
A Paradigm for Probabilistic Path Planning

Mark H. Overmars, Petr �Svestka

Department of Computer Science, Utrecht University

P.O.Box 80.089, 3508 TB Utrecht, the Netherlands

e-mail: markov@cs.ruu.nl, petr@cs.ruu.nl

March 4, 1996

Contents

1 Introduction 2

2 The probabilistic paradigm 3

2.1 The learning phase . 3
2.2 The query phase . 7
2.3 Using a directed graph . 8
2.4 Smoothing the paths . 9

3 Application to holonomic robots, and experimental results 9

3.1 Filling in the details . 9
3.2 Experimental results . 10

4 Application to nonholonomic robots, and experimental results 12

4.1 Application to general carlike robots . 14
4.1.1 Filling in the details . 15
4.1.2 Experimental results . 16

4.2 Application to forward carlike robots . 17
4.2.1 Experimental results . 18

4.3 Application to tractor-trailer robots . 18
4.3.1 Experimental results . 19

5 On probabilistic completeness 19

5.1 The general local topology property . 20
5.2 Probabilistic completeness with the used local planners 21

6 A multi-robot extension, and experimental results 23

6.1 Formalization and discretization of the multi-robot planning problem 23
6.2 The multi-robot method . 24
6.3 Application to multiple carlike robots and experimental results 26

7 Conclusions 27

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Utrecht University Repository

https://core.ac.uk/display/39699178?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Recently there has been a renewed interest in developing heuristic, but practical motion plan-
ners. This was motivated by the fact that exact methods, although often practical for simple
problems involving holonomic robots with few degrees of freedom, fail to solve e�ciently more
challenging (but practical) problems involving high dof robots or robots with nonholonomic
constraints.

Among the most successful planners is RPP ([2]), a potential �eld based method that
uses Brownian motion for escaping from local minima. It has successfully been applied to
robots with many degrees of freedom (up to 31), and it has been used in practice [15] to
plan motions for riveting operations on plane fuselages. The results where good. In [13] the
method is used for automatically generating graphic animations of humane �gures, modelled
with 62 dofs. In [16] the probabilistic convergence of the used Brownian motions is proven,
and a �nite estimate of the expected complexity is given.

Genetic algorithms are utilized in [1] for guiding path searches in high dimensional con-
�guration spaces, and, for certain problems, this algorithm also proves to be very e�cient. A
heuristic learning approach using cell-decomposition of the con�guration space is presented
in [5]. A rn array is used, where n is the number of dofs and r is the number of intervals
discretizing the range of each dof, to accumulate probabilities of successfully moving between
neighboring cells (with a potential �eld based local method) without getting stuck in a local
minimum. For robots with up to 6 dofs fairly good results where obtained. The size of rn
however clearly becomes impractical for large n. In [14] a potential �eld approach is described
that uses heuristics to limit the con�guration space portion that is explored. Finally we men-
tion the work in [6], where paths for high dof robots are planned using random re
ections at
con�guration space obstacles.

In this chapter we describe a probabilistic paradigm to the motion planning problem,
which proves to be very time-e�cient for a great variety of robots, including high dof articu-
lated robots and robots with various nonholonomic constraints, in constrained environments.
An advantage over the above mentioned methods is its generality. There are only a few com-
ponents that are robot speci�c, and these are, as will be pointed out in this chapter, easy to
de�ne/implement. Furthermore, it is a learning approach, that is, it builds data-structures
that, once constructed, can be used for retrieving arbitrary paths quasi-instantaneously. Po-
tential �eld methods inherently do not have this property, due to the fact that the potential
�eld always depends on the goal con�guration of a particular path planning problem. Also
the presented method is probabilistically complete.

In the probabilistic paradigm, there is a (robot independent) global planner, and a (robot
speci�c) local planner. The global planner itself consists of two phases. In the learning
phase the probabilistic global planner incrementally constructs a roadmap, which is stored
as a graph with nodes corresponding to probabilistically chosen collision-free con�gurations,
and edges to simple feasible paths, or local paths. The aim is to obtain a road-map that
e�ectively captures the connectivity of the free con�guration space (or free C-space). In the
query phase, the roadmap is used for retrieving feasible paths connecting given start and goal
con�gurations of the robot. That is, paths that are collision free and that respect the robots
constraints. A local planner is used for computing the local paths, corresponding to the edges
in the graph. This is a deterministic planner that, given two con�gurations, e�ciently tries
to construct a path connecting them. This path always is feasible in absence of obstacles. It
is stored as an edge in the graph if and only if it is collision free. A proper choice of the local

2

planner guarantees probabilistic completeness of the resulting global planner.
Planners based on the paradigm have been implemented for free-
ying robots ([21]), (high

dof) articulated robots ([10],[22],[12]), and various types of nonholonomic robots ([31], [33]).
Extensions of the method have been used for solving multi-robot path planning problems
([32]) and (simple) problems involving movable obstacles ([34]). In [11] a theoretical bases is
initiated for explaining the success of planners based on the probabilistic paradigm. A local
planner L being given, the notion of reachable sets of introduced. The reachable set of a
con�guration c consists of the C-space region that is reachable from c by L (that is, without
collisions). Under realistic assumptions about the volume of the smallest such set, the authors
provide expected complexity bounds for the method.

In this chapter an overview is given on di�erent applications of the probabilistic paradigm.
It is organized as follows: In Section 2 the paradigm is described in its general form. In the
following two sections it is applied to speci�c robot types, i.e., to holonomic robots (free-

ying and articulated) in Section 3, and to nonholonomic mobile robots in Section 4. In both
sections the robot speci�c components of the algorithm are de�ned, and experimental results
obtained with implementations in C++ are presented. Section 5 is of a more theoretical
nature. Aspects regarding probabilistic completeness of the method are discussed, and proofs
of probabilistic completeness are given for the planners described in this chapter. In Section
6 an extension of the paradigm for solving multi-robot path planning problems is described,
and experimental results are given for problems involving multiple carlike robots. Some �nal
comments are made in Section 7.

2 The probabilistic paradigm

The probabilistic learning paradigm can be described in general terms, without focussing
on any speci�c robot type. The idea is that during the learning phase a data structure is
incrementally constructed in a probabilistic way, and that this data structure is later, in the
query phase, used for solving individual motion planning problems.

The data-structure constructed during the learning phase is an undirected graph G =
(V;E), where the nodes V are probabilistically generated free con�gurations and the edges E
correspond to (simple) feasible paths. These simple paths, which we refer to as local paths,
are computed by a local planner, which should be a very simple but fast and deterministic
motion planner. If the local planner is chosen properly (see Section 5), then one can prove
probabilistic completeness of the global planner.

In the query phase, given a start con�guration s and a goal con�guration g, we try to
connect s and g to suitable nodes ~s and ~g in V . Then we perform a graph search to �nd a
sequence of edges in E connecting ~s to ~g, and we transform this sequence into a feasible path
in the (free) C-space. So the paths generated in the query phase (which is described in detail
later) are basically just concatenations of local paths, and therefore the properties of these
\global paths" are induced by the local planner. This makes our approach a
exible one.

2.1 The learning phase

We assume that we are dealing with a robot A, and that L is a local planner that computes
paths feasible for A. As mentioned above, in the learning phase a probabilistic roadmap is
constructed, and stored in an undirected graph G = (V;E). The construction of the roadmap
is performed incrementally in a probabilistic way. Repeatedly a random free con�guration

3

c is generated and added to V . Heuristics however are used for generating more nodes in
\di�cult" areas of the free C-space. We try to connect each generated node c to the graph
by adding a number of edges (c; n) to E, such that the local planner can connect from c to n.

This edge adding is done as follows: First, a set N(c) of neighbors is chosen from N . This
set consists of nodes lying within a certain distance from c, with respect to some metric D.
Then, in order of increasing distance from c, we pick nodes from N(c). We try to connect c
to each of the selected nodes if it is not already graph-connected to c. Hence, no cycles can
be created and the resulting graph is a forest, i.e., a collection of trees. The motivation for
preventing cycles is that no query would ever succeed thanks to an edge that is part of a cycle.
Hence, adding an edge that creates a cycle can impossibly improve the planners performance
in the query phase.

A price to be paid for disallowing cycles in the graph is that in the query phase often
unnecessarily long paths will be obtained. Suppose that a and b are two con�gurations that
can easily be connected by some short feasible path. Due to the probabilistic nature of the
learning algorithm, it is very well possible that, at some point, a and b get connected by
some very long path. Obtaining a shorter connection between a and b would require the
introduction of a cycle in the graph, which we prevent. So, for any pair of nodes, the �rst
graph path connecting them blocks other possibilities.

There are a number of ways for dealing with this problem. One possibility is to apply
an edge adding method which does allow cycles in the graph ([22]). These methods however
have the disadvantage that they slow down the learning algorithm, due to the fact that the
adding of a node requires more executions of the local method to be performed. Another
possibility is to build a forest as described above, but, before using the graph for queries,
\smoothing" the graph by adding certain edges which create cycles. Some experiments that
we have done indicated that smoothing the graph for just a few seconds signi�cantly reduces
the path lengths in the query phase. Finally, it is possible to apply some smoothing techniques
on the paths constructed in the query phase. We brie
y describe a simple but e�cient and
general probabilistic path smoothing technique in Section 2.4.

Let C be the C-space of the robot. To describe the learning algorithm formally, we need
the following :

� A symmetric function Ld 2 C � C ! boolean, that returns whether the local planner
can compute a feasible path for A between its two argument-con�gurations.

� A function D 2 C � C ! R+. It de�nes the metric1 used, and should give a suitable
notion of distance for arbitrary pairs of con�gurations, taking the properties of the robot
A into account. We assume that D is symmetric.

The algorithm can now be described as follows:

The learning algorithm:

(1) V = ;, E = ;
(2) loop

(3) c = a \randomly" chosen free con�guration
(4) V = V [fcg
(5) N(c) = a set of neighbors of c chosen from V

1By metric we simply mean a function of type C � C ! R+, without any restrictions.

4

(6) forall n 2 Nc, in order of increasing D(c; n) do
(7) if :connected(c; n)^ Ld(c; n) then E = E [f(c; n)g

The learning method, a described above, leaves a number of choices to be made: A local
planner must be chosen, a metric must be de�ned, and it must be de�ned what the neighbors
of a node are. Furthermore, heuristics for generating more nodes in interesting C-space areas
should be de�ned. Some choices must be left open as long as we do not focus on a particular
robot type, but certain global remarks can be made here.

Local planner One of the crucial ingredients in the learning phase is the local planner.
As mentioned before, the local planner must compute paths which are feasible for A.
Furthermore, the local planner should be deterministic. Otherwise the existence of a
path in G between two nodes a and b does not guarantee that a feasible path in C-space
connecting a and b can be reconstructed in the query phase. Another requirement is
that the local planner always terminates (some potential �eld methods do not have this
property). Finally, the local planner should guarantee probabilistic completeness of the
learning algorithm. In Section 5 we give su�cient properties.

There are still many possible choices for such an algorithm. On one hand one could take
a very powerful planner. Such a planner would very often succeed in �nding a feasible
path when one exists, and, hence, relatively few nodes would be required in order to
obtain a graph which captures the connectivity of the free C-space well. Such a local
planner would (probably) be slow, but one could hope that this is compensated by the
fact that only a few executions of the planner need to be performed. On the other hand,
one could choose a very simple and fast algorithm that is much less successful. In this
case many more nodes will have to be added in order to obtain a reasonable graph,
which means that many more executions of the local planner will be required. But this
might be compensated by the fact that each execution is very cheap. So it is clear that
there is a trade-o�, and it is not trivial to make a smart choice here.

We have guided the choice of our local planners by experiments ([30],[21]). These clearly
indicated that very fast (and, hence, not very powerful) local planners lead to the best
performance of the learning algorithm.

Neighbors and edge adding methods Another important choice to be made is that of
the neighbors N(c) of a (new) node c. As is the case for the choice of the local planner,
the de�nition of N(c) has large impact on the performance of the learning algorithm.
Reasons for this are that the choice of the neighbors strongly in
uences the overall
structure of the graph, and that, regardless of how the local planner is exactly de�ned,
the executions of the local planner are by far the most time-consuming operations of
the learning algorithm (due to the collision tests that must be performed).

So it is clear that executions of the local planner that do not e�ectively extend the
knowledge stored in the roadmap should be avoided as much as possible. Firstly, as
mentioned before, attempts to connect to nodes which are already in c's connected
component are useless. For this reason the learning algorithm builds a forest. Secondly,
local planner executions which fail add no knowledge to the roadmap. To avoid toomany
local planner failures we only submit pairs of con�gurations whose relative distance (with

5

respect to D) is relatively small, that is, less than some constant threshold maxdist.
Thus:

N(c) � f~c 2 V jD(c; ~c) � maxdistg (1)

This criterion still leaves many possibilities open, regarding the actual choice for N(c).
We have decided on taking all nodes within distance maxdist as neighbors. Experiments
with various de�nitions for N(c) on a wide range of problems lead to this choice.

Hence, according to the algorithm outline given above, we try to connect to all \nearby"
nodes of c, in order of increasing distance D, but we skip those nodes which are already
in c's connected component at the time that the connection is to be attempted. By
considering elements of N(c) in this order we expect to maximize the chances of quickly
connecting c to other con�gurations and, consequently, reduce the number of calls to
the local planner (since every successful connection results in merging two connected
components into one). We refer to the described edge adding method as the forest
method.

Distance We have seen that a distance function D is used for choosing and sorting the
neighbors N(c) of a new node c. It should be de�ned in such a way that D(a; b)
(for arbitrary a and b) somehow re
ects the chance that the local planner will fail to
compute a feasible path from a to b. For example, given two con�gurations a and b,
a possibility is to de�ne D(a; b) as the size of the sweep volume (in the workspace)
constructed when the local planner computes a path connecting a to b, in the absence
of obstacles. In this way each local planner L induces its own metric, which re
ects the
described \failure-chance" very well. In fact, if the obstacles were randomly distributed
points, then this de�nition would re
ect the local planner's failure chance exactly. In
the general case however, exact computations of the described sweep-volumes tend to be
rather expensive, and in practice it turns out that certain rough but cheap to evaluate
approximations of the sweep volumes are to be preferred.

Node adding heuristics If the number of nodes generated during the learning phase is
large enough, the set V gives a fairly uniform covering of the free C-space. In easy
cases, for example for holonomic robots with few degrees of freedom (say not more than
4), G is then well connected. But in more complicated cases where free C-space is
actually connected, G tends to remain disconnected for a long time in certain narrow
(and hence di�cult) areas of the free C-space.

Due to the probabilistic completeness of the method, we are sure that eventually G will
grasp the connectivity of the free space, but to prevent exorbitant running times, it is
wise to guide the node generation by heuristics which create higher node densities in
the di�cult areas. To identify these, there are a number of possibilities.

In some cases, one can use the geometry of the workspace obstacles. For example,
for carlike robots adding (extra) con�gurations which correspond to placements of the
robot "parallel" to obstacle edges and \around" convex obstacle corners boosts the
performance of the learning phase signi�cantly.

A more general criterion is to use the (run-time) structure of the roadmap G. Given
a node c 2 V , one can count the number of nodes of V lying within some prede�ned

6

distance of c. If this number is low, the obstacle region probably occupies a large subset
of c's neighborhood. This suggests that c lies in a di�cult area. Another possibility is to
look at the distance from c to the nearest connected component not containing c. If this
distance is small, then c lies in a region where two components failed to connect, which
indicates that this region might be a di�cult one (it may also be actually obstructed).

Alternatively, rather than using the structure of the obstacles or the roadmap to identify
di�cult regions, one can look at the run-time behavior of the local planner. For example,
if the local planner often failed to connect c to other nodes, this is also an indication that
c lies in a di�cult region. Which particular heuristic function should be used depends
to some extent on the input scene.

2.2 The query phase

During the query phase, paths are to be found between arbitrary start and goal con�gurations,
using the graph G computed in the learning phase. The idea is that, given a start con�guration
s and a goal con�guration g, we try to �nd feasible paths Ps and Pg, such that Ps connects
s to a graph node ~s, and Pg connects g to a graph node ~g, with ~s graph-connected to ~g (that
is, they lie in the same connected component of G). If this succeeds, we perform a graph
search to obtain a path PG in G connecting ~s to ~g. A feasible path (in C-space) from s to g
is then constructed by concatenating Ps, the subpaths computed by the local planner when
applied to pairs of consecutive nodes in PG, and Pg reversed. Otherwise, the query fails. The
queries should preferably terminate `instantaneously', so no expensive algorithm is allowed
for computing Ps and Pg.

For �nding the nodes ~s and ~g we use the function query mapping 2 C�C ! V �V , de�ned
as follows :

query mapping(a; b) =(~a;~b), such that ~a and ~b are connected, and

D(a; ~a) +D(b;~b) = MIN(x;y)2W : D(a; x) +D(y; b)

where W = f(x; y) 2 V � V jconnected(x; y)g

So query mapping(a; b) returns the pair of connected graph nodes (~a;~b) which minimize the
total distance from a to ~a and from b to ~b. We will refer to ~a as a's graph retraction, and to
~b as b's graph retraction.

The most straightforward way for performing a query with start con�guration s and goal
con�guration g is to compute (~s; ~g) = query mapping(s; g), and to try to connect with the
local planner from s to ~s and from ~g to g. The local planner though typically is a rather weak
planner, and, in unlucky cases, it may fail to �nd the connections even if the graph captures
the connectivity of free C-space well.

Experiments with di�erent robot types indicated that simple probabilistic methods that
(repeatedly) perform short random walks from s and g, and try to connect to the graph
retractions of the end-points of those walks with the local planner, achieve signi�cantly better
results. These random walks should be aimed at maneuvering the robot out of narrow C-space
areas (that is, areas where the robot is tightly surrounded by obstacles), and hereby improving
the chances for the local planner to succeed. For holonomic robots very good performance
is obtained by what we refer to as the random bounce walk (see also [12]). The idea is that
repeatedly a random direction (in C-space) is chosen, and the robot is moved in this direction

7

until a collision occurs (or time runs out). When a collision occurs, a new random direction
is chosen. This method performs much better than for example pure Brownian motion in
C-space. For nonholonomic robots walks of a similar nature can be performed, but care must
of course be taken to respect the nonholonomic constraints.

2.3 Using a directed graph

In the probabilistic learning paradigm, as described in the previous section, the computed
roadmaps are stored in undirected graphs. For many motion planning problems this is su�-
cient, and it appears that the method is easier and more e�cient to implement when based
on undirected graphs. For example, motion planning problems involving free-
ying robots,
articulated robots, and general carlike robots can all be dealt with using undirected under-
lying graphs. There are however motion planning problems for which undirected underlying
graphs not su�cient, and directed ones are required instead. For example, problems involving
forward carlike robots require directed underlying graphs.

The existence of an edge (a; b) in the underlying graph G corresponds to the statement
that the local planner can compute a feasible path from a to b. If though G is undirected,
then the edge contains no information about the direction in which the local planner can
compute the path, and, hence, it must correspond to the statement that the local planner can
compute both a feasible path from a to b, as well as one from b to a. So an edge (a; b) can
be added only if the local planner succeeds in both directions. Doing so, useful information
might be thrown away. This will happen in those cases where the local planner is successful
in exactly one direction, and the fact that it has successfully computed a feasible path will
not be stored. If however the local planner is symmetric, which means that it succeeds for
say (a; b) whenever it succeeds for (b; a), then obviously this problem will never occur. So
if the local planner is symmetric, the underlying graph can be undirected, and if it is not
symmetric, then it is better to use a directed graph.

Whether it is possible to implement (good) local planners which are symmetric, depends
on the properties of the robot A, de�ned by the constraints imposed on it.

De�nition 1 A robot A has the reversibility property i� any feasible path for A remains
feasible when reversed.

Holonomic robots and general carlike robots are two examples of robot types which possess the
reversibility property, while for example forward carlike robots do not possess the reversibility
property. In terms of control theory, a robot has the reversibility property if its control system
is symmetric. That is, it can attain a velocity v (in C-space) if and only if it can also attain
velocity �v.

Clearly, if A has the reversibility property, then any local planner L that computes feasible
paths for A can be made symmetric in a trivial way, by reversing computed paths when
necessary. So this implies that if the robot has the reversibility property, then an undirected
graph can be used for storing the local paths, and otherwise a directed graph is required.

For directed graphs it is less straightforward to omit the adding of redundant edges than
was the case for undirected graphs. We refer to [30] and [31] for discussions on this topic,
and sensitive strategies for edge adding for directed underlying graphs.

8

2.4 Smoothing the paths

Paths computed in the query phase can be quite ugly and unnecessarily long. This is due to
the probabilistic nature of the algorithm, and to the fact that edge-creating edges are never
added.

To improve this, one can apply some path smoothing techniques on these `ugly' paths.
The smoothing routine that we use is very simple. It repeatedly picks a pair of random
con�gurations (c1; c2) on the \to be smoothed" path PC , tries to connect these with a feasible
path Qnew using the local planner. If this succeeds and Qnew is shorter than the path segment
Qold in PC from c1 to c2, then it replaces Qold by Qnew (in PC). So basically, randomly picked
segments of the path are replaced, when possible, by shorter ones, computed by the local
planner. The longer this is done, the shorter (and nicer) the path gets. Typically, this
method smoothes a path very well in less than a second for low dof robots, and in a few
seconds for high dof robots.

Still one can argue that this is too much for a query. In that case one must either accept
the ugly paths, or use a more expensive edge adding method which builds graphs containing
loops. This will result in a slowdown of the learning phase, but the gain is that the paths
which are (directly) retrieved in the query phase will be shorter.

3 Application to holonomic robots, and experimental results

In this section an application of the probabilistic paradigm to two types of holonomic robots
is described: free-
ying robots and articulated robots.

We consider here only planar holonomic robots. A free-
ying robot is represented as a
polygon that can rotate and translate freely in the plane among a set of polygonal obstacles.
Its C-space is represented by R2 � [0; 2�[. A planar articulated robot A consists of n links
L1; : : : ; Ln, which are some solid planar bodies (we use polygons), connected to each other
by n � 1 joints J2; : : : ; Jn. Furthermore, the �rst link L1 is connected to some base point in
the workspace by a joint J1. Each joint can be either a prismatic joint, or a revolute joint.
If Ji is a prismatic joint, then link Li can translate along some vector, which is �xed to link
Li�1 (or to the workspace, if i = 1), and if Ji is a revolute joint, then link Li can rotate
around some point which is �xed to link Li�1 (or to the workspace, if i = 1). The range
of the possible translations or rotations of each link Li is constrained by Ji's joint bounds,
consisting of a lower bound lowi and an upper bound upi. The C-space of a n-linked planar
articulated robot can, hence, be represented by [low1; up1]� [low2; up2]� : : :� [lown; upn]. In
the scenes we show, the revolute joints are indicated by small black discs, and the prismatic
joints by small black discs with double arrows.

Since holonomic robots have the reversibility property, it is feasible to use undirected
graphs for storing the roadmaps. Some of the (robot speci�c) details, left open in the discus-
sion of the general method, must be speci�ed.

3.1 Filling in the details

The local planner: A very general local planner exists, that is directly applicable to all
holonomic robots. Given two con�gurations, it connects them by a straight line segment
in C-space and checks this line segment for collision and joint limits (if any). We refer
to this planner as the general holonomic local planner. Collision checking can be done

9

as follows: First, discretize the line segment into a number of con�gurations c1; : : : ; cm,
such that for each pair of consecutive con�gurations (ci; ci+1) no point on the robot,
when positioned at con�guration ci, lies further than some � away from its position
when the robot is at con�guration ci+1 (� is an input positive constant). Then, for each
con�guration ci, test whether the robot, when positioned at ci and \grown" by �, is
collision-free. If none of the m con�gurations yield collision, conclude that the path is
collision-free.

The metric: The distance between two con�gurations a and b is de�ned as the length (in
C-space) of the local path connecting a and b, but scaled in the various C-space dimen-
sions appropriately, in order to re
ect the local planners failure chance reasonably. For
example, in the case of of a long and thin free
ying robot, small variations in orientation
(that is, variations in the third dimension) correspond to motions sweeping relatively
large volumes in the workspace, and should hence be re
ected by large distances, while,
on the other hand, for disc-like robots they should be re
ected by small distances.

The random walks in the query phase: Section 2.2 described a general scheme for solv-
ing a query using a graph constructed in the learning phase. Multiple random walks
were performed from the query con�gurations s and g, aimed at connecting the end-
points of these walks to their graph retractions with the local planner. Remains to
de�ne the speci�c random walks. For holonomic robots, a random bounce walk consists
of repeatedly picking at random a direction of motion in C-space and moving in this
direction until an obstacle is hit. When a collision occurs, a new random direction is
chosen. And so on.

The (maximal) number of these walks (per query) and their (maximal) lengths are
parameters of the planner, which we denote by, respectively, NW and LW .

Node adding heuristics For both the free-
ying robots as the articulated robots, we utilize
the (run-time) structure of G to identify "di�cult" areas in which more \random" nodes
are to be added than in others. We increase the chances for node generation in areas
(of C-space) where the graph shows disconnectivities (that is, where there are a number
of separate connected components present).

For high dof robots it also proves helpful to identify nodes lying in di�cult areas by
considering the success/failure ratio of the local method. If this ration is low for a
particular node (that is, the local planner fails to connect to the node relatively often),
this is an indication that the node lies in some di�cult area. In this case, more nodes
are added in the (near) neighborhood of the node, in order to locally improve the graph
connectivity. We say that the node is expanded ([10],[12]).

3.2 Experimental results

We have implemented the method for planar free-
ying and articulated robots in the way
described above, and we present some experimental results obtained with the resulting plan-
ners. The implementations are in C++ and the experiments were performed on a Silicon
Graphics Indigo2 workstation with an R4400 processor running at 150 MHZ. This machine
is rated with 96.5 SPECfp92 and 90.4 SPECint92.

10

0.25 sec. 0.5sec. 1.0 sec. 1.25 sec.0.75 sec.

15% 75% 85% 100% 100%

(a,b)

(a,c)

(b,c)

c

a
b

20% 90% 100% 100% 100%

35% 55% 85% 95% 100%

Figure 1: Scene 1. An L-shaped free-
ying robot and its test con�gurations are shown. At
the top right, we see two paths computed by the planner and smoothed in 1 second. The
table gives the experimental results.

In the test scenes used, the coordinates of all workspace obstacles lie in the unit square.
Furthermore, in all scenes we have added an obstacle boundary around the unit square, hence
no part of the robot can ever move outside this square.

The experiments are aimed at measuring the \knowledge" acquired by the method after
having learned for certain periods of time. This is done by testing how well the method
solves certain (interesting) queries. For each scene S we de�ne a query test set TQ =
f(s1; s1); (s2; g2); : : : ; (sm; gm)g, consisting of a number of con�guration pairs (that is, queries).
Then, we repeatedly build a graph by learning for some speci�ed time t, and we count how
many of these graphs solve the di�erent queries in TQ. This experiment is repeated for a
number of di�erent learning times t.

The values for the random walk parameters NW and LW are, respectively, 10 and 0.05.
This guarantees that the time spent per query is bounded by approximately 0.3 seconds (on
our machine). Clearly, if we allow more time per query, the method will be more successful
in the query phase, and vice versa. Hence there is a trade-o� between the learning time and
the time allowed for a query.

In Scene 1 (Figure 1) we have a free
ying L-shaped robot, placed at the con�gurations a,
b, and c. Experimental results are shown for the three corresponding queries, and two paths
are shown, both smoothed in 1 second. We see that around 1 second of learning is required
for obtaining roadmaps that solve the queries.

In Scenes 2 to 4 (Figures 2 to 4) results are given for articulated robots.
In the �rst two scenes, just one query is tested, and well the query (a; b). In both �gures,

11

(a,b)

2.5 sec. 5sec. 10 sec.7.5sec.

53.3% 93.3% 100%

a

b

100%

Figure 2: Scene 2. A four dof articulated robot, and a path. The table gives the experimental
results.

several robot con�gurations along a path solving the query are displayed using various grey
levels. The results of the experiments are given in the two tables. We see that the query in
Scene 1 is solved in all 30 cases after having learned for 10 seconds. Learning for 5 seconds
however su�ces to successfully answer the query in more than 90% of the cases. In Scene 2
we observe something similar.

Scene 4 (Figure 4) is a very di�cult one. We have a seven dof robot in a very constrained
environment. The con�gurations a, b, c, and d de�ne 6 di�erent queries, for which the results
are shown. These where obtained by a customized implementation by Kavraki and Latombe
([12]). In this implementation, optimized collision checking routines are used, as well as a
robot-speci�c local planner. Furthermore, \di�cult" nodes are heuristically identi�ed during
the learning phase, and \expanded" subsequently.

4 Application to nonholonomic robots, and experimental re-

sults

In this section we deal with nonholonomic mobile robots. More speci�cally, we apply the
Probabilistic Path Planner to carlike robots and tractor-trailer robots. Furthermore, we
consider two types of carlike robots, i.e., such which can drive both forwards and backwards,
and such which can only drive forwards. We refer to the former as general carlike robots,
and to the latter as forward carlike robots. Currently there exist only a few planners for
nonholonomic mobile robots which are practical in constrained environments.

In [20] and [17] e�cient planners for general carlike robots are described. The approach,

12

a

b

(a,b)

2.5 sec. 5sec. 10 sec.7.5sec.

50% 87% 97% 100%

Figure 3: Scene 3. A �ve dof articulated robot, and a path. Experimental results are shown
in the table.

a b
c

d

20 sec. 30 sec. 50 sec. 60 sec.40 sec. 70 sec.

(a,b)

(a,c)

(a,d)

(b,c)

(b,d)

(c,d)

80 sec.

15% 70% 80% 90% 95% 100%

5% 65%45% 80% 100%

5% 60%40% 80%

100%

100%

25% 70% 80% 90% 100% 95% 100%

100%

95%

95%

10% 40% 60% 80% 95% 100%

95%

100%

35% 55% 75% 90% 100% 100% 100%

Figure 4: Scene 4. A seven dof articulated robot in a very constrained environment and the
query test set. The table gives the experimental results.

13

which is applicable to all fully controllable robots2, consists of three steps. In Step one, given
a start con�guration s and a goal con�guration g, a collision-free path P1 connecting s and
g is computed, without taking into account the non-holonomic constraints. Then, in Step
two, a set of con�gurations c1; : : : ; cn 2 P1 is picked, such that each ci can be connected
to ci+1 by some feasible (simple) path, computed by a local planner. In this way P1 is
transformed into a feasible path P2, that takes into account the non-holonomic constraints.
Finally, in Step three, the resulting path P2 is smoothed. Step two of this method bares some
resemblance with the learning phase of our approach: A global method generates a set of
free con�gurations, and tries to connect certain pairs of these con�gurations by some local
planner. The method exploits the robots full controllable. For non-holonomic robots which
are not fully controllable, like for example forward carlike robots, the method cannot be used.
Furthermore, the method is not a learning approach. Although some learning method can
be used for solving the holonomic problem (step 1), the most time-consuming part of the
method is step 2, where holonomic paths are transformed into feasible paths, and such a
transformation must be carried out for each query.

Another approach is proposed in [3]. It consists of decomposing the con�guration space
into an array of small rectangloids and heuristically searching a graph whose nodes are these
rectangloids. Two rectangloids are adjacent in this graph if there is a feasible path between a
con�guration lying in the �rst rectangloid and a con�guration lying in the second rectangloid.
The method is suitable for both general carlike robots, as well as forward carlike robots.
Furthermore, the method is also applicable to multi-body mobile robots. In practice, however,
the complexity of the method becomes overwhelming if the number of trailers exceeds one.
Another drawback of the method again is the fact that it is not a learning approach.

We model a carlike robot as a polygon moving in R2, and its C-space is represented by
R2 � [0; 2�[. The motions it can perform are subject to nonholonomic constraints. It can
move forwards and backwards, and perform curves of a lower bounded turning radius rmin,
as an ordinary car. A tractor-trailer robot is modelled as a carlike one, but with an extra
polygon attached to it by a revolute joint. Its C-space is (hence) 4-dimensional, and can be
represented by R2 � [0; 2�]� [��max; �max], where � is the (symmetric) joint bound. The
carlike part (the tractor) is exactly a carlike robot. The extra part (the trailer) is subject to
nonholonomic constraints. Its motions are (physically) dictated by the motions of the tractor
(For details, see for example [18]).

For carlike robots, the paths constructed will be sequences of translational paths (describ-
ing straight motions) and rotational paths (describing constant non-zero curvature motions)
only. It is a well-known fact ([18]) that if for a (general or forward) carlike robot a feasible
path in the open free C-space exists between two con�gurations, then there also exists one
which is a (�nite) sequence of rotational paths. We include translational paths to enable
straight motions of the robot, hence reducing the path lengths. For tractor trailer robots we
will use paths that are computed by transformation of the con�guration coordinates to the
chained form, and using sinusoidal inputs.

4.1 Application to general carlike robots

We now apply the probabilistic learning paradigm, using an undirected graph, to general
carlike robots. This asks for �lling in some of the (robot speci�c) details which have been left

2A robot is fully controllable i� the existence of a path in the open free C-space is equivalent to the existence
of a feasible path.

14

b

a

Figure 5: Two RTR paths for a triangular carlike robot, connecting con�gurations a and b.

open in the discussion of the general method.

4.1.1 Filling in the details

The local planner: A RTR path is de�ned as the concatenation of an rotational path, a
translational path, and another rotational path. With this path construct we de�ne the
RTR local planner: Given two argument con�gurations a and b, if the shortest RTR
path connecting a to b intersects no obstacles, then the planner succeeds and returns this
path, and otherwise failure is returned. Figure 5 shows two RTR paths. It can easily
be proven that any pair of con�gurations is connected by a number of RTR paths (See
[30] for more details). Furthermore, the RTR local planner satis�es a local topological
property which guarantees probabilistic completeness (See Section 5).

An alternative to the RTR local planner is to use a local planner which constructs
and tests the shortest (carlike) path connecting its argument con�gurations ([23], [27]).
Constructing shortest carlike paths is however a relatively expensive operation, and the
construct requires more expensive intersection checking routines than does the RTR
construct. On the other hand, RTR paths will, in general, be somewhat longer than the
shortest paths, and, hence, they have a higher chance of intersection with the obstacles.
However, the (slightly) higher failure chance of the RTR local planner does not outweigh
the outlined advantages.

Collision checking for a RTR path can be done very e�ciently, performing three inter-
section tests for translational and rotational sweep volumes. These sweep volumes are
bounded by linear and circular segments (such objects are called generalized polygons in
[18]) and hence the intersection tests can be done exactly and e�ciently. Moreover, the
intersection tests for the rotational path segments can be eliminated by storing some
extra information in the graph nodes, hence reducing the collision check of a RTR path
to just one intersection test for a polygon.

The metric: We use a metric, which is induced by the RTR local planner, and can be
regarded as an approximation of the (too expensive) induced \sweep volume metric",

15

as described in Section 2.1. The distance between two con�gurations is de�ned as the
length (in workspace) of the shortest RTR path connecting them. We refer to this
metric as the RTR metric, and we denote it by DRTR.

The random walks in the query phase: Random walks, respecting the carlike constraints,
are required. The (maximal) number of these walks (per query) and their (maximal)
lengths are parameters of the method, which we denote by, respectively, NW and LW .

Let cs be the start con�guration of a random walk. As mentioned above, the parameter
LW de�nes the maximal length of the walk. As actual length lW of the walk we take a
random value from [0; LW]. The random walk is now performed in the following way:
First, the robot is placed at con�guration cs, and a random steering angle and a
random velocity v are chosen. Then, the motion de�ned by (; v) is performed until
either a collision of the robot with an obstacle occurs, or the total length of the random
walk has reached lW . In the former case, a new random control is picked, and the
process is repeated. In the latter case, the random walk ends.

Good values for NW and LW must be experimentally derived (the values we use are
given in the next section).

Node adding heuristics We use the geometry of the workspace obstacles to identify areas
in which is advantageous to add some extra, geometrically derived, non-random nodes.
Particular obstacle edges and (convex) obstacle corners de�ne such geometric nodes (See
[31] for more details). Furthermore, as for free-
ying robots, we use the the (run-time)
structure of the graph G in order to guide the node generation.

4.1.2 Experimental results

We have implemented the planner as described above, and some experimental results are
presented in this section. The planner was run on a machine as described in Section 3. Again
the presented scenes correspond to the unit square with an obstacle boundary, and the chosen
values for NW and LW are, respectively, 10 and 0.05. The experimental results are presented
in the same form as for the holonomic robots (in Section 3). That is, for di�erent learning
times we count how often graphs are obtained which solve particular, prede�ned, queries.

Scene 5 is a relatively easy scene. It is shown, together with the robot A positioned at a
set of con�gurations fa; b; c; d; eg, in Figure 6. The topology is simple and there are only a few
narrow passages. As query test set TQ we use f(a; b); (a; d); (b; e); (c; e); (d; e)g. (At the top-
right of Figure 6 paths solving the queries (a; d) and (b; e), smoothed in 1 second, are shown.)
The minimal turning radius rmin used in the experiments is 0.1, and the neighborhood size
maxdist is 0.5. We see that after only 0.3 seconds of learning, the constructed networks solve
each of the queries in most cases (but not all). Half a second of learning is su�cient for
solving each of the queries, in all 20 trials.

Scene 6, which is shown in Figure 7 (again together with a robot A placed at di�erent
con�gurations fa; b; c; dg) is a completely di�erent type of scene. It contains many (small)
obstacles and is not at all \corridor-like". Although many individual motion planning prob-
lems in this scene are quite simple, the topology of the free C-space is quite complicated,
and can only be captured well in relatively complicated graphs. As query test set TQ
we use f(a; b); (a; c); (a; d); (c; d)g. Furthermore, as in the previous scene, rmin = 0:1 and
maxdist = 0:5. Again, we show two (smoothed) paths computed by our planner (solving

16

a

b

c d

e

0.1 sec. 0.2 sec. 0.4 sec. 0.5 sec.0.3 sec.

(a,b)

(a,d)

(b,e)

(c,e)

(d,e)

20% 90%

35%

60% 90%

50%

55% 85%

15% 75%

100% 100%

95%85%

100%

95%

85%

100%

100% 100%

100%

100% 100%

100%

100%

Figure 6: Scene 5, and its test con�gurations. At the top right, two paths computed by the
planner and smoothed in 1 second are shown. The table gives the experimental results.

the queries (a; b) and (c; d)). We see that about 2 seconds of learning are required to obtain
networks which are (almost) guaranteed to solve each of the queries.

4.2 Application to forward carlike robots

Forward carlike robots, as pointed out before, lack the reversibility property. Hence, as ex-
plained in Section 2.3, directed instead of undirected graphs are used for storing the roadmaps.
For details regarding the exact de�nition of the learning algorithm we refer to [22].

The robot speci�c components, such as the local planner, the metric, and the random walks
are quite analog to those for general carlike robots, as described in Section 4.1. The local
planner constructs the shortest forward RTR path connecting its argument con�gurations. A
forward RTR paths is de�ned exactly as a normal RTR path, except that the rotational and
translational paths are required to describe forward robot motions. The distance between
two con�gurations is de�ned as the (workspace) length of the shortest forward RTR path
connecting them. A random walk is performed as for general carlike robots, with the di�erence
that the randomly picked velocity must be positive, and that, when collision occurs, the
random walk is resumed from a random con�guration on the previously followed trajectory
(instead of from the con�guration where collision occurred).

17

a

b

c

d

(a,b)

(a,c)

(a,d)

(c,d)

75% 95%

70%

55% 75%

85% 95%

85% 95%

90% 90%

95%

100%

100%

100% 100%

100%

100% 100%

100%

30%

20%

35%

50%

0.5 sec. 0.75 sec. 1.5 sec. 2.0 sec.1.0 sec.0.25 sec.

Figure 7: Scene 6, and its test con�gurations. At the top right, two paths computed by the
planner and smoothed in 1 second are shown. The table gives the experimental results.

4.2.1 Experimental results

We give results for Scene 6, of the form used throughout this chapter. We see in Figure 8
that the queries are most likely to be solved after 5 seconds of learning, and (almost) surely
after 7.5 seconds. This means that about four times more learning time is required than for
general carlike robots.

4.3 Application to tractor-trailer robots

As last example of nonholonomic robots, we now (brie
y) consider tractor-trailer robots,
and well such which can drive both forwards and backwards. These robots have symmetrical
control systems and, hence, undirected underlying graphs are su�cient. Again, we will not go
into many details (we refer to [26] for a more thorough discussion of the topic). We use a local
planner, by Sekhavat and Laumond ([25]), which transforms its con�guration coordinates
into the chained form, and uses sinusoidal inputs. We refer to it as the sinusoidal local
planner. This local planner veri�es a local topological property which guarantees probabilistic
completeness of the global planner. As distance measure we use a (cheap) approximations of
the workspace lengths of the local paths. The random walks in the query phase are basically
as those for general carlike robots, except that the trailers orientation must be kept track of
during each (constant curvature) motion of the tractor. If, during such a motion, the tractors
orientation gets out of bounds (relative to the orientation of the tractor), this is treated as a
collision.

18

a

d

c

b

(a; d)

(a; c)

(b; c)

(b; d)

2.0 sec. 3.0 sec. 5.0 sec. 7.5 sec.4.0 sec.1.0 sec.

70% 85%

40%

45% 45%

75% 90%

35% 55%

70% 90%

100%

90%

80%

100% 100%

100%

95% 100%

100%

30%

35%

20%

15%

Figure 8: Scene 6 with a forward carlike robot.

4.3.1 Experimental results

See Figure 9 for two feasible paths computed by the Probabilistic Path Planner. The com-
putation time of the roadmap from which the paths where retrieved took about 10 seconds
(on the average).

5 On probabilistic completeness

In this section we consider some aspects regarding probabilistic completeness of planners ob-
tained by application of the probabilistic paradigm. A path planner is called probabilistically
complete i� any problem which is solvable in the open free C-space (that is, without any
robot-obstacle contacts) will be solved by the planner provided that it is executed for a suf-
�cient amount of time. For ease of presentation we introduce some shorthand notations. We
refer here to the probabilistic path planner by PPP. We specify the version using undirected
underlying graphs (respectively directed graphs) by PPPu (respectively PPPd). The notation
PPPu(L) (respectivelyPPPd(L)) is used for referring to PPPu (respectivelyPPPd) with a spe-
ci�c local planner L. Throughout this section, we assume that the local planner L is simply a
function that takes two argument con�gurations, and returns a path connecting them which
is feasible in absence of obstacles. We say L is symmetric i�, for arbitrary con�gurations
a and b, L(a; b) equals L(b; a). So no collision checking is incorporated in the local planner
itself3. This simpli�es the presentation in this section.

We point out that with PPP one obtains a probabilistically complete planner for any

3Formally this requires a minor adaption of the general outline of the learning algorithm, as presented in
Section 2.1. Line (7) will be: if :connected(c;n) ^ L(c; n) � free C-space then E = E [f(c; n)g

19

Figure 9: Two feasible paths for a tractor trailer robot, obtained in 10 seconds.

robot which is small-time locally controllable (see below), provided that one de�nes the local
planner properly. If, in addition to the small-time local controllability, the robot also has a
symmetric control system then PPPu(L) is suitable, otherwise PPPd(L) must be used. In
Section 5.1 we de�ne a general property for local planners that is su�cient for probabilistic
completeness of PPP , and we point out that, given the small-time local controllability of
the robot, a local method satisfying this property always exists (but it must be found).
We also mention a relaxation of the property, that guarantees probabilistic completeness of
PPPu(L) as well, for small-time local controllable robots with symmetric control systems. All
holonomic robots, as well as for example general carlike robots and tractor-trailer robots, fall
into this class. Forward carlike robots however are not small-time locally controllable (and
neither symmetric). In Section 5.2 we show that all the planners described in this chapter
are probabilistically complete.

First however we de�ne the concept small-time local controllability, adopting the termi-
nology introduced by Sussman([28]). Given a robot A, let �A be its control system. That
is, �A describes the velocities that A can attain in C-space. For a con�guration c of a robot
A, the set of con�gurations that A can reach within time T is denoted by A�A(� T; c). A
is de�ned to be small-time locally controllable i� for any con�guration c 2 C A�A(� T; c)
contains a neighborhood of c (or, equivalently, a ball centered at c) for all T > 0. It is a
well-known fact that, given a con�guration c, the area a small-time locally controllable robot
A can reach without leaving the �-ball around c (for any � > 0) is the open �-ball around c.

5.1 The general local topology property

We assume now that robot A is small-time locally controllable. For probabilistic completeness
of PPP a local planner L is required that exploits the small-time local controllability of A.
This is the case if L has what we call the general local topological property, or GLT-property,
as de�ned in De�nition 3 using the notion of �-reachability introduced in De�nition 2. We
denote the ball (in C-space) of radius � centered at con�guration c by B�(c), and we denote
the set of all such balls by B�.

20

De�nition 2 Let L be a local planner for A. Furthermore let � > 0 and c 2 C be given. The
�-reachable area of c by L, denoted by RL;�(c), is de�ned by

RL;�(c) = f~c 2 B�(c)jL(c;~c) is entirely contained in B�(c)g

De�nition 3 Let L be a local planner for A. We say L has the GLT-property i�

8� > 0 : 9� > 0 : 8c 2 C : B�(c) � RL;�(c)

We refer to B�(c) as the �-reachable �-ball of c.

A local planner verifying the GLT-property, at least in theory, always exists, due to the
robots small-time local controllability. Theorem 1 now states that this property is su�cient
to guarantee probabilistic completeness of PPP. That is, of PPPu(L) if L is symmetric, and
of PPPd(L) otherwise.

Theorem 1 If L is a local planner verifying the GLT-property, then PPP(L) is probabilisti-
cally complete.

Proof

The theorem can be proven directly quite straightforwardly (for both PPPu(L) and PPPd(L)).
Assume L veri�es the GLT-property. Given two con�gurations s and g, lying in the same
connected component of the open free C-space, take a path P which connects s and g and lies
in the open free C-space as well. Let � be the C-space clearance of P (that is, the minimal dis-
tance between P and a C-space obstacle), and take � > 0 such that 8c 2 C : B�(c) � RL;�(c).
Then, consider a covering of P by balls of radius 1

2�. If every such ball contains a node of V
(this is guaranteed to be the case within a �nite amount of time), it follows that G contains
a path connecting s and g (we assume here that fs; gg � V).

Clearly, given a small-time locally controllable robot, the GLT-property is a proper crite-
rion for choosing the local planner (su�cient conditions for small-time local controllability of
a robot are given in, e.g., [29]). Path planning among obstacles for carlike robots using local
planners with the GLT-property has also been studied by Laumond ([19],[9]).

For small-time locally controllable robots with symmetric control systems, a weaker prop-
erty exists that guarantees probabilistic completeness as well. We refer to this property as
the LTP-property. The basic relaxation is that we no longer require the �-reachable �-ball
of a con�guration a to be centered around c. We do however make a certain requirement
regarding the relationship between con�gurations and the corresponding �-reachable �-balls.
Namely, it must be described by a Lipschitz continuous function. For a formal de�nition of
the LTP-property and a proof of probabilistic completeness with local methods verifying it,
we refer to [31].

5.2 Probabilistic completeness with the used local planners

The local planners used for holonomic robots, general carlike robots and tractor-trailer robots,
as described in this chapter, guarantee probabilistic completeness.

The used local planner L for the holonomic planners constructs the straight line path (in
C-space) connecting its argument con�gurations. It immediately follows that R�;L(c) = B�(c),
for any con�guration c and any � > 0. Hence, clearly L veri�es the GLT-property.

21

Theorem 2 PPPu(L), with L being the general holonomic local planner, is probabilistically
complete for all holonomic robots.

The planner for general carlike robots uses the RTR local planner. One can prove that
this planner veri�es the LTP-property ([31]). Again, as stated in the following theorem, this
guarantees probabilistic completeness.

Theorem 3 PPPu(L), with L being the RTR local planner, is probabilistically complete for
general carlike robots.

As pointed out before, the theory of the previous sections applies only to robots which are
small-time locally controllable. If a robot does not have this property, a local method verifying
the GLT-property will in general not exist. A local planner verifying the weaker LTP-property
may exist, but this planner will not be symmetric (this would imply the existence of a local
planner verifying GTP).

Forward carlike robots are not small-time locally controllable. One can nevertheless prove
probabilistic completeness of PPPd(L), with L being the RTR forward local planner. That is,
one can prove that, given two con�gurations s and g such that there exists a feasible path in
the open free C-space connecting them, PPPd(L) will surely solve the problem within �nite
time. The proof however does not directly generalize to other cases.

Theorem 4 PPPd(L), with L being the RTR forward local planner, is probabilistically com-
plete for forward carlike robots.

We give only a sketch of the proof here. Let L be the RTR forward local planner. As-
sume P1 is a path in the open free C-space connecting a (start) con�guration s to a (goal)
con�guration g, which is feasible for our forward carlike robot A. Then, one can prove, there
exists also a feasible path P2 in the open free C-space, connecting s to g, which consists of (a
�nite number of) straight line segments and circular arcs, such that no two distinct arcs are
adjacent 4. In other words, P2 is of the form Q1Q2Q3 : : :Qm, where Qi is straight segment
if i is even, and an arc otherwise. Let fc1; : : : ; cm�1g be the con�gurations corresponding to
the joining points of the arcs and straight segments, i.e., ci joins Qi with Qi+1. Furthermore,
let c0 = s and cm = g. Take � > 0 such that no obstacle, in C-space, lies closer than � to
P2. One can now prove that there exists a � > 0 such that each B�(ci) (with i 2 f0; : : : ; mg)
contains a �-ball Bi, such that:

8i 2 f1; : : : ; m� 2g : 8(a; b) 2 Bi �Bi+1 : L(a; b) lies within distance � of Qi
5

It follows that when a node of G is present in every �-ball � Cf , G will contain a path
connecting s to g. We know, due to the probabilistic nature of the node adding, the probability
of obtaining such a graph grows to 1 when the learning time goes to in�nity.

Regarding tractor-trailer robots, Sekhavat and Laumond prove in [25] that the sinusoidal
local planner, used for the tractor-trailer robots, veri�es the GLT-property. Hence, for tractor-
trailer robots we also have probabilistic completeness.

4This does not necessarily hold if P1 consists of just one or two circular arcs of maximal curvature. In this
case however P1 can be found directly with the local planner.

5We say a path Q lies within distance � of a path R, i� 8q 2 Q : 9r 2 R : jq � rj � � (in C-space)

22

6 A multi-robot extension, and experimental results

A challenging problem in robotics is the multi-robot path planning problem. A number of
robots are to change their positions through feasible motions in the same static environment,
while avoiding (mutual) collisions. We assume that the robots are identical, although the
presented technique is conceptually applicable to problems involving non-identical robots as
well.

The multi-robot path planning problem has received a considerable amount of attention
in the recent years ([4], [2], [8], [24]). Current approaches basically fall into two classes: cen-
tralized planning methods and decoupled planning methods (See also ([18], [7]). The former
are very straight-forward. The idea is that one treats the separate (simple) robots as one
composite robot, hence transforming the multi-robot problem into a single-robot one (with
many degrees of freedom). Standard motion planning methods can then be used for �nding a
path in the con�guration space of the composite robot. A major drawback however is that the
dimension of this con�guration space is usually rather large, and, as a result, the time com-
plexity of centralized planning methods is high. Decoupled planning methods plan the paths
for the individual robots more or less independently, and, in a second stage, coordinate these
paths in a way that mutual robot collisions are avoided. This scheme signi�cantly reduces
the amount of computation, but completeness is lost. For example, when two robots are to
swap their positions, then they typically follow the same route. Obviously, any coordination
of the robot motions along the route will result in collisions.

An extension of the probabilistic paradigm, as presented in this chapter, for solving multi-
robot path planning problems is described in this section. It does not fall into either of the
two above mentioned classes of multi-robot planning methods. The notion of composite
robots is used, but, unlike current centralized approaches, no computations are performed
in the con�guration space of the composite robot. A roadmap for the composite robot is
extracted from information stored in a simple roadmap, computed by the single-robot method
for the underlying simple robot. This gives a very
exible scheme, in the sense that it is
easily applicable to many di�erent robot types. Furthermore, the resulting planners are
probabilistically complete (provided that the local planner for the simple robot is de�ned
properly, as described in the previous section). In this section an application to carlike robots
is described, and some experimental results are given.

6.1 Formalization and discretization of the multi-robot planning problem

First we formalize the multi-robot path planning problem. Let A1; : : : ;An be n instances of
some robot A, present in a workspace W , together with a set of obstacles whose union we
denote by B. Furthermore, let C be the space of all possible con�gurations of A, and let Cf
be a the subset of C consisting of all con�gurations c such that A placed at c intersects no
obstacles. That is, Cf is A's free C-space. Given a con�guration c, we denote the workspace-
area occupied by A, when placed at c, by A(c).

De�nition 4 A path planning problem for A1; : : : ;An is de�ned as follows: Given start
con�gurations s1; : : : ; sn and goal con�gurations g1; : : : ; gn (with si; gi 2 Cf), �nd continuous
maps P1; : : : ; Pn 2 [0; 1]! Cf describing feasible motions for A, such that (8i; j 2 f1; : : : ; ng):

� Pi(0) = si ^ Pi(1) = gi

� 8t2[0;1] : A(Pi(t))\ B = ;

23

� 8t2[0;1] : i 6= j)A(Pi(t))\ A(Pj(t)) = ;

We refer to such a problem simply as problem ((s1; : : : ; sn); (g1; : : : ; gn)).

The concept we use is that �rst a simple roadmap G is computed for A using the single
robot method, and subsequently a roadmap for the composite robot is extracted from G. The
used single robot method di�ers in one point from the one described in Section 2, namely
that edges which create cycles are added also. We try to connect to all nodes within distance
maxdist. This is necessary for the probabilistic completeness of the multi-robot method.

Given a graph G = (V;E) storing a simple roadmap for robot A (computed by the
probabilistic single-robot method), we are interested in solving multi-robot problems using
G. We assume that the used local planner for A guarantees probabilistic completness of
the single-robot method. Furthermore, for ease of presentation, we assume that all start
con�gurations si and goal con�gurations gi are nodes of G (they can always be added as
extra, non-random, nodes), and that, for each node c 2 V the edge (c; c) is contained in
E. We denote the workspace-area swept by A when moving along a path corresponding
to an edge e 2 E by A(e), and we refer to it as e's sweep-volume. The idea is that we
seek paths in G along which the robots can go from their start con�gurations to their goal
con�gurations, but we disallow simultaneous motions along paths corresponding to edges e1
and e2 with intersecting sweep-volumes. In this way, we avoid mutual robot collisions, while
robot-obstacle collisions are ruled out by the fact that we move along the simple roadmap.
We say that we discretize the multi-robot planning problem to G. More formally, we de�ne
a G-discretized path for the composite robot to be a sequence of robot motions such that, at
any time instant, at most one robot moves along a local path of G, while all the others are
stationary at nodes of G.

We �rst state that solving G-discretized path planning problems (instead of continuous
ones) is su�cient, in the sense that this guarantees probabilistic completeness. Given a set
of free con�gurations W and a graph G computed by the single-robot method, we denote by
G � W the graph that is obtained by adding the elements of W to G, as is done with the
random con�gurations.

Theorem 5 Let ((s1; : : : ; sn); (g1; : : : ; gn)) be an arbitrary problem for the composite robot,
for which there exists a solution in the open free C-space of the composite robot (That is, one
without robot-robot and robot-obstacle contacts). Then, within a �nite amount of time, the
probabilistic single-robot method will produce a graph G such that a ~G-discretized path solving
the problem exists, where ~G = G� fs1; : : : ; sn; g1; : : : ; gng.

Theorem 5 states that, given an arbitrary solvable problem for the composite robot, the
probabilistic single-robot method will, within a �nite amount of time, construct a graph G
with which the problem can be solved, provided that we have means for �nding G-discretized
paths.

6.2 The multi-robot method

The question now is, given a simple roadmap G = (V;E) for a robot A, how to compute
G-discretized paths for the composite robot (A1; : : : ;An) (with all Ai identical to A). For
this we introduce the notion of super-graphs. We say an edge e 2 E is blocked by a node
x 2 V if A(e) \ A(x) 6= ;.

24

c

a

b

d

G :
SG :

ab ac bc

ad bd

ba ca cb

da db

Figure 10: At the left we see a simple roadmap G for the shown rectangular robot A (shown
in white, placed at the graph nodes). We assume here that A is a translational robot, and
the areas swept by the local paths corresponding to the edges of G are indicated in light grey.
At the right, we see the G-induced supergraph SG for n = 2. It consists of two separate
connected components.

De�nition 5 Given a simple roadmap G = (V;E), the G-induced supergraph SG = (VS; ES)
is de�ned as follows:

� (x1; : : : ; xn) 2 V
n is a node of SG i�

i 6= j) A(xi) \ A(xj) = ;. We refer to the nodes of SG as super-nodes. Given a
super-node X = (x1; : : : ; xn), we refer to the xi's as X 's underlying simple nodes.

� Two super-nodes X = (x1; : : : ; xn) and Y = (y1; : : : ; yn) are connected by an edge of
SG if and only if for exactly one i 2 f1; : : : ; ng xi 6= yi, and xi is connected to yi by an
edge in G which is not blocked by an xj, with j 6= i. We refer to the edges of SG as
super-edges.

So each node of SG corresponds to a feasible placement of the n simple robots at nodes of
G, and each edge of SG corresponds to a feasible motion of one simple robots along an edge
of G. See Figure 10 for an example of a (simple) G-induced supergraph. Any path in the
G-induced supergraph describes a simple G-discretized path (for the composite robot), and
vice-versa. Hence, the problem of �nding G-discretized paths for our composite robot reduces
to graph searches in SG.

The size of a G-induced super-graph, as de�ned above, is exponential in n (the number
of robots). However, the entire data-structure does not have to be stored explicitly. Given
a particular super-node X , its neighbors in SG can be retrieved in constant time provided
that, for each (x; e) 2 V � E, we know whether A(x) intersects A(e). This asks for a
data-structure of quadratic size (in the size of G) which for each node-edge pair (x; e) stores
whether A(x)\A(e) = ;. Using optimized intersection routines, such a data-structure, which
we refer to as the G-intersection map, can be computed and updated quite e�ciently. Hence,
for performing graph searches in SG, we need only to compute and store the set VS of super-
nodes. If however n is large, then the required amount of memory can still be very (too)
large. Such cases ask for reducing the number of super-nodes. For techniques achieving this
we refer to [32].

Our multi-robot approach for solving a composite problem ((s1; : : : ; sn); (g1; : : : ; gn)) now
consists of the following steps:

25

1. Compute a simple roadmap G of su�cient density using the probabilistic single robot
approach (allow for cycles).

2. Add s1; : : : ; sn and g1; : : : ; gn toG (together with edges connecting them to other nodes).

3. For each node v and each edge e, compute and store whether A(v)\A(e) = ; (That is,
compute the G-intersection map).

4. Construct the supergraph SG as described above, and store it in a partially implicit
form.

5. Find the shortest path in SG between node (s1; : : : ; sn) and node (g1; : : : ; gn).

6. Transform this path into a feasible path in the con�guration space of the composite
robot, using the local planner for A.

7. Smooth the (maximal) segments of the composite path where only one robot moves.

8. Combine consecutive motions of di�erent simple robots into simultaneous ones, as far
as this is possible.

The last two steps of the algorithm require some explanation. In step (7) we identify max-
imal segments of the (composite) path where just one (simple) robot moves. Each such
segment can be smoothed with the use of standard single-robot smoothing techniques, after
the stationary robots have (temporarily) been added to the set of obstacles. Typically, this
technique signi�cantly reduces the length of the composite path. However, it does not allow
for simultaneous motions of the simple robots. In Step (8) we heuristically identify segments
in the composite path where the consecutive robot-motions can be replaced by simultaneous
ones, without introducing mutual robot collisions. This step again reduces the length of the
composite path.

6.3 Application to multiple carlike robots and experimental results

The described method is very general. The only robot-speci�c components are, as in the
single robot method, the local planner and a (induced) metric. We have implemented a
multi-robot motion planner for carlike robots, based on the super-graph concept as described
in the previous section. In this implementation, we have interleaved the construction of the
simple roadmap and that of the super-graph (Steps 1,3, and 4). That is, whenever a simple
node is added to G, we immediately extend the super-graph SG correspondingly. In this way
we obtain a method that is truly probabilistically complete; if it runs long enough then any
problem which is solvable (in the open free C-space) will be solved. The simple roadmaps are
computed using the method as described in Section 2, with, as stated before, the di�erence
that we also add edges which create cycles. So, we try to connect to all nodes within distance
maxdist, with respect to the RTR metric.

We have done experiments on a Silicon Graphics Indigo2 workstation rated with 96.5
SPECfp92 and 90.4 SPECint92. We present some results for 2 scenes.

See Figure 11 for Scene 1. It consists of a narrow \H-shaped" corridor, and there are three
rectangular carlike robots present. The problem in the scene is that, if one robot is to change
its position, the others often have to make large detours. A decoupled planning method will
not solve such problems.

26

Figure 11: Scene 1. Three carlike robots in a narrow corridor. The white robot has to swap
places with the dark robot.

Within 2 seconds a super-graph was obtained which solved most problems in this scene,
among which the shown \swapping-problem" (Figure 11). This super-graph contained about
20.000 super-nodes. The computation of a shortest path in SG took about 1 second, as did
the smoothing of the path.

Scene 2 (Figure 12), which also involves 3 carlike robots, required larger super-graphs to
be constructed. This is due to the fact that, in comparison with the previous scene, the free
space is quite large, and, hence, a larger number of simple nodes (i.e., nodes of the simple
roadmap) are required to obtain a su�cient \covering". The problem shown required about 4
seconds for the construction of a suitable super-graph (which contained about 150.000 nodes),
and another 5 seconds for the shortest-path search in the super-graph. Again, smoothing took
about 1 second.

7 Conclusions

A general probabilistic technique for path planning has been described in this chapter. It
consists of two phases. In the learning phase a probabilistic roadmap is incrementally con-
structed, which can subsequently, in the query phase, be used for solving individual motion
planning problems in the given scene. It is a fast and
exible method. In order to apply it to
some particular robot type, all one needs to de�ne (and implement) is a local method which
computes paths feasible for this robot type, and some (induced) metric. Furthermore, proper
choice of the local method guarantees probabilistic completeness. Numerous extensions of
the approach are possible. One such extension has been described in this chapter, dealing
with the multi-robot path planning problem. Other possibilities include, for example, path
planning in partially unknown environments, path planning in dynamic environments (e.g.,
amidst moving obstacles), and path planning in the presence of movable obstacles.

References

[1] J. M. Ahuactzin, E.-G. Talbi, P. Bessiere, and E. Mazer. Using genetic algorithms for

27

Figure 12: Scene 2. Three carlike robots in a workspace with wide and narrow areas.

robot motion planning. In 10th Europ. Conf. Arti�c. Intell., pages 671{675, London,
England, 1992. John Wiley and Sons, Ltd.

[2] J. Barraquand and J.-C. Latombe. Robot motion planning: A distributed representation
approach. Internat. J. Robot. Res., 10:628{649, 1991.

[3] J. Barraquand and J.-C. Latombe. Nonholonomic multibody mobile robots: Control-
lability and motion planning in the presence of obstacles. Algorithmica, 10:121{155,
1993.

[4] M. Erdmann and T. Lozano-Per�ez. On multiple moving objects. Technical Report 883,
MIT, Massachusets, USA, 1986.

[5] B. Faverjon and P. Tournassoud. A practical approach to motion planning for manipu-
lators with many degrees of freedom. In Proc. 5th Intern. Symp. on Robotics Research,
pages 65{73, 1990.

[6] Th. Horsch, F. Schwarz, and H. Tolle. Motion planning for many degrees of freedom -
random re
ections at c-space obstacles. In Proc. IEEE Internat. Conf. on Robotics and
Automation, San Diego, USA, 1994.

[7] Y. Hwang and N. Ahuja. Gross motion planning|a survey. ACM Comput. Surv.,
24(3):219{291, 1992.

[8] B. Langlois J. Barraquand and J.-C. Latombe. Numerical potential �eld techniques for
robot path planning. IEEE Trans. Syst. Man Cybern., 22:224{241, 1992.

[9] P. Jacobs, J.-P. Laumond, and M. Ta��x. A complete iterative motion planner for a
car-like robot. Journees Geometrie Algorithmique, 1990.

[10] L. Kavraki and J.-C. Latombe. Randomized preprocessing of con�guration space for fast
path planning. Technical report, San Diego, USA, 1994.

28

[11] L. Kavraki, J-C. Latombe, R. Motwani, and P. Raghavan. Randomized query process-
ing in robot motion planning. Technical report, Dept. Comput. Sci., Stanford Univ.,
Stanford, CA, USA, December 1995.

[12] L. Kavraki, P. �Svestka, J.-C. Latombe, and M. Overmars. Probabilistic roadmaps for
path planning in high dimensional con�guration spaces. To appear in IEEE Trans. Robot.
Autom., 1995.

[13] Y. Koga, K. Kondo, J. Ku�ner, and J.-C. Latombe. Planning motions with intentions.
In Proc. of SIGGRAPH'94, 1994.

[14] K. Kondo. Motion planning with six degrees of freedom by multistrategic bidirec-
tional heuristic free-space enumeration. IEEE Transactions on Robotics and Automation,
7(3):267{277, 1991.

[15] P.L. Kociemba L. Graux, P. Millies and B. Langlois. Integration of a path generation
algorithm into o�-line programming of airbus panels. Technical report, 1992.

[16] F. Lamiraux and J.P. Laumond. On the expected complexity of random path planning.
Technical Report 95087, LAAS, Toulouse, France, March 1995.

[17] J.-C. Latombe. A fast path planner for a car-like indoor mobile robot. In Proc. 9th Nat.
Conf. Arti�c. Intell., pages 659{665, 1991.

[18] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, USA,
1991.

[19] J.-P. Laumond, M. Ta��x, and P. Jacobs. A motion planner for car-like robots based on
a mixed global/local approach. In IEEE IROS, July 1990.

[20] Jean-Paul Laumond, Paul E. Jacobs, Michel Ta��x, and Richard M. Murray. A motion
planner for nonholonomic mobile robots. IEEE Trans. Robot. Autom., 10(5), October
1994.

[21] M. Overmars. A random approach to motion planning. Technical Report RUU-CS-92-32,
Dept. Comput. Sci., Utrecht Univ., Utrecht, the Netherlands, October 1992.

[22] M. Overmars and P. �Svestka. A probabilistic learning approach to motion planning. In
Proc. The First Workshop on the Algorithmic Foundations of Robotics, pages 19{37. A.
K. Peters, Boston, MA, 1994.

[23] J.A. Reeds and R.A. Shepp. Optimal paths for a car that goes both forward and back-
wards. Paci�c Journal of Mathematics, 145(2):367{393, 1990.

[24] J. H. Reif and H. Wang. Social potential �elds: A distributed behavioral control for
automonous robots. In Proc. The First Workshop on the Algorithmic Foundations of
Robotics, pages 331{345. A. K. Peters, Boston, MA, 1994.

[25] S. Sekhavat and J.P. Laumond. Topological property of nonholonomic motion planning
methods for chained form systems. Technical report, LAAS/CNRS, Toulouse, France,
1995, to appear.

29

[26] S. Sekhavat, P. �Svestka, J.-P. Laumond, and M.H. Overmars. On two-level path planning
for tractor-trailer robots using a �ctive system. Technical report, Dept. Comput. Sci.,
Utrecht Univ., Utrecht, the Netherlands, July 1995, to appear.

[27] P. Sou�eres and J.P. Laumond. Shortest paths synthesis for a car-like robot. Technical
report, LAAS/CNRS, Toulouse, France, September 1992.

[28] H.J. Sussman. Lie brackets, real analyticity and geometric control. In R.W. Brock-
ett, R.S. Millman, and H.J. Sussman, editors, Di�erential Geometric Control Theory.
Birkhauser, 1983.

[29] H.J. Sussman. A general theorem on local controllability. SIAM Journal on Control and
Optimization, 25(1):158{194, January 1987.

[30] P. �Svestka. A probabilistic approach to motion planning for car-like robots. Technical
Report RUU-CS-93-18, Dept. Comput. Sci., Utrecht Univ., Utrecht, the Netherlands,
April 1993.

[31] P. �Svestka and M. Overmars. Motion planning for car-like robots using a probabilistic
learning approach. Technical Report RUU-CS-94-33, Dept. Comput. Sci., Utrecht Univ.,
Utrecht, the Netherlands, May 1994.

[32] P. �Svestka and M.H. Overmars. Coordinated motion planning for multiple carlike robots
using probabilistic roadmaps. In Proc. IEEE Internat. Conf. on Robotics and Automation
(to appear), Nagoya, Japan, 1995.

[33] P. �Svestka and J. Vleugels. Exact motion planning for tractor-trailer robots. In Proc.
IEEE Internat. Conf. on Robotics and Automation (to appear), Nagoya, Japan, 1995.

[34] Arnaud Vandame. Plani�cation de tâches de manipulations par m�ethodes de recherches
al�eatoires. master thesis, LAAS, Toulouse, France, June 1994.

30

