has a local reference counter LRCN(o). This counter is incremented when an o{reference
is locally or remotely copied, and it is decremented when a local o{reference is deleted or
when all o�springs of a remotely copied o{reference have been deleted. On a local variable
FIRSTN(o), N keeps the identity of the node from which it �rst received an o{reference.
FIRSTN(o) is unde�ned (;) if o was created by an object residing on N . If LRCN(o)
drops to 0, o is garbage if it was created by a local object. Otherwise the node FIRSTN(o)
is informed by a hDec i message that N is unaware of any remaining o{references.

For our purpose it is appropriate to assume that exactly one object resides on each
node (which means that we identify nodes and objects). The set of rules for garbage
identi�cation can then be stated in a slightly adapted form (compared to the rules given
in [15]) as in Algorithm 11. Obviously, action DZp can be appended to actions DRp and
RDp guarded by a test \if LRCp(o) = 0 then ...". Notice that when an object that
already has an o{reference receives another o{reference (action RCp) a hdec; o i message
is returned to the sender although the reference is installed, and the local reference counter
is incremented.

Compared to the Lermen-Maurer scheme (Section 3.1), the LRC algorithm has the
important advantage that no extra messages besides the copy message (or decrement mes-
sage) are necessary when a reference is copied (or deleted). Furthermore, the FIFO prop-
erty is not required. Compared to the weighted reference counting scheme (Section 3.2),
the handling of the local reference counters is somewhat simpler than the accumulation of
arbitrary small fragments on the weight reference counter RCo. A drawback of the LRC
scheme is that a node (or an object) usually has many counters (whereas in the weighted
reference counting scheme a single counter per object is su�cient), possibly one for each
reference that ever existed on that node.
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CRp: f p holds an o{reference g
send h cop; o i to q ; LRCp(o) := LRCp(o) + 1

RCp: f A h cop; o i message sent by q has arrived at p g
receive h cop; o i ; insert the o{reference ;
if LRCp(o) = 0
then LRCp(o) := 1 ; FIRSTp(o) := q ;
else send hdec; o i to q ; LRCp(o) := LRCp(o) + 1

DRp: f p holds an o{reference g
delete the o{reference ; LRCp(o) := LRCp(o) � 1

RDp: f A hdec; o i message has arrived g
receive hdec; o i ; LRCp(o) := LRCp(o)� 1

DZp: f LRCp(o) has just dropped from 1 to 0 g
if FIRSTp(o) 6= ;
then send hdec; o i to FIRSTp(o) ;
else collect o

Algorithm 11: The local reference counting scheme.

It is also interesting to compare the LRC scheme to the generational reference counting
principle because the local reference counters can also be regarded as some sort of gener-
ational counters. These counters, however, are not kept at the referenced object o but are
distributed in a tree-like manner over all nodes (or objects) which have an o{reference.
The levels of this tree correspond to the generation number.

3.3.2 Transformation into a Termination Detection Algorithm

For the transformation of the LRC garbage collection algorithm into a termination detec-
tion algorithm we proceed as before. Action CRp is included in action Sp, action RCp

is included in action Rp, and action DRp is included in action Ip. In order to avoid the
keeping of more than one Z{reference per object (which could happen if an active process
is reactivated), we delete a second Z{reference immediately after it has been installed in
action RCp. Technically this means that the increment of the local reference counter is
suppressed if an already active process executes action RCp (or action Rp below).

We assume that the virtual object Z is created by the \environment" e before the start
of the computation. Conceptually, the environment e can be regarded as a special process
which is the only initially active process and which starts the computation by sending
basic messages to other processes (the \initiators"). It does not receive basic messages
and consequently its variable FIRSTe is always unde�ned. Initially, no other process has
a Z{reference. Therefore, FIRSTp is never unde�ned for a regular process p if LRCp
eventually drops to 0. This simpli�es action DZp which is appended to actions RDp

and DRp (Ip resp.). As before, the handling of Z{references is omitted in the resulting
Algorithm 12.

For the environment e, LRCe must be initialized to 1 in order to re
ect the existence
of its virtual Z{reference before the start of the computation. Because FIRSTe = ;, the
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Sp: f statep = active g
send a message hMi to q ; LRCp := LRCp + 1

Rp: f A basic message hMi sent by q has arrived g
receive message hMi ;
if LRCp = 0
then LRCp := 1 ; FIRSTp := q ; statep := active ;
else send hDec i to q ; if statep = passive

then statep := active ; LRCp := LRCp + 1

Ip: f statep = active g
statep := passive ;
LRCp := LRCp � 1 ;
if LRCp = 0 then send hDec i to FIRSTp

RDp: f A hDec i message has arrived g
receive hDec i ; LRCp := LRCp � 1 ;
if LRCp = 0 then send hDec i to FIRSTp

Algorithm 12: The resulting LRC termination detection algorithm.

last line of actions I and RD in the environment should be replaced by

if LRCe = 0 then send h term i to all Ap.

3.3.3 Discussion of the Algorithm

The resulting termination detection algorithm is basically identical to the termination
detection scheme for di�using computations presented by Dijkstra and Scholten [11]. The
authors call the hDec i messages \signals" and keep two local counters Cp (sum of the
de�cits of p's incoming edges) and Dp (sum of the de�cits of p's outgoing edges) for each
process p. When a basic message is received Cp is incremented; Cp is decremented when
a signal is sent. Dp is incremented when a basic message is sent (which is only allowed if
Cp > 0) and decremented when a signal is received. According to Dijkstra and Scholten's
protocol, sending a signal is only possible if

(SIG) Cp > 1 or (Cp = 1 and Dp = 0):

This means that if before the receipt of the message Cp = 1, p can immediately send
a signal in reaction to an incoming message (and consequently reset Cp to 1). If this
immediate reaction discipline is adopted, it is always the case that Cp = 0 or Cp = 1.
Because Cp = 0 ) Dp = 0 is a required invariant of the scheme, it follows from (SIG)
that (besides the immediate reaction to an incoming message) the sending of a signal is
constrained by the condition Cp + Dp = 1. After the sending of a signal the property
Cp + Dp = 0 holds. It should be clear now that the local variable LRCp of our derived
algorithm plays the role of Cp + Dp; a signal is sent when LRCp drops from 1 to 0. By
(SIG) Dijkstra and Scholten's scheme allows to delay the sending of a signal, but otherwise
their scheme is identical to our derived algorithm. Since Dijkstra and Scholten prove the
correctness of their scheme in [11], we directly have the following theorem.
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Theorem 3.6 The LRC termination detection algorithm is a correct termination detec-

tion algorithm.

The LRC termination detection algorithm has interesting characteristics. For each
basic message eventually one decrement control message is sent which means that the
algorithm has optimal worst case message overhead [4]. The FIFO property of commu-
nication links is not required. In contrast to the previously derived Activity Counting
algorithm (Section 3.1.2) and the Credit Recovery algorithm (Section 3.2.2) the possible
bottleneck of a central controller Z (which in those schemes receives a control message
each time a process becomes passive) is avoided. The memory overhead is small, each
process only needs a pointer (FIRSTp) and a counter (LRCp).

3.4 Mark{and{Sweep Garbage Collection

As explained in Section 1.2.2, mark{and{sweep garbage collectors operate in consecutive
cycles. In each cycle �rst all reachable objects are marked, and subsequently all unmarked
objects are reclaimed. In this section it is shown how the garbage collection algorithm
of Ben{Ari [1] can be transformed into a termination detection algorithm. (Actually, we
use a variant of the algorithm described by Van de Snepscheut [29]). This algorithm was
designed to run concurrently with a single processor mutating the references contained
in memory cells. Thus the copying of a reference is a single atomic step, where we have
assumed so far that it consists of the sending and receipt of a message. When using Ben{
Ari's collector, these two events must be assumed to be one single event. Therefore, in
the remainder of this section we assume synchronous communication. Let n denote the
number of processes.

3.4.1 Description of the Scheme

In each cycle initially all nodes are white, and the following is done in a cycle1:

1. Color all roots gray.

2. Sequentially visit all nodes. For all gray nodes, color the nodes to which they have
references gray.

3. Sequentially visit all nodes and count the number of gray nodes.

4. If more gray nodes were counted than in the previous round (more than the number
of roots for the �rst round) go to step 2, otherwise to step 5.

5. Collect the white nodes and make all nodes white.

It is essential for the correctness of the algorithm that the basic program cooperates with
the marker algorithm: whenever the basic program installs a new reference, it makes the
object to which it points gray. No cooperation is required when the basic program deletes
a reference. The correctness proof of this garbage collection scheme is quite involved;
proofs were given by Ben{Ari in [1] and Van de Snepscheut [29].

1We use the color \gray" instead of \black" (as in the original algorithm [1, 29]) because we need
\black" for a di�erent purpose further down.
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3.4.2 Transformation into a Termination Detection Algorithm

In the scheme used to obtain a termination detection algorithm each object can have at
most one reference, which is always a Z{reference. The transformation is straightforward.
Rather than coloring the roots white at the end of each cycle and gray again at the
beginning of the next one, assume that the roots are always gray by de�nition. The �ve
steps of the algorithm are transformed as follows.

1. (Gray the roots.) The roots (i.e., the processes Ap) are always gray, so this step is
skipped.

2. (Gray sons of gray nodes.) In this step the virtual object Z need not be visited as it
has no sons. The processes Ap are visited by arranging the processes in a (virtual)
ring and passing a token along this ring. On this tour the token visits the processes in
a \lazy" way: before actually visiting a process, it waits until the process is passive,
and thus has no reference at all. This does not hinder the liveness of the termination
detection, because there is no termination while a process is active. As a result of
this strategy, no coloring is done in this round.

3. (Count gray nodes.) There are n + 1 processes, and the n roots are known to be
gray. It only needs to be determined whether any root has grayed Z, which is the
case if a Z{reference has been installed (by the basic program) since the beginning
of this cycle. To this end, a process (i.e., a root) becomes black when it would gray
Z according to the scheme (viz., when becoming active). In order to see whether Z
was grayed, the token again visits all processes, now testing whether any process is
black.

4. (Cycle completed?) If the second tour of the token reveals that no process is black,
then Z is white and the number of gray nodes is still n. In this case, go to step
5. If any node is black (i.e., Z is gray) there are now n + 1 non-white nodes and
the original algorithm would jump to step 2 in order to (try to) gray more nodes.
However, in our case this is useless, as no nodes are white anymore, and we decide
to also terminate the cycle. As Z is gray, it cannot be collected, hence a new cycle of
the collector must be started by resetting the color of all roots to gray and returning
to step 2.

5. (Collect.) The collection phase is entered with n gray nodes, i.e., the virtual node
Z is white, therefore termination can be signaled.

Essential for the termination detection algorithm is that a (gray) process becomes black
when it activates another process. (The meaning of this blackening in the garbage col-
lection scheme is \I grayed Z".) The termination detection algorithm repeatedly sends
a token around the ring twice. In the �rst round the token only waits at each process
until this process is passive. In the second round the token inspects the color of the pro-
cesses and resets them to gray. If no process was black (i.e., Z is white), termination is
concluded, otherwise a new double tour of the token is initiated.

3.4.3 Correctness of the New Algorithm

In this section we formally present the new termination detection scheme (see Algo-
rithm 13), and prove its correctness by means of an invariant. Assume the processes
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T1: f tour = �rst ^ statet = passive g
if t > 0
then t := t � 1
else tour := second ; t := n� 1 ; tc := white

T2: f tour = second g
if colort = black then tc := black ; colort := white ;
if t > 0
then t := t � 1
else if tc = white

then send h term i to all Ap
else (* Reinitialize *)

tour := �rst ; t := n� 1

Ap: f statep = active g
stateq := active; colorq := black

Ip: f statep = active g
statep := passive

Algorithm 13: The ring{based termination detection algorithm.

are numbered from 0 through n�1 and they have communication facilities so that process
q can send control messages to process q � 1 (mod n). The variable tour (values �rst,
second) denotes whether the token is on the �rst or the second of the two tours, and t

denotes the current position of the token. Processes have a color, stored in colorq for
process q. Instead of the colors black and gray used in the previous section, we prefer the
colors black and white here|this conforms to the usual description of similar termination
detection algorithms. The color of the token (on its second tour) is stored in the variable
tc.

The algorithm is initiated by process 0 by sending the token on its �rst tour to process
n � 1. A token visit during the �rst tour is described in action T1. It is enabled only
when the process holding the token is passive, and consists of forwarding the token only
(decrement t). If the token is at the end of the �rst tour it is whitened and sent on its
second tour. A token visit during the second tour is described in action T2. If the color
of the visited node is black, the token is colored black, and the color of the process is reset
to white. While the token is not yet at the end of the second tour it is forwarded. At
the end of the second tour, if the token is white termination is concluded, otherwise it is
sent on its �rst tour again. Action Ap describes the (synchronous) activation of process
q by process p and q's subsequent blackening. Action Ip describes how process p becomes
passive.

During the �rst tour, the token visits a process only in passive state. Thus a process
can be active \behind" the token only if it is reactivated after the visit, but this implies
that the process is black. Black processes are reported in the second round, regardless
of what the basic computation does. The principle of the algorithm is captured in the
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following predicate.

P �
tour = �rst ^ (8q > t : stateq = passive _ 9q : colorq = black)

W
tour = second ^ (8q : stateq = passive _

[tc = black _ 9q � t : colorq = black])

Lemma 3.7 P is an invariant of the algorithm.

Proof. After initialization tour = �rst and t = n� 1 so P holds. It is easily veri�ed that
each of the actions maintains P. �

Theorem 3.8 Algorithm 13 is a correct termination detection algorithm.

Proof. First suppose process 0 signals termination. This happens (see action T2) when
the white token visits process 0 on its second tour, and color0 = white. From invariant P,
all processes are passive. Hence the safety property holds.

Now suppose the termination condition holds. No more blackening of processes occurs,
so the next complete second tour whitens all processes, and after the subsequent second
tour termination is signaled. This proves that the liveness property holds. �

3.4.4 Discussion of the Algorithm

It is interesting to compare this algorithm with the similar algorithm by Dijkstra et al.

[9]. In that algorithm a process is blackened upon sending rather than upon receiving

an instantaneously transmitted message. Note that the subformula \8q > t : stateq =
passive" of P is falsi�ed when process q > t is activated by some p � t . The consequence
of blackening upon sending rather than receiving is, that a black process is certainly found
ahead of the token in this case (while in the new algorithm the black process may be found
behind the token). But if this is the case, the two tours can be replaced by a single tour,
and indeed the algorithm by Dijkstra et al. uses one tour only.

An alternative transformation of Ben{Ari's algorithm uses blackening upon sending.
Indeed, sender and receiver cooperate atomically in the Ap action, which marks Z in
Ben{Ari's algorithm, and this virtual marking can be 
agged in the sender as well as in
the receiver. With this modi�cation the Ap action would be the following, and the reader
may easily verify that this action also maintains invariant P above.

Ap: f statep = active g
stateq := active; colorp := black

Unfortunately, invariant P is not strong enough to exploit the advantage of blackening
upon sending, like in [9]. We conclude that the transformation of Ben{Ari's garbage
collection algorithm yields a termination detection algorithm which is very similar to
Dijkstra's algorithm, but less e�cient because it needs two control tours rather than one.
It is possible, however, to optimize Algorithm 13 by combining the second tour of one
cycle with the �rst tour of the next cycle. The combined action T describing the token
visit (see Algorithm 14) is almost identical to T2, but is \lazy" like T1 in the sense that
only passive processes are visited. When the combined action is used, the color of the
initially active processes must be initialized to black.
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T: f statet = passive g
if colort = black then tc := black ; colort := white ;
if t > 0
then t := t � 1
else if tc = white

then send h term i to all Ap
else (* Reinitialize *)

tc := white ; t := n� 1

Algorithm 14: The combined token visit.

4 Conclusions

In this paper we have presented a transformation of garbage collection schemes into ter-
mination detection algorithms. Termination detection and garbage collection belong to a
family of problems concerning the detection of stable properties in distributed systems.
This family also includes deadlock detection [5] and global virtual time approximation
[32]. Several transformations of the same spirit as the one described here have been given
between members of this family. It was argued by Natarajan [23] that termination is a spe-
cial case of communication deadlock. It was shown by Tel [32] that termination detection
is a special case of global virtual time approximation, and Mattern et al. [20] presented
a derivation from termination detection algorithms to global virtual time approximation
algorithms. Even though in some cases a solution to a \simple" problem is derived from
a solution to a more \complicated" problem, we think transformations of this kind are
useful for several reasons.

1. The research in one problem area may have \overlooked" a solution or optimization,
which is possibly found by a transformation from a solution to another problem. We
have derived not only known (e.g., Algorithm 9), but also new termination detection
algorithms; see Algorithms 6, 10, and 13.

2. The design and veri�cation of algorithms may be simpli�ed.

3. The transformations show that the underlying di�culties (e.g., \behind the back
messages") of seemingly di�erent problems are in fact similar if not identical. Hence
similar solutions and techniques apply.

4. The transformations are of a theoretical interest because they enhance our under-
standing of the structure and intrinsic di�culties of a problem.

The transformation of garbage collection algorithms into termination detection algorithms
raises some further questions, which will brie
y be addressed in the remainder of this
section.

4.1 Other Garbage Collection Algorithms

Virtually all garbage collection schemes can be transformed into sensible termination de-
tection algorithms. Here we only sketch two more transformations, the reader is invited to
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complete the details and to apply the transformation to other garbage collection schemes
(e.g., the well known algorithm by Dijkstra et al. [10]).

The \classical" garbage collection scheme consists in suspending the execution of the
basic program when memory becomes short and run the garbage collector (of the mark{
and{sweep type) while the program is stopped. Compared to on{the{
y garbage collec-
tion, synchronization and cooperation between the basic program and the collector is much
simpli�ed. The transformation of such a garbage collection algorithm yields a \freezing"
termination detection algorithm where no reactivations are possible while the algorithm
checks for the termination condition. In fact, one of the �rst published termination detec-
tion schemes (by Francez [13]) was a freezing algorithm.

Steele [30] describes a mark{and{sweep on{the{
y garbage collection algorithm. In
this algorithm, when a reference from a marked to an unmarked object is installed, the
marker process must visit the marked object again. In our transformation this principle
means that when process p installs a reference to Z (i.e., becomes active), the termination
detection algorithm must visit p again. This requirement can be realized in various ways.
One way is to use a token visiting reactivated processes. Then the processes must keep
speci�c information in order to record the identities of processes they reactivated (e.g., a
vector with one component for each process).

4.2 A Di�erent Transformation

The transformation of a garbage collection scheme into a termination detection algorithm
as described in Section 2 proved to be very useful|a number of interesting termination
detection schemes resulted from its application. However, there exists a di�erent trans-
formation principle which is in some respects \dual" to the principle we used up to now.
In this section we sketch that principle, the details, however, are omitted.

Each process p is transformed into a non{root object Ap. In addition, a single (virtual)
root object R exists. It is assumed that initially only a single object A0 is active, all other
objects are initially passive. Throughout the computation the following equivalence must
be guaranteed:

Ap is active , R has an Ap{reference.

This equivalence can easily be realized when a reference counting algorithm is used. The
local reference counter RCp is incremented when process Ap is activated, and decremented
when it becomes passive. Thus, the actual references of R are only virtual references, and
the object R need not be implemented at all.

In order to detect termination, we want to maintain the following property:

A0 is garbage ) the termination condition holds.

Using this property a (distributed) garbage collection algorithm can detect the termination
condition when collecting A0. The property is maintained by the following two rules:

1. Each basic message from object Ap to object Aq contains an Ap{reference.

2. When object Aq receives a message containing an Ap{reference it inserts that ref-
erence if it has no reference to any object, otherwise it immediately deletes the
Ap{reference. If Aq is activated, RCq is incremented (i.e., a virtual Aq{reference is
installed at R).
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The reader may easily verify that no cycles are formed and that if an object Ap is active
then there exists a reference path from Ap (and consequently also from R) to A0. In order
to guarantee the liveness property, the following rules should be observed in addition:

3. When object Ap becomes passive, RCp is decremented. (That is, the virtual Ap{
reference in R is deleted.)

4. When the reference counter RCp of object Ap drops to zero and Ap has an Aq{
reference, that reference is deleted ("recursive freeing" as part of the virtual collection
of the garbage object Ap).

When Lermen and Maurer's garbage collection algorithm is used to detect whether A0

is garbage (see Section 3.1), the two messages hcopApi and hackApi can be merged into
a single message. This is the case because Ap sends a reference pointing to itself. The
only e�ect of the subsequent execution (in arbitrary order) of the receive actions RAp and
RCp is to increment aRp(o) which is used as a guard for action DRp. Since Ap (virtually)
sends hinc Ap; Aqi to itself, action RIp is executed locally in Ap when sending a basic
message.

The algorithm resulting after removal of the manipulation of references is simple.
Whenever an object becomes active or sends a basic message it increments a local counter.
The counter is decremented when the object becomes passive or when a decrement control
message is received. Decrement messages are either sent by rule 2 or by rule 4. The FIFO
property is not required because the channel for which it was necessary in the original
garbage collection algorithm no longer exists. Termination is detected when the counter
of A0 drops to 0.

The resulting algorithm is already known; it is the LRC termination detection scheme
(Algorithm 12) derived in Section 3.3.2|A0 plays the role of the environment e, and RCp
plays the role of the local reference counter LRCp.

4.3 Reverse Transformation

It was already observed by Tel et al. [34] that detecting the termination of the marking
phase emerges as a natural subproblem in mark{and{sweep garbage collectors. It was
shown that the choice of a particular termination detection algorithm has a major in-

uence on the resulting garbage collection algorithm. The transformation considered in
this section is di�erent, here it is indicated how a termination detection algorithm can be
transformed into a reference counting garbage collection scheme.

The aim of a reference counting algorithm is to collect an object o when all o{references
(in objects) have been deleted and no more o{references are in transit (in copy messages).
A similarity to the termination detection problem is observed when activity of objects is
de�ned suitably. An object is de�ned to be o{active if it holds an o{reference and o{passive
otherwise, and a message is called an o{activation message if it carries an o{reference.
Under these de�nitions, an o{passive object becomes o{active only upon receipt of an o{
activation message, and only o{active objects send o{activation messages. The behavior of
the computation is according to Algorithm 1, so that the o{termination condition, de�ned
as

no process is o{active and no o{activation messages are in transit
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is stable and can be detected by a termination detection algorithm. Furthermore

there are no o{references , the o{termination condition holds.

To arrive at a reference counting garbage collection algorithm, a termination detection
algorithm is superimposed on the o{reference handling. When the o{termination condition
is established, o is collected. For each object a separate instance of the termination
detection algorithm is executed concurrently.

Not all termination detection algorithms can be reasonably used in this construction.
Several considerations must be taken into account.

Centralized versus Distributed Control. It is not a drawback if an algorithm is
chosen in which one process plays a special role, such as initiating the algorithm. The
object o itself is a natural candidate to play this role. The central object could however
become a bottleneck if its intervention is needed in every basic communication (as in the
Activity Counting or Generational termination detection algorithm).

No Probe{Based Algorithms. The set of objects can be very large and varies due
to creation and collection of objects. Therefore it is not feasible to use a termination
detection algorithm in which all processes in the system take part. Rather, the activity
of the algorithm should be restricted to processes that take part in the basic computation
also. The LRC termination detection algorithm, the Credit Recovery, Activity Counting,
and Generational termination detection algorithm all have this property, but probe{based
algorithms are ruled out.

Early Termination. A process p holding or having held an o{reference may detect that
it is garbage itself and must be collected. Therefore the termination detection algorithm
must allow processes to terminate locally even while the computation as a whole has not
yet terminated. The algorithm of [11] does not have this property: an \engaged" process
must remain in the system as long as any of its descendants remain active.

These considerations di�er from those that are usually taken into account when a termi-
nation detection algorithm is designed. For example, it is usually preferred that processes
participate in the termination detection procedure only while they are passive, but this
property probably con
icts with the possibility of early termination. The termination
detection algorithms that we have derived from reference counting schemes present them-
selves as candidate algorithms, but their transformation yields no new algorithms, as the
two transformations are each other's inverse. Current research addresses the design of
new termination detection algorithms that can more easily be used in the transformation
sketched above.

4.4 Related Problems

The termination detection problem is an instance of a class of detection problems in
distributed systems. Communication deadlock detection is a generalization where a part of
the network can be terminated [23]; distributed in�mum approximation is a generalization
where the \property" to be detected takes values from any partially ordered domain, rather
than just passive or active [32, 19, 20].
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Sp: (* Send basic message *)
send a message (M;xp)

Rp: f A basic message has arrived g
receive message (M;x) ; xp := xp ^ x

Ip: (* Internal increase of x *)
f xp < x g xp := x

Algorithm 15: The basic actions of distributed infimum approximation.

Deadlock Detection. In the communication deadlock problem, for each passive process
a subset of the processes is determined at the moment it becomes passive. The process can
become active only by receiving a message from a process in this subset. The termination
detection problem is obtained, when each process always chooses the full set of processes.
Thus, both the garbage collection problem and the communication deadlock detection
problem seem to \dominate" the termination detection problem. This raises the question
whether our approach can be generalized to detection of communication deadlocks.

Distributed In�mum Approximation. In the distributed in�mum approximation
problem an arbitrary partially ordered domain X with the in�mum operator ^ replaces
the two{valued domain factive, passiveg. The \state" xp of process p is a value from
X, and the messages of the basic computation are tagged with values from X. The
handling of message tags and states in the operations of the basic computation are given
in Algorithm 15. The problem is to approximate the global state function F , de�ned as
the in�mum of all states and tags of messages. It follows from the basic actions that this
function is monotonically increasing.

Algorithms for this problem can be derived from termination detection algorithms, as
described by Schoone and Tel [31] and Mattern et al. [20]. It would be interesting if our
current construction could be generalized to obtain Distributed In�mum Approximation
algorithms. To this end, instead of the single object Z a directed graph GX of objects
could be de�ned, re
ecting the structure of X. The actions of the basic computation must
then be formulated as reference manipulation, such that the growth of F is re
ected by
objects of GX becoming garbage.

4.5 Legal Aspects

We have shown that termination detection algorithms are obtained as suitable instanti-
ations of garbage collection schemes. Supplying a particular scheme, our transformation
yields a particular termination detection algorithm. It may happen, however, that the
resulting algorithm was found independently already. This is the case for example with
the weighted reference counting scheme, which yields the Credit Recovery algorithm for
termination detection, see Section 3.2.

Interestingly, commercial use of the weighted reference counting scheme by Watson
and Watson is protected by a patent [12] which describes the invention in \a computer
system having storage means containing memory cells, at least some of which contain

31



pointers to others". Does the patent now cover the Credit Recovery algorithm?
In recent years more papers described general transformations of solutions to one

problem into solutions to another problem. The implication a patent in such a situation
can have in general is too complicated for us and we are glad to leave it as food for lawyers
[27].
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