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Low-dimensional Krylov subspace iterations

for enhancing stability

of time-step integration schemes�

Mikhail A. Botchevyz Gerard L. G. Sleijpenyx Henk A. van der Vorstyx

March 3, 1997

Abstract

In a conventional integration scheme of the Predictor{Corrector (PC) type, solution on
the next time layer is obtained by solving the Corrector scheme equation with few (usually
one) iterative steps of Richardson's method where the initial guess is taken from the Predictor
scheme.

Aiming to enhance stability of such a scheme by performing a few optimalKrylov subspace
iterations (e.g., k steps of GMRES, k 6 5) instead of Richardson's method steps, we get a
family of Minimal Residual PC (MR-PC) time step integration schemes. The optimality
(residual reduction) property of iterative schemes like GMRES leads to a scheme which is
closest in the residual sense to the implicit Corrector scheme.

Two particular MR-PC schemes are investigated here: Forward Euler Predictor { Back-
ward Euler Corrector (of the �rst order) and Adams(2) Predictor { BDF2 Corrector (of the
second order). Practical aspects of using MR-PC scheme including adaptive step size control
strategy will be discussed.

1 Introduction

For the numerical integration of a system of sti� ODEs

dy

d t
= f(t;y) ; y

��
t=0

= y0 2 Rn ; (1)

one usually considers implicit schemes, for instance, BDF, and Newton's method can be used to
solve the nonlinear system of equations in ym+1 (vector of the solution on the next time layer).
When the system is large and has a sparse Jacobian, an iterative method may be attractive as
a linear solver in each Newton's iteration [11, 4, 10]. This can be naturally combined in the
framework of inexact Newton method [2, 3, 7, 5].

Robust iterative Krylov subspace methods like GMRES [19], BiCGSTAB [23, 21] or QMR
[9] are good candidates here. In the case of using GMRES (perhaps, the most typical situation),
the ODE context gives many opportunities to tune the performance of the iteration process:
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truncated and (or) nested (exible) Krylov subspace iterative processes [11, 24, 18], use the
same Krylov basis several times [11], reusing Krylov basis with sophisticated injecting technique
[20], and application of Krylov-like projections directly on the nonlinear level [22, 6, 8], are only
some possibilities. These techniques are mainly aimed to capture the information, delivered by
Krylov methods during previous iterations, with a modest Krylov subspace dimension.

Another possibility o�ered by Krylov iterative methods is building up an integration time-
stepping scheme for the simulation of the action of the exponential operator e�A (A is the
current Jacobian of f). For example, in a �rst order method investigated in [25], a �xed number
of Chebyshev iterations, tuned to approximate e�Aym, is done at each time step. This method
is more accurate and less computation-consuming than the standard Backward Euler scheme
with regular Chebyshev iterations for solving (I��A)ym+1 = ym (assuming f to be linear) [25].
In [26] some modi�cations (also of second order) for this method are described and, for a model
problem, an explanation of the observed faster convergence of Chebyshev iteration for e�Aym,
rather than for (I��A)�1ym, is given. The results from [10] show that for Krylov methods faster
(superlinear) convergence can be expected for Krylov dimension k � k�Ak. This, however, is
too crude a bound for the explanation of the actually observed performance. Theory developed
in [15] sheds more light on these phenomena.

The aim of this paper is to investigate the usage of low-dimensional Krylov subspace methods
for the time-step integration of sti� ODEs. Roughly speaking, we take an implicit scheme and we
try to solve the associated (linearized) scheme (i.e., the system of equations for ym+1) inexactly,
by GMRES each time step. This leads to a class of schemes which can be regarded as generalized
Predictor {Corrector (GPC) schemes, in contrast to the standard Predictor {Corrector (PC)
schemes that are obtained by using some Richardson's iterations per time step [12, 13].

The motivation for this research is the solution of very large sti� ODE systems obtained from
spatial discretization of 3D magneto-uid dynamics simulations. These problems are currently
solved by explicit schemes, due to computer memory storage limitations. The question arises
whether the stability restriction can be relaxed by a Krylov subspace method. For such kind
of problems one can not a�ord high Krylov subspace dimensions and, for the allowed modest
dimensions of Krylov subspace, the superlinear convergence for e�Aym can hardly be expected
[10, 15]. That is why the attractive exponential technique of [15] has not been considered for
our purpose.

Although our framework may be adapted for any Predictor {Corrector scheme (for any
implicit scheme where the system in ym+1 is solved inexactly), in this paper we restrict our
analysis to the linear autonomous case f(t;y) = Ay. In numerical tests, however, the GPC
approach turned out to be successful for nonlinear problems as well. With the usual assumption
thatA is diagonalizable, we will analyze stability for two GPC schemes: Forward Euler Predictor
{ Backward Euler Corrector and Adams (2) Predictor { BDF2 Corrector. In both cases our
results are based on the standard A-stability theory (see, e.g. [12, 13]) and some typical features
of the speci�c iterative solver, for example, the fast convergence with respect to the eigenvalues
which are largest in modulus.

Aside from this feature of the linear solver, one has still some freedom in the choice of one.
In this paper we suggest to take k steps of GMRES. Then, the minimal residual property of
GMRES [19] gives an inexact implicit scheme (which, for small k, may be regarded as an explicit
one) which is closest in the residual sense to the exact implicit scheme. This fact is also exploited
in our analysis.
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2 Generalized and Minimal Residual PC schemes

For the solution of the linear system of ODEs

dy

d t
= Ay + g(t) ; y

��
t=0

= y0 2 Rn ; (2)

for which the real matrix A has eigenvalues with negative real part, we consider the following
time-stepping process. Assume that we have an appropriate implicit scheme for the solution
ym+1
im on the next time layer tm+1, then one has to solve a linear system

~Aym+1
im = bm; ~A = I � �̂�A ; (3)

where bm depends on g(t), some known ym, ym�1, : : : and possibly also on A, and �̂ is a
scheme-dependent parameter. We want to get an inexpensive approximation for the solution
(3), namely, by a few iterations y0;y1; : : : of a Krylov subspace method. In that case, we have
to choose the initial guess y0 properly. For consistency, one should take

y0 = ym+1
ex ; (4)

where ym+1
ex is a numerical solution (at the moment t = tm+1) of (2), obtained by some explicit

scheme which we will call the Predictor. With k iterations for (3), we get an approximate
solution on the next time layer

ym+1 = ym+1
ex + P̂k�1( ~A)r0 ( � ym+1

im ) ; (5)

where r0 = bm � ~Ay0 is the initial residual and P̂k�1( ~A) � ~A�1 is a polynomial of order
6 k� 1, implicitly generated by the iteration scheme. The above equality can be interpreted as
a generalized Corrector step for the implicit scheme (3).

The adoption of the Predictor { Corrector terminology is justi�ed by the observation that
with one Richardson's iteration for (3), we obtain the standard Predictor { Corrector (PC)
scheme. Indeed, for a conventional PC scheme we have that [12, 13]

ym+1 � �̂�Aym+1
ex = bm ; (6)

and this corresponds to the Richardson's splitting of matrix in (3):

~A = I � (I � ~A) = I � �̂�A : (7)

With the initial guess (4) we obtain

y1 � ym+1 = (I � ~A)y0 + bm = ym+1
ex + bm � ~Aym+1

ex = ym+1
ex + r0 :

The last coincides with (5) for P̂0 � 1, so that the PC scheme can be viewed as a special case
of (5).

If q-step linear integration methods are taken for the Predictor and Corrector, then k iter-
ations for the solver in the Corrector, as in (5), gives an explicit generalized Corrector formula
which is again q-step but not linear anymore (coe�cients of the characteristic equation depend
on �j , j 6 k + 1, � = ��).

It is easy to verify that regardless of how accurate we solve (3), the above described gen-
eralized PC (GPC) scheme has a local error of order p = minfp1; p2g where p1 and p2 are the
orders of the Predictor and the Corrector, respectively. To see this, assume that all ym, ym�1,
: : : , involved in the scheme, are exact, and that �p1 = O(�p1+1) represents the local errors of
the Predictor and, likewise, �p2 = O(�p2+1) is the local error for the Corrector:

ym+1
ex = ym+1

� + �p1 ; ym+1
im = ym+1

� + �p2 ;
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where ym+1
� is the exact solution of (2) for t = tm+1. Now denoting the residual polynomial of

the iterative method used in (5) by Pk(~�), i.e.,

Pk(~�) = 1� ~�P̂k�1(~�); rk = Pk( ~A)r0 ; (8)

we note that
ym+1 = ym+1

im � ~A�1rk and

~A�1rk = ~A�1Pk( ~A) ~A(y
m+1
im � ym+1

ex ) = Pk( ~A)(�p2 � �p1) :

Then the local error of the GPC scheme is of the form

ym+1 � ym+1
� = �p2 � ~A�1rk (9a)

= �p2 � Pk( ~A)(�p2 � �p1) : (9b)

Condition (9b) illuminates our claim that the local error order of the GPC is at least the
minimum of those of the Predictor and the Corrector, and (9a) shows that the order p2 may be
achieved by reduction of the residual. We note also that in the GPC scheme a di�erent Pk may
be used for each time step, so that the error can be di�erently reduced in each time step.

Of course, the explicit GPC schemes are not unconditionally stable, but the question arises,
do we gain enough in stability to outbalance the additional computational work in comparison
with conventional explicit formulas, e.g., PC schemes?

Suppose that GMRES [19] is used as a linear solver for the Corrector step. Because of the
minimal residual property of GMRES [19], we obtain attractive properties for our GPC scheme.
Apart from the desirable property to converge faster with respect to the outermost eigenmodes,
we see that, when both Predictor and Corrector are linear q-step formulas, GMRES(k) gives
a (k + 1)-order1 q-step explicit formula which is closest (in the residual sense) to the implicit
Corrector scheme. Indeed, with k steps of GMRES, the residual in (3) is minimized by the
choice of the polynomial Pk in (8) (i.e., P̂k�1 in (5)):

Residual norm of (3) = krkk =
bm � ~Aym+1


=
�I � ~AP̂k�1( ~A)

�
(bm � ~Aym+1

ex )


=
Pk( ~A)r0 = min

Rk2�k; Rk(0)=1

Rk( ~A)r0

 :

Here �k denotes the set of all real polynomials of degree at most k.

We will call GPC scheme with the minimal residual iterative solver by MR-PC scheme
(Minimal Residual PC scheme). Let us agree also that by MR-PC(k) we will denote a MR-PC
scheme with k Corrector iterations performed each time step.

3 MR-PC scheme with Forward Euler { Backward Euler

We consider the particular case where Forward Euler is the Predictor and Backward Euler is
the Corrector. Then, in the notation of (3{5), we have that

ym+1
ex = (I + �A)ym ;

~A = I � �A; �̂ = 1 ;

bm = ym ;

r0 = bm � ~Ay0 = ym � ~Aym+1
ex = �2A2ym :

(9)

1Here we mean the order of the formula, i.e., only the fact that the characteristic equation possibly contains
�k+1 (� = ��)
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With (5), the resulting explicit time-stepping scheme becomes

ym+1 = (I + �A+ P̂k�1( ~A)�
2A2)ym : (10)

Note that the order of the scheme is generally 1.

Let A be diagonalizable with eigenvalues j�1j > : : : > j�nj and let ~�j = 1 � �̂��j . Since
diagonalization does not a�ect the stability analysis (the standard way: one just substitutes
y  Py and multiplies the equation (2) by P ; here matrix P gives the diagonal matrix PAP�1),
without loss of generality, we may assume that

A = Diag(�1; : : : ; �n) :

Another assumption that can be done for the sake of simplicity is the homogeneity of (2).
Indeed, let the time-stepping scheme

ym+1 = Sym + �gm ; (11)

applied for the integration of (2), appear to be stable for the case g � 0, so that

kym+1k 6 kymk; m > 0 : (12)

Then the scheme (11) is also stable for any g, since, as it can be shown,

kymk 6 ky0k+ Ĉ max
06l6m�1

kglk; Ĉ = m�; m > 0 :

Nominally, these considerations are not valid for the MR-PC schemes where operator S depends
adaptively on both ym and gm. However, in our stability analysis this adaptiveness is frozen
out, so that (12) holds at each time step m. In other words, in reality MR-PC schemes may do
even better than it is predicted in the theory.

3.1 Forward Euler { Backward Euler MR-PC(1) scheme

To simplify analysis, let us perform only one iteration step of GMRES (k = 1), so that we
have the MR-PC(1) scheme. The polynomial P̂k�1 reduces to a constant P̂k�1 = � and (10) is
replaced by

ym+1 = (I + �A+ ��2A2)ym : (13)

We note that the scheme would be of second order i� � = 1=2, but this is generally not the
case, since � is chosen adaptively in each time step in order to minimize the residual l2-norm
kym � ~Aym+1k. This expresses that we have an explicit scheme closest (in the residual sense)
to the Backward Euler among all other formulas of the form (13).

The conventional stability analysis with the characteristic equation (see, e.g. [12, 13]) leads
to

�(�j) = 1 + �j + ��2j ; �j = ��j ; (14)

and we are looking for a stability region S 3 � (the region for which j�(�)j 6 1) [12, 13]. It
gives the whole stability picture (restriction for �) for the one-dimensional Dahlquist equation
y0 = �y and, hence, for the diagonalizable matrix A one has to satisfy condition

�� = � 2 S; � 2 f�jgnj=1 :
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In our case the situation is further complicated by the fact that equation (14) is not homogeneous
with respect to �j , due to the presence of the parameter �.

It is easy to verify that for GMRES(1), � satis�es the condition (assuming real values):

� =
rT0

~Ar0

k ~Ar0k2
: (15)

This means that � is in the numerical range of the symmetric part of ~A�1. Moreover, from the
GMRES(1) residual polynomial P1(~�) = 1� ~��, we conclude that � is the reciprocal of the root
of P1, which is the harmonic Ritz value [16] of ~A. Denoting this by ~�, we get

� =
1
~�
=

1

1� �̂��
; (16)

where � is the corresponding harmonic Ritz value2 for A. With

�j =
�

�j
; (17)

and �j = ��j , this leads to

� = �(�j) =
1

1� �̂�j�j
: (18)

For a given �, relation (18) substituted in (14) provides the whole stability picture, because we
easily get stability restrictions j�(�j)j 6 1 for all desired �j = ��j (the complex parameter �j
governs the positions of all eigenvalues �j with respect to the harmonic Ritz value �). Indeed,
(14) with (18) leads to

�(�j) =
1 + �j(1 + �j)(1� �j)

1� �j�j
: (19)

If, for some j, the harmonic Ritz value coincides with an eigenvalue �j then �j = 1 and

�(�j) =
1

1� �j
:

In other words, with respect to the eigenvalue �j the scheme reduces to Backward Euler. Note
also that for the scalar Dahlquist equation this would always be the case since GMRES(1) would
give the exact solution with � = ~��1.

Proposition 1 (Time-step restriction) Let the eigenvalues of A be negative (real) values �
and � 2 [�min;�max]. Then the Forward Euler { Backward Euler MR-PC(1) scheme is stable i�
the time step is restricted as

� 6 ��(�; �); 8� 2 spectrumA ;

��(�; �) =

8><
>:

1

� � �
for � < � ;

2� � ��p4�(� + �)� 7�2

2�(�� �)
for � > � :

(20)

Note The condition � 2 [�min;�max] holds for the MR-PC(1) scheme since harmonic Ritz values
approximate the spectrum from inside [16].

2Actually, � is the harmonic Ritz value of A with respect to the shift �(�̂�)�1.
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Proof For each � de�ne value �� in the following way:

j��j = max
n
j�j = j�j�

��� j�(�)j 6 1 (stability condition)
o
; �� < 0 :

This implies that the value ��=� gives the maximal time step allowed with respect to this �.
Analysis of (19), with � = �=� > 0, leads to the stability restrictions

� > �� =

8>><
>>:

1

1� �
for � > 1 ;

2� � 1�p4�(� + 1)� 7

2(1� �)
for � < 1 :

With � = ��, this immediately implies (20). �

We will consider some particular cases.

First assume that the spectrum of A is negative. Then we may scale the time in such a way
that �1 = �1: the spectrum of A is in [�1; 0). Now for some �xed � 2 [�1; 0), we can study the
stability for any possible eigenvalue � 2 [�1; 0), by varying �=� � � 2 (0;1). As it can be seen
from the numerical experiments, � usually occurs to be very close to the largest in magnitude
eigenvalue, in this particular case �1 . �. Assume for simplicity that � = �1.

In Table 1 we give the maximal time steps obtained with (20) for some sample eigenvalues
in the spectrum (all values are rounded to two decimal places). In the second column of Table 1
we present the auxiliary value ��. In the last column of the Table we give listed a gain factor:

{ =
�MR�PC

(k + 2)�FE
; (21)

where �MR�PC and �FE are the maximum time steps allowed for the MR-PC with GMRES(k)
and the Forward Euler schemes, respectively. This gain factor { depends on the solver for the
Corrector scheme equation. The factor 1=(k+2) indicates that for the MR-PC with GMRES(k),
at each time step, one has to perform k+2 matrix{vector multiplications instead of 1 for Forward
Euler.

In Figure 1 we have plotted the function ��(�; �) according to (20). Apart from � = �1,
here we have also selected � = �0:9 and � = �0:5. The minimum of each curve presented
corresponds to the actual time-step restriction. As we see, the case � = �1:00 is not optimal,
since � = �0:9 allows a larger time step.

Observing these data, we note the following interesting property of our schemes: if � coincides
with the largest (in modulus) eigenvalue (� = �1) then the time step is e�ectively restricted not
by large (in modulus) eigenvalues, but primarily by some eigenvalues of order � 0.6j�1j: Indeed,
with respect to the largest eigenvalue we have an absolutely stable Backward Euler scheme, and,
for some other eigenvalues which are close to the largest one, the scheme is still \close" to the
Backward Euler. For other components the scheme behaves like an explicit one (see (5), (13)),
which means that the small eigenvalues are not restrictive.

To clarify the situation for other large eigenvalues, we have plotted on Figure 2 the stability
regions S for � = �1:00 and some � close to 1 (these values of � correspond to eigenvalues of
order 1 in modulus). We should note that j�1j = j�j=j�1j 6 1 because harmonic Ritz values
approximate the spectrum from inside [16].

The stability region for the case where �j are uniformly distributed in [�1; 0) may be obtained
as the intersection of stability regions plotted for all eigenvalues a�ecting the � , i.e., for �j .
�0:55. It is represented in Figure 3 and compared with those of the Forward and Backward
Euler Schemes.
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To indicate weak points of MR-PC(1) scheme, let us consider a very bad case for the scheme,
namely, one where the largest (in modulus) eigenvalue �1 is complex. Evidently, since our original
matrix is real we have a complex-conjugate pair, �1 = ��2. Assume that j�1j 6 1. In Table 2 the
time step restrictions are presented for some �1;2 (j�1;2j . 1) and �. In Table 2, all data have
been rounded to two decimal places. By �� we denote the actual harmonic Ritz value derived
from GMRES(1) applied to the 2�2 linear system with a real matrix with �1;2 as its eigenvalues,
random right hand side and zero initial guess. This harmonic Ritz value which is the reciprocal
of � in (15) is a good guess for the actual value that the integration scheme would select. In the
last column of Table 2 we present for a given � the time step restriction of the Forward Euler
scheme 2jRe �j=j�j2. As we see from the presented data, the position of the harmonic Ritz value
has a dramatic e�ect on the stability of the scheme. Nevertheless, even for this unfavorable
situation, the scheme is essentially more stable than Forward Euler with maximal time step
�FE = 2. Although the gain factor { calculated according to (21), may indicate superiority of
the Forward Euler scheme, we usually observe in practice { > 1 (see section 6, page 20).

Table 1: Maximal time steps � for the Forward Euler { Backward Euler MR-PC(1) scheme,
� = �1:00, � 2 [�1; 0)

� j�j 6 �� = � = �=� = ���1 � 6 {

1.05 23.70 �0:95 24.89 4.15
1.10 13.45 �0:91 14.74 2.46
1.30 6.35 �0:77 8.25 1.38
1.50 4.82 �0:67 7.19 1.20
1.75 3.99 �0:57 7.00 1.17
2.00 3.56 �0:50 7.12 1.19
5.00 2.45 �0:20 12.25 2.04
10.00 2.21 �0:10 22.10 3.68
100.00 2.02 �0:01 202.00 33.67

Table 2: Maximal time steps � for the Forward Euler { Backward Euler MR-PC(1) scheme
compared to those of the Forward Euler (FE) scheme for some \unfavorable" �'s

� �1;2 j�j 6 �� = MR-PC: � 6 FE: � 6 {

� = �1:00 �0:9� 0:1i 9:30 10:27 2:20 1.56

� = �1:00 �0:8� 0:5i 3:56 3:77 1:80 0.62

� = �1:00 �0:7� 0:7i 2:82 2:84 1:43 0.66
�� = �1:40 |"| 2:70 2:72 {"{ 0.63

� = �1:00 �0:3� 0:9i 1:61 1:70 0:67 0.85
�� = �3:00 |"| 1:12 1:18 {"{ 0.59

3.2 Forward Euler { Backward Euler MR-PC(k) scheme

In this section we give stability analysis for the Forward Euler { Backward Euler MR-PC(k)
scheme for two particular \ideal" cases. For each case, we make a particular assumption on the
polynomials taking part in the scheme. It is done in attempts to predict the real-life stability
properties of MR-PC schemes with GMRES which delivers new adaptive polynomial each time
step. The assumption of the �rst case is very arti�cial, it leads to the time step restriction
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Figure 1: Forward Euler { Backward Euler MR-PC(1) scheme. Maximal time step � versus
� 2 f�0:99;�0:95 : 0:05 : �0:05;�0:01g a�ected by �: � = �0:5 (dashdotted line), � = �0:9
(dashed line), � = �1:00 (solid line)

which occurs to be too pessimistic (too safe) in reality whereas the assumption for the second
case proves to be rather close to the reality with an adequate time step restriction. The �rst
case is interesting in the respect that it shows superiority of the adaptive minimal residual
iteration in comparison with a stationary iterative scheme (namely, the iteration where the
residual polynomial is chosen to be having its roots in the largest part of the spectrum of ~A).

For the Forward Euler { Backward Euler MR-PC(k) scheme (10) we have that

( rk = ) Pk( ~A)r0 = ym � ~Ayk ;

yk =
~A�1
�
ym � Pk( ~A)r0

�
;

(22)

where Pk(~�) = 1� ~�P̂k�1(~�) is the residual polynomial of the iterative process.
With (9) and ym+1 = yk it follows from (22) that

ym+1 = Sym ;

S = ~A�1
�
I � Pk( ~A)(�A)

2
� (23)

and the scheme (10) is spectrally stable (i.e., spectral radius �(S) 6 1) i�����1� Pkj � (��j)2
1� ��j

���� 6 1; j = 1; : : : ; n ; (24)

where �j are eigenvalues of A and Pkj = Pk(~�j).
Furthermore, assuming that ym =

P
j �

m
j wj is an expansion in wj eigenvectors of A, with

(23) we arrive at

�m+1
j =

1� Pm+1
kj � (��j)2
1� ��j

�mj ; m > 0 ; (25)

where we added the superscript �m to Pkj to emphasize that for GMRES (and other similar robust
Krylov iterations) Pk(~�) depends on time. As it may be seen from (25), after performing few time
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Figure 2: Stability regions S � C of the Forward Euler { Backward Euler MR-PC(1) scheme
for � = �1:00 and � � 1: � = 0:93 | dashdotted line; � = 1:00 (Backward Euler scheme) |
solid line; � = 1:07 | dashed line

steps with polynomials Pm
k (~�) having roots in some points of the spectrum, the corresponding k

coe�cients �mj (namely, those k coe�cients for which �j � �j) do not dominate anymore as they

have had � (1� ��j)
�1 as an ampli�cation factor. Hence for GPC schemes with robust Krylov

subspace iterative schemes like GMRES(k), we may expect the feedback phenomena: roots of
the Pm

k (~�) may move to some new positions as soon as �m1 ; : : : ; �
m
k have been getting small

enough. Numerical tests (section 6, page 20) con�rm these expectations. They show that such
a successive \cleaning-o�" may be nonmonotone for GMRES(k), so that harmonic Ritz values
may uctuate inside spectrum I � �A in accordance with what �mj have become undesirably
large.

With �j 6 0, requirement (24) leads to the restriction

� 6minf� 0; � 00g ;

� 0 = min
j: Pkj>0

1 +
p
1 + 8Pkj

2Pkj j�j j ;

� 00 = min
j: Pkj<0

1

jPkj jj�jj ;

(26)

or, both inequalities hold if

� 6 min
j: Pkj 6=0

1

jPkj jj�jj : (27)

Case 1 Rather complicated upper bounds (26),(27) for � can be interpreted as follow.
Recall that the roots of the residual polynomial Pk(~�) are of the form 1� ��j where �j are

approximations to some of A eigenvalues �j . At the same time we observe from the iterations
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Figure 3: Stability regions S � C for the Forward Euler { Backward Euler MR-PC(1) scheme,
� = �1:00 (inside the solid curve), Forward Euler (inside the dotted circle), and Backward Euler
(outside the dashed circle)

that exterior eigenvalues are approximated better than interior ones. Assume that �j � �j ,
j = 1; : : : ; l 6 k. In such an extreme (and not very likely) case Pkj � 0 for j = 1; : : : ; l and the
largest l eigenvalues of A do not play the main role in the restriction (24) anymore3. Moreover,
it is possible to show that in the case where �j = �j , j = 1; : : : ; k (i.e., if all �'s coincide with
largest (in modulus) �'s), the remaining eigenvalues j�k+1j > : : : > j�nj put the same restriction
on the time step as for the explicit Forward Euler scheme, i.e., of the form � 6 2=j�k+1j:

Proposition 2 (Time-step restriction, case 1) Let A be symmetric negative semide�nite
matrix and the residual polynomial Pk(~�) have its roots in the form 1� ��j , j = 1; : : : ; k 6 n
(j�1j > : : : > j�kj > j�k+1j > : : : > j�nj are eigenvalues of A). Then the Forward Euler {
Backward Euler GPC(k) scheme is stable if

� 6
2

maxj>k j�jj =
2

j�k+1j : (28)

Proof Since Pk(~�) is the residual polynomial, Pk(0) = 1. Hence, taking into account that
there is no root of Pk in (0 ; 1���k) we have 0 < Pkj < 1 for j = k+1; : : : ; n. Further proof is just
veri�cation of the fact that the stability restriction � 6 � 0 from (26) is a necessary implication of
(28). Indeed, noting that function �(p) = (1+

p
1 + 8p)

�
2p is monotone decreasing for p 2 (0; 1]

3In fact, GMRES can not do worse because the adaptive selection of �j in GMRES leads to the minimal
possible residual.
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and attains its minimal value 2 at p = 1 we get

� 6
2

maxj>k j�j j =
minp2(0;1]�(p)

maxj>k j�jj 6

6
minj>k �(Pkj)

maxj>k j�j j 6 min
j>k

1 +
p
1 + 8Pkj

2Pkj j�jj = � 0 :

�
Thus, in the extreme case when the largest k eigenvalues �j deliver the polynomial roots

1���j , the time step stability restriction is not worse than for the explicit Forward Euler scheme
applied to the problem with absent k largest eigenvalues.

Now let us see whether it is possible to use somehow Proposition 2 for the step size control.
Suppose that the extreme assumption of the Proposition on the strict coincidence of the residual
polynomial roots with the largest eigenvalues is satis�ed. The value �k+1 taking part in the
restriction (28) is unknown in practice, therefore we may require instead that

� 6
2

�k
; �k = max

i=1;:::k
�i;

or �k > �2; �k = ��k :

(29)

The last condition is stricter than (28), whereas the value of �k = mini=1;:::k j�ijmay be easily got
from the iteration scheme. As it occurs, applied in practice for MR-PC schemes with GMRES
(assume we do neglect all assumptions of Proposition 2 and just impose (29)), restriction (29) is
too safe. It gives too small step size and therefore our expectations, that the extreme assumptions
of Proposition 2 give us the polynomial Pk(~�) which is far from the best possible one, are
con�rmed.

Case 2 Another interpretation of the condition (24) may be given if we make some reasonable
assumptions on the polynomial Pk(~�)(��)

2 taking part in that expression. Remind that

krkk =
Pk( ~A)r0 = Pk(I � �A)(�A)2ym


= min

Rk2�k; Rk(0)=1

Rk(I � �A)(�A)2ym
 6 CE

����max
�=��j

Pk(I � �)�2
���� kymk ; (30)

where CE is the condition number of matrix of eigenvectors of �A and �k is the set of all
real polynomials of degree at most k. Of course, in our implicit assumption that A has been
diagonalized we may omit the factor CE. It is left here only to illuminates the fact that the
minimal residual iterations (i.e. polynomial Pk) do depend on the basis in which we consider A.

Let us denote

Q(�) = Pk(1� �)�2 ; (31)

and now we make the following assumption on Q(�) which makes sense as we want to have an
optimal reduction of krkk in (30). Suppose that Q(�) is the minimally declining polynomial on
the set

M = f�1 6 : : : 6 �ng ; �n < 0

with at least k + 1 di�erent negative elements. More precisely, suppose that Q(�) solves the
following minimax problem:

Q(�) is the solution of min
R2��

k+2

max
�2M

jR(�)j ; (32)
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where ��
k+2 is the set of all polynomials R(�) of degree at most k+2 such that R(0) = R0(0) = 0,

R(1) = 1. This assumption on Q(�) is especially likely to be close to the truth if kymk has
components of approximately the same magnitude.

Notice that condition (32) means that Q(�) is exactly of degree k+2 and has the alternance
property on [�1;�n], so that there are k roots �1 < �2 < � � � < �k of Q(�) in [�1;�n] (this can
be proved in a standard way, see, e.g., [17]).

Proposition 3 (Time-step restriction, case 2) Let A be symmetric negative semide�nite
matrix with at least k+1 di�erent eigenvalues �1 6 : : :6 �n. Assume that the MR-PC residual
polynomial Pk(~�) = Pk(1��) delivers in (31) polynomial satisfying (32) forM = f�j = ��jgnj=1.
Then the condition

�k > �7 (33)

is su�cient for the Forward Euler { Backward Euler MR-PC(k) scheme to be stable. The last
corresponds to the time step restriction

� 6
7

j�kj ; (34)

where �k is the largest element of the set f�i jPk(1� ��i) = 0g.
Note For MR-PC with GMRES(k) �k are harmonic Ritz values of �A delivered by the iterations.

Proof The stability condition (24) is equivalent to the inequality

� 6 Q(�) 6 2� � ; � = ��j ; j = 1; : : : ; n :

In assumptions of the Proposition the last is ful�lled if the largest nonzero root �k of the
polynomial Q(�) satis�es (33) (see Appendix 1). �

Remark For k > 1, following the same approach like in the proof of Proposition 3, it is
possible to revise (make more precise) numerically the restriction (33):

k = 2 k = 3 k = 4 k = 5
�k > �9:69::: �k > �11:06::: �k > �11:84::: �k > �12:32::: (35)

Now let us make some conclusions on the time step restrictions obtained for MR-PC(1)
scheme in this section. According to the Proposition 1 (see (20) and Figure 1) the largest value
of � for the case where A has its eigenvalues to be uniformly distributed in [�1; 0) is � � 7:5.
This value of � is achieved for the harmonic Ritz value � = �1 � �0:9 (dashed curve on Figure 1).
This is in a good agreement with Proposition 3 (see restriction (34)).

4 MR-PC scheme with Adams(2) { BDF2

Here, all assumptions of the previous section are in force.

As an example of the GPC approach to construct a second order accuracy formula, we will
consider a MR-PC scheme with Adams (2) Predictor and BDF2 Corrector. Since the Predictor
and the Corrector are of second order, the local error of the MR-PC scheme is also O(�3).
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With the same notation as in (3){(4), we obtain

ym+1
ex = ym + �

�
3

2
Aym � 1

2
Aym�1

�
;

~A = I � 2�

3
A; �̂ =

2

3
;

bm =
4

3
ym � 1

3
ym�1 ;

r0 = bm � ~Aym+1
ex

=

�
1

3
I � 5�

6
A+ �2A2

�
ym

+

�
�1
3
I +

�

2
A � �2

3
A2

�
ym�1 ;

(36)

where the expression for ym+1
ex is the Adams(2) Predictor step and ~A and bm delivers in (3)

BDF2 formula.

By rewriting (5) explicitly for the case (36), we arrive at the following time-stepping GPC(k)
scheme:

ym+1 =

 
3I + P̂k�1( ~A)

3
+ �A

9I � 5P̂k�1( ~A)

6
+ �2A2P̂k�1( ~A)

!
ym

+

 
� P̂k�1( ~A)

3
+ �A

P̂k�1( ~A)� I

2
� �2A2 P̂k�1( ~A)

3

!
ym�1 :

(37)

The polynomial P̂k�1 comes from the iterative process used to solve the BDF2 system.

Again, like for the Forward Euler { Backward Euler GPC schemes, we consider the simplest
case, the MR-PC(1) scheme, in more detail. Substitution of P̂k�1 = � in (37), leads to the
MR-PC(1) scheme

ym+1 =

�
3 + �

3
I +

9� 5�

6
�A+ ��2A2

�
ym

+

�
��
3
I +

�� 1

2
�A� �

3
�2A2

�
ym�1 ;

(38)

with the characteristic equation

�2 +

�
�3 + �

3
� 9� 5�

6
� ��2

�
� +

�
�

3
� �� 1

2
� +

�

3
�2
�
= 0; � = �j = ��j :

(39)

Following the same argumentation and notation as for the Forward Euler { Backward Euler
MR-PC scheme (see (16){(18)), we get the roots of the characteristic equation (39) in the form

�1;2 = �4 + (1� �)(3�2 + 2�)�pD
2(2��� 3)

;

D = 4+ 16�+ 16�2 + 12�3 + 9�4

�(8�+ 20�2 + 16�3 + 18�4)�

+(4�2 + 4�3 + 9�4)�2 :

(40)
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One can verify that if the harmonic Ritz value � coincides with some eigenvalue �j then (39),
(40) give for �j the BDF2 characteristic equation

(2�j � 3)�2 + 4� � 1 = 0 ;

�1;2(�j) =
�2�p1 + 2�j

2�j � 3
; �j = ��j :

(41)

This is similar to the Forward Euler { Backward Euler MR-PC scheme, where for � = �j the
scheme reduces to Backward Euler (see (19) and below). Again, if � coincides with an eigenvalue
then the MR-PC scheme reduces (for this eigenvalue) to the Corrector scheme.

We consider now some particular cases for (40).
First, assume that the spectrum of A is real and �1 = �1. With relations (16){(18), we

may set � to some appropriate value (for example, let � = �1, since in the reality it usually
holds �1 . �) and, by varying � in (40), we get a stability picture for any A eigenvalue
� = �=�j 2 [�1; 0). The maximal values for the time step, obtained in such a way for some
sample eigenvalues and � = �1:00, are presented in Table 3. As we see, again, for � = �1 the
most critical eigenvalues for the time step are those close to �0.6j�1j. In the last column of the
Table 3, the gain factor {, with respect to the conventional Adams(2) { BDF2 PC scheme, is
given:

{ =
2�MR�PC
(k + 2)�PC

: (42)

Formula (42) corresponds to the GMRES(k) linear solver and the factor 2=(k + 2) is due to
the fact that we have to perform two matrix{vector multiplications for the PC step (assuming
that we keep Aym in memory for Adams(2), so that both Predictor and Corrector require one
multiplication each) and k+2 matrix{vector multiplications for the MR-PC step. Note that for
this particular case �PC = 1 (see, e.g., [12, 13]).

The picture corresponding to Table 3 is given in Figure 4.
In Figure 5 we have plotted the stability regions for � = �1 and some � close to 1. It gives

an impression of what is happening with respect to the largest part of the spectrum (as we noted
already, for � = 1 (or, equivalently, � = �) we have the BDF2 scheme).

The intersection of all stability regions for�1 6 � . �0:55 (those �'s are putting a restriction
on �), gives the stability region for the scheme applied to the whole system. It is presented in
Figure 6, together with those for Adams(2), the Adams(2) { BDF2 PC, and BDF2 schemes.

Finally, for the bad situation where �1 2 C , �1 = ��2, we present maximal values of � for
some j�1;2j � 1 in Table 4. The values of �� are actual values taken from GMRES(1) in the
same manner as for Table 2 (p. 8). The gain factor { is calculated according to the (42).
From the data in Table 4 we note that for this unfavorable case MR-PC(1) does not give much
improvement (or, even loses) in comparison with conventional PC scheme. With the MR-PC(2)
scheme (with two iterations of GMRES) we may hope to get a better situation because with
two harmonic Ritz eigenvalues we may capture the conjugate eigenpair.

5 Some notes on the nonlinear case

For a nonlinear autonomous function f in (1), we have to solve at each time step the equation

ym+1 � �̂�f(ym+1) = bm ; (43)

which is the nonlinear analogue of (3). A standard approach here is the use of (inexact) Newton's
method in the following way. Let y(0) be some initial guess for ym+1, for instance, y(0) is obtained



16 M.A. Botchev, G.L.G. Sleijpen and H.A. van der Vorst

Table 3: Maximal time steps � for the Adams(2) { BDF2 MR-PC scheme, � = �1:00, � 2 [�1; 0)
� j�j 6 �� = � = �=� = ���1 � 6 {

1.05 13.34 �0:95 14.04 9.36
1.10 8.38 �0:91 9.28 6.20
1.30 4.22 �0:77 5.51 3.68
1.50 3.23 �0:67 4.86 3.24
1.75 2.66 �0:57 4.66 3.10
2.00 2.35 �0:50 4.70 3.14
5.00 1.46 �0:20 7.30 4.86
10.00 1.23 �0:10 12.30 8.20
100.00 1.02 �0:01 102.00 68.00

Table 4: Maximal time steps � for the Adams(2) { BDF2 MR-PC scheme compared to those of
the Adams(2) { BDF2 PC scheme for some \unfavorable" �'s

� �1;2 j�j 6 �� = MR-PC: � 6 PC: � 6 {

� = �1:00 �0:9� 0:1i 6:00 6:63 1:09 4.06

� = �1:00 �0:8� 0:5i 2:57 2:72 1:09 1.66

� = �1:00 �0:7� 0:7i 2:15 2:17 1:15 1.26
�� = �1:40 |"| 2:02 2:04 {"{ 1.18

� = �1:00 �0:3� 0:9i 1:55 1:63 1:47 0.74
�� = �3:00 |"| 1:15 1:21 {"{ 0.54

with an explicit (Predictor) scheme. The Newton process y(s) ! ym+1 may be sketched as

repeat

solve linear system ~Ax(s) = bm(s) ;

~A = I � �̂�J(s) ;

bm(s) = bm � y(s) + �̂�f(y(s)) ;

y(s+1) = y(s) + x(s) ;

until convergence in y(s) ! ym+1 :

(44)

The matrix J(s) denotes the Jacobian of f in y(s). The popular linearized form of (43), namely,

(I � �̂�Jm)y
m+1 = bm + �̂�(f(ym)� Jmy

m) ;

is a particular case of (44), where only one Newton iteration is performed with initial guess is
y(0) = ym.

With (44), there are many possibilities to reduce the computational work (see, e.g., [11, 4,
10, 5]). To mention just a few ideas, (1) J may be evaluated only once per few iterations; (2)
the linear system in (44) may be solved with a modest accuracy; (3) J(s) does not need to be
available explicitly in a matrix form, to get J(s)y for a given y, we compute it approximately as

J(s)y �
f(y(s) + "y)� f(y(s))

"
; (45)

where " is an appropriate small constant.
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Figure 4: Maximal time step � depending on � 2 f�0:99;�0:95 : 0:05 : �0:05;�0:01g for the
Adams (2) { BDF2 MR-PC scheme, � = �1:00

By doing only few linear iterations (to solve system in x(s) in (44) each Newton step), we
are in the GPC (or MR-PC) framework. The discussion on how this a�ects the convergence of
the inexact Newton process is out of our scope here. In our limited experience obtained with
MR-PC schemes it is better to perform also only a few inexact Newton iterations per time step.
In many cases one inexact Newton iteration per time step seems to be su�cient.

Note also that the use of (45) for calculating Jacobian (the so-called \matrix{free approach")
may lead to problems in Krylov subspace methods. The reason is that the Krylov subspace basis
is generated for a perturbed operator J . The e�ects of di�erent perturbations may sum up, so
that the eventual Krylov subspace has a little to do with the exact J (for more details see [14,
Chapter 4]). These problems are limited for the MR-PC schemes if k is taken small.
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6 Numerical experiments

6.1 Simple test problems

We will present numerical results obtained with the Forward Euler { Backward Euler MR-PC
(FE { BE) and Adams(2) { BDF2 (Ad2 { BDF2) MR-PC scheme for some simple test problems.

In order to have all desired information readily available we have taken the matrix A in (2)
to be diagonal:

A =Diag(�1; : : : ; �n) ;

Ex. 1 A =Diag
�
�1 : h : �0:01

�
; h = 0:99=(n� 1); n = 100;200; 500 ;

Ex. 1a A =Diag
�
�1 : h : �0:55; : : : ;�0:55

�
; h = 0:99=(n� 1); n = 100;200; 500 ;

Ex. 2 A =Diag
�
�40;�9:5;�9;�8:5;�8 : h : �1

�
; h = 7=(n� 5) ; n = 200 ;

Ex. 3 A =Diag
�
�50;�19:5;�19;�18:5;�18 : h : �11

�
; h = 7=(n� 5) ; n = 200 ;

Ex. 4 A =Diag
�
�10;�0:9;�0:8;�0:7;�0:6 : h : �0:001

�
; h = 0:599=(n� 5) ; n = 200 :

The initial condition for all these examples was y0 = (1; : : : ; 1)T 2 Rn. In ourMatlab runs the
problems have been solved for t 2 [0; 500]. We have used slightly revised (to obtain harmonic
Ritz values) Matlab implementation of GMRES from [1].

The �rst example serves to illustrate our theoretical stability results. In Example 3, the
matrix A is taken the same as in Example 2, but shifted by �10.

n
/
k FE 1 2 3 4 5

100 2.0 / 1.15 7.03 / 0.69 15.7 / 0.44 24.9 / 0.35 35.5 / 0.31 48.5 / 0.28
2.0 / 1.15 [1.3 / 3.75] [2.0 / 1.63] [2.5 / 1.63] [7.5 / 0.65] [12.0 / 0.48]

200 2.0 / 2.3 6.93 / 1.40 15.7 / 0.86 25.0 / 0.65 35.5 / 0.59 48.5 / 0.52

500 2.0 /5.75 6.87 / 3.50 15.7 / 2.15 25.0 / 1.60 36.0 / 1.32 48.5 / 1.24

Table 5: max � / number of megaops, for FE { BE MR-PC(k) schemes (Example 1)

n
/
k Adams(2) 1 2 3 4 5

100 1.0 / 2.40 6.1 / 0.80 14.0 / 0.49 26.0 / 0.33 40.5 / 0.25 58 / 0.21
1.0 / 2.40 [0.3 / 9.02] [1.5 / 2.34] [2.7 / 1.60] [5.0 / 1.01] [10.5 / 0.56]

200 1.0 / 4.79 6.0 / 1.60 14.4 / 0.95 26.0 / 0.64 40.5 / 0.48 57.5 / 0.39

500 1.0 / 11.98 5.95 / 3.99 14.4 / 2.40 26.1 / 1.57 40.5 / 1.17 57.5 / 0.93

Table 6: max � / number of megaops, for Adams(2) { BDF2 MR-PC(k) schemes (Example 1)

In our numerical tests we regard a scheme to be stable, if for all tm in the integration segment
[0;T ], the components ymj of the solution ym are bounded in the following way:

jymj j 6 max f1 ; Cj(ymexact)j jg ; (46)

where constant C has been set to 1 for these runs. This stability criterion is very crude, it
only guarantees that the solution does not blow up. Nevertheless, it appears that (46) allows to
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Ex. n
/
k FE 1 2 3

1 100 2.0 7.03 15.7 24.9
1a 100 2.0 5.5 24.9 147

1 200 2.0 6.93 15.7 25.0
1a 200 2.0 5.5 24.2 137

1 500 2.0 6.87 15.7 25.0
1a 500 2.0 5.4 23.7 132

Table 7: max � for Forward Euler { Backward Euler MR-PC(k) scheme for Example 1 and
Example 1a

Ex.
/
k FE 1 2 3 4 5 �(A)

2 0.05 / 24.1 0.27 / 22.9 0.5 / 11.9 1.4 / 6.5 2.8 / 4.5 4.0 / 3.9 40

3 0.04 / 30.0 0.06 / 58.8 0.4 / 18.1 1.5 / 6.4 6 / 2.2 54 / 0.4 4.55

4 0.2 / 6.4 2.4 / 3.0 3.5 / 2.7 18 / 0.6 32 / 0.49 44 / 0.47 104

Table 8: max � / number of megaops, for FE { BE MR-PC(k) schemes (Examples 2{4)

illustrate sharply the constant � 6 2=max j�jj for the Forward Euler scheme. We want to check
our theoretical restrictions � 6 7 for the Forward Euler { Backward Euler MR-PC(1) scheme
(see Table 1 and Figure 1) and � 6 4:66 for the Adams2 { BDF2 MR-PC(1) scheme (see Table 3
and Figure 4).

In Table 5 we have listed the maximum time steps (according to (46)) and required number
of megaops for Forward Euler { Backward Euler MR-PC scheme applied to the problem from
Example 1. In the second column of Table 5, results for the Forward Euler scheme are shown.
Here, we see a good agreement with the theoretically obtained upper bounds on � for the MR-
PC(1) scheme, namely � . 7. Note that we can not expect complete agreement because (i)
the the actual values of � are unknown a priori, and, (ii) stability condition (46) is appropriate
for Forward Euler but may occur to be too strict for the MR-PC schemes where the temporary
growth of the error does not necessarily mean unstability (see also section 7.1). The data given
in the third row of Table 5, in square brackets, are obtained with the GPC(k) scheme with
Chebyshev iterations (Matlab implementation from [1]).

Table 6 contains the similar information as Table 5, but for the Adams2 { BDF2 MR-PC
scheme.

Earlier we noted that for the MR-PC(1) scheme, applied to a linear problem with a uniformly
distributed spectrum over [�1; 0), only the part of the spectrum � . �0:55 a�ected the stability
of the scheme. To verify this, we have modi�ed Example 1 by substituting all �'s greater than
�0:55 by �0:55. The results for this modi�ed problem (Example 1a) are presented in Table 7.
As we see, MR-PC(1) appears to be more sensitive to the spectrum of the problem than it may
be expected from our theory: we observed restriction � . 5:5 instead of � . 7. The results for
MR-PC(2) and MR-PC(3) are even better and this is not a surprise, since these schemes are
more depth{sensitive with respect to the spectrum.

In Table 8, stability results for the Forward Euler { Backward Euler MR-PC(k) scheme,
applied to Examples 2{4, are shown. The second column shows time steps observed for the
Forward Euler scheme; they coincide with theoretical upper bound 2

�
max j�jj. In the last

column of Table 8, the condition numbers �(A) = j�1j
�j�nj are listed.

In Figures 7{9, the positions of the harmonic Ritz values are shown for Examples 2, 3, and 4,
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where n was taken 20. Here, we have used the MR-PC(3) scheme. In the plots, the eigenvalues
of A are marked by \+" crosses along x{axis. For each Example, pictures for three values of �
are shown. As we see, for large time steps the �'s take oscillatory positions for successive time
steps.
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Figure 7: Example 2. FE { BE MR-PC(3) scheme
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Figure 8: Example 3. FE { BE MR-PC(3) scheme
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Figure 9: Example 4. FE { BE MR-PC(3) scheme
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6.2 A more di�cult test problem

We now consider the following autonomous system, adapted from [11]:

dy

d t
= Ay + V [(V �y) � (V �y)] ;

y(0) = y0 ;
(47)

where � means the elementwise (Hadamard) product and V is a matrix specially chosen in such
a way that after the change of variables z = V �y equation in (47) becomes (componentwise):

d zj
d t

= �jzj + z2j : (470)

The system (470) has an analytical solution

zj(t) =
��j

 + Cje��jt
; Cj = Cj(zj(0)) ; (48)

so we can easily compare our computed solution with the exact one. In [11], the matrix V was
taken as

V = V �1 = I � 2

vTu
uvT ;

where u and v are given vectors, and A in (47) is taken A = VDiag(�j)V . We proceed slightly
di�erently. We take the matrix A as a block-diagonal one, with 2� 2 blocks along the diagonal:

A = Diag(A1; : : : ; An=2) ; Aj =

�
aj �bj
bj aj

�
; (49)

and we assume n to be even. The unitary matrix V is taken as

V = Diag(V1; : : : ; Vn=2) ; Vj =
1p
2

�
1 1
�i i

�
: (50)

V has the eigenvectors of A as its columns. The eigenvalues of A are

�1;2 = a1 � ib1; �3;4 = a2 � ib2; : : : ;

which can be used right away in (48). Note that A is normal, regardless of aj and bj . By varying
, we control the degree of nonlinearity of the problem (47).

To give an impression of the solution of problem (47), we present in Figure 10 solutions for
n = 50, y0 = (1; : : : ; 1)T and for a real spectrum (�1; : : : ;�0:01) as well as for complex one
(�1� i; : : : ;�0:01� i).

In our further numerical tests, we have chosen n = 500, y0 = (1; : : : ; 1)T , aj have been 250
equidistant numbers from [�1;�0:01] and bj have been taken as

(1) bj = 0 (real spectrum) ;

(2) bj = 0:5 + 0:5 sin(12aj) (complex spectrum) :

(The description of matrix V in (50) remains to be valid for the case bj = 0.)
For these model problems we examine several time-stepping schemes with the crude stability

criterion (46), where C = 2 and ymexact = V zm (zm is the vector with components zj(tm) cf.
(48)). The integration segment was taken t 2 [0; 100].

In Tables 9 and 10, we give the maximum � (to satisfy (46)) for four schemes: Adams(2), the
conventional PC scheme with Adams(2) { BDF2, the Adams2 { BDF2 MR-PC scheme, and the
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BDF2 scheme with Newton's iterations. For the MR-PC scheme, we used an implementation
with inexact Newton process as described in section 5. By the BDF2 scheme with Newton's
iteration (the BDF2 { Newton scheme), we understand a scheme exactly the same as the MR-PC
scheme but with the exact linear solver for the Jacobian each Newton iteration.

In fourth columns of Tables 9 and 10 we give a number of (inexact) Newton iterations.
We observe that with inexact k-step solvers in the MR-PC schemes, instead of possibly

expensive exact solver in the BDF2 { Newton scheme, we arrive at almost the same timesteps
for stability. This may lead to big savings in speci�c circumstances.

In Figure 11 we have plotted harmonic Ritz values �, observed for the MR-PC(1) scheme
applied to the linear \complex spectrum" problem, with respect to the spectrum of A. As we
see, during the time-stepping process, �'s monotonically converge to a speci�c position.
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Figure 10: Solutions of the test problem. Components y5 (�), y15 (+), y25 (�), y35 (�), y45 (�)
for n = 50
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Table 9: \Real spectrum" problem: max �

 Adams(2) PC MR-PC(k) BDF2
Newt k = 1 k = 3 k = 5

0.1 1.0 0.95 1 3.8 4.2 4.3 4.3
2 9.0 8 9.3 9.3

1 0.25 0.45 1 0.8 0.75 0.75 0.75
2 1.3 2.3 1.6 1.5

Table 10: \Complex spectrum" problem: max �

 Adams(2) PC MR-PC(k) BDF2
Newt k = 1 k = 3 k = 5

0 0.7 0.85 1 1.5 3 4.5 \1"

0.1 0.7 0.85 1 1.5 2.4 2.5 2.7
2 2.0 4.2 5.2 4.0

1 0.3 0.45 1 0.45 0.7 0.67 0.67
2 0.63 1.4 0.8 0.9
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Figure 11: Harmonic Ritz value of the Adams(2) { BDF2 MR-PC(1) scheme w.r.t. �j (plotted
by \�"). Numbers correspond to the 7 equidistributed moments of time t 2 [0; 100]. Linear
\complex spectrum" problem ( = 0)
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7 Automatic step size control for the MR-PC schemes

For MR-PC schemes it is possible to ensure stability by automatic step size control based on the
spectral information delivered by GMRES. For this purpose we may use time step restriction
given by Proposition 3 (condition (33)); as we noted earlier and as it will be con�rmed practically
in section 7.1, restrictions of Proposition 2 (namely, (28) and (29)) prove to be too pessimistic.
We assume here that A has negative spectrum.

We consider automatic step size control only for Forward Euler { Backward Euler MR-PC
scheme; the adaptation of the similar technique for checking stability of higher order MR-PC
schemes is rather straightforward and left out of the scope of the paper for simplicity.

We will demonstrate how to implement step size control e�ciently. Recall that for the
Forward Euler { Backward Euler MR-PC scheme we have to perform a limited number of
GMRES steps for the system

~Ay = ym; ~A = I � �A : (51)

With k steps of GMRES, an n� (k+ 1)-matrix Vk+1 with orthonormal columns vi is computed
and v1; : : : ; vk form basis for the Krylov subspace:

span (v1; : : : ; vk) = Kk( ~A; r0) � span
�
r0; ~Ar0; : : : ; ~A

k�1r0

�
:

Simultaneously, a (k+1)�k upper{Hessenberg matrix ~Hk is delivered by GMRES and V �
k+1

~AVk =
~Hk. Then, the iterative approximation to the solution ym+1

im of (51) is

yk = y0 + Vkuk ;

where uk is the least squares solution of the projected system

~Hkuk = kr0ke1; e1 = (1; 0; : : : ; 0)T 2 Rk+1 : (52)

For the Forward Euler { Backward Euler MR-PC scheme, one has that

y0 = ym+1
ex = (I + �A)ym; r0 = �2A2ym ;

and it is easy to verify that by construction Vk+1 does not depend on � and

~Hk = Ik � �Hk ; Hk = V �
k+1AVk ; (53)

where Ik is (k+1)�k matrix with ones on its main diagonal and zeros elsewhere. Furthermore,
the harmonic Ritz values ~�i of matrix ~A are eigenvalues of the matrix [16]

~H��
k

~H
�

k
~Hk ; (54)

where ~Hk is a square matrix containing the �rst k rows of ~Hk. We control the values

�i � 1� ~�i :

According to the Proposition 3, the MR-PC scheme is stable if �k = maxi �i > �7.
Notice that �k grows in modulus with the growth of � . As we want � to be not too small

and not too large, we have to check whether

�k 2 [bL; bR] ; (55)

where left bound bL and right bound bR are some reasonable values, for example, we may take
bL = �7 and bR = �5:5.
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y0 is given
set bL and bR
for m = 1; 2; : : : do

r̂0 = A2ym

NewStep = true
GoodTau = false
repeat

if NewStep
compute Vk+1 and Hk such that

V �
k+1AVk = Hk, spanVk = Kk(A; r̂0)

NewStep = false
~Hk = Ik � �Hk

�nd eigenvalues ~�i of ~H��
k

~H
�

k
~Hk

�k = maxi=1;:::;k(1� ~�i)
if (�k > bL)and(�k 6 bR)

GoodTau = true
if �k > bR

c = bR=�k, � = �c (increase)
if �k < bL

c = �k=bL, � = �=c (decrease)
until GoodTau
ym+1
ex = (I + �A)ym

r0 = �2r̂0
�nd least-square solution uk of (52)
ym+1 = ym+1

ex + Vkuk

Figure 12: An example of Forward Euler { Backward Euler MR-PC scheme with automatic step
size control for linear homogeneous problem (2) with negative spectrum

Assume that �k fails to satisfy (55), namely, let �k < bL, so that � has to be decreased.
Then, the only thing we have to recalculate for the new step size is the matrix ~Hk. We do
not need to recalculate neither r0 (because only the direction of r0 is important) nor ym+1

ex (it
may be calculated thereafter when the choice of � is done). For the new matrix ~Hk, we again
calculate the harmonic Ritz values and check condition (55). All this work has to be (re)done
in k-dimensional space.

Since harmonic Ritz values depend on � continuously, it is always possible to satisfy (55)
for any appropriate bL and bR by varying � . There are a lot of possibilities to implement the
outlined above step size control algorithm. On Figure 12 we present a simple variant of the
one which has been used in our numerical tests. We form Krylov basis with respect to A and
recalculate ~Hk according to (53). In the algorithm we vary � in such a way as the dependence
�k on � were linear. Therefore robustness of this algorithm depends on bL and bR; as it occurs,
it is important that bL and bR are not too close.
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7.1 Numerical experiments with automatic step size control

A =Diag(�1; : : : ; �n) ;

Ex. 1 A =Diag
�
�1 : h : �0:01

�
; h = 0:99=(n� 1); n = 500 ;

Ex. 2 A =Diag
�
�1 : h1 : �0:9;�0:1 : h2 : �0:01

�
; h1 = 0:1=(n� 11); h2 = 0:01; n = 500 :

The �rst Example is the same as one in section 6. The second example was chosen like hopefully
di�cult one: there is a gap in the spectrum, so that the ten smallest in modulus eigenvalues
inhibit convergence of the harmonic Ritz values to the more important larger eigenvalues.

The time stepping process was performed for t 2 [0; 500]. Each time step, apart from the
described above step size control (Figure 12) done a priori, we verify, at each time step, the
stability condition (46) (where C has been set to 1) a posteriori. In the experiments, parameters
of the step size control algorithm bL and bR were set to �7 and �5:5 respectively; for this choice
of bounds condition (46) was always satis�ed. Nevertheless, (46) may occur to be too rough
a criterion. (More speci�cally, with bL = �7 and bR = �5:5 we get value of � very close to
the maximal possible, so that the error does not increase but is not dumped either.) Therefore
in such cases it is wise to decrease (in modulus) initial values of bounds, e.g., set bL = �5,
bR = �3:5.

Results of the experiments with MR-PC(1) and MR-PC(3) are presented in Figures 13 and
14. Looking at the two �rst plots in Figure 13 we may compare values of � delivered by the
step size algorithm (namely, � � 6:5 for MR-PC(1) and � � 22 for MR-PC(3)) with maximal
possible ones, according to the table 5 (p. 20) they are 6:87 for MR-PC(1) and 25:0 for MR-
PC(3). The di�erence may be explained by some roughness of the used implementation of the
step size algorithm.

Finally, we show results of some experiments made to understand how sharp the restriction
(34) of Proposition 3 is actually. For this aim, we used modi�cation of the step size control
algorithm 12, where the bisection method was used to �nd such a value value of � that �k
satis�es the condition (55) for any prescribed values of bL and bR. (To be more precise, the
bisection algorithm is applied to the function

�k = �k(�) = max
n
1� ~�i

�� ~�i are harm. Ritz values of ~A
o
;

where �i are calculated according to the (54).) In Figure 15 the maximal (in absolute value)
component of the numerical solution, namely max jymi j, is plotted versus respective moments of
time tm. Here, we present the plots for MR-PC(1) and MR-PC(3) schemes for di�erent segments
[bL; bR] 3 �k. As we see, the bound �k > �7 occurs to be sharp for MR-PC(1) but not for MR-
PC(3). It is in a good agreement with the theory (see the Remark below the Proposition 3 on
page 13).

8 Conclusions

To get an e�cient compromise in time-step integration between many inexpensive explicit steps
and a few expensive implicit steps, in this paper we are looking for possibilities provided by
residually optimal Krylov subspace iterative methods. The key di�erence of our approach from
the conventional implicit time-stepping combined with some iterative solution method is that, at
each integration step, we perform a �xed (small) number of the iterations, so that we get some-
thing between explicit and implicit schemes, namely Generalized PC (GPC) schemes. Among
all GPC schemes, we consider the case of use minimal residual iterations (like GMRES) and this
leads to the MR-PC (Minimal Residual PC) schemes.
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Figure 13: Time step size during the integration

The optimal residual reduction property of the iterations gives a signi�cant gain in stability
even for a very small number of iterative steps. The crucial point here is the adaptive nature
of the iterations which makes residually optimal MR-PC scheme superior to GPC scheme with
other type of Krylov iterations (like, for example, Chebyshev methods).

The attractive feature of Krylov subspaces methods in the MR-PC framework to provide
with spectral information is exploited here to get an algorithm for automatic step size control
with respect to the stability.

There are several open questions remained. The �rst one is about applicability of the MR-PC
framework for nonlinear problems. Apparently, some of results of this paper may be generalized
for the case of the dissipative system of ODEs (1). On other hand, some problems arise with the
implementation of the step size control technique for nonlinear case. The �rst straightforward
idea is to make the described above step size control like a preprocessing part of only the �rst
Newton iteration each time step, but the validness of such an approach remains to be seen.
Furthermore, the question arises of proper adaptation of the step size control strategy for the
case of the complex spectrum of the Jacobian.
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Figure 14: The control value �k during the integration
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Figure 15: The maximal component of the numerical solution during the integration in depen-
dence on �k 2 [bL; bR]. (Growth means unstability)
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Appendix 1
We give the remaining part of the proof of Proposition 2. We prove that restriction (33)

guarantees that

� 6 Q(�) 6 2� � ; � 2 [�1;�n] ; (56)

where Q(�) is from (31),(32). Evidently, according to the (32), Q(�) has to be of the form

Q(�) = �2�k
i=1

�� �i
1� �i

: (57)

Consider �rst the right inequality in (56). Since Q(�) attains its extremal values at the ends of
the alternance segment [�1;�n], and is positive in (�k; 0), we may estimate

Q(�) 6 max
�2[�1;�n]

jQ(�)j = Q(�n) 6 max
�2[�k;0]

Q(�) :

Then,

0 <

������ �i
1� �i

���� = � � �i
1� �i

< 1; i = 1; : : : ; k� 1; � 2 [�k; 0] ;

and hence

Q(�) 6 s(�) =
�� �k
1� �k

�2; � 2 [�k; 0] : (58)

Thus, inequality
�� �k
1� �k

�2 6 2� �; � 2 [�k; 0]

holds i�

�k > �7 ; (59)

and it is su�cient for the right inequality in (56) to be true. It remains to prove the left inequality
in (56) under restriction (59). With s(�) from (58), it is possible to estimate

max
�2[�1;�n]

jQ(�)j = Q(�n) 6 s(�n) 6 max
�2[�k;0]

s(�) = s

�
2

3
�k

�
6 �k : (60)

The rightmost inequality in (60) is equivalent to

4�2k + 27�k � 27 6 0 (�k < 0) )

�k >
�27�p1161

8
� �7:63 : : : : (61)

On the other hand, (60) implies that

Q(�) > � max
�2[�1;�n]

jQ(�)j > �k; � 2 [�1; �k] ;

or Q(�) > �; � 2 [�1; �k] :

The last inequality is ful�lled for the whole segment � 2 [�1;�n] because Q(�) > 0 for � 2
(�k;�n].

Thus, condition (61) guarantees of the left inequality in (56), whereas the stricter condition
(59) guarantees the whole (56).


