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1 Introduction

In these notes we will present an overview of a num-
ber of related iterative methods for the solution of
linear systems of equations. These methods are
so-called Krylov projection type methods and they
include popular methods as Conjugate Gradients,
Bi-Conjugate Gradients, CGS, Bi-CGSTAB, QMR,
LSQR and GMRES.We will show how these methods
can be derived from simple basic iteration formulas.
We will not give convergence proofs, but we will refer
for these, as far as available, to litterature.
Iterative methods are often used in combination with
so-called preconditioning operators (approximations
for the inverses of the operator of the system to be
solved). Since these preconditioners are not essential
in the derivation of the iterative methods, we will not
give much attention to them in these notes. However,
in most of the actual iteration schemes, we have in-
cluded them in order to facilitate the use of these
schemes in actual computations.
For the application of the iterative schemes one usu-
ally thinks of linear sparse systems, e.g., like those
arising in the �nite element or �nite di�erence ap-
proximations of (systems of) partial di�erential equa-
tions. However, the structure of the operators plays
no explicit role in any of these schemes, and these
schemes might also successfully be used to solve cer-
tain large dense linear systems. Depending on the
situation that might be attractive in terms of num-
bers of 
oating point operations.

It will turn out that all of the iterative are paral-
lelizable in a straight forward manner. However, es-
pecially for computers with a memory hierarchy (i.e.,
like cache or vector registers), and for distributed
memory computers, the performance can often be im-
proved signi�cantly through rescheduling of the oper-
ations. We will discuss parallel implementations, and
occasionally we will report on experimental �ndings.

2 Direct versus Iterative

1. Standard Gaussian elimination leads to �ll-in,

and this makes the method often expensive.
Usually large sparse matrices are related to some
grid or network. In a 3D situation this leads typ-
ically to a bandwidth � n

2
3 (= m2 and m3 = n,

1=m the gridsize).
The number of 
ops is then typically O(nm4) �
n2

1
3 [36, 25]. For 2D problems the bandwidth is

� n
1
2 , so that the number of 
ops for a direct

method then varies like n2.
If one has to solve many systems with di�erent
right-hand sides, then one has to decompose the
matrix only once after which the costs for solving
each system will vary like n

5
3 for 3D problems,

and like n
3
2 for 2D problems.

2. For symmetric positive de�nite systems the er-

ror reduction per iteration step of CG is �
p
��1p
�+1

,

with � = kAk2kA�1k2 [14, 2, 35].
For discretized second order pde's, over grids
with gridsize 1

m we typically see � � m2. Hence,

for 3D problems we have that � � n
2
3 , and for

2D problems: � � n. For an error reduction of �
we must have that 

1� 1p
�

1 + 1p
�

!j

� (1� 2p
�
)j � e

� 2jp
� < �:

For 3D problems we have that

) j � � log �
2

p
� � � log �

2
n

1
3 ;

whereas for 2D problems:

j � � log �
2

n
1
2 :

If we assume the number of 
ops per iteration to
be � fn (f stands for the number of nonzeros per
row of the matrix and the overhead per unknown
introduced by the iterative scheme)
) 
ops per reduction with �:
� �fn 4

3 log � for 3D problems,
and � �fn 3

2 log � for 2D problems.
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Conclusion: If we have to solve one system at a
time, then for large n, or small f , or modest �:

Iterative methods may be preferable.

If we have to solve many similar systems with di�er-
ent right-hand side, and if we assume their number
to be so large that the costs for constructing the de-
composition of A is relatively small per system, then
it seems likely that for 2D problems direct methods
may be more e�cient, whereas for 3D problems this
is still doubtful, since the 
ops count for a direct so-
lution method varies like n

5
3 , and the number of 
ops

for the iterative solver (for the model situation) varies

like n
4
3 .

Example
The above given arguments are quite nicely illus-
trated by observations made by Horst Simon [74]. He
expects that by the end of this century we will have to
solve repeatedly linear problems with some 5�109 un-
knowns. For what he believes to be a model problem
at that time, he has estimated the CPU time required
by the most economic direct method, available at
present, as 520; 040 years, provided that the compu-
tation can be carried out at a speed of 1 TFLOP. On
the other hand, he estimates the CPU time for pre-
conditioned conjugate gradients, assuming still a pro-
cessing speed of 1 TFLOPS, as 575 seconds. Though
we should not take it for granted that in particular
the preconditioning part can be carried out at that
high processing speed (for the direct solver this is
more likely), we see that the di�erences in CPU time
requirements are gigantic, indeed (we will come to
this point in more detail).
Also the requirements for memory space for the iter-
ative methods are typically smaller by orders of mag-
nitude. This is often the argument for the usage of
iterative methods in 2D situations, when 
op counts
for both classes of methods are more or less compa-
rable.

Remarks:

� With suitable preconditioning we may havep
� � n

1
6 and the 
ops count then becomes

� �fn 7
6 log �;

see, e.g., [37].

� For classes of problems some methods may even
be faster: multigrid, fast poisson solvers.

� Storage considerations are also in favour of iter-
ative methods.

� For matrices that are not positive de�nite sym-
metric the situation can be more problematic:

it is often di�cult to �nd the proper iterative
method or a suitable preconditioner. However,
for projection type methods, like GMRES, Bi-
CG, CGS, and Bi-CGSTAB we often see that
the 
ops counts vary as for CG.

� Iterative methods can be attractive even when
the matrix is dense. Again, in the positive def-
inite symmetric case, if the condition number is
n2�2" then, since the amount of work per iter-
ation step is � n2, and the number of iteration
steps � n1�", the total work estimate is roughly
proportional to n3�", and this is asymptoti-
cally less than the amount of work for Choleski's
method, which varies like � n3.

The question remains at the moment how well itera-
tive methods can take advantage of modern computer
architectures. From Dongarra's linpack benchmark
[22] it may be concluded that the solution of a dense
linear system can (in principle) be computed with
computational speeds close to peak speeds on most
computers. This is already the case for systems of,
say, order 50000 on parallel machines with as many
as 1024 processors.
In sharp contrast with the dense case are computa-
tional speeds reported in [24] for the preconditioned
as well as the unpreconditioned conjugate gradient
method (ICCG and CG, respectively).
In [24] a test problem was taken, generated by dis-

cretizing a three-dimensional elliptic partial di�er-
ential equation by the standard 7-point central dif-
ference scheme over a three-dimensional rectangular
grid, with 100 unknowns in each direction (m = 100,
n = 1; 000; 000). The observed computational speeds
for several machines (1 processor in each case) are
given in Table 1.

3 Basic iteration method

A very basic idea, that leads to many e�ective itera-
tive solvers, is to to split the matrix of a given linear
system in the sum of two matrices, one of which a
matrix that would have led to a system that can eas-
ily be solved. The most simple splitting we can think
of is A = I�(I�A). Given the linear system Ax = b,
this splitting leads to the well-known Richardson it-
eration:

xi+1 = b+ (I � A)xi = xi + ri:

Multiplication by �A and adding b gives

b�Axi+1 = b �Axi �Ari

or

ri+1 = (I �A)ri = (I � A)i+1r0 = Pi+1(A)r0;

or, in terms of the error

A(x� xi+1) = Pi+1(A)A(x� x0)
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Table 1: Speed in Mega
ops for 50 Iterations of the Iterative Techniques.

Machine optimized Scaled Peak
ICCG CG Performance
M
ops M
ops M
ops

NEC SX-3/22 (2.9 ns) 607 1124 2750
CRAY Y-MP C90 (4.2 ns) 444 737 952
CRAY 2 (4.1 ns) 96.0 149 500
IBM 9000 Model 820 39.6 74.6 444
IBM 9121 (15 ns) 10.6 25.4 133
DEC Vax/9000 (16 ns) 9.48 17.1 125
IBM RS/6000-550 (24 ns) 18.3 21.1 81
CONVEX C3210 15.8 19.1 50
Alliant FX2800 2.18 2.98 40

) x� xi+1 = Pi+1(A)(x � x0):

In these expressions Pi+1 is a (special) polynomial of
degree i + 1. Note that Pi+1(0) = 1.
Results obtained for the standard splitting can be
easily generalized to other splittings, since the more
general splitting A = M �N =M � (M �A) can be
rewritten as the standard splitting B = I � (I � B)
for the preconditioned matrix B = M�1A. The the-
ory of matrix splittings, and the analysis of the con-
vergence of the corresponding iterative methods, is
treated in depth in [90]. We will not discuss this
aspect here, since it is not relevant at this stage.
Instead of studying the basic iterative methods we
will show how other more powerful iteration meth-
ods can be constructed as accelerated versions of the
basic iteration methods. In the context of these ac-
celarated methods, the matrix splittings become im-
portant in another way, since the matrix M of the
splitting is often used to precondition the given sys-
tem. That is, the iterative method is applied to, e.g.,
M�1Ax = M�1b. We will return to this later.

From now on we will assume that x0 = 0. This too
does not mean a loss of generality, for the situation
x0 6= 0 can through a simple linear transformation
z = x� x0 be transformed to the system

Az = b� Ax0 = ~b

for which obviously z0 = 0.

For the simple Richardson iteration it follows that

xi+1 = r0 + r1 + r2 + � � �+ ri =
iX

j=0

(I �A)jr0

2 fr0; Ar0; : : : ; Air0g = Ki+1(A; r0):

Apparently, the Richardson iteration delivers ele-
ments of increasing Krylov subspaces. Including lo-
cal iteration parameters in the iteration would lead

to other elements of the same Krylov subspaces.
Let us write such an element still as xi+1. Since
xi+1 2 Ki+1(A; r0), we have that

xi+1 = Qi+1(A)r0;

with Qi+1 an arbitrary polynomial of degree i+ 1.
It follows that

ri+1 = b� Axi+1 = (I �AQi+1(A))r0

= ~Pi+1(A)r0;(3.0a)

with, just as in the standard Richardson iteration,
~Pi+1(0) = 1.
The Richardson iteration can be characterized by the
polynomial Pi+1(A) = (I �A)i+1.

Note that one almost never computes inverses of
matrices, like K�1, explicitly. Instead, vectors like
~ri = K�1b � ~Axi = K�1(b � Axi) are usually com-
puted by solving ~ri from K~ri = b�Axi. The matrix
K is often sparse, whereas K�1 usually is not, so that
this procedure is much more e�cient both in CPU-
time and in computer memory space.

4 Towards optimal iteration methods

The natural question arises whether we can pick up
a better xi+1 from the Krylov subspace that is gen-
erated by the basic iterative method. One would like
to see the xi+1 for which kxi+1 � xk2 is minimal.
E.g., x1 2 fr0g ) x1 = �0r0:

kx� x1k22 = (x� �0r0; x� �0r0) =

= (x; x)� 2�0(x; r0) + �2(r0; r0):

Minimizing with respect to �0 gives

�0 =
(r0; x)

(r0; r0)
;

and this is not practical, since x is unknown.

The above expression for �0 suggests that with a
di�erent innerproduct the problemmight be solvable:
(x; y)A � (x;Ay).
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5 Symmetric matrices

If A is symmetric positive de�nite then this de�nes a
proper innerproduct:

(x; y)A = (y; x)A;

(x; x)A = 0() x = 0:

Now we have that

kx� x1k2A = (x� �0r0; x� �0r0)A

=) �0 =
(r0; x)A
(r0; r0)A

=
(r0; Ax)

(r0; Ar0)
:

This looks promising and therefore we will follow that
line.
In general we want kxi � xkA minimal for xi 2
Ki(A; r0)

) xi � x ?A Ki(A; r0)

) ri ? Ki(A; r0):

In particular r1 2 fr0; Ar0g. Assuming that r1 6=

r0 (it is easy to check that in that case r0 is an
eigenvector of A and the process could be stopped
since the exact solution has then be obtained after
only one iteration step), we see that fr0; r1g form an
orthogonal basis for K2(A; r0).
By an induction argument we conclude that when the
process does not �nd the exact solution at or before
step i then

fr0; r1; : : : ; rig
is an orthogonal basis for Ki+1(A; r0).
This leads to the idea to construct an orthogonal ba-
sis for the Krylov subspace, a basis of which is gen-
erated implicitly by the standard iteration anyway,
and then to project xi � x, with respect to the A-
innerproduct, onto the Krylov subspace and to de-
termine xi from that.

We have seen that the rj form an orthogonal basis
for Ki(A; r0), but the next remarkable property is
that they satisfy a 3-term recurrence relation:

�j+1rj+1 = Arj � �jrj � 
jrj�1:(5.0a)

The proof is as follows.
r1 2 K2(A; r0) ) �1r1 = Ar0 � �0r0
r2 2 K3(A; r0) ) r2 2 fr0; r1; A2r0g
) r2 2 fr0; r1; Ar1g

) �2r2 = Ar1 � �1r1 � 
1r0

Now we use an induction argument.

rj�1 2 Kj(A; r0) ) Arj�1 2 Kj+1(A; r0)

= fr0; r1; : : : ; rjg

) �jrj = Arj�1 �
j�1X
i=0

�iri

Because we want the new vector rj to be orthogonal
with respect to all previous ones, the constants �i are
determined by

(Arj�1; rk) � �k(rk; rk) = 0

(Arj�1; rk) = (rj�1; Ark)(5.0b)

(note that we have used the symmetry of A)

= (rj�1; �k+1rk+1 + �krk + 
krk�1)

Here we have used the induction argument for k. Be-
cause of the orthogonality it follows that �k = 0 for
k = 0; : : : ; j � 3 and hence rj also satis�es a 3-term
recurrence relation.
The values for �j and 
j follow from the orthogonality
of the residual vectors:

�j = (rj ; Arj)=(rj ; rj);

and

j = (rj�1; Arj)=(rj�1; rj�1):

The value of �j+1 determines the proper length of the
new residual vector. From the consistency relation
(3.0a) we have that each residual can be written as r0
plus powers of A times r0. Comparing the coe�cient
for r0 in the recurrence relation (5.0a) shows that

�j+1 + �j + 
j = 0:

At the end of this section we will consider the situa-
tion where the recurrence relation terminates.

We can view this 3-term recurrence relation slightly
di�erent as

Arj = 
jrj�1 + �jrj + �j+1rj+1

If we consider the rj as being the j-th column of the
matrix

Ri = (r0; : : : ; ri�1)

then the recurrence relation says that A applied to
a column of Ri results in the combination of three
successive columns, or

ARi = Ri

0BBBBBBBBB@

. . .
. . .

. . .
. . . 
j
. . . �j

. . .

�j+1
. . .

. . .
. . .

. . .

1CCCCCCCCCA

+�i

0@ 0; 0; : : : ; ri

1A
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or

ARi = RiTi + �irie
T
i ;(5.0c)

in which Ti is an i by i tridiagonal matrix and ei is
the ith canonical vector in Ri.

Since we are looking for a solution xi in K
i(A; r0),

that vector can be written as a combination of the
basis vectors of the Krylov subspace, and hence

xi = Riy:

(Note that y has i components)
Further we have for the xi, for which the error in
A-norm is minimal, that

RT
i (Axi � b) = 0

) RT
i ARiy � RT

i b = 0:

Using equation (5.0c) and the fact that ri is orthog-
onal with respect to the columns of Ri we obtain

RT
i RiTiy = kr0k22e1

Since RT
i Ri is a diagonal matrix with diagonal ele-

ments kr0k22 up to kri�1k22 we �nd the desired solu-
tion from

Tiy = e1 ) y ) xi = Riy:

Note that so far we have only used the fact that A
is symmetric and we have assumed that the matrix
Ti is not singular. We will see later that this opens
the possibility for several suitable iterative methods,
among which the conjugate gradients method. The
Krylov subspace method that has been derived here is
known as the Lanczos method for symmetric systems
[47]. We will exploit the relation between the Lanczos
method and the conjugate gradients method for the
analysis of the convergence behaviour of the latter
method.
Note that for some j � n � 1 the construction of

the orthogonal basis must terminate. In that case we
have that ARj+1 = Rj+1Tj+1. Let y be the solution
of the reduced system Tj+1y = e1, and xj+1 = Rj+1y.
Then it follows that xj+1 = x, i.e., we have arrived at
the exact solution, since Axj+1 � b = ARj+1y � b =
Rj+1Tj+1y � b = Rj+1e1 � b = 0 (we have assumed
that x0 = 0).

5.1 THE CG-METHOD:

The Conjugate Gradients CG method [41] is merely
a variant on the above approach, which saves stor-
age and computational e�ort. For, when solving the
projected equations in the above way, we see that we
have to save all columns of Ri throughout the pro-
cess in order to recover the current iteration vectors
xi. This can be done cheaper. If we assume that the

matrixA is in addition positive de�nite then, because
of the relation

RT
i ARi = RT

i RiTi;

we conclude that Ti can be transformed by a rowscal-
ing matrix RT

i Ri into a positive de�nite symmetric
tridiagonal matrix (note that RT

i ARi is positive def-
inite for y 2 IRi+1). This implies that Ti can be LU
decomposed without any pivoting:

Ti = LiUi;

with Li lower unit bidiagonal and Ui upper bidiago-
nal. Hence

xi = Riy = RiT
�1
i e1 = (RiU

�1
i )(L�1i e1)

We concentrate on the factors, placed between paren-
thesis, separately.

1.

Li =

0BBBBBB@

1
f1 1

f2
. . .
. . .

. . .

fi�1 1

1CCCCCCA
With q � L�1i e1 we have that q can be solved
from Liq = e1 ) fi�1qi�2+ qi�1 = 0) qi�1, in
recursive manner.

2. Write Bi � RiU
�1
i , then we have that

Ri = BiUi =

0BBBBBB@

...

...

...

...

1CCCCCCA�

0BBBBBBB@

d0 g1

d1
. . .
. . .

. . . gi�1
di�1

1CCCCCCCA
) ri�1 = gi�1(Bi)i�2 + di�1(Bi)i�1

) (Bi)i�1:

Glueing these two recurrences together we obtain

xi =

0BB@
...

(Bi)i�1
...

1CCA
0BB@

...

...
qi�1

1CCA
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= xi�1 + qi�1(Bi)i�1

and this is in fact the well-known conjugate gradients
method. The name stems from the property that the
update vectors (Bi)i�1, usually notated as pi�1, are
A-orthogonal.
Note that the positive de�niteness of A is only ex-
ploited as to guarantee the 
awless decomposition of
the implictly generated tridiagonal matrix Ti. This
suggests that the conjugate gradients method may
also work for certain non positive de�nite systems,
but then at our own risk [59]. We will later see how
other ways of solving the projected system will lead
to other well-known methods.

5.1.1 Computational notes

The standard (unpreconditioned) Conjugate Gradi-
ent algorithm for the solution of Ax = b can be rep-
resented by the following scheme:

x0= initial guess; r0 = b�Ax0;
p�1 = 0; ��1 = 0;
�0 = (r0; r0)
for i = 0; 1; 2; ::::

pi = ri + �i�1pi�1;
qi = Api;
�i =

�i
(pi;qi)

xi+1 = xi + �ipi;
ri+1 = ri � �iqi;
if xi+1 accurate enough then quit;
�i+1 = (ri+1; ri+1);
�i =

�i+1
�i

;

end;

CG is most often used in combination with a suit-
able splitting A = K � R, and then K�1 is called
the preconditioner. We will assume that K is also
positive de�nite.
Note �rst that the CG method can be derived for any
choice of the innerproduct. In our derivation we have
used the standard innerproduct (x; y) =

P
xiyi, but

we have not used any speci�c property of that inner-
product. Now we make a di�erent choice:

[x; y] � (x;Ky):

It is easy to verify that K�1A is symmetric positive
de�nite with respect to [ ; ]:

[K�1Ax; y] = (K�1Ax;Ky) = (Ax; y)

= (x;Ay) = [x;K�1Ay]:(5.1a)

Hence, we can follow our CG procedure for solving
the preconditioned system K�1Ax = K�1b, using
the new [ ; ]-innerproduct.
Apparently, we now are minimizing

[xi � x;K�1A(xi � x)] = (xi � x;A(xi � x));

which leads to the remarkable (and known) result
that for this preconditioned system we still minimize
the error in A-norm, but now over a Krylov subspace
generated by K�1r0 and K�1A.

In the following computational scheme for precon-
ditioned CG, for the solution of Ax = b with precon-
ditioner K�1, we have replaced the [ ; ]-innerproduct
again by the familiar standard innerproduct. E.g.,
note that with ~ri+1 = K�1Axi+1 � K�1b we have
that

�i+1 = [~ri+1; ~ri+1]

= [K�1ri+1;K�1ri+1] = [ri+1;K
�2ri+1]

= (ri+1;K
�1ri+1);

and K�1ri+1 is the residual corresponding to the pre-
conditioned system K�1Ax = K�1b.

x0= initial guess; r0 = b�Ax0;
p�1 = 0; ��1 = 0;
Solve w0 from Kw0 = r0;
�0 = (r0; w0)
for i = 0; 1; 2; ::::

pi = wi + �i�1pi�1;
qi = Api;
�i =

�i
(pi;qi)

xi+1 = xi + �ipi;
ri+1 = ri � �iqi;
if xi+1 accurate enough then quit;
Solve wi+1 from Kwi+1 = ri+1;
�i+1 = (ri+1; wi+1);
�i =

�i+1
�i

;

end;

Note that this formulation, which is quite popular,
has the advantage that the preconditioner needs not
to be splitt into two factors, and it is also avoided to
backtransform solutions and residuals, as is necessary

when one applies CG to L�1AL�1Ty = L�1b.

The coe�cients �j and �j , generated by the above
scheme, can be used to build the matrix Ti in the
following way:

Ti =

0BBBBBBBBBB@

. . .

. . . ��j�1
�j�1

. . . 1
�j

+
�j�1
�j�1

. . .

� 1
�j

. . .

. . .

1CCCCCCCCCCA
:(5.1b)

Since �j > 0 and �j > 0 we see that the above ma-
trix is similar to the following symmetric tridiagonal



7

matrix:

~Ti =

0BBBBBBBBBB@

. . .

. . . �
p
�j�1
�j�1

. . . 1
�j

+
�j�1
�j�1

. . .

�
p
�j

�j

. . .

. . .

1CCCCCCCCCCA
:

The eigenvalues of the leading ith order minor of this
matrix are the Ritz values of the preconditioned ma-
trix K�1A with respect to the i-dimensional Krylov
subspace spanned by the �rst i residual vectors. The
Ritz values approximate the (extremal) eigenvalues
of the preconditioned matrix increasingly well. These
approximations can be used to get an impression of
the relevant eigenvalues. They can also be used to
construct upperbounds for the error in the delivered
approximation with respect to the solution [45, 40].
According to the results in [80] the eigenvalue infor-
mation can also be used in order to understand or
explain delays in the convergence behaviour.

5.1.2 The convergence of Conjugate Gradi-
ents

The conjugate gradient method (here with K = I)
constructs in the ith iteration step an xi, which can
be written as

xi � x = Pi(A)(x0 � x) (cf. (3:0a));

such that kxi � xkA is minimal over all polynomials
Pi of degree i, with Pi(0) = 1.
Let us denote the eigenvalues and the orthonormal-
ized eigenvectors of A by �j, zj . We write r0 =P

j 
jzj . It follows that

ri = Pi(A)r0 =
X
j


jPi(�j)zj

and hence

kxi � xk2A =
X
j


2j
�j
P 2
i (�j):

Note that only those �j play a role in this process
for which 
j = 0. In particular, if A happens to
be semide�nite, i.e., there is a � = 0, then this is
no problem for the minimization process as long as
the corresponding coe�cient 
 is zero as well. The
situation where 
 is small, due to rounding errors, is
discussed in [45].
Upperbounds on the error (in A-norm) are obtained
by observing that

kxi � xk2A =
X
j


2j
�j

P 2
i (�j) �

X
j


2j
�j
Q2
i (�j)

� max
�j

Q2
i (�j)

X
j


2j
�j

;(5.1c)

for any arbitrary polynomial Qi of degree i with
Qi(0) = 1, where the maximum is taken, of course,
only over those � for which the corresponding 
 6= 0.
When Pi has zeros at all the di�erent �j then ri = 0.
The conjugate gradients method tries to spread the
zeros in such a way that Pi(�j) is small in a weighted
sense, i.e., kxi � xkA is as small as possible.

We get suitable upperbounds by selecting appro-
priate polynomials for Qi. A very well-known up-
perbound arises by taking for Qi the ith degree
Chebychev polynomial transformed to the interval
[�min; �max] and scaled such that its value in 0 is
equal to 1.

kxi � xk2A �
X 
2j

�j
T 2
i (�j)

� max
�1;�n

jT 2
i (�j)j kx0 � xk2A;(5.1d)

and

jTi(�j)j � 2

�p
�� 1p
�+ 1

�i
:(5.1e)

The purpose of preconditioning is to reduce the con-
dition number �.

As we have seen the conjugate gradients algorithm
is just an e�cient implementation of the Lanczos
algorithm. The eigenvalues of the implicitly gener-
ated tridiagonal matrix Ti are the Ritz values of A
with respect to the current Krylov subspace. It is
known from Lanczos theory that these Ritz values
converge towards the eigenvalues of A and that in
general the extremal eigenvalues of A are �rst well
approximated [46, 58, 63]. Furthermore, the speed of
convergence depends on how well these eigenvalues
are separated from the others (gap ratio) [63]. This
helps us to understand the so-called superlinear con-
vergence behaviour of the conjugate gradient method
(as well as other Krylov subspace methods). It can
be shown that as soon as one of the extremal eigen-
values is modestly well approximated by a Ritz value,
the pocedure converges from then on as a process in
which this eigenvalue is absent, i.e., a process with
a reduced condition number. Note that superlinear
convergence behaviour in this connection is used to
indicate linear convergence with a factor that is grad-
ually decreased during the process as more and more
of the extremal eigenvalues are su�ciently well ap-
proximated (for details on this see [80]).

5.1.3 Further references

A more formal presentation of CG, as well as many
theoretical properties, can be found in the textbook
by Hackbusch [39]. A shorter presentation is given
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in [35]. An overview of papers, published in the �rst
25 years of existence of the method, is given in [34].
Vector processing and parallel computing aspects are
discussed in [23] and [57].

5.2 MINRES and SYMMLQ:

When A is not positive de�nite, but still symmetric,
then we can construct an orthogonal basis for the
Krylov subspace, as we have seen before. We write
the recurrence relations slightly di�erent as

ARi = Ri+1
�Ti;

with

�Ti =

 i !0BBBBBBBBB@

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

. . .

1CCCCCCCCCA

"

i+ 1

#

In this case we have the problem that ( ; )A does not
de�ne an innerproduct. However we can still try to
minimize the residual. We look for an

xi 2 fr0; Ar0; : : : ; Ai�1r0g; xi = Ri�y

kAxi � bk2 = kARi�y � bk2
= kRi+1

�Tiy � bk2
Now we exploit the fact that Ri+1D

�1
i+1, with Di+1 =

diag(kr0k2; kr1k2; :::; krik2), is an orthonormal trans-
formation with respect to the current Krylov sub-
space:

kAxi � bk2 = kDi+1
�Tiy � kr0k2e1k2

and this �nal expression can simply be seen as a min-
imum norm least squares problem.
The element in the (i + 1; i) position of �Ti can be
transformed to zero by a simple Givens rotation and
the resulting upper bidiagonal system (the other sub-
diagonal elements being removed in previous iteration
steps) can simply be solved, which leads to the so-
called MINRES method [60].
Another possibility is to solve the system Tiy =
kr0k2e1, as in the CG method (Ti is the upper i by
i part of �Ti. Other than in CG we cannot rely on
the existence of a Choleski decomposition (since A
is not positive de�nite). An alternative is then to
decompose Ti by an LQ-decomposition. This again
leads to simple recurrences and the resulting method
is known as SYMMLQ [60].

5.3 Parallelism and data locality in precondi-
tioned CG:

For successful application of CG one needs that the
matrix A is symmetric positive de�nite. In other
short recurrence methods, other properties of A may
be desirable, but we will not exploit these properties
explicitly in the discussion on parallel aspects.
Most often, the conjugate gradients method is used
in combination with some kind of preconditioning.
This means that the matrix A can be thought of to
be multiplied with some suitable approximationK�1

for A�1. Usually, K is constructed as an approxima-
tion of A, such that systems like Ky = z are much
more easy to solve as Ax = b. Unfortunately, a pop-
ular class of preconditioners, based upon incomplete
factorization of A, do not lend themselves very much
for parallel implementation. We will discuss some
approaches to obtain more parallelism in the precon-
ditioner in section 9.1. At the momentwe will assume
that the preconditioner is chosen such that the par-
allelism in solving Ky = z is comparable with the
parallelism in computing Ap, for given p.
For CG it is also required that the preconditioner K
is symmetric positive de�nite. This aspect will play a
role in our discussions since it shows how some prop-
erties of the preconditioner can be used sometimes to
our advantage for an e�cient implementation.

The scheme for preconditioned CG is given in Sec-
tion 5.1.1. Note that in that scheme the updating of x
and r can only start after the completion of the inner-
product required for �i. Therefore, this innerproduct
is a so-called synchronization point: all computation
has to wait for completion of this operation. One can
try to avoid such synchronization points as much as
possible, or to formulate CG in such a way that syn-
chronization points can be taken together. We will
see such approaches further on.
Since on a distributed memory machine communi-
cation is required to assemble the innerproduct, it
would be nice if we could proceed with other useful
computation while the communication takes place.
However, as we see from our CG scheme, there is no
possibility to overlap this communication time with
useful computation. The same observation can be
made for the updating of p, which can only take place
after the completion of the innerproduct for �i. Apart
from the computation of Ap and the computations
with K, we need to load 7 vectors for 10 vector 
oat-
ing point operations. This means that for this part
of the computation only 10=7 
oating point operation
can be carried out per memory reference in average.

Several authors ([11, 52, 53]) have attempted to im-
prove this ratio, and to reduce the number of syn-
chronization points. In our formulation of CG there
are two such synchronization points, namely the com-
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putation of both innerproducts.
Meurant [52] (see also [68]) has proposed a variant
in which there is only one synchronization point,
however at the cost of a possibly reduced numerical
stability, and one additional innerproduct. In this
scheme the ratio between computations and memory
references is about 2.
We show here another variant, proposed by Chrono-
poulos and Gear [11].

x0= initial guess; r0 = b�Ax0;
q�1 = p�1 = 0; ��1 = 0;
Solve w0 from Kw0 = r0;
s0 = Aw0;
�0 = (r0; w0);�0 = (s0; w0);
�0 = �0=�0;
for i = 0; 1; 2; ::::

pi = wi + �i�1pi�1;
qi = si + �i�1qi�1;
xi+1 = xi + �ipi;
ri+1 = ri � �iqi;
if xi+1 accurate enough then quit;
Solve wi+1 from Kwi+1 = ri+1;
si+1 = Awi+1;
�i+1 = (ri+1; wi+1);
�i+1 = (si+1; wi+1);
�i =

�i+1
�i

;

�i+1 =
�i+1

�i+1��i+1�i=�i ;
end i;

In this scheme all vectors need only be loaded once
per pass of the loop, which leads to a better exploita-
tion of the data (improved data locality). However,
the price is that we need 2n 
ops more per itera-
tion step. Chronopoulos and Gear [11] claim stabil-
ity, based upon their numerical experiments.
Instead of 2 synchronization points, as in the stan-
dard version of CG, we have now only one synchro-
nization point, as the next loop can only be started
when the innerproducts at the end of the previous
loop have been assembled. Another slight advantage
is that these innerproducts can be computed in par-
allel.
Chronopoulos and Gear [11] propose to further im-
prove the data locality and parallelism in CG by com-
bining s successive steps. Their algorithm is based
upon the following property of CG. The residual vec-
tors r0; :::; ri form an orthogonal basis (assuming ex-
act arithmetic) for the Krylov subspace spanned by
r0; Ar0; :::; A

i�1r0. When arrived at rj, the vectors
r0; r1; :::; rj, Arj; :::; Ai�j�1rj also form a basis for
this subspace. Hence, we may combine s successive
steps by generating rj ; Arj; :::; As�1rj �rst, and then
do the orthogonalization and the updating of the cur-
rent solution with this blockwise extended subspace.
This approach leads to a slight increase in 
ops in
comparison with s successive steps of the standard

CG, and also one additional matrix vector product is
required per s steps.
The main drawback in this approach seems to be the
potential numerical instability. Depending on the
spectral properties of A, the set rj ; :::; As�1rj may
tend to converge to a vector in the direction of a
dominating eigenvector, or, in other words, may tend
to dependence for increasing values of s. The authors
claim to have seen successful completion of this ap-
proach, with no serious stability problems, for small
values of s. Nevertheless, it seems that s-step CG,
because of these problems, has a bad reputation (see
also [69]). However, a similar approach, suggested by
Chronopoulos and Kim [12] for other processes such
as GMRES, seems to be more promising. Several au-
thors have pursued this research direction, and we
will come back to this in section 7.3.

We consider still another variant of CG, in which
there is possibility to overlap all of the communica-
tion time with useful computations. This variant is
just a reorganized version of the original CG scheme,
and is therefore precisely as stable. The key trick in
this approach is to delay the updating of the solution
vector by one iteration step.
Another advantage over the previous scheme is that
no additional operations are required.
It is assumed that the preconditioner K can be writ-
ten as K = (LLT )�1. Furthermore, it is assumed
that the preconditioner has a block structure, corre-
sponding to the gridblocks assigned to the processors,
so that communication (if necessary) can be over-
lapped with computation.

x0= initial guess; r0 = b�Ax0;
p�1 = 0; ��1 = 0;��1 = 0;
s = L�1r0;
�0 = (s; s);
for i = 0; 1; 2; ::::

wi = L�T s; (0)
pi = wi + �i�1pi�1; (1)
qi = Api; (2)

 = (pi; qi); (3)
xi = xi�1 + �i�1pi�1; (4)
�i =

�i

 ; (5)

ri+1 = ri � �iqi; (6)
s = L�1ri+1; (7)
�i+1 = (s; s); (8)
if ri+1 small enough then (9)

xi+1 = xi + �ipi
quit;

�i =
�i+1
�i

;

end i;

Now we discuss how this scheme may lead to an ef-
�cient parallel scheme, and how local memory (vector
registers, cache, ...) can be exploited.
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1. All computing intensive operations can be car-
ried out in parallel. Only for the operations (2),
(3), (7), (8), (9), and (0), communication be-
tween processors is required. We have assumed
that the communication in (2), (7), and (0) can
be largely overlapped with computation.

2. The communication required for the assembly of
the innerproduct in (3) can be overlapped with
the update for x (which could have been done in
the previous iteration step).

3. The assembly of the innerproduct in (8) can be
overlapped with the computation in (0). Also
step (9) usually requires information such as the
norm of the residual, which can be overlapped
with (0).

4. Steps (1), (2), and (3) can be combined: the
computation of a segment of pi can be followed
immediately by the computation of a segment of
qi (2), and this can be followed by the compu-
tation of a part of the innerproduct in (3). This
saves on load operations for segments of pi and
qi.

5. Depending on the structure of L, the computa-
tion of segments of ri+1 in (6) can be followed
by operations in (7), which can be followed by
the computation of parts of the innerproduct in
(8), and the computation of the norm of ri+1,
required for (9).

6. The computation of �i can be done as soon as the
computation in (8) has been completed. At that
moment, the computation for (1) can be started
if the requested parts of wi have been completed
in (0).

7. If no preconditioner is used, then wi = ri, and
steps (7) and (0) have to be skipped. Step (8) has
to be replaced by �i = (ri+1; ri+1). Now we need
useful computation in order to overlap the com-
munication for this innerproduct. To this end,
one might split the computation in (4) per pro-
cessor in two parts. The �rst of these parts are
computed in paralell in overlap with (3), while
the parallel computation of the other parts is
used in order to overlap the communication for
the computation of �i.

5.4 Parallel performance of CG:

Some realistic 3D computational 
uid dynamics sim-
ulation problems, as well as other problems, lead to
the necessity to solve linear systems Ax = b with a
matrix of very large order, billions of unknowns, say.
If not of very special structure, such systems are not
likely to be solved by direct elimination methods.
For such very large (sparse) systems we will have to

exploit parallelism in combination with suitable so-
lution techniques, like for instance iterative solution
methods.
From a parallel point of view CG mimics very well
parallel performance properties of a variety of it-
erative methods such as Bi-CG, CGS, BiCGSTAB,
QMR, and others.
In this section we study the performance of CG on
parallel distributed memory systems and we report
on some supporting experiments on actual existing
machines. Guided by our experiments we will discuss
the suitability of CG for Massively Parallel Process-
ing systems.

All computational intensive elements in precondi-
tioned CG (updates, innerproducts, and matrix vec-
tor operations) are trivially parallelizable for shared
memory machines [23], except possibly for the pre-
conditioning step: Solve wi+1 from Kwi+1 = ri+1.
For the latter operation parallelism depends very
much on the choice for K. In this section we restrict
ourselves to block Jacobi preconditioning, where the
blocks have been chosen so that each processor can
handle one block independently of the others. For
other preconditioners that allow some degree of par-
allelism see [23].
For a distributed memory machine at least some of
the steps require communication between processors:
the accumulation of innerproducts and the computa-
tion of Api (depending on the non-zero structure of
A and the distribution of the non-zero elements over
the processors). We consider in some more detail the
situation where A is a block-tridiagonal matrix of or-
der N , and we assume that all blocks are of orderp
N :

A =

0BBBBBB@

A1 D1

D1 A2 D2

D2
. . .

. . .
. . .

1CCCCCCA ;

in which the Di are diagonal matrices, and the Ai are
tridiagonal matrices. Such systems occur quite fre-
quently in �nite di�erence approximations in 2 space
dimensions. Our discussion can easily be adapted to
3 space dimensions.

5.4.1 Processor con�guration and data dis-
tribution

For simplicity we will assume that the processors are
connected as a 2D grid with p� p = P processors.
The data have been distributed in a straight forward
manner over the processor memories and we have not
attempted to fully exploit the underlying grid struc-
ture for the given type of matrix in order to reduce
communication as much as possible. In fact it will
turn out that in our case the communication for the
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Fig.1: Distribution of A over the processors..

matrix vector product plays only a minor role for ma-
trix systems of large size .
Because of symmetry only the 3 non-zero diagonals
in the upper triangular part of A need to be stored,
and we have chosen to store successive parts of length
N=P of each diagonal in consecutive neighbouring
processors. In Figure 1 we see which part of A is
represented by the data in the memory of a given
processor.

The blocks for block Jacobi are chosen to be the
diagonal blocks that are available on each processor,
and the various vectors (ri, pi, etc.) have been dis-
tributed likewise, i.e. each processor holds a section
of length N=P of these vectors in its local memory.

5.4.2 Required Communication

matrix vector product It is easily seen for a 2D proces-
sor grid (as well as for many other con�gurations, in-
cluding hypercube and pipeline), that the matrix vec-
tor product can be completed with only neighbour-
neighbour communication. This means that the com-
munication costs do not increase for increasing val-
ues of p. If one follows a domain decomposition way
of approach, in which the �nite di�erence discretiza-
tion grid is subdivided into p by p subgrids (p in x-
direction and p in y-direction), then the communica-
tion costs are smaller than the computational costs

by a factor of O(
p
N
p ).

In [17] much attention is given to this sparse ma-
trix vector product and it is shown that the time for
communication can almost completely be overlapped
with computational work. Therefore, with adequate
coding the matrix vector products do not necessarily
lead to serious communication problems, even not for

relatively small-sized problems.
On a MEIKO SP1 (located at Utrecht University, this
machine has only 4 processors) we have observed, for
N = 90000, a speed-up by a factor of 1:85 for two
processors, and of 1:96 when overlap possibilities are
exploited. In both cases we expect, by extrapolat-
ing our timing results, a factor of 2 for very large N .
According to a naive interpretation of Amdahl's law
we might expect a severe degradation in performance
for more than two processors. However, if we in-
crease the size of the problem for increasing numbers
of processors then the local communication time for
the matrix product does not increase so that it does
not pose limits on the performance when we increase
the value of p.

vector update In our case these operations do not re-
quire any communication and we should expect linear
speed up when increasing the number of processors
P .

inner product For the innerproduct we need global
communication for assembly and we need global com-
munication for the distribution of the assembled in-
nerproduct over the processors. For a p�p processor
grid these communication costs are proportional with
p. This means that for a constant length of the vec-
torparts per processor, these communicationcosts will
dominate for values of p large enough. This is quite
unlike the situation for the matrix vector product and
as we will see it may be a severely limiting factor in
achieving high speed-ups in a massively parallel en-
vironment.

For the MEIKO SP1 we have done some experi-
ments in order to determine the costs of inter proces-
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Fig.2: Modelled timings for 1 iteration with CG.

sor communication and for communication. Assum-
ing that the costs for communication (for the inner-
products) grow linearly with the length of the path
of communication we have modelled the wall-clock
time for 1 iteration with CG, for matrices of order
90000P , as in Figure 2. Note that we have increased
the size of the linear system linearly with the num-
ber of processors, which seems realistically since with
larger computers one aims to solve larger systems.
The value 90000 has been chosen since this is more
or less the size of the part of the system that can
be kept in the local memory of one processor of our
MEIKO machine.

From this Figure we learn that for P slightly larger
than 400 the communication costs may be expected
to dominate, and eventually they will lead to very
low speed-ups (even for systems for which the size is
as large as the total memory permits). We also see,
that if overlap of communication and computation
is possible, then potentially the communication can
be hidden for values of P less than 400, but this de-
mands for a reformulation of the CG algorithm. Of
course, these expectations are based on a model, but
we have also carried out similar experiments on the
512 processor Parsytec GCel-3/512 of the University
of Amsterdam [15]. In particular we have observed
on that machine that the communication time for the
innerproduct increases like

p
P , which just explains

the behaviour of our model for the MEIKO-type of
architecture.

Our experiments and our modelling approach
clearly show that even a method like CG, which
might be anticipated to be highly parallel, may suf-
fer severely from the communication overhead due
to the required innerproducts. Our study indicates
that if we want reasonable speed-up in a massively
parallel environment then the local memories should

also be much larger when the number of processors
is increased in order to accomodate for systems large
enough to compensate for the increased global com-
munication costs.

Another approach would be to modify the CG
method such that the innerproducts take relatively
less time. Many of such approaches have been stud-
ied recently. A quite popular approach is to refor-
mulate CG such that the required innerproducts can
be computed simultaneously, so that the communi-
cation overhead is reduced (the communication re-
quired for 2 simultaneous innerproducts is almost the
same as for 1 innerproduct). An extreme form of this
approach is to reformulate CG so that a number of
basis vectors for the search space are computed with-
out making them orthogonal. The orthogonalization
is then carried out afterwards, and in this approach
most of the communication can be combined. The
numerical stability of these approaches is still a point
of concern. For an overview and further references
see [6]. For some other iterative methods, such as
GMRES, this approach can be quite e�ective as is
shown in [17].

Still another approach is to try to more useful com-
putational work per iteration step, so that the com-
munication for the two innerproducts takes relatively
less time. One way to do this is to use polynomial
preconditioning, i.e., the preconditioner consists of
a number of matrix vector products with the matrix
A. This may work well in situations where the matrix
vector product requires only little (local) communica-
tion. Another way is to apply domain decomposition:
the given domain is split intoP , say, subdomains with
estimated values for the solutions on the interfaces.
Then all the subproblems are solved independently
and in parallel. This way of approximating the solu-
tion may be viewed as a preconditioning step in an
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iterative method. In this way we do more computa-
tional work per communication step. Unfortunately,
depending on the problem and on the way of decou-
pling the subdomains one may need a larger number
of iteration steps for larger values of P , which may
then, of course, detoriate the overall e�ciency of the
domain decomposition approach. For more informa-
tion on this approach we also refer to references given
in [6].
If a given architecture permits the overlap of com-

munication with computation, then we may try to re-
formulate CG in order to create possibilities for over-
lap. For the (extrapolated) MEIKO this may help for
values of P up to about 400. For larger P we will see
communication dominating anyhow, but the adverse
e�ects can be lessened. A stable reformulation of CG
which has this e�ect has been described in [20].

6 Unsymmetric problems

There are essentially three di�erent ways to solve
unsymmetric linear systems, while maintaining some
kind of orthogonality between the residuals:

1. Solve the normal equations ATAx = AT b with
conjugate gradients

2. Make all the residuals explicitly orthogonal in
order to have an orthogonal basis for the Krylov
subspace

3. Construct a basis for the Krylov subspace by a
3-term biorthogonality relation

6.1 Normal Equations:

The �rst solution seems rather obvious. However, it
has severe disadvantages because of the squaring of
the condition number. This has as e�ects that the so-
lution is more susceptible to errors in the right-hand
side and that the rate of convergence of the CG pro-
cedure is much slower as for a comparable symmetric
system with a matrix with the same condition num-
ber as A. Moreover, the amount of work per iteration
step, necessary for the matrix vector product, is dou-
bled.
There have been made several proposals to improve
the numerical stability of this rather robust approach.
The most well-known is by Paige and Saunders [61]
and is based upon applying the Lanczos method to
the auxiliary system�

I A
AT 0

��
r
x

�
=

�
b
0

�
:

Clever execution of this delivers in fact the factors
L and U of the LU -decomposition of the tridiagonal
matrix that would have been delivered when carrying
out the Lanczos procedure with ATA.
Another approach to improve the numerical stabil-
ity of this normal equations approach is suggested by

Bj�orck and Elfving [8]. They observed that the ma-
trix ATA is used in the construction of the iteration
coe�cients through an innerproduct like (p;ATAp).
They simply suggest to replace such an innerproduct
by (Ap;Ap).
The use of conjugate gradients in a least squares con-
text, as well as a theoretical comparison with SIRT
type methods, is discussed in [81] and [82].

An interesting variant of LSQR is the so-called
Craig's method [61]. The easiest way to think of this
method is to apply Conjugate Gradients to the sys-
tem ATAx = AT b, with the following choice for the
innerproduct

[x; y] � (x; (ATA)�1y);

which de�nes a proper innerproduct if A is of full
rank (see section 5.1.1).
First note that the two innnerproducts in CG (as
in section 5.1.1 can be computed without inverting
ATA:

[pi; A
TApi] = (pi; pi);

and, assuming that b 2 R(A) so that Ax = b has a
unique solution x (since A has full rank):

[ri; ri] = [AT (Axi � b); AT (Axi � b]

= [ATA(xi � x); AT (Axi � b)]

= (xi � x;AT (Axi � b))

= (Axi � b; Axi � b)(6.1a)

Apparantly, we are with CG minimizing

[xi � x;ATA(xi � x)] = (xi � x; xi � x)

= kxi � xk;2(6.1b)

that is, in this approach the Euclidean norm of the
error is minimized. Note, however, that the rate of
convergence of Craig's method is determined by the
condition number of ATA, so that this method is only
attractive if one has a good preconditioner for ATA.

6.2 FOM and GMRES:

The second approach is to form explicitly an or-
thonormal basis for the Krylov subspace. Since A is
not symmetric we no longer have a 3-term recurrence
relation for that purpose and the new basis vector
has to be made explicitly orthonormal with respect
to all the previous vectors:

v1 =
1

kr0k2 r0;

hi+1;ivi+1 = Avi �
iX

j=1

hj;ivj:
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As in the symmetric case this can be exploited in two
di�erent ways. The orthogonality relation can either
be written as

AVi = ViHi + hi+1;ivi+1e
T
i ;(6.2a)

after which the projected system, with a Hessen-
berg matrix instead of a tridiagonal matrix as in the
symmetric case, can be solved (nonsymmetric CG,
GENCG, FOM, Arnoldi's method), or it can be writ-
ten as

AVi = Vi+1 �Hi;(6.2b)

after which the projected system, with an i + 1 by
i upper Hessenberg matrix can be solved as a least
squares system. In GMRES [72] this is done by the
QR method using Givens rotations in order to anni-
hilate the subdiagonal elements in the upper Hessen-
berg matrix �Hi.
The �rst approach (based upon (6.2a)) is similar to
the conjugate gradient approach (or SYMMLQ), the
second approach (based upon (6.2b)) is similar the
conjugate directions method (or MINRES).

In order to avoid excessive storage requirements
and computational costs for the orthogonalization,
GMRES is usually restarted after each m iteration
steps. This algorithm is referred to as GMRES(m).
Below we give a scheme for GMRES(m) which may
be suitable to develop a computer code. It solves
Ax = b, with a given preconditioner K.

x0 is an initial guess;
for j = 1; 2; ::::

Solve r from Kr = b�Ax0;
v1 = r=krk2;
s := krk2e1;
for i = 1; 2; :::;m

Solve w from Kw = Avi;
orthogonalization of w
against v's, by modi�ed
Gram-Schmidt process

for k = 1; :::; i
hk;i = (w; vk);
w = w � hk;ivk;

end k;
hi+1;i = kwk2;
vi+1 = w=hi+1;i;
apply J1; :::; Ji�1 on (h1;i; :::; hi+1;i);

construct Ji, acting on i{th
and (i+ 1){st component
of h:;i, such that (i + 1){st
component of Jih:;i is 0;

s := Jis;
if s(i + 1) is small enough then:
(UPDATE(~x; i); quit);

end i;
UPDATE(~x;m);

end j;

In this scheme UPDATE(~x; i) replaces the follow-
ing computations:

Compute y as the solution of Hy = ~s,
in which the upper i by i triangular
part of H has hi;j as its elements
(in least squares sense if H is singular),
~s represents the �rst i components of s;
~x = x0 + y1 � v1 + y2v2 + :::+ yivi;
si+1 equals kb�A~xk2;
if this component is not small enough
then x0 = ~x;
else quit;

Another scheme for GMRES, based upon House-
holder orthogonalization instead of modi�ed Gram-
Schmidt has been proposed in [92]. For certain ap-
plications it seems attractive to invest in additional
computational work in turn for improved numerical
properties: the better orthogonality might save iter-
ation steps.

The eigenvalues of Hi are the Ritz values of K�1A
with respect to the Krylov subspace spanned by v1,
..., vi. They approximate eigenvalues of K�1A in-
creasingly well for increasing dimension i.

There is an interesting and simple relation be-
tween the two di�erent Krylov subspace projection
approaches (6.2a), the "FOM" approach, and (6.2b),
the "GMRES" approach. The projected system ma-
trix �Hi is transformed by a Givens rotations to an
upper triangular matrix (with last row equal to zero).
So, in fact, the major di�erence between FOM and
GMRES is that in FOM the last ((i+1)-th row is sim-
ply discarded, while in GMRES this row is rotated to
a zero vector. Let us characterize the Givens rotation,
acting on rows i and i+1, in order to zero the element
in position (i+ 1; i), by the sine si and the cosine ci.
Let us further denote the residuals for FOM with an
superscript F and those for GMRES with superscript
G. Then the above observations lead to the following
results for FOM and GMRES (for details see [72] and
[9]).

1. The reduction for successive GMRES residuals
is given by

krGk k2
krGk�1k2

= jskj :(6.2c)

([72]: p. 862, Proposition 1)

2. If ck 6= 0 then the FOM and the GMRES resid-
uals are related by

krGk k2 = jckj krFk k2(6.2d)

([9]: theorem 5.1)
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From these relations we see that when GMRES has a
local signi�cant reduction in the norm of the residual
(i.e., sk is small), then FOM gives about the same
result as GMRES (since c2k = 1 � s2k). On the other
hand when FOM has a break-down (ck = 0), then
the GMRES does not lead to an improvement in the
same iteration step.
Because of these relations we can link the conver-
gence behaviour of GMRES with the convergence of
Ritz values (the eigenvalues of the "FOM" part of the
upper Hessenberg matrix). This has been exploited
in [88], for the analysis and explanation of local ef-
fects in the convergence behaviour of GMRES.

In order to limit the required amount of memory
storage and the amount of 
ops per iteration step,
one often restarts the GMRES method after each m
steps. This restarted version is commonly referred to
as GMRES(m), while the not-restarted method often
is called Full GMRES.

There are various di�erent implementations of
FOM and GMRES. Among those equivalent with
GMRES are: Orthomin [91], Orthodir [44], Axels-
son's method [3] and GENCR [27]. These methods
are often more expensive than GMRES per itera-
tion step. Orthomin seems to be still popular, since
this variant can be easily truncated (Orthomin(s)),
in contrast to GMRES. The truncated or restarted
versions of these algorithms are not necessarily math-
ematically equivalent.
Methods that are mathematically equivalent with
FOM are: Orthores [44] and GENCG [13, 93]. In
these methods the approximate solutions are con-
structed such that they lead to orthogonal residuals
(which form a basis for the Krylov subspace; analo-
gously to the CG method). A good overview of all
these methods and their relations is given in [71].

6.3 Rank-one updates for the Matrix Split-
ting:

Iterative methods can be derived from a splitting of
the matrix, and we have used the very simple split-
ting A = I�R, with R = I�A, in order to derive the
projection type methods. In [26] it is suggested to up-
date the matrix splitting with information obtained
in the iteration process. We will give the 
avour of
this method here since it turns out that it has an in-
teresting relation with GMRES. This relation is ex-
ploited in [89] for the construction of new classes of
GMRES-like methods, that can be used as cheap al-
ternatives for the increasingly expensive full GMRES
method.

Assume that the matrix splitting in the k-th itera-
tion step is given by A = H�1

k � Rk, then we obtain

the iteration formula

xk = xk�1 +Hkrk�1 with rk = b� Axk:

The idea is now to construct Hk by a suitable rank-
one update to Hk�1:

Hk = Hk�1 + uk�1vTk�1;

which leads to

xk = xk�1 + (Hk�1+ uk�1vTk�1)rk�1(6.3a)

or

rk = rk�1 � A(Hk�1 + uk�1vTk�1)rk�1
= (I � AHk�1)rk�1 � Auk�1vTk�1rk�1(6.3b)

= (I � AHk�1)rk�1 � �k�1Auk�1:

The optimal choice for the update would have been
to select uk�1 such that

�k�1Auk�1 = (I � AHk�1)rk�1;

or
�k�1uk�1 = A�1(I �AHk�1)rk�1:

However, A�1 is unknown and the best approxima-
tion we have for it is Hk�1. This leads to the choice

�uk�1 = Hk�1(I � AHk�1)rk�1:(6.3c)

The constant �k�1 is chosen such that krkk2 is min-
imal as a function of �k�1. This leads to

�k�1 =
1

kA�uk�1k22
(A�uk�1)T (I � AHk�1)rk�1:

Since vk�1 has to be chosen such that �k�1 =
vTk�1rk�1, we have the following obvious choice for
it

�vk�1 =
1

kA�uk�1k22
(I � AHk�1)TA�uk�1(6.3d)

(note that from the minimization property we have
that rk ? A�uk�1).

In principle the implementation of the method is
quite straight forward, but note that the computation
of rk�1, �uk�1 and �vk�1 costs 4 matrix vector multi-
plications with A (and also some with Hk�1). This
would make the method too expensive for being of
practical interest. Also the updated splitting is most
likely a dense matrix if we carry out the updates ex-
plicitly.
We will now show, still following the lines set forth in
[26], that there are orthogonality properties, follow-
ing from the minimization step, by which the method
can be implemented much more e�ciently.
We de�ne
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1. ck =
1

kA�ukk2A�uk (note that rk+1 ? ck)

2. Ek = I �AHk

From (6.3b) we have that rk = Ekrk�1, and from
(6.3c):

A�uk = AHkEkrk = �kck

or

ck =
1

�k
(I � Ek)Ekrk(6.3e)

=
1

�k
Ek(I � Ek)rk

Furthermore (on behalf of (6.3c)):

Ek = I �AHk

= I �AHk�1 � A�uk�1�vTk�1
= I �AHk�1 � A�uk�1(A�uk�1)T

(I � AHk�1)
1

kA�ukk22
= (I � ck�1cTk�1)Ek�1

=
k�1Y
i=0

(I � cic
T
i )E0:(6.3f)

We see that the operator Ek has the following e�ect
on a vector. The vector is multiplied by E0 and then
orthogonalized with respect to c0, ..., ck�1. Now we
have from (6.3e) that

ck =
1

�k
Ekyk;

and hence
ck ? c0; :::; ck�1:(6.3g)

A consequence from (6.3g) is that

k�1Y
j=0

(I � cjc
T
j ) = I �

k�1X
j=0

cjc
T
j = I � Pk�1

and therefore

Pk =
kX

j=0

cjc
T
j :(6.3h)

The actual implementation is based on the above
properties. Given rk we compute rk+1 as follows (and
we update xk in the corresponding way):

rk+1 = Ek+1rk:

With �(0) = E0rk we �rst compute (with the cj from
previous steps):

Ekrk = �(k) � (I �
k�1X
j=0

cjc
T
j )�

(0) =
k�1Y
j=0

(I � cjcTj )�(0):

The expression with
P

leads to a Gram-Schmidt for-
mulation, the expression with

Q
leads to the Modi-

�ed Gram-Schmidt variant.
The computed updates �cTj �(0)cj for rk+1 correspond
to updates

cTj �
(0)A�1cj = cTj �

(0)uj=kAujk2
for xj+1. These updates are in the scheme, given
below, represented by �.

From (6.3c) we know that

�uk = HkEkrk = Hk�
(k):

Now we have to make A�uk � ck orthogonal w.r.t.
c0, ..., ck�1, and to update �uk accordingly. Once
we have done that we can do the �nal update
step to make Hk+1, and we can update both xk
and rk by the corrections following from includ-
ing ck. The orthogonalization step can be car-

ried out easily as follows. De�ne c
(k)
k � �kck =

AHkEkrk = (I � Ek)Ekrk (see (6.3e)) = (I �
E0+Pk�1E0)�(k) (see (6.3f)) = AH0�

(k)+Pk�1(I�
AH0)�(k) = c

(0)
k +Pk�1�(k)�Pk�1c(0)k . Note that the

second term vanishes since �(k) ? c0; :::; ck�1.

The resulting scheme for the k-th iteration step
becomes:

1. �(0) = (I �AH0)rk; �(0) = H0rk;
for i = 0; :::; k� 1 do

�i = cTi �
(i);

�(i+1) = �(i) � �ici; �(i+1) = �(i) + �iui;

2. u
(0)
k = H0�

(k); c(0)k = Au
(0)
k ;

for i = 0; :::; k� 1 do

�i = �cTi c(i)k ; c
(i+1)
k = c

(i)
k + �ici;

u
(i+1)
k = u

(i)
k + �iui;

ck = c
(k)
k =kc(k)k k2; uk = u

(k)
k =kc(k)k k2;

3. xk+1 = xk + �(k) + ukc
T
k �

(k);
rk+1 = (I � ckc

T
k )�

(k);

Remarks

1. The above scheme is a Modi�ed Gram Schmidt
variant, given in [89], of the original scheme in
[26].

2. If we keep H0 �xed, i.e., H0 = I, then the
method is not scaling invariant (the results for
�Ax = �b depend on �). In [89] a scaling invari-
ant method is suggested.

3. Note that in the above implementation we have
'only' two matrix vector products per iteration
step. In [89] it is shown that in many cases we
may also expect comparable converge as for GM-
RES in half the number of iteration steps.
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4. A di�erent choice for �uk�1 does not change the
formulas for �vk�1 and Ek�1. For each di�erent
choice we can derive similar schemes as the one
above.

5. From (6.3b) we have

rk = rk�1 � AHk�1rk�1 � �k�1Auk�1:

In view of the previous remark we might also
make the di�erent choice �uk�1 = Hk�1rk�1.
With this choice, we obtain a variant which is
algebraically identical to GMRES (for a proof of
this see [89]). This GMRES variant is obtained
by the following changes in the previous scheme:
Take H0 = 0 (note that in this case we have that
Ek�1rk�1 = rk�1, and hence we we may skip
part 1 of the above algorithm), and set �(k) = rk,

�(k) = 0. In step 2 start with u
(0)
k = �(k).

The result is a di�erent formulation of GMRES
in which we can obtain explicit formulas for the
updated preconditioner (i.e., the inverse of A is
approximated increasingly well): The update for
Hk is �ukc

T
kEk and the sum of these updates gives

an approximation for A�1.

6. Also in this GMRES-variant we are still free
to select uk a little bit di�erent. Remember
that the leading factor Hk�1 in (6.3c) was in-
troduced as an approximation for the actually
desired A�1. With �uk�1 = A�1rk�1, we would
have that rk = Ek�1rk�1��k�1rk�1 = 0 for the
minimizing �k�1. We could take other approxi-
mations for the inverse (with respect to the given
residual rk�1), e.g., the result vector y obtained
by a few steps GMRES applied to Ay = rk�1.
This leads to the so-called GMRESR family of
nested methods (for details see [89]). See also
section 6.4. A similar algorithm, named FGM-
RES, has been derived independently by Saad
[70]. In FGMRES the search directions are pre-
conditioned, whereas in GMRESR the residuals
are preconditioned. This gives GMRESR direct
control over the reduction in norm of the resid-
ual. As a result GMRESR can be made robust
while FGMRES may su�er from break-down. A
further disadvantage of the FGMRES formula-
tion is that this method cannot be truncated, or
selectively orthogonalized, as GMRESR can.
In [4] a generalized conjugate gradient method is
proposed, a variant of which produces in exact
arithmetic identical results as the proper variant
of GMRESR, though at higher computational
costs and with a classical Gram{Schmidt orthog-
onalization process instead of the modi�ed pro-
cess as in GMRESR.

6.4 GMRESR and GMRES?:

By Van der Vorst and Vuik [89] it has been shown
how the GMRES-method can be combined (or rather
preconditioned) with other iterative schemes. The it-
eration steps of GMRES (or GCR) are called outer
iteration steps, while the iteration steps of the pre-
conditioning iterative method are referred to as inner
iterations. The combined method is called GMRES?,
where ? stands for any given iterative scheme; in the
case of GMRES as the inner iteration method, the
combined scheme is called GMRESR[89].
Similar schemes have been proposed recently. In
FGMRES[70] the update directions for the ap-
proximate solution are preconditioned, whereas in
GMRES? the residuals are preconditioned. The lat-
ter approach o�ers more control over the reduction in
the residual, in particular break-down situations can
be easily detected and remedied.
In exact arithmetic GMRES? is very close to the Gen-
eralized Conjugate Gradient method[4]; GMRES?,
however, leads to a more e�cient computational
scheme.
The GMRES? algorithm can be described by the

following computational scheme:

x0 is an initial guess; r0 = b�Ax0;
for i = 0; 1; 2; 3; :::

Let z(m) be the approximate solution
of Az = ri, obtained after m steps of
an iterative method.
c = Az(m) (often available from the

iteration method)
for k = 0; :::; i� 1

� = (ck; c)
c = c� �ck
z(m) = z(m) � �uk

ci = c=kck2; ui = z(m)=kck2
xi+1 = xi + (ci; ri)ui
ri+1 = ri � (ci; ri)ci
if xi+1 is accurate enough then quit

end

A su�cient condition to avoid break-down in this
method (kck2 = 0) is that the norm of the residual
at the end of an inner iteration is smaller than the
right-hand residual: kAz(m)� rik2 < krik2. This can
easily be controlled during the inner iteration process.
If stagnation occurs, i.e. no progress at all is made
in the inner iteration, then it is suggested by Van der
Vorst and Vuik[89] to do one (or more) steps of the
LSQR method, which guarantees a reduction (but
this reduction is often only small).
The idea behind this combined iteration scheme

is that we explore parts of high-dimensional Krylov
subspaces, hopefully localizing the same approximate
solution that full GMRES would �nd over the en-
tire subspace, but now at much lower computational
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costs. The alternatives for the inner iteration could
be either one cycle of GMRES(m), since then we have
also locally an optimal method, or some other iter-
ation scheme, like for instance Bi-CGSTAB. As has
been shown by Van der Vorst[87] there are a number
of di�erent situations where we may expect stagna-
tion or slow convergence for GMRES(m). In such
cases it does not seem wise to use this method.

On the other hand it may also seem questionable
whether a method like Bi-CGSTAB should lead to
success in the inner iteration. This method does
not satisfy a useful global minimization property
and large part of its e�ectiveness comes from the
underlying Bi-CG algorithm, which is based on bi-
orthogonality relations. This means that for each
outer iteration the inner iteration process has to build
a bi-orthogonality relation again. It has been shown
for the related Conjugate Gradients method that the
orthogonality relations are determined largely by the
distribution of the weights at the lower end of the
spectrum and on the isolated eigenvalues at the up-
per end of the spectrum[82]. By the nature of these
kind of Krylov processes the largest eigenvalues and
their corresponding eigenvector components quickly
do enter the process after each restart, and hence
it may be expected that much of the work is lost
in rediscovering the same eigenvector components in
the error over and over again, whereas these compo-
nents may already be so small that further reduction
in those directions in the outer iteration is waste of
time, since it hardly contributes to a smaller norm of
the residual.
This heuristic way of reasoning may explain in
part our rather disappointing experiences with Bi-
CGSTAB as the inner iteration process for GMRES?.

De Sturler and Fokkema[19] propose to prevent the
outer search directions explicitly from being reinves-
tigated again in the inner process. This is done by
keeping the Krylov subspace that is build in the in-
ner iteration orthogonal with respect to the Krylov
basis vectors generated in the outer iteration. The
procedure works as follows.
In the outer iteration process the vectors c0, ..., ci�1
build an orthogonal basis for the Krylov subspace.
Let Ci be the n by i matrix with columns c0, ...,
ci�1. Then the inner iteration process at outer iter-
ation i is carried out with the operator Ai instead of
A, and Ai is de�ned as

Ai = (I � CiC
T
i )A:(6.4a)

It is easily veri�ed that Aiz ? c0; :::; ci�1 for all z,
so that the inner iteration process takes place in a
subspace orthogonal to these vectors. The additional
costs, per iteration of the inner iteration process, are
i inner products and i vector updates. In order to
save on these costs, one should realize that it is not

necessary to orthogonalize with respect to all previ-
ous c-vectors, and that \less e�ective" directions may
be dropped, or combined with others. De Sturler and
Fokkema[19] suggestions are made for such strategies.
Of course, these strategies in cases where we see too
little residual reducing e�ect in the inner iteration
process in comparison with the outer iterations of
GMRES?.

6.5 Bi-conjugate Gradients:

The third class of methods arises from the attempt
to construct a suitable set of basis vectors for the
Krylov subspace by a three-term recurrence relation
as in (5.0a):

�j+1rj+1 = Arj � �jrj � 
jrj�1:(6.5a)

As we have seen in the proof for the orthogonality of
such a set of vectors (see section 4), we needed the
symmetry of the matrixA. In the nonsymmetric case
we need instead of (5.0b) that

(Arj�1; rk) = (rj�1; AT rk) = 0 for k < j � 2:

By similar arguments as in the proof for (5.0a) we
conclude that (6.5a) can be used to generate a basis
r0,...,ri�1 forKi(A; r0), such that rj ? Kj�1(AT ; r0),
or even more general,

rj ? Kj�1(AT ; s0);

since there is no explicit need to generate the Krylov
subspace for AT with r0 as the starting vector.
If we let the basis vectors sj forK

i(AT ; s0) satisfy the
same recurrence relation as the vectors rj, i.e., with
identical recurrence coe�cients, then we see that

(rk; sj) = 0 for k 6= j

(by a simple symmetry argument).
Hence, the sets frjg and fsjg satisfy a biorthogonality
relation. Now we can proceed in a similar way as in
the symmetric case:

ARi = RiTi + �irie
T
i ;(6.5b)

but now we use the matrix Si = [s0; s1; :::; si�1] for
the projection of the system

STi (Axi � b) = 0;

or
STi ARiy � STi b = 0:

Using (6.5b) we �nd that yi satis�es

STi RiTiy = (r0; s0)e1:

Since STi Ri is a diagonal matrix with diagonal ele-
ments (rj; sj), we �nd, if all these diagonal elements
are nonzero, that

Tiy = e1 ) xi = Riy:
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This method is known as the Bi-Lanczos method [47].
We see that we are in problems when a diagonal el-
ement of STi Ri becomes (near) zero, this is referred
to in litterature as a serious (near) breakdown. The
way to get around this di�culty is the so-called Look-
ahead strategy, which comes down to taking a num-
ber of successive basis vectors for the Krylov subspace
together and to make them blockwise bi-orthogonal.
This has been worked out in detail in [62] and [30],
[31], [32].
Another way to avoid break-down is to restart as
soon as a diagonal element gets small. Of course, this
strategy looks surprisingly simple, but one should re-
alise that at a restart the Krylov subspace, that has
been built up so far, is thrown away, which destroys
possibilities for faster (i.e., superlinear) convergence.

As has been shown for Conjugate Gradients, the
LU decomposition of the tridiagonal system can be
updated from iteration to iteration and this leads to
a recursive update of the solution vector. This avoids
to save all intermediate r and s vectors. This variant
of Bi-Lanczos is usually called Bi-Conjugate Gradi-
ents, or shortly Bi-CG [28].
Of course one can in general not be certain that an
LU decomposition (without pivoting) of the tridiago-
nal matrix Ti exists, and this may lead also to break-
down of the Bi-CG algorithm. Note that this break-
down can be avoided in the Bi-Lanczos formulation
of this iterative solution scheme. It is also avoided in
the QMR approach (see Section 5.4.2).
Note that for symmetric matrices Bi-Lanczos gen-
erates the same solution as Lanczos, provided that
s0 = r0, and under the same condition Bi-CG de-
livers the same iterands as CG for positive de�nite
matrices. However, the Bi-orthogonal variants do so
at the cost of two matrix vector operations per iter-
ation step.

It is di�cult to make a fair comparison between
GMRES and Bi-CG. GMRES really minimizes a
residual, but at the cost of increasing work for keep-
ing all residuals orthogonal and increasing demands
for memory space. Bi-CG does not minimize a resid-
ual, but often it has a comparable fast convergence
as GMRES, at the cost of twice the amount of matrix
vector products per iteration step. However, the gen-
eration of the basis vectors is relatively cheap and the
memory requirements are limited and modest. Sev-
eral variants of Bi-CG have been proposed which in-
crease the e�ectiveness of this class of methods in cer-
tain circumstances. These variants will be discussed
in coming subsections.

The following scheme may be used for a computer
implementation of the Bi-CG method. In the scheme
the equation Ax = b is solved with a suitable precon-

ditioner K.

x0 is an initial guess; r0 = b� Ax0;
solve w0 from Kw0 = r0;
~r0 is an arbitrary vector such that (w0; ~r0) 6= 0,
usually one chooses ~r0 = r0 or ~r0 = w0;
solve ~w0 from KT ~w0 = ~r0;
p�1 = ~p�1 = 0; ��1 = 0; �0 = (w0; ~r0);
for i = 0; 1; 2; ::::

pi = wi + �i�1pi�1;
~pi = ~wi + �i�1~pi�1 ;
zi = Api;
�i =

�i
(~pi;zi)

;

ri+1 = ri � �izi;
~ri+1 = ~ri � �iA

T ~pi;
solve wi+1 from Kwi+1 = ri+1;
solve ~wi+1 from KT ~wi+1 = ~ri+1;
�i+1 = (~ri+1; wi+1) ;
xi+1 = xi + �ipi;
if xi+1 is accurate enough then quit;
�i =

�i+1
�i

end

As with conjugate gradients, the coe�cients �j and
�j , j = 0; : : : ; i � 1 build the matrix Ti, as given in
formula (5.1b). This matrix is, for BiCG, in general
not similar to a symmetric matrix. Its eigenvalues can
be viewed as Petrov-Galerkin approximations, with
respect to the spaces f~rjg and frjg, of eigenvalues of
A. For increasing values of i they tend to converge to
eigenvalues of A. The convergence patterns, however,
may be much more complicated and irregular as in
the symmetric case.

6.5.1 Another derivation of Bi-CG

An alternative way to derive Bi-CG comes from con-
sidering the following symmetric linear system:�

0 A
AT 0

��
x̂
x

�
=

�
b

b̂

�
; or B~x = ~b;

for some suitable vector b̂.
If we select b̂ = 0 and apply the CG-scheme to this
system, then we obtain LSQR again. However, if
we select b̂ 6= 0 and apply the CG scheme with the
preconditioner �

0 I
I 0

�
;

in the way as is shown in section 4.4.1, then we obtain
right away the unpreconditioned Bi-CG scheme for
the system Ax = b. Note that the CG-scheme can be
applied since K�1B is symmetric (but not positive
de�nite) with respect to the bilinear form

[p; q] � (p;Kq);

which is not a proper innerproduct. Hence, this for-
mulation clearly reveals the two principal weaknesses
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of Bi-CG (i.e., the causes for break-down situations).
Note that if we restrict ourselves to vectors

p =

�
p1
p1

�
;

then [p; q] de�nes a proper innerproduct. This situ-
ation arises for the Krylov subspace that is created
for B and ~b if A = AT and b̂ = b. If, in addition,
A is positive de�nite then K�1B is positive de�nite
symmetric with respect to the generated Krylov sub-
space, and we obtain the CG-scheme (as expected).
More generally, the choice

K =

�
0 K1

KT
1 0

�
;

where K1 is a suitable preconditioner for A, leads to
the preconditioned version of the Bi-CG scheme, as
given in section 5.4.

The above presentation of Bi-CG was inspired by a
closely related presentation of BI-CG in [42]. The lat-
ter paper gives a rather untractable reference for the
choice of the system B~x = ~b and the preconditioner�

0 I
I 0

�
to [43].

6.5.2 QMR

The QMR method [32] relates to Bi-CG in a simi-
lar way as MINRES relates to CG. For stability rea-
sons the basis vectors rj and ~rj are normalized (as
is usual in the underlying Bi-Lanczos algorithm, see
[94]), which leads to other coe�cients in the 3-term
recursion formulas.
If we group the residual vectors rj, for j = 0; :::; i� 1
in a matrix Ri, then we can write the recurrence re-
lations as

ARi = Ri+1
�Ti;

with

�Ti =

 i !0BBBBBBBBB@

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

. . .

1CCCCCCCCCA

"

i+ 1

#

Similar as for MINRES we would like to construct
the xi, with

xi 2 fr0; Ar0; : : : ; Ai�1r0g; xi = Ri�y

for which

kAxi � bk2 = kARi�y � bk2

= kRi+1
�Tiy � bk2

= kRi+1D
�1
i+1fDi+1

�Tiy � kr0k2e1gk2
is minimal. However, in this case that would be quite
an amount of work since the columns of Ri+1 are
not necessarily orthogonal. Freund and Nachtigal [32]
suggest to solve the miniminum norm least squares
problem

min
y2Ri

kDi+1
�Tiy � kr0k2e1k2:(6.5c)

This leads to the simplest form of the QMR method.
A more general form arises if the least squares prob-
lem (6.5c) is replaced by a weighted least squares
problem. No strategies are yet known for optimal
weights, however.
In [32] the QMR method is carried out on top of
a look-ahead variant of the bi-orthogonal Lanczos
method, which makes the method more robust. Ex-
periments suggest that QMR has a much smoother
convergence behaviour than Bi-CG, but it is not es-
sentially faster than Bi-CG.

6.5.3 CGS

For the bi-conjugate gradient residual vectors it
is well-known that they can be written as rj =
Pj(A)r0 and r̂j = Pj(A

T )r̂0, and because of the bi-
orthogonality relation we have that

(rj; r̂i) = (Pj(A)r0; Pi(A
T )r̂0)

= (Pi(A)Pj(A)r0; r̂0) = 0;

for i < j.
The iteration parameters for bi-conjugate gradients
are computed from innerproducts like the above.
Sonneveld observed that we can also construct the
vectors ~rj = P 2

j (A)r0, using only the latter form of
the innerproduct for recovering the bi-conjugate gra-
dients parameters (which implicitly de�ne the poly-
nomial Pj). By doing so, it can be avoided that the
vectors r̂j have to be formed, nor is there any multi-
plication with the matrix AT .
The resulting CGS [79] method works in general very
well for many unsymmetric linear problems. It con-
verges often much faster than BI-CG (about twice as
fast in some cases) and does not have the disadvan-
tage of having to store extra vectors like in GMRES.
These three methods have been compared in many
studies (see, e.g., [67, 10, 65, 55]).
However, CGS usually shows a very irregular con-
vergence behaviour. This behaviour can even lead
to cancellation and a spoiled solution [86]. See also
section 6.5.4.



21

The following scheme carries out the CGS process
for the solution of Ax = b, with a given precondi-
tioner K:

x0 is an initial guess; r0 = b� Ax0;
~r0 is an arbitrary vector, such that
(r0; ~r0) 6= 0,
e.g., ~r0 = r0; �0 = (r0; ~r0);
��1 = �0; p�1 = q0 = 0;
for i = 0; 1; 2; :::

ui = ri + �i�1qi;
pi = ui + �i�1(qi + �i�1pi�1);
solve p̂ from Kp̂ = pi;
v̂ = Ap̂;
�i =

�i
(~r0;v̂)

;

qi+1 = ui � �iv̂;
solve û from Kû = ui + qi+1
xi+1 = xi + �iû;
if xi+1 is accurate enough then quit;
ri+1 = ri � �iAû;
�i+1 = (~r0; ri+1);
if �i+1 = 0 then method fails to converge !;
�i =

�i+1
�i

;

end

In exact arithmetic, the �j and �j are the same con-
stants as those generated by BiCG. Therefore, they
can be used to compute the Petrov-Galerkin approx-
imations for eigenvalues of A.

6.5.4 E�ects of irregular convergence

By very irregular convergence we refer to the situa-
tion where successive residual vectors in the iterative
process di�er in orders of magnitude in norm, and
some of these residuals may be even much bigger in
norm than the starting residual. We will try to give
an impression why this is a point of concern, even
if eventually the (updated) residual satis�es a given
tolerance. For more details we refer to Sleijpen et
al[75, 77].
We will say that an algorithm is accurate for a cer-

tain problem if the updated residual rj and the true

residual b� Axj are of comparable size for the j's of
interest.
The best we can hope for is that for each j the error

in the residual is only the result of applying A to the
update wj+1 for xj in �nite precision arithmetic:

rj+1 = rj �Awj+1 ��Awj+1(6.5d)

if
xj+1 = xj + wj+1;(6.5e)

for each j, where �A is an n � n matrix for which
j�Aj � nA � jAj: nA is the maximumnumber of non-
zero matrix entries per row of A, jBj � (jbijj) if
B = (bij), � is the relative machine precision, the
inequality � refers to element-wise �. In the Bi-CG
type methods that we consider, we compute explicitly

the update Awj for the residual rj from the update
wj for the approximationxj by matrixmultiplication:
for this part, (6.5d) describes well the local deviations
caused by evaluation errors.
In the \ideal" case (i.e. situation (6.5d) whenever

we update the approximation) we have that

rk � (b�Axk) =
kX

j=1

�Awj

=
kX

j=1

�A(ej�1 � ej);(6.5f)

where the perturbation matrix �A may depend on j
and ej is the approximation error in the jth approx-
imation: ej � x� xj. Hence,

jkrkk � kb� Axkkj �(6.5g)

2k nA � kjAjk
kX

j=0

kejk �

2� �
kX

j=0

krjk ;

where � � nA kjAjk kA�1k:
Except for the factor �, the last upper{bound ap-
pears to be rather sharp. We see that approximations
with large approximation errors may ultimately lead
to an inaccurate result. Such large local approxima-
tion errors are typical for CGS, and Van der Vorst[86]
describes an example of the resulting numerical in-
accuracy is given. If there are a number of approxi-
mations with comparable large approximation errors,
then their multiplicity may replace the factor k, oth-
erwise it will be only the largest approximation error
that makes up virtually the bound for the deviation.

Example. Figure 3 illustrates nicely the loss of accu-
racy as described above; for other examples, cf. [86].
The convergence history of the updated residuals (the
`circles': ��) and the true residuals (the solid curve:|
{) of CGS is given for the matrix SHERMAN4 from
the Harwell-Boeing set of test matrices. Here, as in
other �gures, the norm of the residuals, on log-scale,
is plotted (along the vertical axis) against the num-
ber of matrix-vector multiplications (along the hori-
zontal axis). The dotted curve (� � � �) represents the
estimated inaccuracy: 2 �

P
j�i krjk (here with �=1;

cf. (6.5g)).

We will discuss two approaches that lead to a
smoother convergence.
| Approaches to obtain the smoothing e�ect by
adding a few lines to existing codes leave the speed of
convergence essentially unchanged. One of these ap-
proaches leads to optimal accurate approximations
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Fig.3: Convergence plot CGS for the true resid-
uals and the updated residuals.

[76] and will be discussed in Section 7. For other
ones, we refer to the literature (e.g., [95]).
| In the next section, we concentrate on techniques
that really change the convergence: they smooth
down and speed up the convergence, and lead to more
accurate approximations, all at the same time.

6.5.5 Bi-CGSTAB

Bi-CGSTAB [86] is based on the following observa-
tion. Instead of squaring the Bi-CG polynomial, we
can construct other iteration methods, by which xi
are generated so that ri = ~Pi(A)Pi(A)r0 with other
ith degree polynomials ~P . An obvious possibility is
to take for ~Pj a polynomial of the form

Qi(x) = (1� !1x)(1� !2x):::(1� !ix);(6.5h)

and to select suitable constants !j . This expression
leads to an almost trivial recurrence relation for the
Qi.
In Bi-CGSTAB !j in the jth iteration step is chosen
as to minimize rj, with respect to !j, for residuals
that can be written as rj = Qj(A)Pj(A)r0.
The preconditioned Bi-CGSTAB algorithm for solv-
ing the linear system Ax = b, with preconditioning
K reads as follows:

x0 is an initial guess; r0 = b� Ax0;
�r0 is an arbitrary vector, such that

(�r0; r0) 6= 0, e.g., �r0 = r0;
��1 = ��1 = !�1 = 1;
v�1 = p�1 = 0;
for i = 0; 1; 2; :::

�i = (�r0; ri); �i�1 = (�i=�i�1)(�i�1=!i�1);
pi = ri + �i�1(pi�1 � !i�1vi�1);
Solve p̂ from Kp̂ = pi;
vi = Ap̂;
�i = �i=(�r0; vi);
s = ri � �ivi;

if ksk small enough then
xi+1 = xi + �ip̂; quit;

Solve z from Kz = s;
t = Az;
!i = (t; s)=(t; t);
xi+1 = xi + �ip̂+ !iz;
if xi+1 is accurate enough then quit;
ri+1 = s � !it;

end

The matrix K in this scheme represents the precon-
ditioning matrix and the way of preconditioning [86].
The above scheme in fact carries out the Bi-CGSTAB
procedure for the explicitly postconditioned linear
system

AK�1y = b;

but the vectors yi and the residual have been back-
transformed to the vectors xi and ri corresponding to
the original system Ax = b. Compared to CGS two
extra innerproducts need to be calculated.
In exact arithmetic, the �j and �j have the same val-
ues as those generated by Bi-CG and CGS. Hence,
they can be used to extract eigenvalue approxima-
tions for the eigenvalues of A (see Bi-CG).
Bi-CGSTAB can be viewed as the product of Bi-CG
and GMRES(1). Of course, other product methods
can be formulated as well. Gutknecht [38] has pro-
posed BiCGSTAB2, which is constructed as the prod-
uct of Bi-CG and GMRES(2).

6.5.6 Derivation of Bi-CGSTAB

The polynomial Pi and related polynomials are im-
plicitly de�ned by the Bi-CG scheme.

Bi-CG:

x0 is an initial guess; r0 = b� Ax0;
r̂0 is an arbitrary vector, such that

(r̂0; r0) 6= 0, e.g., r̂0 = r0;
�0 = 1;
p̂0 = p0 = 0;
for i = 1; 2; 3; :::

�i = (r̂i�1; ri�1); �i = (�i=�i�1);
pi = ri�1 + �ipi�1;
p̂i = r̂i�1 + �ip̂i�1;
vi = Api;
�i = �i=(p̂i; vi);
xi = xi�1 + �ipi;
if xi is accurate enough then quit;
ri = ri�1 � �ivi;
r̂i = r̂i�1 � �iA

T p̂i;
end

From this scheme it is straight forward to show that
ri = Pi(A)r0 and pi+1 = Ti(A)r0, in which Pi(A)
and Ti(A) are i-th degree polynomials in A. The Bi-
CG scheme then de�nes the relations between these
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polynomials:

Ti(A)r0 = (Pi(A) + �i+1Ti�1(A))r0;

and

Pi(A)r0 = (Pi�1(A) � �iATi�1(A))r0:

In the Bi-CGSTAB scheme we wish to have recur-
rence relations for

ri = Qi(A)Pi(A)r0:

With Qi as in (6.5h) and the Bi-CG relation for the
factor Pi and Ti, it then follows that

Qi(A)Pi(A)r0 =

(1� !iA)Qi�1(A)(Pi�1(A) � �iATi�1(A))r0

= fQi�1(A)Pi�1(A)� �iAQi�1(A)Ti�1(A)gr0
�!iAf(Qi�1(A)Pi�1(A)� �iAQi�1(A)Ti�1(A))gr0:
Clearly, we also need a relation for the product
Qi(A)Ti(A)r0. This can also be obtained from the
Bi-CG relations:

Qi(A)Ti(A)r0 = Qi(A)(Pi(A) + �i+1Ti�1(A))r0

= Qi(A)Pi(A)r0 + �i+1(1� !iA)Qi�1(A)Ti�1(A)r0

= Qi(A)Pi(A)r0 + �i+1Qi�1(A)Ti�1(A)r0

��i+1!iAQi�1(A)Ti�1(A)r0:

Finally we have to recover the Bi-CG constants
�i; �i; and �i by innerproducts in terms of the new
vectors that we now have generated.
E.g., �i can be computed as follows. First we com-
pute

~�i+1 = (r̂0; Qi(A)Pi(A)r0) = (Qi(A
T )r̂0; Pi(A)r0):

By construction Pi(A)r0 is orthogonal with respect
to all vectors Ui�1(AT )r̂0, where Ui�1 is an arbitrary
polynomial of degree i� 1 at most. This means that
we have to consider only the highest order term of
Qi(A

T ) when computing ~�i+1. This term is given by
(�1)i!1!2 � � �!i(AT )i. We actually wish to compute

�i+1 = (Pi(A
T )r̂0; Pi(A)r0);

and since the highest order term of Pi(A
T ) is given

by (�1)i�1�2 � � ��i(AT )i, it follows that

�i = (~�i=~�i�1)(�i�1=!i�1):

The other constants can be derived similarly.

Note that in our discussion we have focussed on the
recurrence relations for the vectors ri and pi, while in
fact our main goal is to determine xi. As in all CG-
type methods, xi itself is not required for continuing

the iteration, but it can easily be determined as a
"sideproduct" by realizing that an update of the form
ri = ri�1�
Ay corresponds to an update xi = xi�1+

y for the current approximated solution.

By writing ri for Qi(A)Pi(A)r0 and pi for
Qi�1(A)Ti�1(A)r0, we obtain the following scheme
for Bi-CGSTAB (we trust that, with the foregoing
observations, the reader will now be able to verify
the relations in Bi-CGSTAB). In this scheme we have
computed the !i so that ri = Qi(A)Pi(A)r0 is mini-
mized in 2-norm as a function of !i.

6.5.7 Bi-CGSTAB2 and variants

The residual rk = b� Axk in the Bi-Conjugate Gra-
dient method, when applied to Ax = b with start x0
can be written formally as Pk(A)r0, where Pk is a k-
degree polynomial. These residuals are constructed
with one operation with A and one with AT per iter-
ation step. It was pointed out in [79] that with about
the same amount of computational e�ort one can con-
struct residuals of the form ~rk = P 2

k (A)r0, which is
the basis for the CGS method. This can be achieved
without any operation with AT . The idea behind the
improved e�ciency of CGS is that if Pk(A) is viewed
as a reduction operator in BiCG, then one may hope
that the square of this operator will be a twice as
powerful reduction operator. Although this is not al-
ways observed in practice, one typically has that CGS
converges faster than BiCG. This, together with the
absence of operations with AT , explains the success
of the CGS method. A drawback of CGS is that its
convergence behavior can look quite erratic, that is
the norms of the resdiduals converge quite irregularly,
and it may easily happen that krk+1k2 is much larger
than krkk2 for certain k (for an explanation of this
see [84]).
In [86] it was shown that by a similar approach as
for CGS, one can construct methods for which rk can
be interpreted as rk = Pk(A)Qk(A)r0, in which Pk is
the polynomial associated with BiCG and Qk can be
selected free under the condition that Qk(0) = 1. In
[86] it was suggested to construct Qk as the product
of k linear factors 1 � !jA, where !j was taken to
minimize locally a residual. This approach leads to
the BiCGSTAB method. Because of the local mini-
mization, BiCGSTAB displays a much smoother con-
vergence behavior than CGS, and more surprisingly
it often also converges (slightly) faster. One weak
point in BiCGSTAB is that we get break-down if an
!j is equal to zero. One may equally expect negative
e�ects when !j is small. In fact, BiCGSTAB can be
viewed as the combined e�ect of BiCG and GCR(1),
or GMRES(1), steps. As soon as the GCR(1) part of
the algorithm (nearly) stagnates, then the BiCG part
in the next iteration step cannot (or only poorly) be
constructed.
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Another dubious aspect of BiCGSTAB is that the fac-
tor Qk has only real roots by construction. It is well-
known that optimal reduction polynomials for matri-
ces with complex eigenvalues may have complex roots
as well. If, for instance, the matrix A is real skew-
symmetric, then GCR(1) stagnates forever, whereas
a method like GCR(2) (or GMRES(2)), in which we
minimize over two combined successive search direc-
tions, may lead to convergence, and this is mainly
due to the fact that then complex eigenvalue compo-
nents in the error can be e�ectively reduced.
This point of view was taken in [38] for the con-
struction of the BiCGSTAB2 method. In the odd-
numbered iteration steps the Q-polynomial is ex-
panded by a linear factor, as in BiCGSTAB, but
in the even-numbered steps this linear factor is dis-
carded, and the Q-polynomial from the previous
even-numbered step is expanded by a quadratic 1 �
�kA � �kA

2. For this construction the information
from the odd-numbered step is required. It was antic-
ipated that the introduction of quadratic factors in Q
might help to improve convergence for systems with
complex eigenvalues, and, indeed, some improvement
was observed in practical situations (see also [64]).
However, our presentation suggests a possible weak-
ness in the construction of BiCGSTAB2, namely
in the odd-numbered steps the same problems may
occur as in BiCGSTAB. Since the even-numbered
steps rely on the results of the odd-numbered steps,
this may equally lead to unnecessary break-downs or
poor convergence. In [78] another, and even simpler
approach was taken to arrive at the desired even-
numbered steps, without the necessity of the con-
struction of the intermediate BiCGSTAB-type step
in the odd-numbered steps. Hence, in this approach
the polynomial Q is constructed straight-away as a
product of quadratic factors, without ever construct-
ing a linear factor. As a result the new method
BiCGSTAB(2) leads only to signi�cant residuals in
the even-numbered steps and the odd-numbered steps
do not lead necessarily to useful approximations.
In fact, it is shown in [78] that the polynomial Q
can also be constructed as the product of `-degree
factors, without the construction of the intermedi-
ate lower degree factors. The main idea is that `
successive BiCG steps are carried out, where for the
sake of an AT -free construction the already available
part of Q is expanded by simple powers of A. This
means that after the BICG part of the algorithm
vectors from the Krylov subspace s; As;A2s; :::; A`s,
with s = Pk(A)Qk�`(A)r0 are available, and it is then
relatively easy to minimize the residual over that par-
ticular Krylov subspace. There are variants of this
approach in which more stable bases for the Krylov
subspaces are generated [77], but for low values of `
a standard basis satis�es, together with a minimum
norm solution obtained through solving the associ-

ated normal equations (which requires the solution
of an ` by ` system. In most cases BiCGSTAB(2)
will already give nice results for problems where Bi-
CGSTAB or BiCGSTAB2 may fail. Note, however,
that, in exact arithmetic, if no break-down situation
occurs, BiCGSTAB2 would produce exactly the same
results as BiCGSTAB(2) at the even-numbered steps.

Bi-CGSTAB(2) can be represented by the following
algorithm:

x0 is an initial guess; r0 = b�Ax0;
r̂0 is an arbitrary vector,

such that (r; r̂0) 6= 0,
e.g., r̂0 = r;

�0 = 1;u = 0;� = 0;!2 = 1;
for i = 0; 2; 4; 6; :::

�0 = �!2�0
even BiCG step:

�1 = (r̂0; ri); � = ��1=�0; �0 = �1
u = ri � �u;
v = Au

 = (v; r̂0);� = �0=
;
r = ri � �v;
s = Ar
x = xi + �u;

odd BiCG step:
�1 = (r̂0; s); � = ��1=�0; �0 = �1
v = s � �v;
w = Av

 = (w; r̂0);� = �0=
;
u = r � �u
r = r � �v
s = s � �w
t = As

GCR(2)-part:
!1 = (r; s);� = (s; s);
� = (s; t); � = (t; t);
!2 = (r; t); � = � � �2=�;
!2 = (!2 � �!1=�)=� ;
!1 = (!1 � �!2)=�
xi+2 = x+ !1r + !2s + �u
ri+2 = r � !1s � !2t
if xi+2 accurate enough then quit
u = u� !1v � !2w

end

For more general BiCGSTAB(`) schemes see [78,
77].
Another advantage of BiCGSTAB(2) over BiCG-
STAB2 is in its e�ciency. The BiCGSTAB(2) al-
gorithm requires 14 vector updates, 9 innerproducts
and 4 matrix vector products per full cycle. This
has to be compared with a combined odd-numbered
and even-numbered step in BiCGSTAB2, which re-
quires 22 vector updates, 11 innerproducts, and 4
matrix vector products, and with two steps of Bi-
CGSTAB which require 4 matrix vector products, 8
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innerproducts and 12 vector updates. The numbers
for BiCGSTAB2 are based on an implementation de-
scribed in [64].
Also with respect to memory requirements, BiCG-
STAB(2) takes an intermediate position: it requires
2 n-vectors more than BiCGSTAB and 2 n-vectors
less than BiCGSTAB2.
For distributed memory machines the innerprod-

ucts may cause communication overhead problems
(see, e.g., [16]). We note that the BiCG steps are
very similar to conjugate gradient iteration steps, so
that we may consider all kind of tricks that have been
suggested to reduce the number of synchronization
points caused by the 4 innerproducts in the BiCG
parts. For an overview of these approaches see [6].
If on a speci�c computer it is possible to overlap
communication with communication, then the BiCG
parts can be rescheduled as to create overlap possi-
billities: 1. the computation of �1 in the even BiCG
step may be done just before the update of u at the
end of the GCR part.
2. The update of xi+2 may be delayed until after the
computation of 
 in the even BiCG step.
3. The computation of �1 for the odd BiCG step can
be done just before the update for x at the end of the
even BiCG step.
4. The computation of 
 in the odd BiCG step has
already overlap possibillities with the update for u.
For the GCR(2) part we note that the 5 innerprod-
ucts can be taken together, in order to reduce start-
up times for their global assembling. This gives the
method BiCGSTAB(2) a (slight) advantage over Bi-
CGSTAB. Furthermore we note that the updates in
the GCR(2) may lead to more e�cient code than for
BiCGSTAB, since some of them can be combined.
Our next numerical example illustrates quite nicely

the di�erence in convergence behavior of some of the
methods that we have discussed.

Example. We consider an advection dominated 2nd
order PDE, with Dirichlet boundary conditions, on
the unit cube (this equation was taken from [50]):

� uxx � uyy � uzz + 1000ux = f:(6.5i)

The function f is de�ned by the solution

u(x; y; z) = xyz(1 � x)(1� y)(1 � z).

This equation was discretized using 22� 22� 22 vol-
umes, resulting in a seven-diagonal linear system of
order 10648. In order to make di�erences between it-
erative methods more visible, we have here and in our
other examples not use any form of preconditioning.
In Figure 4 we see a plot of the convergence history.

Bi-CGSTAB almost stagnates, as might be antici-
pated from the fact that this linear system has eigen-
values with relatively large imaginary parts. Surpris-
ingly, Bi-CGSTAB does even worse than Bi-CG. For
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Fig.4: Convergence plot.

this type of matrices this behavior of Bi-CGSTAB is
not uncommon and, as we will see in the next sub-
section, this can be explained by the poor recovery
of the Bi-CG iteration coe�cients �k and �k. Bi-
CGstab(2) converges quite nicely and almost twice
as fast as Bi-CG. GMRES(25) is about as fast as Bi-
-CG. Since the GMRES steps are much more expen-
sive, BiCGstab(2) is the most e�cient method here.

6.6 Maintaining Convergence:

The BiCGstab methods are designed for smooth con-
vergence, with the purpose to avoid loss of local bi-
orthogonality in the underlying Bi-CG process. This
is important, since then the convergence of the Bi-
-CG part is exploited as much as possible. However,
local bi-orthogonality may also be disturbed by, for
instance, inaccuracies in the Bi-CG coe�cients � and
�. They are the quotients of scalars � � (ri; br0) and

 � (Ap; br0) (see the algorithms for BiCGSTAB and
BiCGSTAB(2)) and they will be inaccurate if � or 

is relatively small (see (6.6b)). The question is, when
does this occur and how can it be avoided? Here,
we will concentrate on � only, but similar arguments
apply to 
 as well.
As in the introduction of this section, ri is the resid-

ual ri = ePi(A)Pi(A)r0 where ePi is an appropriate

polynomial of degree i with ePi(0) = 1. Now, � is
given by

� � �i � ( ePi(A)Pi(A)r0; br0):(6.6a)

The scalar �i can be small if the underly-
ing Bi-Lanczos process nearly breaks down (i.e.

( ePi(A)Pi(A)r0; br0) � 0 relatively, for any polynomialePi of degree i). Also an `unlucky' choice of ePi may
lead to a small �i (which occurs in Bi-CGSTAB if the
GCR(1) part stagnates). Here, we will concentrate
on typical Bi-CGSTAB situations. Therefore, we as-
sume that the Bi-Lanczos process itself (and the LU
decomposition) does not (nearly) break down.
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The relative rounding error �i in �i can relatively
and sharply be bounded by

j�ij � n �
(jrij; jbr0j)
j(ri; br0)j � n �

krik kbr0k
j(ri; br0)j :(6.6b)

For a small relative error we want to have the expres-
sion at the right-hand side as small as possible.
Since the Bi-CG residual Pi(A)r0, here to be de-

noted by si, is orthogonal to Ki(AT ; br0) it follows
that

(ri; br0) = �i(A
isi; br0)

if ePi(A) = �iA
i + �

(i)
i�1A

i�1 + : : : :

Therefore, since kbr0k=j(Aisi; br0)j does not depend onePi, minimizing the right-hand side of (6.6b) is equiv-
alent to minimizing

k ePi(A)sik
j�ij(6.6c)

with respect to all polynomials ePi of exact degree i
with ePi(0) = 1. This minimization problem is solved
by the FOM polynomialP F

i , here associated with the
initial residual si: P F

i is the ith degree polynomial
for which r Fi = P F

i (A)si (cf. Section 6.2). This
polynomial is characterized by:

P F
i (A)si ? Ki(A; si) and P F

i (0) = 1:

For optimally accurate coe�cients, we should se-
lect FOM polynomials for our polynomials ePi. How-
ever, since the hybrid Bi-CG methods are designed to
avoid all the work for the construction of an orthogo-
nal basis, the selection of complete FOM polynomials
is out of the question.
For e�ciency reasons, we have used products of

�rst degree polynomials in Bi-CGSTAB and products
of degree ` polynomials in BiCGstab(`). Of course,
our arguments can also be applied to such low degree
factors. Therefore, suppose that s = Qi�`(A)Pi(A)r0
(as BiCGstab(`)) has been computed and that the
vectors s, As, : : : , A`s are available. The suggestion
for BiCGstab(`) to minimize the residual over this
particular Krylov subspace is equivalent to selecting
a polynomial factor qi (Qi = qiQi�`) of exact degree
` with qi(0) = 1 such that

kqi(A)sk(6.6d)

is minimal, while in this situation, for optimal accu-
rate coe�cients, we rather would like to minimize

qi(A)s(6.6e)

where, with �i such that qi(A) = �iA
` + : : :,

qi(A)s � kqi(A)skj�ij :(6.6f)

The GMRES polynomial qGi of degree ` solves (6.6d),
the FOM polynomial qFi solves (6.6e). For small
residuals, the FOM polynomial is not optimal:

kqGi (A)sk = jcij kqFi (A)sk
with ci as in (6.2d). Similarly, for accurate coe�-
cients, the GMRES polynomial is not optimal [75]:

q Fi (A)s = jcij qGi (A)s

with the same scalar ci. For degree 1 factors, as in
Bi-CGSTAB, (assuming no preconditioning)

ci =
(s; As)

ksk kAsk ;(6.6g)

and ci is the cosine of the angle between s and As (in
the BiCGSTAB algorithm, t represents As).

Clearly, for extremely small jcij, say jcij �
p
� (in

the ` = 1 case, this means that s and As are almost
orthogonal), taking GMRES polynomials for the de-
gree ` factors will lead to inaccurate coe�cients �i, �
and �, while FOM polynomials on the other hand will
lead to large residuals. In both situations, the speed
of convergence will seriously be deteriorated. The
same phenomena can be observed when in a consec-
utive number of sweeps jcij is small, but not neces-
sarily extremely small (say, it takes k sweeps before

jci�kci�k+1 � � �cij �
p
�). In other words, the inaccu-

racies seem to accumulate. This seems to occur quite
often in practise. E.g., for linear equation stemming
from PDEs with large advection terms, Bi-CGSTAB
often stagnates, although all ci may be larger than,
say :1, and none of the !i can considered to be rela-
tively small (!i = ciksk=kAsk).
Both Bi-CGSTAB and BiCGstab(`) are built on

top of the same Bi-CG process. At roughly the same
computational costs, one sweep of BiCGstab(`) cov-
ers the same Bi-CG track as ` sweeps of Bi-CGSTAB.
In one sweep of BiCGstab(`), GMRES(`) is applied
once, in ` sweeps of BiCGSTAB, GMRES(1) is ap-
plied ` times. For two reasons it pays o� to use GM-
RES(`) instead of `�GMRES(1):

1. Due the super-linear convergence, one sweep of
GMRES(`) may be expected to give a better residual
reduction than ` times GMRES(1).

2. In ` steps of GMRES(1), ` small ci's may con-
tribute to inaccuracies in the coe�cients � and �,
where GMRES(`) contributes ato this only once.

BiCGstab(`) pro�ts from GMRES(`) by a better
residual reduction in the GMRES part and by the
faster convergence of a better recovered Bi-CG due
to the more stable computations. However, we do
not recommend to take ` large; ` = 2 or ` = 4 will
usually lead already to almost optimal speed of con-
vergence. The computational costs increase slightly
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Fig.5: Convergence Bi-CGSTAB.
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Fig.6: Convergence stabilized Bi-CGSTAB.

by increasing ` (i.e. 2`+10 vector updates and `+7 in-
ner products per 4 matrix multiplications), and more
vectors have to be stored (2`+ 5 vectors). Moreover,
the method is less accurate for larger ` due to the fact
that intermediate residuals (as r and r � !1s in the
Bi-CGSTAB(2) algorithm) can be large, with similar
negative e�ects as in Section 6.5.4.

For Bi-CGSTAB there is a simple strategy that re-
laxes the danger of error ampli�cation in consecutive
sweeps with small jcij: replace in the Bi-CGSTAB
algorithm the line

`! = (s; t)=(t; t)'
by the piece of code in Algorithm 1. In this way we
limit the size of jcj. The constant :7 is rather arbitrar-
ily and may be replaced by any other �xed non-small
constant less than 1. Since GMRES(1) reduces well
only if jcij � 1 (see (6.2c)), this strategy still prof-
its from a possible good reduction by GMRES(1). A
similar strategy that is equally cheap and easy to im-
plement can be applied to BiCGstab(`); see [75] for
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Fig.7: Convergence BiCGstab(2).
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Fig.8: Convergence stab. BiCGstab(2).

details.
We give a few numerical examples that demon-

strate the cumulative e�ects of small jcj's and that
illustrate the e�ects of limiting its sizes.

Examples. The �gures for the examples display, all
on log-scale, the values for each iteration step of
{ the residual-norms krk, by solid curves (|{);
{ the scaled �, b� � j(r; br0)j=(krk kbr0k) (cf. (6.6b)), by
dashed-dotted curves (- � - �);
{ the scaled 
: b
 � j(Ap; br0)j=(kApk kbr0k), by dotted
curves ( �����);
{ jcj, resp. max(jcj; 0:7), by bullets ( ���).
Before describing the examples, we will discuss part

of the results.
In the �gures 5{16, we see that the scaled � and the
scaled 
 behave similarly (the dashed-dotted { and
dotted curves coincide more or less). Further, none
of the jcj is extremely small even not in cases where
the b� and b
 are. The decrease of b� for values of b�
not in the range of the machine precision (� 10�12)
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...

c = (s; t)=(ksk ktk);
! = sign(c) max (jcj; 0:7) ksk=ktk;

...

Alg.1: Limiting the size of jcj.
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Fig.9: Convergence Bi-CGSTAB.

seems to be proportional to the product of previous
jcj's. In all the examples, the method stagnates if b� 's
or b
 's become extremely small, say less than 10�12.
In these cases, almost all signi�cance of the Bi-CG
coe�cients � and � will be lost. Limiting the size of
jcj (Algorithm 1) slows down the decrease of b� andb
. In the caption of the �gures, we used the adjec-
tive `stabilized' to indicate that we used the limiting
strategy. Often `stabilizing' is enough to overcome
the stagnation phase, and to lead to a converging
process.

Example 1 (Figures 5{8). BiCGstab(2) converges.
Although stabilizing Bi-CGSTAB leads to more ac-
curate Bi-CG coe�cients in the initial phase of the
process, this is apparently not enough to restore full
convergence.

Example 2 (Figures 9{12). Increasing ` to ` = 2
leads to a slowly converging BiCGstab(2) process
(many more than 300 matrix vector multiplications
are needed; not shown in the graph). Our simple
stabilizing strategy works well here.

Example 3 (Figures 13{16). The combined improve-
ments, stabilizing and increasing ` to ` = 2, are nec-
essary for convergence.

For the �rst example, we have taken the PDE of
(6.5i). The righ-hand side f is de�ned by the solution
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Fig.10: Convergence stabilized Bi-CGSTAB.
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Fig.11: Convergence BiCGstab(2).

u(x; y; z) = exp(xyz) sin(�x) sin(�y) sin(�z).

The discretization is with 10� 10� 10 �nite volumes
(no preconditioner has been used).
In the second and third example [33, 70], we have

discretized

�uxx � uyy + a(xux + yuy) + bu = f

on the unit-square with Dirichlet boundary condi-
tions, with 63 � 63 �nite volumes, taking a = 100
and b = �200, respectively 66 � 66, a = 1000 and
b = 10 (no preconditioner has been used). The func-
tion f is such that the discrete solution is constant 1
(on the grid).

6.7 Generalized CGS:

We have now discussed in some detail the family of
BiCGstab(`) methods, but one should not deduce
from this that these methods are to be preferred over
CGS in all circumstances. We have had very good
experiences with CGS in the context of solving non-
linear problems with Newton's method. It turns out
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Fig.12: Convergence stab. BiCGstab(2).
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Fig.13: Convergence Bi-CGSTAB.

that we can exploit some of the presented ideas also
to improve on CGS itself.

In the Newton method one has to solve a Jacobian
system for the correction. This can be done by any
method of choice, e.g., CGS or BiCGstab(`). Often
fewer Newton steps are required to solve a non-linear
problem accurately when using CGS. Although the
BiCGstab methods tend to solve each of the linear
systems (de�ned by the Jacobi matrices) faster, the
computational gain in these inner loops does not al-
ways compensate for the loss in the outer loop be-
cause of more Newton steps.

This phenomenon can be understood as follows.
For eigenvalues � that are extremal in the convex hull
of the set of all eigenvalues of A (the Jacobian ma-
trix), the values Pi(�) of the Bi-CG polynomials Pi
tend to converge more rapidly towards zero than for
eigenvalues � in the interior. Since CGS squares the
Bi-CG polynomials, CGS may be expected to reduce
extremely well the components of the initial residual
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Fig.14: Convergence stabilized Bi-CGSTAB.
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Fig.15: Convergence BiCGstab(2).

r0 in the direction of the eigenvectors associated with
extremal eigenvalues �: with reduction factor Pi(�)

2.
Of course, the value Pi(�) can also be large, specif-
ically for interior eigenvalues and in an initial stage
of the process. CGS ampli�es the associated com-
ponents, (which also explains the typical irregular
convergence behavior of CGS). The BiCGstab poly-
nomial Qi does not have this tendency of favoring
the extremal eigenvalues. Therefore, the BiCGstab
methods tend to reduce all eigenvector components
equally well: on average, the \interior components"
of a BiCGstab residual ri are smaller than the cor-
responding components of a CGS residual eri, while,
with respect to the exterior components the situation
is the other way around. However, the non-linearity
of a non-linear problem seems often to be represented
rather well by the space spanned by the \extremal
eigenvectors". With respect to this space, and hence
with respect to the complete space, Newtons scheme
with CGS behaves like an exact Newton scheme.
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Fig.16: Convergence stab. BiCGstab(2).

We would like to preserve this property when con-
structing iterative schemes for Newton iterations.
Fokkema et al [29] suggest polynomials ePi that lead
to e�cient algorithms (small modi�cations of the
CGS algorithm) with a convergence that is slightly
smoother, faster, and more accurate, than for CGS,
but that still has the property of reducing extremal
components quadratically. As a linear solver for
isolated linear problems these \generalized CGS"
schemes do not seem to have much advantage over
BiCGstab(`), but as a linear solver in a Newton
scheme for non-linear problems, they often do rather
well.

7 RELIABLE UPDATING

In all the Bi-CG related methods we see that the
approximation for x and the residual vector r are
updated by di�erent vectors, and that the value for
x does not in
uence the further iteration process,
whereas the value for r does. In exact arithmetic
the updated r is equal to the true residual b � Ax,
but in rounded arithmetic it is unavoidable that dif-
ferences between r and b�Ax arise. This means that
we may be misled for our stopping criteria, which are
usually based upon knowledge of the updated r (and
that we may have iterated too far in vain).
In this section we will discuss some techniques that

have been proposed recently for the improvement of
the updating steps. It turns out that this can be
settled by relatively easy means.
Although the techniques in the previous section led

to smoother and faster convergence and more accu-
rate approximations the approximation may still not
as accurate as possible. Here, we strive for optimal
accuracy, i.e the updated ri should be very close to
the values of b � Axi, while leaving the convergence
of the updated r intact.
First, we observe that even if xm is the exact so-

lution then the residual, computed in rounded arith-
metic as b � Axm, may not be expected to be zero:
using the notation of Section 6.5.4,

kb� Axmk � �
�kbk+ nA



jAj

 kxmk�
� 2� � kbk:(7.1a)

Therefore, the best we can strive for is an approxima-
tion xm for which the true residual and the updated
one di�er in order of magnitude by the initial resid-
ual times the relative machine precision (O(� kr0k);
recall that we assumed x0 = 0, and hence r0 = b).
Now it becomes also obvious why it is a bad idea to

replace the updated residual in each step by the true
one. Except from the fact that this would cost an ad-
ditional matrix vector multiplication in each step, it
also introduces errors in the recursions for the resid-
uals. Although these errors may be expected to be
small relatively to r0, they will be large relatively
to ri if krik � kr0k. This perturbs the local bi-
orthogonality of the underlying Bi-CG process and
it may signi�cantly slow down the speed of conver-
gence. This observation suggests to replace the up-
dated residual by the true one only if the updated
residual has the same order of magnitude as the ini-
tial residual. However, meanwhile xi and ri may
have drifted apart, and replacing ri by b�Axi brings
in the \error of xi" in the recursion (bounded as in
(6.5g)), and again the speed of convergence may be
a�ected. Although it is a good idea to use true resid-
uals at strategic places, the approximation xi should
�rst be `tied' more closely to the updated residual ri.
We can achieve this by updating xi cumulatively: if
xi = x0 + w1 + : : :+wi (cf. (6.5d)) then we actually
compute xi in groups as

xi = x0 + x01 + x02 + : : :(7.1b)

where, for some decreasing sequence of indices �(1) =
1, �(2), : : : , x0j represents the sum of a group;

x0j = w�(j) +w�(j)+1 + : : :+ w�(j+1)�1; etc.:

Simultaneously, we compute ri as

ri = r0 �Ax01 � Ax02 � : : : :(7.1c)

In this way we can control the size of the updates for
xi and ri, and we avoid large errors (cf. (6.5g)): for
a proper choice of the �(j), the x0j will be small even
if some of the wj are large.
In the modi�cation of the algorithms that we will

propose in Algorithm 2, we kept in mind that we only
may allow errors which
(a) are small with respect to the initial residual r0
(otherwise accuracy will be disturbed) and
(b) are small with respect to the present updated
residual ri (otherwise local bi-orthogonality may be
jeopardized).
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In Section 3, we have explained that it is no re-
striction to take x0 = 0, arguing that this situation
can be forced simply by a shift: shift x by x0, and b
by Ax0. This shift can be made explicit in the hybrid
Bi-CG algorithms by making three changes:
(i) adding as a last line to the initialization phase

x = x0; x0 = 0; b0 = r0;

(ii) adding as a last line in the algorithms (just after
`end')

x = x+ x0;

(iii) replacing all xi (and x) by x0 (skipping the index
i).
Even in rounded arithmetic, this modi�cationwill not
change the value of any of the vectors and scalars in
the computational scheme, except for the x's. Since
x+x0 is the approximation that we are interested in,
one also may want to change the termination crite-
rion. We propose to replace the line

if x is accurate enough then quit;

by
if kri+1k is small enough then quit;

To allow for a more accurate way of updating of the
residual and the approximation, we suggest to add
another few lines just before `end' in the algorithm,
as is shown in Algorithm 2. We suggest to replace the

...

x = x0; x0 = 0; b0 = r0;
for i = 0; 1; 2; :::

...� Replace all xi and x by x0....

if ri+1 is small enough then quit;

set `compute res' and `update app';

if `compute res' is true

ri+1 = b0 � Ax0;
if `update app' is true

x = x+ x0; x0= 0; b0= ri+1;
endif

endif

endfor

x = x+ x0;

Alg.2: For accurate approximations.

updated residual by the true one on strategically cho-
sen steps (we have to explain when the value of the
boolean functions `compute res' is true). However,
we also suggest to shift the problem once in a while
(when the boolean function `update app' is true) in
order to let the right-hand decrease (cf. (7.1a)). Here
we use the fact that, in exact arithmetic, also these

intermediate shifts do not change the iteration pa-
rameters and vectors (except for the vectors x). Ob-
serve that the updated residual ri+1 is replaced by
the true residual b0 � Ax0 of the shifted problem if
`compute res' is true.
For this we propose the following strategy.

Update x and b0 only if the residual is signi�cantly
smaller than the initial residual, while an interme-
diate residual was larger (cf. (7.1b), (7.1c) and re-
minder (a)):

`update app' = true

if kri+1k � kbk=100 & kbk � �

else `update app' = false,

(7.1d)

where � � maxkrik and the maximum is taken over
all residuals since the previous update of x and b0

(since the previous `update app' is true).
The bound in (7.1a) suggests that the norm kbk of the
initial residual should be used as criterion for shifting
the problem (`update app' is true if kri+1k � kbk &
krik � kbk). However, if the process converges irreg-
ularly this would lead to many shifts. The relaxed
version in (7.1d) turns out to work equally well at
less costs.
Compute a true residual whenever `compute res' is
true and if a previous residual is larger than the ini-
tial residual and signi�cantly larger than the present
updated residual:

`compute res' = true

if kri+1k �M=100 & kbk � M
or `update app' is true

else `compute res' = false,

(7.1e)

where M � maxkrik and the maximum is taken over
all residuals since the last computation of the true
residual.
Replacing the updated residual by the true one
perturbs the recursion for the residuals. If the
residual decreases too much since the previous re-
placement, the perturbation may become large rela-
tively to the present residual (reminder (b)). There-
fore, `compute res' may be true more often than
`update app'.
We suggest to add the above strategy to an existing

code. That means that an additional matrix-vector
multiplication has to be performed whenever a true
residual has to be computed. The conditions (7.1d)
and (7.1e) are chosen as to minimize the number of
these additional computations. One also may try to
skip a matrix-vector multiplication in one of the pre-
ceding lines of the algorithm, which requires some ad-
ditional care for BiCGstab(`), but which easily can
be accomplished for CGS.
If CGS is modi�ed as suggested, then the new lines

do not require additional matrix vector multiplica-
tions, and there is no need to restrict the number of
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computations of true local residuals. For this CGS
variant, Neumaier [56] suggested places where the x
and b0 can be updated for accurate approximations:
update x and b0 whenever the residual decreases with
respect to the previous `best residual',

`update app' = true

if kri+1k � kb0k
else `compute res' = false.

(7.1f)

The modi�cations according to Neumaier's approach
are given in Algorithm 3. Observe that the norm of

...

x = x0; x
0 = 0; b0 = r0; �

0 = kb0k;
for i = 0; 1; 2; :::

...� Replace all xi and x by x0....

Skip the CGS update for r
together with the MV involved

in this update. Compute instead

ri+1 = b0 � Ax0; � = kri+1k;
if � is small enough then quit;

if � � �0

x = x+ x0; x0 = 0;
b0 = ri+1; �0 = �;

endif

endfor

x = x+ x0;

Alg.3: Neumaier's strategy for CGS.

the b0 (the residuals with respect to the x) strictly
decrease: the Neumaier trick also smoothes conver-
gence (without improving its speed!).
Below, we discuss the e�ects of our strategies in

practise. We illustrate our observations by a simple
numerical example.

Example. Figure 17 shows the convergence history of
the true residuals as produced by standard CGS, and
by the modi�ed versions of CGS as suggested above,
applied to the SHERMAN4 matrix of the Harwell-
Boeing collection (as in the example of Section 6.5.4).
The dotted curve (����) represents the results for stan-
dard CGS. We also applied modi�ed CGS as in Algo-
rithm 2, using the update criterions (7.1d) and (7.1e).
The solid curve (|{) represents the results for this
simple strategy, while the dashed-dotted curve (- � - �)
represents the results for Neumaier's strategy in Algo-
rithm 3. On log-scale, the norm of the true residuals
kb � Axik, kb � A(x + x0)k, respectively, is plotted
against the number of matrix-vector multiplications.
Neumaier's strategy as well our's lead to approxima-
tions that are accurate (cf. (7.1a)): comparing kr0k
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Fig.17: Reliable updates.

with the norm of the smallest true residual, we see
that a reduction is obtained by a factor � 10�14

( � = 2:2 10�16). Standard CGS does not produce
true residuals smaller than � 10�9kr0k, which is ap-
proximately � � maxkrik � 2:2 10�16 � 107kr0k; cf.
(6.5g). Observe that, though the convergence his-
tories do not coincide for residuals less than � 101,
the speed of convergence is not a�ected: the modi-
�ed versions exhibit a rate of convergence that is very
similar to the one of the updated residuals in stan-
dard CGS as shown in Figure 3.

Experiments for other examples and with other it-
erative schemes, as Bi-CGSTAB and BiCGstab(`),
led to similar conclusions. Although, two observa-
tions should be made.
|Quite often the improvements are much more spec-
tacular than for this SHERMAN4 example: CGS
may produce intermediate residuals as large as kr0k=�
and none of the digits in the �nial approximation of
standard CGS will be correct.
| There are some di�erences between CGS and
the BiCGstab methods: (i) as observed above, Neu-
maier's strategy only works well for CGS, while the
simple strategy of Algorithm 2 can always be applied.
(ii) Especially for the BiCGstab methods, the sim-
ple strategy of Algorithm 2 with update criterions
(7.1d) and (7.1e) does not lead to much additional
work. The additional computation of a true resid-
ual takes place after the process encounters residuals
that are (much) larger than the initial residual. Since
BiCGstab(`) tends to show much smoother conver-
gence behavior than CGS, for small `, the additional
work in these methods is usually much less than for
CGS. In the SHERMAN4 example, our strategy for
CGS requires 7 additional matrix-vector multiplica-
tions (`compute res' is true 7 times) and one spe-
cial update of the approximation (`update app' is true
only once). For BiCGstab(`), ` � 6, only 1 additional
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matrix-vector multiplication was needed. Neumaier's
strategy for CGS does not require additional matrix-
vector multiplications (but 364 additional updates for
the approximation were needed).

8 Termination Criteria

An important point, when using iterative processes,
is to decide when to terminate the process. Popular
stopping criteria are based on the norm of the current
residual, or on the norm of the update to the current
approximation to the solution (or a combination of
these norms). More sophisticated criteria have been
discussed in litterature.
In [45] a practical termination criterion for the conju-
gate gradient method is considered. Suppose we want
an approximation xi for the solution x for which

kxi � xk2=kxk2 � ";

where " is a tolerance set by the user.
It is shown in [45] that such an approximation is ob-
tained by CG as soon as

krik2 � �1kxik2"=(1 + ");

where �1 stands for the smallest eigenvalue of the
positive de�nite symmetric (preconditioned) matrix
A. Of course, in most applications the value for �1
will be unknown, but with the iteration coe�cients
of CG we can build the tridiagonal matrix Ti, and

compute the smallest eigenvalue (Ritz value) �(i)1 of
Ti, which is an approximation for �1. In [45] a simple

algorithm for the computation of �
(i)
1 , along with the

CG algorithm, is described, and it is shown that a
rather robust stopping criterion is formed by

krik2 � �
(i)
1 kxik2"=(1 + "):

A similar criterion has also been suggested earlier in
[40].

A quite di�erent, but much more generally appli-
cable approach has been suggested in [1]. In this ap-
proach the approximate solution of an iterative pro-
cess is regarded as the exact solution of some (nearby)
linear system, and computable bounds for the pertur-
bations with respect to the given system are given.
A nice overview of termination criteria has been pre-
sented in [6]: Section 4.2.

9 Implementation Aspects

For e�ective use of the given iteration schemes, it is
necessary that they can be implemented such that
high computing speeds are achievable. It is most
likely that high computing speeds will be realized
only by parallel architectures and therefore we must
see how well iterative methods �t to such computers.

The iterative methods only need a handful of basic
operations per iteration step

� Vector updates: in each iteration step the cur-
rent approximation to the solution is updated
by a correction vector. Often the corresponding
residual vector is also obtained by a simple up-
date, and we have update formulas as well for
the correction vector (or search direction).

� Innerproducts: In many methods the speed
of convergence is in
uenced by carefully con-
structed iteration coe�cients. These coe�cients
are sometimes known analytically, but more of-
ten they are computed by innerproducts, involv-
ing residual vectors and search directions, as in
the methods discussed in the previous sections.

� Matrix vector products: In each step at least one
matrix vector product has to be computed with
the matrix of the given linear system. Sometimes
also matrix vector products with the transpose
of the given matrix are required (e.g., BiCG).
Note that it is not necessary to have the matrix
explicitly, it su�ces to be able to generate the
result of the matrix vector product.

� Preconditioning: It is common practice to pre-
condition the given linear system by some pre-
conditioning operator. Again it is not neces-
sary to have this operator in explicit form, it
is enough to generate the result of the operator
aplied to some given vector. The preconditioner
is applied as often as the matrix vector multiply
in each iteration step.

For problem sizes large enough the innerproducts,
vectorupdates and matrix vector product are easily
parallelized and vectorized. The more successful pre-
conditionings, i.e, based upon incomplete LU decom-
position, are not easily parallelizable. For that rea-
son one is often satis�ed with the use of only diagonal
scaling as a preconditioner on highly parallel comput-
ers, such as the CM2 [7].

On distributed memory computers we need large
grained parallelism in order to reduce synchroniza-
tion overhead. This can be achieved by combining
the work required for a successive number of itera-
tion steps. The idea is to construct �rst in parallel
a straight forward Krylov basis for the search sub-
space in which an update for the current solution will
be determined. Once this basis has been computed,
the vectors are orthogonalized, as is done in Krylov
subspace methods. The construction as well as the
orthogonalization can be done with large grained par-
allelism, and has su�cient degree of parallelism in it.
This approach has been suggested for CG in [11] and
for GMRES in [12], [5] and [18]. One of the disad-
vantages in this approach is that a straight forward
basis, of the form y;Ay;A2y; :::; Aiy is usually very
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ill-conditioned. This is in sharp contrast to the opti-
mal condition of the orthogonal basis set constructed
by most of the projection type methods and it puts
severe limits on the number of steps that can be com-
bined. However, in [5] and [18] ways to improve the
condition of a parallel generated basis are suggested
and it seems possible to take larger numbers of steps,
say 25, together. In [18] the e�ects of this approach
on the communication overhead are studied and com-
pared with experiments done on moderately massive
parallel transputer systems.

9.1 Parallelism in the preconditioner:

In this section we consider a number of possibili-
ties to obtain parallelism in the standard Incomplete
Choleski preconditioner [51]. The linear systems are
supposed to arise from standard �nite di�erence dis-
cretisations of second order pde's over rectangular
grids in two or three dimensional space.

9.1.1 Overlapping Local Preconditioners

Radicati di Brozolo and Robert [66] suggest to par-
tition the given matrix A in (slightly) overlapping
blocks along the main diagonal. Note that a given
non-zero entry of A is not necessarily contained in
one of these blocks. But experience suggests that
this approach is more successful if these blocks cover
all the non-zero entries of A. The idea is to compute
in parallel local preconditioners for all of the blocks,
e.g.,

An = LnDn
�1Un � Rn:(9.1a)

Then, when solving Kw = r in the preconditioning
step, we partition r in (overlapping) parts rn, accord-
ing to An, and we solve the systems LnD�1

n Unwn =
rn in parallel. Finally we de�ne the elements of w to
be equal to corresponding elements of the wn's in the
nonoverlapping parts and to the average of them in
the overlapped parts.

Radicati di Brozolo and Robert [66] report on tim-
ing results obtained on an IBM3090-600E/VF for
GMRES preconditioned by overlapped incomplete
LU decomposition for a 2D system of order 32400
with a bandwidth of 360. For p processors (1 �
p � 6) they subdivide A in p overlapping parts, the
overlap being so large that thses blocks cover all the
nonzero entries of A. They found experimentally an
overlap of about 360 elements to be optimal for their
problem. This approach led to a speedup of roughly
p. In some cases a speedup even slightly larger than p
was observed, apparantly due to the fact that the par-
allel preconditioner was slightly more e�ective than
the standard one in those cases.

9.1.2 Repeated Twisted Factorization

Meurant [54] reports on timing results obtained with
a CRAY Y-MP/832, using an incomplete repeated

twisted block factorization for 2D problems. In his
experiments the L of the incomplete factorization has
a block structure, i.e., L has alternatingly a block be-
low the diagonal, one above, one below, and it ends
with one above the diagonal. For this approach Meu-
rant reports a speedup, for preconditioned CG, close
to 6 on the 8-processor CRAY Y-MP. This speedup
has been measured relative to the same repeated
twisted factorization process executed on one single
processor. Meurant also reports an increase in the
number of iteration steps, due to this repeated twist-
ing. This implies that the e�ective speedup with re-
spect to the nonparallel code is only about 4.

9.1.3 Twisted and Nested Twisted Factoriza-
tion

For 3D problems we have used the blockwise twisted
approach [23] in the z- direction, i.e. the (x; y)-planes
in the grid were treated in parallel from bottom and
top inwards. Over each plane we used the diagonal-
wise ordering, in order to achieve high vector speeds
on each processor.
On a dedicated CRAY X-MP/2 this led, for precondi-
tioned CG, to a reduction by a factor of close to 2 in
wall clock time with respect to the CPU time for the
nonparallel code on one single processor. For the mi-
crotasked code the wall clock time on the 2-processor
system was measured for a dedicated system, whereas
for the nonparallel code the CPU time was measured
on a moderately loaded system. In some situations
the speedup was even slightly larger than 2, due to
better convergence properties of the twisted incom-
plete preconditioner.
The e�ects of these and other orderings on the conver-
gence of preconditioned methods and on the amount
of parallelism have been studied in [21].

We can also apply the twisted incomplete factor-
ization in a nested way [83]. For 3D problems this
can be exploited by twisting also the blocks corre-
sponding to (x; y) planes in the y-direction. Over the
resulting blocks, corresponding to half (x; y) planes,
we may apply diagonal ordering in order to fully vec-
torize the four parallel parts.
By this approach we have been able to reduce the
wall clock time by a factor of 3:3, for preconditioned
CG, on the 4-processor CONVEX C-240. In this case
the total CPU time, used by all of the processors, is
roughly equal to the CPU time required for single
processor execution [85]. Other then for the exper-
iments on the CRAY X-MP/2, as reported before,
we have relied on the autotasking capabilities of the
Fortran compiler for the C-240, for all of the code, ex-
cept for the preconditioning part. Since some state-
ments in the code lead to rather short vector lengths,
this may explain partially why the factor 3:3 for the
CONVEX C-240 stays well behind the theoretically
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expected factor of about 3:9. Another reason might
be that we were not completely sure whether our test-
ing machine was executing constantly in stand alone
mode during the time of our timing experiments.
Even the system itself needs some CPU-time from
time to time.

9.1.4 Hyperplane Ordering

For a CYBER 205 it has been reported how to ob-
tain long vectorlengths for certain 3D situations ([23],
[73]), and, of course, this approach can also be fol-
lowed in order to obtain parallelism. This has been
done by Berryman et.al. [7] for parallelizing stan-
dard ICCG on a Connection Machine CM-2. For a
4K processor machine they report a computational
speed of 52:6 M
ops for the (sparse) matrix vector
product, while 13:1 M
ops has been realized for the
preconditioner, using the hyperplane approach.
This reduction in speed by a factor of 4 makes it
attractive to use only diagonal scaling as a precondi-
tioner in some situations, for massively parallel ma-
chines like the CM-2. The latter approach has been
followed by Mathur and Johnsson [48] for �nite ele-
ment problems.

We have used the hyperplane ordering for precon-
ditioned CG on an ALLIANT FX/4, for 3D systems
with dimensions nx = 40; ny = 39 and nz = 30. For
4 processors this led to a speedup of 2:61, to be com-
pared with a speedup of 2:54 for the CG-process with
only diagonally scaling as a preconditioner. The fact
that both speedups are quite far below the optimal
value of 4, must be attributed to cache e�ects [85].
These cache e�ects can be largely removed, when us-
ing the reduced system approach suggested by Meier
and Sameh [49]. However, for the 3D systems that we
have tested sofar, the reduced system approach led,
in average, to about the same CPU times as for the
hyperplane approach, on Alliant FX/8 and FX/80
computers.

10 *
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