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Abstract

A short overview is given of many recent results in algorithmic graph

theory that deal with the notions treewidth, and pathwidth. We discuss algo-

rithms that �nd tree-decompositions, algorithms that use tree-decompositions

to solve hard problems e�ciently, graph minor theory, and some applications.

The paper contains an extensive bibliography.

1 Introduction

In recent years, the notions `treewidth', `pathwidth', `tree-decomposition', and
`path-decomposition' have received a growing interest. These notions underly several
important and sometimes very deep results in graph theory and graph algorithms,
and are very useful for the analysis of several practical problems.

In this paper, we give an overview of a number of these applications, and algo-
rithmic results. In section 2 we give the main de�nitions. Applications of the notions
discussed in this paper are given in section 3. In section 4 we explain the basic idea
behind linear time algorithms on graphs with constant bounded treewidth. In sec-
tion 5 we review some results that deal with graph minors. In section 6 we discuss
algorithms that �nd `suitable' tree- or path-decompositions.

It should be noted that the constant factors, hidden in the `O'-notation can be
quite large for several of the algorithms, discussed in this paper. In many cases,
additional ideas will be required to turn the methods, described here, into really
practical algorithms.

2 De�nitions

In this section we give the most important de�nitions, with an example. The notions
of treewidth and pathwidth were introduced by Robertson and Seymour [109, 115].

�email: hansb@cs.ruu.nl. This work was partially supported by the ESPRIT Basic Research
Actions of the EC under contract 7141 (project ALCOM II).
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Figure 1: Example of a graph with tree- and path-decomposition

De�nition. A tree-decomposition of a graph G = (V;E) is a pair
(fXi j i 2 Ig; T = (I; F )) with fXi j i 2 Ig a family of subsets of V , one for each
node of T , and T a tree such that

� Si2I Xi = V .

� for all edges (v; w) 2 E, there exists an i 2 I with v 2 Xi and w 2 Xi.

� for all i; j; k 2 I: if j is on the path from i to k in T , then Xi \Xk � Xj.

The treewidth of a tree-decomposition (fXi j i 2 Ig; T = (I; F )) is maxi2I jXij � 1.
The treewidth of a graph G is the minimum treewidth over all possible tree-
decompositions of G.

The notion of pathwidth is de�ned similarly. Now T must be a path.

De�nition. A path-decomposition of a graph G = (V;E) is a sequence of subsets
of vertices (X1; X2; : : : ; Xr), such that

� S1�i�rXi = V .

� for all edges (v; w) 2 E, there exists an i, 1 � i � r, with v 2 Xi and w 2 Xi.

� for all i; j; k 2 I: if i � j � k, then Xi \Xk � Xj.
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Figure 2: Example of gate matrix layout

The pathwidth of a path-decomposition (X1; X2; : : : ; Xr) is max1�i�r jXij � 1.
The pathwidth of a graph G is the minimum pathwidth over all possible path-
decompositions of G.

In �gure 1, an example of a graph with treewidth and pathwidth 2 is given, together
with a tree- and path-decomposition of it.

Clearly, the pathwidth of a graph is at least its treewidth. There are several
equivalent characterizations of the notions of treewidth and pathwidth, see e.g. [3,
15, 18, 99, 143]. The (probably) most well known equivalent characterization of
treewidth is by the notion `partial k-tree', see [132, 139]. Also, tree decompositions
are reected by graph expressions, where graphs are built by operations on graphs
with some special vertices (the sources) like: parallel composition, forget sources,
renaming of sources. The treewidth can be characterized in terms of the number of
sources used in the operations. See [50].

3 Applications

Several well-studied graph classes have bounded treewidth or pathwidth, hence many
results discussed here also apply for these classes. Examples are trees (treewidth
1), series-parallel graphs (treewidth 2), outerplanar graphs (treewidth 2), and Halin
graphs (treewidth 3). See e.g. [18, 20, 132, 143]. We mention some other applica-
tions.

3.1 VLSI layouts

A well studied problem in VLSI layout theory is the Gate Matrix Layout prob-
lem. This problem is stated in terms of a matrix M = (mij), whose columns
represent gates G1; : : : ; Gn, and whose rows represent nets N1; : : : ; Nm. If mij = 1,
then net Ni must be connected with gate Gj. An example is given in �gure 2. The
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problem of �nding a permutation of the gates, such that all nets can be made within
the minimum number of tracks is equivalent to the pathwidth problem (see [63]).
See [99] for an extensive overview. See also [53].

3.2 Cholesky factorization

There is also a close connection between treewidth, and Choleski factorization on
sparse symmetric matrices.

In the multifrontal method for Choleski factorization, one step is of the form"
d vT

v B

#
=

" p
d 0

v=
p
d I

#
�
"

1 0
0 B � v � vT=d

#
�
" p

d vT=
p
d

0 I

#

where v is an (n � 1)-vector, and B is an n � 1 by n � 1 maxtrix. I is the n � 1
by n � 1 identity matrix. The process is repeated with the matrix B � v � vT .
Consider the graph with vertices 1; 2; : : : ; n, and edges between vertices i and j, if
the matrix entries on positions (i; j) and (j; i) are non-zero. One step as described
above corresponds to removing a vertex and connecting all its neighbors. As the
matrix is sparse, one wants to �nd an order of colums/rows to be eliminated for
which all matrices v � vT are small, i.e. have a large number of columns and rows
that are entirely 0. One can show that to bound the maximum size of these matrices
corresponds to bounding the treewidth of the graph, described above. For more
details, see e.g. [29].

3.3 Expert systems

Graphs modelling certain type of expert systems have been observed to have small
treewidth in practice. Tree-decompositions of small treewidth for these graphs can
be used to perform e�ciently certian otherwise time-consuming statistical compu-
tations needed for reasoning with uncertainity in these systems. See e.g. [92, 138].

3.4 Evolution theory

Researchers in molecular biology are interested in the problem, given a set of species,
a set of characteristics, and for each specie and each characteristic, the value that
that characteristic has for that specie, to �nd a `good' evolution tree for these
species and their possibly extinct ancestors. One variant of this problem is called
the Perfect Phylogeny problem. This problem can be shown to be equivalent
with the following graph problem: given a graph G = (V;E) with a coloring of the
vertices, can we add edges to G such that the resulting graph is chordal but has
no edges between vertices of the same color? Equivalently, does there exist a tree-
decomposition (fXi j i 2 Ig; T ) of G such that for all i 2 I: if v; w 2 Xi, v 6= w,
then v and w have di�erent colors. So, a necessary condition is that the treewidth
of G is smaller than the number of colors. See [2, 28, 33, 79, 80, 98].
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3.5 Natural language processing

Kornai and Tuza [88] have observed that dependency graphs of sentences encoding
the major syntactic relations among the words have usually pathwidth at most 6.
The pathwidth closely resembles the narrowness of these graphs. For the relationship
of this notion to natural language processing, see [88].

4 Bounded treewidth and linear time algorithms

An important reason for the interest in tree-decompositions, is that if we have a
tree-decomposition of a graph G = (V;E) with its treewidth bounded by some �xed
constant k, then we can solve many problems that are hard (intractable) for arbitrary
graphs, in polynomial and often linear time. Problems which can be dealt with in
this way include many well-known NP-complete problems, like Independent Set,
Hamiltonian circuit, Steiner Tree, etc., but also certain statistical computa-
tions (including some with applications to reasoning with uncertainity in expert sys-
tems [92, 138]), and some PSPACE-complete problems [4, 5, 26]. Results of this type
can be found | among others | in [3, 4, 5, 8, 10, 14, 19, 26, 22, 31, 37, 44, 47, 52,
55, 67, 69, 71, 73, 74, 75, 87, 90, 93, 94, 95, 96, 107, 132, 137, 141, 142, 143, 144, 145].

As an example we consider the maximum independent set problem. In this
problem, we a looking for the maximum size of a set W � V in a given graph
G = (V;E), such that for all v; w 2 W : (v; w) 62 E.

Given a tree-decomposition, it is easy to make one with the same treewidth,
and with T a rooted binary tree. Suppose we have such a tree-decomposition
(fXi j i 2 Ig; T = (I; F )) of input graph G, with root of T r, and with treewidth k.
For each i 2 I, de�ne Yi = fv 2 Xj j j = i or j is a descendant of ig.

Note that if v 2 Yi, and v 2 Xj for some node j 2 I that is not a descendant
of i, then by de�nition of tree-decomposition, v 2 Xi. Similarly, if v 2 Yi, and v is
adjacent to a vertex w 2 Xj with j a descendant of i, then v 2 Xi or w 2 Xi. As
a consequence, we have that, when we have an independent set W of the subgraph
induced by Yi, G[Yi], and want to extend this to an independent set of G, then
important is only what vertices in Xi belong to W , not what vertices in Yi � Xi

belong to W . Of the latter, only the number of the vertices in W is important.
For i 2 I, Z � Xi, de�ne isi(Z) to be the maximum size of an independent set

W in G[Yi] with W \Xi = Z. Take isi(Z) = �1, if no such set exists.
Our algorithm to solve the independent set problem on G basically consists of

computing all tables isi, for all nodes i 2 I. This is done in a bottom-up manner
in the tree: each table isi is computed after the tables of the children of node i are
computed. For a leaf node i, the following formula can be used to compute all 2jXij

values in the table isi.

isi(Z) =

( jZj if 8v; w 2 Z : (v; w) 62 E
�1 if 9v; w 2 Z : (v; w) 2 E
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For an internal node i with two children j and k, we have the following formula.

isi(Z) =8>>><
>>>:

maxfisj(Z 0) + isk(Z
00) + jZ \ (Xi �Xj �Xk)j

�jZ \Xj \Xkj j Z \Xj = Z 0 \Xi

and Z \Xk = Z 00 \Xig if 8v; w 2 Z : (v; w) 62 E
�1 if 9v; w 2 Z : (v; w) 2 E

The idea behind the last formula is: take the maximum over all sets Z 0 � Xj

that agree with Z in which vertices in Xi \Xj belong to the independent set, and
similarly for Z 00 � Xk. Vertices in Z \Xi � Xj �Xk are not counted yet, so their
number should be added, while vertices in Z \ Xj \ Xk are counted twice, hence
their number should be subtracted once.

We compute for each node i 2 I the table isi in some bottom-up order, until we
have computed the table isr. Note that we then can easily �nd the maximum size of
an independent set in G, as this is maxZ�Xr

isr(Z). Hence, we have an algorithm,
that solves the independent set problem on G in O(23kn) time. (Optimizations can
bring the factor 23k down to 2k.) It is also possible, by using standard dynamic
programming techniques, to construct the maximum sized independent set W itself.

The idea behind this example is: each table entry gives information about an
equivalence class of partial solutions. The number of such equivalence classes is
bounded by some constant, when the treewidth is bounded by a constant. Tables
can be computed using only the tables of the children of the node.

The technique works for many examples. However, there are also results that
state that large classes of problems can be solved in linear time, when a tree-
decomposition with constant bounded treewidth is available. One of the most pow-
erfull results of this type is the result by Courcelle [47, 51, 46], which has been
extended by Arnborg et al [8], by Borie et al [38], and by Courcelle and Mosbah
[52], on (Extended) Monadic Second Order formulas. These result basically state
that each graph problem that is expressible with a formula using the following lan-
guage constructions: logical operations (^; _; :; )), quanti�cation over vertices,
edges, sets of vertices, sets of edges (e.g. 9v 2 V , 8e 2 E, 8W � V , 9F � E),
membership tests (v 2 W , e 2 E), adjacency tests (v; w) 2 E, v is endpoint of e),
and certain extensions, can be solved in linear time on graphs with given a tree-
decomposition of constant bounded treewidth. The extensions allow not only to deal
with decision problems, but also optimization problems (like maximum independent
set).

For example, the problem whether a given graph G can be colored with three
colors can be stated as

9W1 � V : 9W2 � V : 9W3 � V : 8v 2 V : (v 2 W1 _ v 2 W2 _ v 2
W3)^8v 2 V : 8w 2 W : (v; w) 2 E ) (:(v 2 W1^w 2 W1)^:(v 2
W2 ^ w 2 W2) ^ :(v 2 W3 ^ w 2 W3))

6



G

H

Figure 3: G is a minor of H

In many cases, the information, computed per node i 2 I is an element of a
�nite set. Then, the algorithm can be seen as a �nite state tree-automata, and
optimalization techniques can be applied, similar to Myhill-Nerode theory [14, 62].
(See also [48, 45, 49].)

In [64, 65] parametric problems on graphs with bounded treewidth are solved,
using modi�cations of the technique, presented above.

For some problems (e.g. the maximum independent set problem) polynomial
time algorithms are still known to exist, if the input graph is given together with a
tree-decomposition of treewidth O(logn). (See e.g. [19].) For other problems, it is
unknown whether such algorithms exist.

The problem whether two given graphs are isomorphic is also solvable in poly-
nomial time, when the graphs have bounded treewidth [11, 22, 42]. The techniques
are here somewhat di�erent.

There also exist problems that remain hard when restricted to graphs with con-
stant bounded treewidth, for instance the bandwidth problem is NP-complete for a
very restricted subclass of the trees [100]. For some problems the complexity when
we restrict the instances to graphs with bounded treewidth is open, like the problem
to determine the pathwidth of graphs with treewidth � 2 [30].

5 Graph minors

In this section, we give a short overview of some recent results on graph minors.
A graph H = (W;F ) is a minor of a graph G = (V;E), if (a graph isomorphic
to) H can be obtained from G by a series of zero or more vertex deletions, edge
deletions, and/or edge contractions (in arbitrary order), where an edge contraction
is the operation to replace two adjacent vertices v and w by a vertex that is adjacent
to all vertices that were adjacent to v or w. For an example, see �gure 3.

Robertson and Seymour obtained the following deep results on graph minors
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[17, 109, 115, 111, 122, 122, 116, 117, 121, 124, 123, 125, 114, 118, 119, 120, 126,
127, 128, 129, 110, 112, 113].

Theorem 5.1

For every class of graphs G, that is closed under taking of minors, there exists a
�nite set of graphs, ob(G), called the obstruction set of G, such that for each graph
G: G 2 G, if and only if there is no H 2 ob(G) that is a minor of G.

For example, the obstruction set of the planar graphs is fK5; K3;3g [140]. Theorem
5.1 was formerly known as Wagners conjecture.

Theorem 5.2

For every graph H, there exists an O(n3) algorithm, that, given a graph G, tests
whether H is a minor of G.

Theorem 5.3

For every planar graph H, there exists a constant cH , such that for every graph G:
if H is not a minor of G, then the treewidth of G is at most cH .

The constant factor of the algorithm in theorem 5.2 is very high, making this algo-
rithm not suitable for practical use. In [129], it is shown that one can take in 5.3

cH = 204jVH j+8jEH j5. From theorem 5.1 and theorem 5.2 it follows that every class of
graphs, closed under minor taking, is recognizable in O(n3) time (do a minor test
for each graph in the obstruction set.) Using theorem 5.1, theorem 5.3, the result
of the next section, that states that for graphs with constant bounded treewidth, a
tree-decomposition of constant bounded treewidth can be found in O(n) time, and
the fact, that with such a tree-decomposition, minor tests can be done in linear
time with a procedure of the type, discussed in section 4, the following result can
be derived: every class of graphs that does not contain all planar graphs and that
is closed under minor taking, can be recognized in O(n) time. (See also [13].)

Many applications of this theory were found by Fellows and Langston [58, 60, 61].
Note however that the constants hidden in the `O'-notation may be quite large, and
that the proof of theorem 5.1 is inherently non-constructive (in a deep mathematical
sense) [66]. I.e., it is not possible in all cases to extract the obstruction set of a class
of graphs G, given a formal proof that G is minor closed. Thus, we may arrive in a
situation where we know that a polynomial algorithm exists for the problem without
knowing the algorithm itself. Also, the algorithms are recognition algorithms: they
do not constuct anything (like a vertex ordering, tree-decomposition, etc.)

A technique that allows us in some cases to overcome non-constructive aspects
of this theory is self-reduction, advocated by Fellows and Langston, see e.g. [21, 39,
59, 63].

Self reduction is the technique to consult a decision algorithm a number of times
with di�erent inputs in order to construct a solution for the original problem. As
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an example, consider the problem of �nding a simple path of length at least k (k
constant) in an undirected graph. (There are direct and more e�cient algorithms for
this problem [27, 63]; the solution here is presented only to explain the technique.)
The class of graphs that do not contain such a path is closed under minor taking,
and does not contain all planar graphs, so we have a linear time algorithm, deciding
whether a given graph contains a simple path of length at least k. Given a graph
G, we can solve the problem in O(n � e) time by �rst testing whether G contains
a desired path, and then repeatedly trying to remove an edge from G, such that
the resulting graph still contains a simple path of length k. When no edge can be
deleted anymore, the resulting graph is precisely the desired path.

Even when we do not know the obstruction set, in several cases it is still possible
to construct polynomial time algorithms based on minor tests (see [63]).

In some cases, obstruction sets, and hence the decision algorithms themselves
are computable [12, 16, 40, 57, 62, 78, 81, 91, 103, 131, 136]. The size of the
obstruction sets can grow very fast: for instance, the obstruction set of the graphs
with pathwidth at most k contains at least k!2 trees, each containing 5�3k�1

2
vertices

[136]. This clearly limits the practicality of the approach described above.
Also, in some cases, linear time minor tests are possible [27, 25, 54, 63]. For

instance, suppose that H is a cycle of length k. The algorithm is as follows: �rst
make a depth-�rst search spanning tree T = (V; F ) of the input graph G = (V;E).
If there is a backedge between a vertex v and a predecessor w of v which is at least
k� 1 levels above v in T , then G contains H as a minor, stop. Otherwise, construct
(fXv j v 2 V g; T = (V; F )), with Xv = fvg[fw j w is a predecessor of v and di�ers
at most k� 2 levels from v in Tg. This is a tree-decomposition of G with treewidth
at most k� 2. Use this tree-decomposition to solve the problem in linear time. (See
[63].)

6 Finding tree-decompositions

In this section we consider the problem of �nding tree-decompositions, and deter-
mining the treewidth of a graph. Unfortunately, determining whether the treewidth
of a given graph G = (V;E) is at most a given integer k is NP-complete [6]. The
latter result holds also for pathwidth [6]. The complexity of these problem has been
studied for several classes of graphs. Table 1 mentions several of the known results
of this type.

Polynomial time approximation algorithms with O(logn) performance ratio for
treewidth, and O(log2 n) performance ratio for pathwidth, are presented in [29].
For several classes of perfect graphs, polynomial time approximation algorithms
can be found in [84]. Seymour and Thomas gave a polynomial time algorithm for
the branchwidth of planar graphs [134]; this directly implies a polynomial time
approximation algorithm for the treewidth of planar graphs with a performance
ratio 11

2
[114].
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Class Treewidth Pathwidth
Bounded degree N [35] N [101] (3)
Trees/Forests C P [133]
Series-parallel graphs C P [32]
Outerplanar graphs C P [32]
Halin graphs C [143] P [32]
k-Outerplanar graphs C [20] P [32]
Planar graphs O N [101] (3)
Chordal graphs P (1) N [68]
Starlike chordal graphs P (1) N [68]
k-Starlike chordal graphs P (1) P [68]
Co-chordal graphs P [85] P [85]
Split graphs P (1) P [68, 84]
Bipartite graphs N N
Permutation graphs P [34] P [34]
Circular permutation graphs P [34] O
Cocomparability graphs N [6, 72] N [6, 72]
Cographs P [36] P [36]
Chordal bipartite graphs P [86] N [35]
Interval graphs P (2) P (2)
Circular arc graphs P [135] O
Circle graphs P [83] N [35]

P = polynomial time solvable. C = constant, hence linear time solvable. N =
NP-complete. O = Open problem. (1) The treewidth of a chordal graph equals its
maximum clique size minus one. (2) The treewidth and pathwidth of an interval
graphs equal its maximum clique size minus one. (3) NP-completeness is shown for
vertex separation number, but this is equivalent to pathwidth.

Table 1: Complexity of Pathwidth and Treewidth on di�erent classes of graphs
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Remove a vertex of degree 1

Contract over a vertex
with degree 2

Figure 4: Rewriting a graph with treewidth � 2

For constant k, polynomial time algorithms exist for the problems. The graphs
with treewidth 1 are exactly the forests. Algorithms that recognize graphs with
treewidth 2 and 3 in linear time, and �nd the corresponding tree-decompositions
were described by Matousek and Thomas [97], using results from [9]. A similar
algorithm (with a quite involved case analysis) for treewidth 4 was found recently
by Sanders [130]. For example, the connected graphs with treewidth 2 are exactly
those graphs that can be rewritten to a single vertex, using the operations shown in
�gure 4. For larger k, also recognition algorithms based on rewriting exist [7]. (In
[7], a much larger class of problems is also shown to be solvable with these rewrite
techniques.) The latter algorithms can at present, not produce a corresponding
tree-decomposition of the input graph.

For arbitrary �xed k, an O(n logn) algorithm can be found, using the following
result, due to Reed [108].

Theorem 6.1

For every constant k, there exists an O(n logn) algorithm, that given a graph G =
(V;E), either outputs that the treewidth of G is larger than k, or outputs a tree-
decomposition of G with treewidth at most 3k + 2.

Actually, the result proven by Reed has a number, larger than 3k + 2. Minor
improvements give the result stated above. The running time of this algorithm is
singly exponential in k. Similar, but slower algorithms have been found by Robertson
and Seymour [119] and by Lagergren [89], the latter result also has an e�cient
parallel variant.
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tree−decomposition
of G[V1 U S]

tree−decomposition
of G[V2 U S]

X U S

U
X V1

U
X V2

S S... ...

Figure 5: Illustration to approximation algorithm

These algorithms and the approximation algorithm in [29] are based on repeat-
edly �nding separators. An 1/3-2/3 separator of a set W � V in a graph G = (V;E)
is a set S � V , such that V � S can be partitioned into two non-adjacent sets of
vertices V1, V2, such that both V1 and V2 contain at most 2jW j=3 vertices in W .

Each of the algorithms can be described by a recursive procedure which is called
with two arguments: a graph G0 = (V 0; E 0) (an induced subgraph of G), and a set
of vertices X � V 0. The algorithm produces a tree-decomposition with the root
node set Xr of T containing all vertices in X (X � Xr). It works basically as
follows: When V 0 is `small enough', yield a one-node tree-decomposition, the node
containing all vertices in V 0. Otherwise, �rst �nd a `small' 1/3-2/3 separator S of
X in G0, separating V 0� S into V1 and V2. Call the procedure recursively for graph
G[V1 [ S] and set S [ (X \ V1), and for graph G[V2 [ S] and set S [ (X \ V2). The
desired tree-decomposition is obtained by taking one new node containing X \ S,
and connecting this node to the root nodes of the two tree-decompositions yielded
by the recursive calls of the procedure (see �gure 5). If the treewidth of G is at most
k, then a 1/3-2/3 separator, as needed for the algorithm, exists of size at most k,
and can be found, in time, linear in V 0, using ow techniques [119]. Starting with
an arbitrary set X of size at most 3k, it follows with induction, that each call of the
procedure uses sets X of size at most 3k, assuming the treewidth of G is at most k.
(jX \ Vi [ Sj � 2jXj=3 + jSj � 2k + k.) Hence, the algorithm produces in this case
a tree-decomposition of treewidth less than 4k.

Reed [108] has shown that one can also �nd small sized separator sets S, that do
not only separate X, but also partition V 0 into sets of size at most 3=4 of jV 0j. This
gives a recursion depth of O(logn), and results in an O(n logn) algorithm. (The
expose above is only a very rough sketch of some of the most important ideas of the
algorithms. See further [29, 89, 108, 119].)
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Using the algorithm of theorem 5.1, and a constant number of minor tests, it
follows that the `treewidth � k' and `pathwidth � k' problems (for constant k)
are decidable in O(n logn) time. (Use that the treewidth and pathwidth can not
increase by taking minors.) However, it is also possible to obtain direct, explicit and
constructive algorithms for the problems.

Both Lagergren and Arnborg [91] and Bodlaender and Kloks [31, 82] give such
an algorithm, using an involved application of the technique, discussed in section 4.
Independently, results of a similar nature were obtained by Abrahamson and Fellows
[1]. From these results it follows that a technique of Fellows and Langston [62] can
be used to compute the corresponding obstruction set. Bodlaender and Kloks [31]
also discuss how in the same time bounds the path- or tree-decompositions with
pathwidth or treewidth at most k can be found, if existing.

Recently, the author has found a linear time algorithm for the problems to decide
whether a graph has pathwidth or treewidth at most some constant k, and if so, to
�nd a path- or tree-decomposition with pathwidth or treewidth at most k [24]. This
algorithm uses a recursion technique, and the result in [31] as essential ingredients.

A study to dynamic algorithms for graphs with small treewidth has been made
by Cohen et al. [43] and recently by the author [23].

Acknowledgements

I thank Bruno Courcelle, Jens Gustedt, Ton Kloks, Mike Fellows, Detlef Seese, and
Andrzej Proskurowski for useful comments on earlier versions of this tourist guide.

References

[1] K. R. Abrahamson and M. R. Fellows. Finite automata, bounded treewidth
and well-quasiordering. In Graph Structure Theory, Contemporary Mathemat-
ics vol. 147, pages 539{564. American Mathematical Society, 1993.

[2] R. Agarwala and D. Fernandez-Baca. A polynomical-time algorithm for the
phylogeny problem when the number of character states is �xed. Manuscript,
1992.

[3] S. Arnborg. E�cient algorithms for combinatorial problems on graphs with
bounded decomposability { A survey. BIT, 25:2{23, 1985.

[4] S. Arnborg. Graph decompositions and tree automata in reasoning with un-
certainty. Manuscript, to appear in Journal of Experimental and Theoretical
AI, 1991.

[5] S. Arnborg. Some PSPACE-complete logic decision problems that become
linear time solvable on formula graphs of bounded treewidth. Manuscript,
1991.

13



[6] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of �nding em-
beddings in a k-tree. SIAM J. Alg. Disc. Meth., 8:277{284, 1987.

[7] S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic theory
of graph reduction. In H. Ehrig, H. Kreowski, and G. Rozenberg, editors,
Proceedings of the Fourth Workshop on Graph Grammars and Their Appli-
cations to Computer Science, pages 70{83. Springer Verlag, Lecture Notes in
Computer Science, vol. 532, 1991. To appear in J. ACM.

[8] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable
graphs. J. Algorithms, 12:308{340, 1991.

[9] S. Arnborg and A. Proskurowski. Characterization and recognition of partial
3-trees. SIAM J. Alg. Disc. Meth., 7:305{314, 1986.

[10] S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard problems
restricted to partial k-trees. Disc. Appl. Math., 23:11{24, 1989.

[11] S. Arnborg and A. Proskurowski. Canonical representations of partial 2- and 3-
trees. In Proceedings of the 2nd Scandinavian Workshop on Algorithm Theory,
pages 310{319. Springer Verlag, Lecture Notes in Computer Science, vol. 477,
1990.

[12] S. Arnborg, A. Proskurowski, and D. G. Corneil. Forbidden minors charac-
terization of partial 3-trees. Disc. Math., 80:1{19, 1990.

[13] S. Arnborg, A. Proskurowski, and D. Seese. Monadic second order logic, tree
automata and forbidden minors. In E. B�orger, H. Kleine B�uning, M. M.
Richter, and W. Sch�onfeld, editors, Proceedings 4th Workshop on Computer
Science Logic, CSL'90, pages 1{16. Springer Verlag, Lecture Notes in Com-
puter Science, vol. 533, 1991.

[14] M. W. Bern, E. L. Lawler, and A. L. Wong. Linear time computation of
optimal subgraphs of decomposable graphs. J. Algorithms, 8:216{235, 1987.

[15] D. Bienstock. Graph searching, path-width, tree-width and related problems
(a survey). DIMACS Ser. in Discrete Mathematics and Theoretical Computer
Science, 5:33{49, 1991.

[16] D. Bienstock and N. Dean. On obstructions to small face covers in planar
graphs. J. Comb. Theory Series B, 55:163{189, 1992.

[17] D. Bienstock, N. Robertson, P. D. Seymour, and R. Thomas. Quickly exclud-
ing a forest. J. Comb. Theory Series B, 52:274{283, 1991.

14



[18] H. L. Bodlaender. Classes of graphs with bounded treewidth. Technical Report
RUU-CS-86-22, Dept. of Computer Science, Utrecht University, Utrecht, the
Netherlands, 1986.

[19] H. L. Bodlaender. Dynamic programming algorithms on graphs with bounded
tree-width. In Proceedings of the 15th International Colloquium on Automata,
Languages and Programming, pages 105{119. Springer Verlag, Lecture Notes
in Computer Science, vol. 317, 1988.

[20] H. L. Bodlaender. Some classes of graphs with bounded treewidth. Bulletin
of the EATCS, 36:116{126, 1988.

[21] H. L. Bodlaender. Improved self-reduction algorithms for graphs with bounded
treewidth. In Proc. 15th Int. Workshop on Graph-theoretic Concepts in Com-
puter Science WG'89, pages 232{244. Springer Verlag, Lect. Notes in Com-
puter Science, vol. 411, 1990. To appear in: Annals of Discrete Mathematics.

[22] H. L. Bodlaender. Polynomial algorithms for graph isomorphism and chro-
matic index on partial k-trees. J. Algorithms, 11:631{643, 1990.

[23] H. L. Bodlaender. Dynamic algorithms for graphs with treewidth 2.
Manuscript, 1992.

[24] H. L. Bodlaender. A linear time algorithm for �nding tree-decompositions of
small treewidth. Technical Report RUU-CS-92-27, Department of Computer
Science, Utrecht University, Utrecht, the Netherlands, 1992. To appear in
proceedings STOC'93.

[25] H. L. Bodlaender. On disjoint cycles. In Proceedings 17th International Work-
shop on Graph-Theoretic Concepts in Computer Science WG'91, pages 230{
239. Springer Verlag, Lecture Notes in Computer Science, vol. 570, 1992.

[26] H. L. Bodlaender. Complexity of path-forming games. Theor. Comp. Sc.,
110:215{245, 1993.

[27] H. L. Bodlaender. On linear time minor tests with depth �rst search. J.
Algorithms, 14:1{23, 1993.

[28] H. L. Bodlaender, M. R. Fellows, and T. J. Warnow. Two strikes against
perfect phylogeny. In Proceedings 19th International Colloquium on Automata,
Languages and Programming, pages 273{283, Berlin, 1992. Springer Verlag,
Lecture Notes in Computer Science 623.

[29] H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T. Kloks. Approximating
treewidth, pathwidth, and minimum elimination tree height. In G. Schmidt
and R. Berghammer, editors, Proceedings 17th International Workshop on

15



Graph-Theoretic Concepts in Computer Science WG'91, pages 1{12. Springer
Verlag, Lecture Notes in Computer Science, vol. 570, 1992.

[30] H. L. Bodlaender and J. Gustedt. A conjecture on the pathwidth of k-trees.
In: Proceedings AMS Summer Conference on Graph Minors, 1992. Contemp.
Math. 147. In section \Open Problems", editor N. Dean, 1993.

[31] H. L. Bodlaender and T. Kloks. Better algorithms for the pathwidth and
treewidth of graphs. In Proceedings of the 18th International Colloquium on
Automata, Languages and Programming, pages 544{555. Springer Verlag, Lec-
ture Notes in Computer Science, vol. 510, 1991.

[32] H. L. Bodlaender and T. Kloks. E�cient and constructive algorithms for
the pathwidth and treewidth of graphs. Manuscript. A preliminary version
appeared as [31], 1993.

[33] H. L. Bodlaender and T. Kloks. A simple linear time algorithm for triangu-
lating three-colored graphs. J. Algorithms, 15:160{172, 1993.

[34] H. L. Bodlaender, T. Kloks, and D. Kratsch. Treewidth and pathwidth of per-
mutation graphs. In Proceedings 20th International Colloquium on Automata,
Languages and Programming, pages 114{125, Berlin, 1993. Springer Verlag,
Lecture Notes in Computer Science, vol. 700.

[35] H. L. Bodlaender, T. Kloks, D. Kratsch, and H. M�uller, 1993. Unpublished
results.

[36] H. L. Bodlaender and R. H. M�ohring. The pathwidth and treewidth of
cographs. SIAM J. Disc. Meth., 6:181{188, 1993.

[37] R. B. Borie. Recursively Constructed Graph Families. PhD thesis, School of
Information and Computer Science, Georgia Institute of Technology, 1988.

[38] R. B. Borie, R. G. Parker, and C. A. Tovey. Automatic generation of linear-
time algorithms from predicate calculus descriptions of problems on recursively
constructed graph families. Algorithmica, 7:555{582, 1992.

[39] D. J. Brown, M. R. Fellows, and M. A. Langston. Nonconstructive polynomial-
time decidability and self-reducibility. Int. J. Computer Math., 31:1{9, 1989.

[40] R. L. Bryant, M. R. Fellows, N. G. Kinnersley, and M. A. Langston. On �nding
obstruction sets and polynomial-time algorithms for gate matrix layout. In
Proc. 25th Allerton Conf. on Communication, Control and Computing, 1987.

[41] N. Chandrasekharan. Fast Parallel Algorithms and Enumeration Techniques
for Partial k-Trees. PhD thesis, Clemson University, 1990.

16



[42] N. Chandrasekharan. Isomorphism testing of k-trees is in NC, for �xed k.
Inform. Proc. Letters, 34:283{287, 1990.

[43] R. F. Cohen, S. Sairam, R. Tamassia, and J. S. Vitter. Dynamic algorithms
for bounded tree-width graphs. Technical Report CS-92-19, Department of
Computer Science, Brown University, 1992.

[44] D. G. Corneil and J. M. Keil. A dynamic programming approach to the
dominating set problem on k-trees. SIAM J. Alg. Disc. Meth., 8:535{543,
1987.

[45] B. Courcelle. The monadic second-order logic of graphs VI: On several
representations of graphs by relational structures. Technical Report 89-99,
Bordeaux-I University, 1989. To appear in: Discrete Applied Mathematics.

[46] B. Courcelle. Graph rewriting: an algebraic and logical approach. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, volume B, pages
192{242, Amsterdam, 1990. North Holland Publ. Comp.

[47] B. Courcelle. The monadic second-order logic of graphs I: Recognizable sets
of �nite graphs. Information and Computation, 85:12{75, 1990.

[48] B. Courcelle. The monadic second-order logic of graphs V: On closing the gap
between de�nability and recognizability. Theor. Comp. Sc., 80:153{202, 1991.

[49] B. Courcelle. The monadic second-order logic of graphs VII: Graphs as rela-
tional structures. Manuscript, to appear in: Theoretical Computer Science,
1991.

[50] B. Courcelle. Graph grammars, monadic second-order logic and the theory
of graph minors. Bulletin of the EATCS, 46:193{226, 1992. To appear in:
Proceedings AMS Summer Research Conference on Graph Minors.

[51] B. Courcelle. The monadic second-order logic of graphs III: Treewidth, for-
bidden minors and complexity issues. Informatique Th�eorique, 26:257{286,
1992.

[52] B. Courcelle and M. Mosbah. Monadic second-order evaluations on tree-
decomposable graphs. Theor. Comp. Sc., 109:49{82, 1993.

[53] N. Deo, M. S. Krishnamoorty, and M. A. Langston. Exact and approximate
solutions for the gate matrix layout problem. IEEE Trans. Computer Aided
Design, 6:79{84, 1987.

[54] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and complete-
ness. Manuscript, 1991.

17



[55] E. S. El-Mallah and C. J. Colbourn. Partial k-tree algorithms. Congressus
Numerantium, 64:105{119, 1988.

[56] M. R. Fellows. The Robertson-Seymour theorems: A survey of applications.
Contemporary Mathematics, 89:1{18, 1989.

[57] M. R. Fellows, N. G. Kinnersley, and M. A. Langston. Finite-basis theo-
rems, and a computational integrated approach to obstruction set isolation.
In E. Kaltofen and S. M. Watt, editors, Proceedings of the 3rd Conference on
Computers and Mathematics, pages 37{45, New York, 1989. Springer Verlag.

[58] M. R. Fellows and M. A. Langston. Nonconstructive advances in polynomial-
time complexity. Inform. Proc. Letters, 26:157{162, 1987.

[59] M. R. Fellows and M. A. Langston. Fast self-reduction algorithms for combina-
torial problems of VLSI design. In Proc. 3rd Aegean Workshop on Computing,
pages 278{287. Springer Verlag, Lecture Notes in Computer Science, vol. 319,
1988.

[60] M. R. Fellows and M. A. Langston. Layout permutation problems and well-
partially-ordered sets. In J. Reif, editor, 5th MIT Conf. on Advanced Research
in VLSI, pages 315{327, Cambridge, MA, 1988. Springer Verlag Lecture Notes
in Computer Science 319.

[61] M. R. Fellows and M. A. Langston. Nonconstructive tools for proving
polynomial-time decidability. J. ACM, 35:727{739, 1988.

[62] M. R. Fellows and M. A. Langston. An analogue of the Myhill-Nerode theorem
and its use in computing �nite-basis characterizations. In Proceedings of the
30th Annual Symposium on Foundations of Computer Science, pages 520{525,
1989.

[63] M. R. Fellows and M. A. Langston. On search, decision and the e�ciency of
polynomial-time algorithms. In Proceedings of the 21rd Annual Symposium on
Theory of Computing, pages 501{512, 1989.

[64] D. Fern�andez-Baca and G. Slutzki. Solving parametric problems on trees. J.
Algorithms, 10:381{402, 1989.

[65] D. Fern�andez-Baca and G. Slutzki. Parametic problems on graphs of bounded
treewidth. In O. Nurmi and E. Ukkonen, editors, Proceedings 3rd Scandina-
vian Workshop on Algorithm Theory, pages 304{316. Springer Verlag, Lecture
Notes in Computer Science, vol. 621, 1992.

[66] H. Friedman, N. Robertson, and P. D. Seymour. The metamathematics of the
graph minor theorem. Contemporary Mathematics, 65:229{261, 1987.

18



[67] D. Granot and D. Skorin-Kapov. On some optimization problems on k-trees
and partial k-trees. Manuscript, to appear in Discrete Appl. Math., 1988.

[68] J. Gustedt. Path width for chordal graphs is NP-complete. Technical Report
221/1989, Technical University Berlin, 1989. To appear in Discr. Appl. Math.

[69] A. Habel. Graph-theoretic properties compatible with graph derivations. In
J. van Leeuwen, editor, Proceedings 14th International Workshop on Graph-
Theoretic Concepts in Computer Science WG'88, pages 11{29. Springer Ver-
lag, Lecture Notes in Computer Science, vol. 344, 1988.

[70] A. Habel and H. J. Kreowski. May we introduce to you: hyperedge re-
placement. In H. Ehrig, M. Nagl, and A. Rosenberg, editors, Proc. Graph-
Grammars and their Applications to Computer Science '86, pages 15{26.
Springer Verlag, Lect. Notes in Comp. Science vol. 291, 1987.

[71] A. Habel and H.-J. Kreowski. Filtering hyperedge-replacement languages
through compatible properties. In Proceedings 15th International Workshop
on Graph-Theoretic Concepts in Computer Science WG'89, 1990.

[72] M. Habib and R. H. M�ohring. Treewidth of cocomparability graphs and a new
order-theoretic parameter. Technical Report 336/1992, Fachbereich Mathe-
matik, Technische Universit�at Berlin, 1992.

[73] E. Hare, S. Hedetniemi, R. Laskar, K. Peters, and T. Wimer. Linear-time
comptability of combinatorial problems on generalized-series-parallel graphs.
In D. S. Johnson, T. Nishizeki, A. Nozaki, and H. S. Wilf, editors, Proc. of the
Japan-US Joint Seminar on Discrete Algorithms and Complexity, Orlando,
Florida, 1987. Academic Press, Inc.

[74] W. Hohberg and R. Reischuk. A framework to design algorithms for optimiza-
tion problems on graphs. Preprint, April 1990.

[75] K. Jansen and P. Sche�er. Generalized coloring for tree-like graphs. In Pro-
ceedings 18th International Workshop on Graph-Theoretic Concepts in Com-
puter Science WG'92, pages 50{59, Berlin, 1993. Springer Verlag, Lecture
Notes in Computer Science, vol. 657.

[76] D. S. Johnson. The NP-completeness column: An ongoing guide. J. Algo-
rithms, 6:434{451, 1985.

[77] D. S. Johnson. The NP-completeness column: An ongoing guide. J. Algo-
rithms, 8:285{303, 1987.

[78] Y. Kajitani, A. Ishizuka, and S. Ueno. Characterization of partial 3 trees in
terms of 3 structures. Graphs and Combinatorics, 2:233{246, 1986.

19



[79] S. Kannan and T. Warnow. Inferring evolutionary history from DNA se-
quences. In Proceedings of the 31rd Annual Symposium on Foundations of
Computer Science, pages 362{371, 1990.

[80] S. Kannan and T. Warnow. Triangulating 3-colored graphs. SIAM J. Disc.
Meth., 5:249{258, 1992.

[81] N. G. Kinnersley. Obstruction Set Isolation for Layout Permutation Problems.
PhD thesis, Washington State University, May 1989.

[82] T. Kloks. Treewidth. PhD thesis, Utrecht University, Utrecht, the Netherlands,
1993.

[83] T. Kloks. Treewidth of circle graphs. Technical Report RUU-CS-93-12, De-
partment of Computer Science, Utrecht University, Utrecht, 1993.

[84] T. Kloks and H. Bodlaender. Approximating treewidth and pathwidth of some
classes of perfect graphs. In Proceedings Third International Symposium on Al-
gorithms and Computation, ISAAC'92, pages 116{125, Berlin, 1992. Springer
Verlag, Lecture Notes in Computer Science, vol. 650.

[85] T. Kloks, H. Bodlaender, H. M�uller, and D. Kratsch. Computing treewidth
and minimum �ll-in: All you need are the minimal separators. To appear in:
proceedings 1st European Symposium on Algorithms, ESA'93, 1993.

[86] T. Kloks and D. Kratsch. Treewidth of chordal bipartite graphs. In P. En-
jalbert, A. Finkel, and K. W. Wagner, editors, Proceedings Symp. Theoretical
Aspects of Computer Science, STACS'93, pages 80{89, Berlin, 1993. Springer
Verlag, Lecture Notes in Computer Science, vol. 665.

[87] E. Korach and N. Solel. Linear time algorithm for minimum weight Steiner
tree in graphs with bounded treewidth. Manuscript, 1990.

[88] A. Kornai and Z. Tuza. Narrowness, pathwidth, and their application in
natural language processing. Manuscript. Submitted Disc. Appl. Math., 1990.

[89] J. Lagergren. E�cient parallel algorithms for tree-decomposition and related
problems. In Proceedings of the 31rd Annual Symposium on Foundations of
Computer Science, pages 173{182, 1990.

[90] J. Lagergren. Algorithms and Minimal Forbidden Minors for Tree-
decomposable Graphs. PhD thesis, Royal Institute of Technology, Stockholm,
Sweden, 1991.

[91] J. Lagergren and S. Arnborg. Finding minimal forbidden minors using a �nite
congruence. In Proceedings of the 18th International Colloquium on Automata,
Languages and Programming, pages 533{543. Springer Verlag, Lecture Notes
in Computer Science, vol. 510, 1991.

20



[92] S. J. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities
on graphical structures and their application to expert systems. The Journal
of the Royal Statistical Society. Series B (Methodological), 50:157{224, 1988.

[93] C. Lautemann. E�cient algorithms on context-free graph languages. In Pro-
ceedings of the 15th International Colloquium on Automata, Languages and
Programming, pages 362{378. Springer Verlag, Lect. Notes in Comp. Sc. 317,
1988.

[94] S. Mahajan and J. G. Peters. Regularity and locality in k-terminal graphs.
Manuscript, 1990.

[95] E. Mata-Montero. Resilience of partial k-tree networks with edge and node
failures. Networks, 21:321{344, 1991.

[96] J. Matous�ek and R. Thomas. On the complexity of �nding iso- and other mor-
phisms for partial k-trees. Manuscript, to appear in: Topological, Algebraical,
and Combinatorial Structures, J. Nesetril, ed., North-Holland, 1988.

[97] J. Matous�ek and R. Thomas. Algorithms �nding tree-decompositions of
graphs. J. Algorithms, 12:1{22, 1991.

[98] F. R. McMorris, T. Warnow, and T. Wimer. Triangulating colored graphs. In
proceedings SODA'92, to appear in SIAM J. Disc. Math., 1991.

[99] R. H. M�ohring. Graph problems related to gate matrix layout and PLA fold-
ing. In E. Mayr, H. Noltemeier, and M. Sys lo, editors, Computational Graph
Theory, Comuting Suppl. 7, pages 17{51. Springer Verlag, 1990.

[100] B. Monien. The bandwidth minimization problem for caterpillars with hair
length 3 is NP-complete. SIAM J. Alg. Disc. Meth., 7:505{512, 1986.

[101] B. Monien and I. H. Sudborough. Min cut is NP-complete for edge weighted
trees. Theor. Comp. Sc., 58:209{229, 1988.

[102] M. H. Mosbah. Constructions d'Algorithmes Pour les Graphes Structur�es par
des M�ethodes Alg�ebriques et Logiques. PhD thesis, Universit�e Bordeaux-I,
1992.

[103] R. Motwani, A. Raghunathan, and H. Saran. Constructive results from graph
minors: Linkless embeddings. In Proceedings of the 29th Annual Symposium
on Foundations of Computer Science, pages 398{407, 1988.

[104] A. Proskurowski. Separating subgraphs in k-trees: Cables and caterpillars.
Disc. Math., 49:275{285, 1984.

21



[105] A. Proskurowski. Maximal graphs of pathwidth k or searching a partial k-
caterpillar. Technical Report CIS-TR-89-17, Dept. of Computer and Informa-
tion Science, University of Oregon, 1989.

[106] A. Proskurowski and M. M. Sys lo. E�cient computations in tree-like graphs.
Technical Report 235, Mathematik, Techn. Univ. Berlin, 1989.

[107] V. Radhakrishnan, H. B. Hunt III, and R. E. Stearns. E�cient algorithms
for solving systems of linear equations and path problems. Technical Report
91-21, Dept. of Computer Science, SUNY Albany, 1991.

[108] B. Reed. Finding approximate separators and computing tree-width quickly.
In Proceedings of the 24th Annual Symposium on Theory of Computing, pages
221{228, 1992.

[109] N. Robertson and P. D. Seymour. Graph minors. I. Excluding a forest. J.
Comb. Theory Series B, 35:39{61, 1983.

[110] N. Robertson and P. D. Seymour. Generalizing Kuratowskis theorem. Con-
gressus Numerantium, 45:129{138, 1984.

[111] N. Robertson and P. D. Seymour. Graph minors. III. Planar tree-width. J.
Comb. Theory Series B, 36:49{64, 1984.

[112] N. Robertson and P. D. Seymour. Graph width and well-quasi ordering: a
survey. In J. A. Bondy and U. S. R. Murty, editors, Progress in Graph Theory,
pages 399{406, Toronto, 1984. Academic Press.

[113] N. Robertson and P. D. Seymour. Graph minors | a survey. In I. Ander-
son, editor, Surveys in Combinatorics, pages 153{171. Cambridge Univ. Press,
1985.

[114] N. Robertson and P. D. Seymour. Graph minors. XI. Distance on a surface.
Manuscript, 1985.

[115] N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of
tree-width. J. Algorithms, 7:309{322, 1986.

[116] N. Robertson and P. D. Seymour. Graph minors. V. Excluding a planar graph.
J. Comb. Theory Series B, 41:92{114, 1986.

[117] N. Robertson and P. D. Seymour. Graph minors. VI. Disjoint paths across a
disc. J. Comb. Theory Series B, 41:115{138, 1986.

[118] N. Robertson and P. D. Seymour. Graph minors. XII. Excluding a non-planar
graph. Manuscript, 1986.

22



[119] N. Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths
problem. Manuscript, 1986.

[120] N. Robertson and P. D. Seymour. Graph minors. XIV. Taming a vortex.
Manuscript, 1987.

[121] N. Robertson and P. D. Seymour. Graph minors. VII. Disjoint paths on a
surface. J. Comb. Theory Series B, 45:212{254, 1988.

[122] N. Robertson and P. D. Seymour. Graph minors. IV. Tree-width and well-
quasi-ordering. J. Comb. Theory Series B, 48:227{254, 1990.

[123] N. Robertson and P. D. Seymour. Graph minors. IX. Disjoint crossed paths.
J. Comb. Theory Series B, 49:40{77, 1990.

[124] N. Robertson and P. D. Seymour. Graph minors. VIII. A Kuratowski theorem
for general surfaces. J. Comb. Theory Series B, 48:255{288, 1990.

[125] N. Robertson and P. D. Seymour. Graph minors. X. Obstructions to tree-
decomposition. J. Comb. Theory Series B, 52:153{190, 1991.

[126] N. Robertson and P. D. Seymour. Graph minors. XV. Etending an embedding.
Manuscript, 1991.

[127] N. Robertson and P. D. Seymour. Graph minors. XVI. Giant steps.
Manuscript, 1991.

[128] N. Robertson and P. D. Seymour. Graph minors. XVII. Excluding a non-
planar graph. Manuscript, 1991.

[129] N. Robertson, P. D. Seymour, and R. Thomas. Quickly excluding a planar
graph. Technical Report TR89-16, DIMACS, 1989.

[130] D. P. Sanders. On linear recognition of tree-width at most four. Manuscript,
1992.

[131] A. Satyanarayana and L. Tung. A characterization of partial 3-trees. Networks,
20:299{322, 1990.

[132] P. Sche�er. Die Baumweite von Graphen als ein Ma� f�ur die Kompliziertheit
algorithmischer Probleme. PhD thesis, Akademie der Wissenschaften der
DDR, Berlin, 1989.

[133] P. Sche�er. A linear algorithm for the pathwidth of trees. In R. Bodendiek and
R. Henn, editors, Topics in combinatorics and graph theory, pages 613{620,
Heidelberg, 1990. Physica-Verlag.

23



[134] P. D. Seymour and R. Thomas. Call routing and the ratcatcher. Manuscript,
1990.

[135] R. Sundaram, K. Sher Singh, and C. Pandu Rangan. Treewidth of circular-arc
graphs. Manuscript, to appear in SIAM J. Disc. Math., 1991.

[136] A. Takahashi, S. Ueno, and Y. Kajitani. Minimal acyclic forbidden minors
for the family of graphs with bounded path-width. In SIGAL 91-19-3, IPSJ,
1991. To appear in: Annals of discrete mathematics (Proceedings of 2nd Japan
conference on graph theory and combinatorics, 1990).

[137] J. Telle and A. Proskurowski. E�cient sets in partial k-trees. Technical report,
Department of Computer and Information Science, University of Oregon, 1991.

[138] L. C. van der Gaag. Probability-Based Models for Plausible Reasoning. PhD
thesis, University of Amsterdam, 1990.

[139] J. van Leeuwen. Graph algorithms. In Handbook of Theoretical Computer
Science, A: Algorithms and Complexity Theory, pages 527{631, Amsterdam,
1990. North Holland Publ. Comp.

[140] K. Wagner. �Uber eine Eigenshaft der ebenen Complexe. Math. Ann., 14:570{
590, 1937.

[141] M. Wiegers. The k-section of treewidth restricted graphs. In B. Rovan, editor,
Proceedings Conference on Mathematical Foundations of Computer Science
MFCS'90, pages 530{537, Berlin, 1990. Springer Verlag, Lecture Notes in
Computer Science, vol. 452.

[142] T. V. Wimer. Linear algorithms for the dominating cycle problems in series-
parallel graphs, 2-trees and Halin graphs. Congressus Numerantium, 56, 1987.

[143] T. V. Wimer. Linear Algorithms on k-Terminal Graphs. PhD thesis, Dept. of
Computer Science, Clemson University, 1987.

[144] T. V. Wimer, S. T. Hedetniemi, and R. Laskar. A methodology for construct-
ing linear graph algorithms. Congressus Numerantium, 50:43{60, 1985.

[145] X. Zhou, S. Nakano, H. Suzuki, and T. Nishizeki. An e�cient algorithm
for edge-coloring series-parallel multigraphs. In I. Simon, editor, Proceedings
LATIN'92, pages 516{529. Springer Verlag, Lecture Notes in Computer Sci-
ence, vol. 583, 1992.

24


