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Abstract

Given three angles summing to 2�, given n points in the plane and a tripartition k1 +
k2 + k3 = n, we can tripartition the plane into three wedges of the given angles so that
the i-th wedge contains ki of the points. This new result on dissecting point sets is used
to prove that lights of speci�ed angles not exceeding � can be placed at n �xed points in
the plane to illuminate the entire plane if and only if the angles sum to at least 2�. We
give O(n log n) algorithms for both these problems.

1. Introduction

Illumination problems have been a source of many interesting results in computational geom-

etry, for example in the area of Art Gallery theorems and algorithms|see [O'R], [S]. The usual

scenario is that we have some target objects in two or more dimensions that are to be illuminated,

and some speci�ed sites for lights, which are assumed to shine light in every direction|i.e. with an

angle of illumination of 360� in the planar case. See [CRU] and [CRCU] for some recent results of

this nature.

In this paper we will consider a variant of these problems in which lights are constrained to

shine in some speci�ed angles of illumination: Given n points in the plane which are to be the

positions of n 
oodlights, and given n planar angles representing the arcs of illumination of the


oodlights, decide how to assign the 
oodlights to the points and how to �x their rotational angles,

in order to light up some target. A harder problem is to minimize the number of 
oodlights needed.

We will consider two types of target: a line segment (or \stage"), and the whole plane.

At a recent workshop, Jorge Urrutia posed the version of this problem for lighting up a stage.

This \Stage Light" problem seems di�cult. In section 3 we give a counterexample to an intuitively

plausible greedy algorithm.

* Part of this work was carried out when the authors were participants of the 1992 Workshop on Graph Theory and

Computational Geometry at the Bellairs Research Institute of McGill University. A preliminary version appeared in the

Proceedings of the 5th Canadian Conference on Computational Geometry, 1993.
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Section 2 concerns the problem of lighting up the whole plane. In the case that all the angles

are bounded by �, we give a simple necessary and su�cient condition for lighting the plane: the

given angles must sum to at least 2�. In the course of proving this we give a result on tripartitioning

the plane: Given three angles �1; �2; �3, with sum 2�, given n points in the plane, and a tripartition

k1+k2+k3 = n, the plane can always be partitioned into three wedgesW1;W2;W3 such thatWi has

angle �i and contains ki of the given points. The special case where the �i's are equal was proved

earlier in [TN1], generalized to higher dimensions. Our tripartition result �ts into a large family of

results on dissections of point sets, of which the most famous is the Ham Sandwich Theorem (see

[E, Chapter 4]). We give O(n log n) algorithms for tripartitioning, and for the 
oodlight problem.

Our model of computation is the real RAM (see [PS]).

Other Work

Tokuyama and Nakano [TN1] proved the special case of the tripartitioning result when the

three given angles are equal. Their interest was in solving the minimum weight one-to-many

matching problem in a complete bipartite graph. They showed that this problem is equivalent to

the tripartitioning problem in dimension t, with t equal cones. Such equal cones arise from the faces

of a regular simplex centered about the origin. Tokuyama and Nakano proved that tripartitioning is

always possible in this case, and gave an e�cient randomized algorithm. In [TN2] they generalized

to weighted points.

A number of results have been obtained since our initial work. Czyzowicz, Rivera-Campo, and

Urrutia [CRCU2] gave a nice and e�cient algorithm for a variant of the Stage Light problem in

which one may choose the angles of the lights|again placing the lights at �xed points to illuminate

a line segment|with the goal of minimizing the total sum of the angles used. Steiger and Streinu

[private communication, 1993] have given a linear time algorithm for the tripartitioning problem,

and a lower bound of 
(n log n) for the 
oodlight problem, in the case where no angle is greater than

�. They have also shown that the general 
oodlight problem|with angles possibly greater than

�|is in NP. Rote [private communication, 1993] has devised an alternate proof of our 
oodlight

theorem which he can generalize to 3 dimensions in the case that the cones of the lights arise from

a polytope enclosing the origin, where each cone is determined by the origin as apex, and by one

facet of the polytope. He has a counterexample to a more general 3-dimensional result.

A related result in d dimensions is due to Pach and Rogers [private communication, 1992]: for

any polytope P in d dimensions, the dual cones to the solid angles of the convex hull vertices cover

the whole space. Each vertex v of P has a solid angle that can be extended to a full cone Cv;

the dual cone of Cv consists of all rays starting at v that determine acute angles with every ray

belonging to Cv.

De�nitions

A wedge is the closed area of the plane bounded by two rays emanating from a common point.
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Its complementary wedge is the wedge of the same angle formed by rotating each of the bounding

rays by 180�. If the angle of a wedge is greater than �, then the wedge and its complement intersect

in a region of positive area.

2. Illuminating the Plane

In this section we will give a simple necessary and su�cient condition for placing n small lamps

at n points to light up the whole plane. By a \small" lamp we mean one that shines light in a

wedge of no more than � radians. In this problem the n points are speci�ed, and the angles of the

n lamps are speci�ed. We have the freedom to assign the lamps to the points, and then to rotate

each lamp about its point.

Theorem 2.1. Given n points in the plane, and n angles �1; : : : ; �n, where each �i is at most �,

lights of the given angles can be placed at the given points to light up the whole plane if and only

if
P

n

i=1 �i � 2�. Furthermore, in case the angles do add up to at least 2�, there is an O(n log n)

time algorithm to place the lights at the points to illuminate the plane.

The proof of the theorem will show that we can choose the ordering of the �i's as they appear

from a \circle at in�nity". To make this precise, suppose that lights of the given angles have been

placed at the points to light up the whole plane. Consider a circle containing all the given points,

and containing any intersection point of two of the bounding rays of the positioned lights. Each

light illuminates some arc of this circle, and the lights can be cyclically ordered by the clockwise

order of the �rst endpoint of the corresponding arcs on the circle. This ordering is independent of

the choice of the circle. It is in this sense that placing the lights at the points determines a cyclic

ordering of the lights. The proof of the theorem will show that any cyclic ordering of lights can be

realized.

Theorem 2.1 is not true in general if one of the given angles is greater than �: for example the

three angles 330�; 15�; 15�, and the three points of an equilateral triangle cannot be used to light

the plane.

The optimization version of the problem|to minimize the number of 
oodlights required to

light the plane|can be solved in the case where all the angles are bounded by �: simply discard

as many small angles as possible while maintaining a sum of at least 2�.

Our proof of Theorem 2.1 will provide an e�cient algorithm to place the lights. We will divide

the plane up into wedges, and light the wedges separately. The following lemma gives a su�cient

condition for lighting a wedge.

Lemma 2.2. LetW be a wedge of angle � � �, let P be a set of k � 1 points in the complementary

wedge, and let �1; : : : ; �k be angles with
P

�i � �. Then lights of the given angles can be placed

at the given points to light up the whole wedge W . Furthermore, there is an algorithm to position

the lights that runs in time O(k log k).
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The condition given in the lemma is su�cient for lighting a wedge, but not necessary. The

lemma is not true in general for � > �: for k = 1, a point in the interior of the wedge and its

complement cannot be used to light the whole wedge.

Proof of Lemma 2.2. Suppose that W consists of the rays r and s, emanating from the point

x, together with the counter-clockwise angle � from r to s. See Figure 2.1.
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The proof will be by induction on k. In the general step we will reduce to problems of roughly

half the size in order to obtain an e�cient algorithm. If k = 1 then, since �1 � � and the single

point of P is in the complementary wedge, we can place a light of angle � = �1 at the point to

light the whole wedge. See Figure 2.2.

For k > 1, let k0 = bk2 c and let �0 = �1 + �2 + � � ��k0 and �00 = �k0+1 + � � � + �k. If �0 � �

then we can simply throw away the other angles and half the points. So assume �0 < �. Consider

the family L of directed parallel lines making a counter-clockwise angle of � � �0 from the line of

ray r. There is some member of L having k0 points of P to its right, and k � k0 points of P to

its left. Let l be such a line. Let W 0 be the wedge of angle �0 formed by the directed line l and

the directed line of s. Let W 00 be the wedge of angle � � �0 formed by the directed line l and the

directed line of r. See Figure 2.3. Observe that W 0 and W 00 together cover W .

The complement of W 0 contains k0 points, so by induction we can place lights of angles

�1; �2; : : : ; �k0 at these points to light the wedge. The complement of W 00 contains k � k0 points

so by induction we can place lights of angles �k0+1; : : : �k at these points to light the wedge. (Note

that the angle of the wedge, ���0, is less than or equal to the sum of the angles of the lights, �00.)

Note that this proof is algorithmic: we can �nd the line l in O(k) time using median �nding
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[BFP], and then we have decomposed the problem into two subproblems of half the size. Thus the

total time required is O(k log k).

Finally, note that the ordering of the �i's|upon which we based the partition into the two

subproblems|was arbitrary, and that, by construction, the ordering of the �i's about a circle at

in�nity will match the initial ordering.

This lemma immediately implies one case of Theorem 2.1: suppose that the angles �i can be

partitioned into two sets A1, of size k, and A2, of size n�k, such that the sum of the angles in each

set is �. (Of course, it is a di�cult problem to determine if the angles can be partitioned in this

way|we are claiming conceptual simplicity for this special case, not algorithmic simplicity.) Find

a line that has k of the given points to one side and n� k points to the other side. Let H1 and H2

be the half-planes formed by the line, where H1 contains k points and H2 contains n � k points.

We will apply Lemma 2.2 twice: once to the wedge that is the half-plane H1, the n�k points in the

complementary half-plane, and the angles of A2; and once to the wedge that is the half-plane H2,

the k points in the complementary half-plane, and the angles A1. Since the hypotheses of Lemma

2.2 are satis�ed, we can light the two wedges, and thus the whole plane.

In general the angles will not partition in two so neatly|and in any case, we cannot test

whether they do|so we will instead partition the angles into three sets, such that the sum of

the angles in each set is at most �. (This is always possible, as will be shown in the proof of

Theorem 2.1.) In order to apply Lemma 2.2 we must tri-partition the plane into three wedges

with the appropriate angles and the appropriate number of points in each wedge. This is a natural

generalization of bipartitioning the plane into two half-planes with a speci�ed number of points in
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each half.

Theorem 2.3. Let �1; �2, and �3 be three non-trivial angles summing to 2�. Let P be a set of n

points in the plane, and let k1 + k2 + k3 = n be a partition of n. Then there is a point x in the

plane and three disjoint wedges W1;W2;W3 emanating from x such that for each i = 1; 2; 3, wedge

Wi has angle �i and contains ki points of P . Furthermore, there is an algorithm to �nd x and the

Wi's in time O(n log n).

Observe that we do not restrict the �i's to be less than �. Note that the theorem includes the

case of bipartitioning, by uniting two of the wedges into one. Theorem 2.3 has the same 
avour

as many other results on dissecting point sets|see Chapter 4 of Edelsbrunner's book [E]. As for

many of those results, a continuous version is also true: we can replace the discrete point set by a

convex body whose area must be tripartitioned into speci�ed portions by speci�ed angles.

Proof of Theorem 2.3. At most one of the angles can be greater than or equal to �, so suppose

that �1 and �2 are less than �. Suppose the wedges are ordered clockwise. Let r1 be the ray between

W1 and W2, r2 be the ray between W2 and W3, and r3 be the ray between W3 and W1. See Figures

2.4 and 2.5. Choose an initial orientation of the rays r1; r2; r3 so that no line parallel to one of the

rays goes through two or more of the given points. This orientation will be �xed from now on, and

we will simply translate the con�guration in the plane to achieve our goal.
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Among the family of directed lines parallel to r1, consider which one is appropriate for r1.

We must have at least k2 points to the right of the line because we need that many points in W2.

Similarly we must have at least k1 points to the left of the line because we need that many points

in W1. Given a line l1 that meets these condition, we must place r2 so that it makes a clockwise

angle �2 from l1 and so that k2 points lie above it in W2. Let x2 be a point on line l1 from which

r2 can emanate. Similarly, let x3 be a point on line l1 from which r3 can emanate so that it makes

a counter-clockwise angle �1 from l1 and has k1 points above it in W1. See Figure 2.6. If x2 and

x3 coincide then we have the desired con�guration. When l1 is at its rightmost position, there are
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exactly k2 points to the right of it, and x2 can be as far in the negative direction along l1 as we

wish|certainly below x3. On the other hand, when l1 is at its leftmost position there are exactly

k1 points to its left, and x3 can be below x1. Thus, by continuity, there must be some intermediate

position for l1 where x2 and x3 coincide.
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This existence proof can be turned into an O(n log n) algorithm. We will use binary search

to �nd the line of r1. After choosing the initial orientation for r1; r2; r3, sort the points in the

direction perpendicular to r1. We cannot do a discrete search, �xing the line of r1 at one of the n

points, because it is possible that the unique solution has the line of r1 lying somewhere strictly

between two points in this ordering. Thus at each step of the binary search we will choose a pair of

consecutive points in the ordering, and test the possibility of locating the line of r1 somewhere in

the range l01 between these two points. In case of failure we must know whether to move the range

l01 left or right.

Given such a trial range l01 partition the points into R and L, the set of points to the right

and left, respectively, of l01. We must position r2 so that k2 points of R lie in W2. This constraint

gives a range l02 of possible lines for r2. We can �nd l02 using a linear time selection algorithm

[BFP]. Similarly, we must position r3 so that k1 points of L lie in W1, and we obtain a range l03 of

possible lines for r3. See Figure 2.7. If these three ranges l
0

1; l
0

2; l
0

3 have a common intersection point

x then the desired solution is obtained when the wedges emanate from that point. Otherwise the

intersection of l02 and l03 lies either to the left or to the right of l01. As justi�ed by the above proof,

l01 must be moved in the opposite direction. Thus each step of our binary search takes O(n) time,

and we can �nd the desired con�guration in O(n log n) time.

Theorem 2.3 does not extend to 4-partitions: it is not possible to partition the plane into
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wedges of angles �1 = 15�; �2 = 165�; �3 = 15�; �4 = 165� counter-clockwise in that order so that

they contain k1 = 2; k2 = 0; k3 = 1; k4 = 0 points of an equilateral triangle.

We are now ready to prove the main 
oodlight theorem.

Proof of Theorem 2.1. Suppose without loss of generality that the angles sum to exactly 2�.

(Otherwise some of the angles can be decreased, and inceasing them after the plane is lit will not

hurt.) Partition the angles into three sets, A1; A2; A3, such that the sum of the angles in each set

is at most �: take an arbitrary ordering of the angles, �1; : : : ; �n; let t be the maximum index such

that
P

t

i=1 �i � �; let A1 = f�1; : : : ; �tg; let A2 = f�t+1g; and let A3 consist of the remaining

angles. Let k1 = t; k2 = 1 and k3 = n � t � 1, and let �i; i = 1; 2; 3 be the sum of the angles in

Ai. By Theorem 2.3 we can �nd three disjoint wedges W1;W2;W3 emanating from some common

point such that Wi has angle �i and contains ki of the given points. By Lemma 2.2 we can use the

points that are in Wi; i = 1; 2; 3 to light the complementary wedge. Since the three complementary

wedges partition the plane, this lights the whole plane.

Note that we get an O(n log n) algorithm since the initial division into A1; A2; A3 is trivial,

and each of the remaining two steps takes O(n log n) time.

Note also that we used an arbitrary ordering of the angles �i to form our tripartition of the

angles, thus justifying the claim that any ordering of the �i's about a circle at in�nity is realizable.

3. Lighting a Stage

In this section we consider the seemingly more di�cult problem of lighting a horizontal line

segment, or stage. Given n points above the stage, and n angles, can lights of the given angles

be placed at the given points to light up the stage? We do not know how to decide this question

e�ciently even for the special case where the n points are all on one horizontal line and the n angles

are all equal.

A lamp at a given point illuminates the smallest subsegment of the stage when it projects light

straight downwards, and the length of the illuminated subsegment grows monotonically as the lamp

is rotated toward the horizontal. One might thus hope for the following \crossing condition": if a

subsegment s can be lit by two lights from two given points, then is can be lit by \crossing" the

lights, using the light at the leftmost point to illuminate the rightmost portion of s, and the light

at the rightmost point to illuminate the leftmost portion of s. If this crossing condition were true

then the stage light problem would be easy for equal angles, since the order of the lights hitting

the stage would have to be opposite to the order of the points from which the lights emanate.

Unfortunately, the crossing condition is false. Consider the situation in Figure 3.1, where two

lights of equal angles � are used. A little trigonometry will show that by having the right lamp

illuminate the right portion of s and the left lamp illuminate the left portion, the length of the
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illuminated segment is (85h2 tan� + 30h2 tan2 �)=(12h � 40h tan� � 48h tan2 �), which is larger

than the length of the segment illuminated by crossing the lights: (85h2 tan��30h2 tan2 �)=(12h�

40h tan�+ 7h tan2 �). Similar counterexamples can be provided if the two lamps are at the same

height or if the left lamp is higher than the right lamp.

h

h

h3
4

h2

s

h

Figure 3.1

The results on lighting the plane from the previous section do have one implication for the

stage light problem. Given an instance of the stage light problem, construct a line r through the

right endpoint of the stage, with all the given points above r; construct a line l through the left

endpoint of the stage, with all the given points above l; let � be the angle between r and l that

faces the stage. If the sum of the given angles is at least � then by Lemma 2.2 the stage can be lit.

4. Open Questions

We have proven that lights of speci�ed angles not exceeding � can be placed at given points

to illuminate the plane if the angles sum to at least 2�. This is not true in general if one of the

angles exceeds �. Is there an e�cient algorithm to decide the general case: given n points and n

angles, can lights of those angles be placed at the points to illuminate the plane?

Our main theorem holds because we have the freedom to assign the angles to the points and

to rotate each light about its point. If the assignment of angles to lights is �xed ahead of time,

then it is not always possible to rotate the lights in order to illuminate the plane even if the angles

sum to 2�, and none exceeds �. Is there an e�cient algorithm to decide when this is possible?

Finally, it would be of interest to have a version of the 
oodlight theorem for three dimensions.
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