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Abstract. The three-term Lanczos process for a symmetric matrix leads to bases for Krylov
subspaces of increasing dimension. The Lanczos basis, together with the recurrence coefficients,
can be used for the solution of symmetric indefinite linear systems, by solving a reduced system
in one way or another. This leads to well-known methods: MINRES (minimal residual), GMRES
(generalized minimal residual), and SYMMLQ (symmetric LQ). We will discuss in what way and to
what extent these approaches differ in their sensitivity to rounding errors.

In our analysis we will assume that the Lanczos basis is generated in exactly the same way for
the different methods, and we will not consider the errors in the Lanczos process itself. We will show
that the method of solution may lead, under certain circumstances, to large additional errors, which
are not corrected by continuing the iteration process.

Our findings are supported and illustrated by numerical examples.
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1. Introduction. We consider iterative methods for the construction of approx-
imations to the solution of a linear system Ax = b, where A is supposed to be a
real symmetric n by n matrix. Without loss of generality, we assume x0 = 0. Let
rk = b−Axk (in particular, r0 = b) and

Kk(A;b) ≡ Span{b,Ab, . . . ,Ak−1b},

the k-dimensional Krylov subspace. The methods to be analyzed build the iterates
xk such that

1. xk ∈ Kk(A;b) and ‖b−Axk‖2 = min (GMRES, MINRES),
2. xk ∈ AKk(A;b) and ‖A−1b− xk‖2 = min (SYMMLQ).

With the standard three-term Lanczos process, we generate an orthonormal basis
v1, . . . ,vk for Kk(A;b), with v1 ≡ b/‖b‖2 . The three-term Lanczos process can be
recast in matrix formulation as

AVk = Vk+1T k,(1)

in which Vj is defined as the n by j matrix with columns v1, . . . ,vj , and T k is a k+ 1
by k tridiagonal matrix.

Paige [9] has shown that in finite precision arithmetic, the Lanczos process can
be implemented so that the computed Vk+1 and T k satisfy

AVk = Vk+1T k + Fk,(2)
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with, under mild conditions for k,

‖Fk‖2 ≤ 2
√
k (7‖A‖2 +m1‖ |A| ‖2)u

(u is the machine precision, and m1 denotes the maximum number of nonzeros in any
row of A). Since ‖ |A| ‖2 ≤ √

m1 ‖A‖2 (see Lemma A.1), we obtain the convenient
expression

‖Fk‖2 ≤ 2
√
k (7 +m1

√
m1 ) ‖A‖2 u.(3)

Popular Krylov subspace methods for symmetric linear systems can be derived
with formula (1) as a starting point: MINRES, GMRES (adapted to symmetric ma-
trices; see below), and SYMMLQ. The matrix T k can be interpreted as the restriction
of A with respect to the Krylov subspace, and the main idea behind these Krylov solu-
tion methods is that the given system Ax = b is replaced by a smaller system with T k
over the Krylov subspace. This reduced system is solved—implicitly or explicitly—in
a convenient way and the solution is transformed with Vk to a solution in the original
n-dimensional space. The main computational differences between the methods are
due to a different way of solution of the reduced system and to differences in the back
transformation to an approximate solution of the original system. We will describe
these differences in relevant detail in coming sections.

Of course, these methods have been derived assuming exact arithmetic; for in-
stance, the generating formulas are all based on an exact orthogonal basis for the
Krylov subspace. In numerical reality, however, we have to compute this basis, as
well as all other quantities in the methods, and then it is of importance to know
how the generating formulas behave in finite precision arithmetic. The errors in the
underlying Lanczos process have been analyzed by Paige [9, 10]. It has been proven
by Greenbaum and Strakoš [7] that rounding errors in the Lanczos process may have
a delaying effect on the convergence of iterative solvers but do not prevent eventual
convergence in general. Usually, a rigorous error analysis is on a worst case scenario,
and as a consequence, the error bounds cannot very well be used to explain differences
between these methods, as observed in practical situations.

In this paper, we propose a different way of analyzing these methods, different in
the way that we do not attempt to derive sharper upper bounds, but that we try to
derive upper bounds for relevant differences between these processes in finite precision
arithmetic. This will not help us to understand why any of these methods converges
in finite precision, but it will give us some insight in answering practical questions
such as the following.

• When and why is MINRES less accurate than SYMMLQ? This question was
already posed in the original publication [11], but the answer in [11, p. 625] is largely
speculative.

• Is MINRES suspect for ill-conditioned systems, because of the minimal residual
approach (see [11, p. 619])? Hints are given for the explanation of the observation
that MINRES may be more inaccurate than SYMMLQ [11, p. 625]. We will further
substantiate this. In [2, p. 43] an explicit relation is suggested between MINRES
and working with A2, and it is argued that its sensitivity to rounding errors of the
solution depends on κ2(A)2. (It is even stated: ‘the squared condition number of A2’,
implying κ2(A

2)2 = κ2(A)4, which seems to be an unlucky formulation.)
• Why and when does SYMMLQ converge slower than, for instance, MINRES or

GMRES?
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Choose x0

x = x0, r = b−Ax, ρ=‖r‖, v = r/ρ

β=0, β̃=0, c=−1, s=0

vold = 0, w = 0, ˜̃w = v

while |ρ| > tol do

ṽ← Av − β vold

α← v∗ ṽ, ṽ← ṽ − αv

β ← ‖ṽ‖, vold ← v, v← ṽ/β

`1←s α− c β̃, `2←s β

α̃←−s β̃ − c α, β̃←c β

`0←
√

α̃2 + β2, c← α̃/`0, s←β/`0

w̃← ˜̃w − `1 w, ˜̃w←v − `2 w

w←w̃/`0

x← x + (ρ c)w, ρ←s ρ

end while

Fig. 1. The MINRES algorithm.

• Why does MINRES sometimes lead to rather large residuals, whereas the error
in the approximation is significantly smaller? See, for instance, observations on this
made in [11, p. 626]. Most important, understanding the differences between these
methods will help us in making a choice.

We will now briefly characterize the different methods in our investigation.

1. MINRES (see [11]): Determine xk = Vkyk, yk ∈ R
k, such that ‖b−Axk‖2

is minimal. This minimization leads to a small system with T k, and the
tridiagonal structure of T k is exploited to get a short recurrence relation for
xk. The advantage of this is that only three vectors from the Krylov subspace
have to be saved (in fact, MINRES works with transformed basis vectors; this
will be explained in section 2.3). For the implementation of MINRES that
we have used, see Figure 1.

2. GMRES (see [13]): This method also minimizes, for yk ∈ R
k, the residual

‖b−Axk‖2. GMRES was designed for unsymmetric matrices for which the or-
thogonalization of the Krylov basis is done with Arnoldi’s method. This leads
to a small upper Hessenberg system that has to be solved. However, when
A is symmetric, then, in exact arithmetic, the Arnoldi method is equivalent
to the Lanczos method (see also [6, p. 41]). Although GMRES is commonly
presented with an Arnoldi basis, there are various implementations of it that
differ in finite precision, for instance, with modified Gram–Schmidt, classical
Gram–Schmidt, Householder, and other variants. We view Lanczos as one
way to obtain an orthogonal basis, and therefore, we stick to the name GM-
RES. However, in order to stress the fact that our version of GMRES relies
on Lanczos, we will use the notation GMRES∗.

Due to the way of solution in GMRES∗ (and in GMRES), all the basis
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Choose x0

x = x0, r = b−Ax, ρ=‖r‖, v = r/ρ

β=0, β̃=0, c=−1, s=0

vold = 0, V = [ ], z=[ ], k=0

while ρ > tol do

V← [V , v ], k ← k + 1

ṽ← Av − β vold

α← v∗ ṽ, ṽ← ṽ − αv

β ← ‖ṽ‖, vold ← v, v← ṽ/β

`1 ← s α− c β̃, `2 ← s β

α̃← −s β̃ − c α, β̃ ← c β

`0 ←
√

α̃2 + β2, c← α̃/`0, s← β/`0

if k = 1

~̀= [ ], R = [ `0 ]

else

R←
[
R
~0

]
, ~̀← [ ~̀ , `1 , `0 ]

R← [R , ~̀T ], ~̀← [~0 , `2 ]

end if

z ← [ z T , cρ ]T , ρ← s ρ

end while

x = x + V(R−1z)

Choose x0

x = x0, r = b−Ax, ρ=‖r‖, v = r/ρ

β=0, β̃=0, c=−1, s=0, κ = ρ

vold = 0, w = v, g=0, ˜̃g=ρ

while κ > tol do

ṽ← Av − β vold

α← v∗ ṽ, ṽ← ṽ − αv

β ← ‖ṽ‖, vold ← v, v← ṽ/β

`1←s α− c β̃, `2←s β

α̃←−s β̃ − c α, β̃←c β

`0←
√

α̃2 + β2, c← α̃/`0, s←β/`0

g̃←˜̃g − `1 g,
˜̃g←−`2 g, g← g̃/`0

x← x + (g c)w + (g s)v

w← sw − cv, κ←
√

g̃2 + ˜̃g2

end while

Fig. 2. The GMRES∗ algorithm. The vec-
tor ~0 for the expansion of the upper triangular
matrix R is a row vector of zeros of appropriate
size (different size at different occurrences).

Fig. 3. The SYMMLQ algorithm.

vectors vj have to be stored. For our implementation of GMRES∗, see Fig-
ure 2.

3. SYMMLQ (see [11]): Determine xk = AVkyk, yk ∈ R
k, such that the error

x−xk has minimal Euclidean length. It may come as a surprise that ‖x−xk‖2

can be minimized without knowing x, but this can be accomplished by re-
stricting the choice of xk to AKk(A;b). Conjugate gradient approximations
can, if they exist, be computed with little effort from the SYMMLQ infor-
mation. In the SYMMLQ implementation suggested in [11] this is used to
terminate iterations either at a SYMMLQ iterate or a conjugate gradient it-
erate, depending on which one is best. For the implementation of SYMMLQ
that we have used, see Figure 3.

Note that these methods can be carried out with exactly the same basis vectors
vj and tridiagonal matrices T j .

Notations. Quantities associated with n dimensional spaces will be represented
in boldface, like A and vj . Vectors and matrices on low dimensional subspaces are
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denoted in normal mode: T , y. Constants will be denoted by lowercase Greek symbols,
with the exception that we will use u to denote the relative machine precision. The
absolute value of a matrix refers to elementwise absolute values, that is, |A| = (|aij |)
for A = (aij).

Most of our bounds on perturbations in the solutions at the kth iteration step will
be expressed as bounds for corresponding perturbations to the residual in the kth step,
relative to the norm of an initial residual. Since all these iteration methods construct
their search spaces from residual vector information (that is, they all start with r0 =
b), and since we make at least errors in the order of u ‖b‖2 in the computation of
the residuals, we may not expect perturbations of order less than uκ2(A)‖b‖2 in
the iteratively computed solutions. So, our bounds can only be expected to show
up in the computed residuals, if the errors are larger than the error induced by the
computation of the residuals itself.

2. Differences in round-off errors for MINRES and GMRES∗.

2.1. The basic formulas for GMRES∗ and MINRES in exact arithmetic.
We will first describe the generic formulas for the iterative methods MINRES and
GMRES∗, and we will assume exact arithmetic in the derivation of these formulas.

The aim is to minimize ‖b−Ax‖2 over the Krylov subspace, and since

‖b−Axk‖2 = ‖b−AVk yk‖2

= ‖b−Vk+1 T k yk‖2

= ‖T k yk − ‖b‖2 e1‖2,(4)

we see that a minimizer yk must be the linear least squares solution of the k + 1 by
k overdetermined system

T k yk = ‖b‖2e1.

This system is solved with Givens rotations, which leads to an upper triangular re-
duction of T k,

T k = Q
k
Rk,(5)

in which Rk is k by k upper triangular with bandwidth 3 and Q
k

is a k + 1 by k
matrix with orthonormal columns. Using (5), yk can be solved from

Rk yk = zk ≡ ‖b‖2 Q
T

k
e1,

and since xk = Vkyk, we obtain

xk = VkR
−1
k QT

k
‖b‖2e1 = VkR

−1
k zk.(6)

The GMRES method, proposed for unsymmetric A in [13], can be characterized
by the specific order of computation in the above derivation, indicated by adding
parentheses:

xk = Vk(R
−1
k QT

k
‖b‖2e1) = Vk(R

−1
k zk).(7)

When A is symmetric, then Arnoldi’s method is equivalent to Lanczos’s method, so
that (7) describes GMRES for symmetric A (further referred to as GMRES∗). The
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well-known disadvantage of this approach is that we have to store all columns of Vk
for the computation of xk.

MINRES follows essentially the same approach as GMRES for the minimization
of the residual, but it exploits the banded structure of Rk in order to get short
recurrences for xk and in order to save on memory storage.

Indeed, the computations in the generating formula (6) can be grouped as

xk =
(
VkR

−1
k

)
zk ≡ Wk zk.(8)

For the computation of Wk = VkR
−1
k , it is easy to see that the last column of Wk is

obtained from the last two columns of Wk−1 and vk. This makes it possible to update
xk−1 = Wk−1 zk−1 to xk with a short recurrence, since zk follows from the kth Givens
rotation applied to the vector (z T

k−1, 0)T . This interpretation leads to MINRES.
We see that MINRES and GMRES∗ both use Vk, Rk, T k, Qk

, and zk for the
computation of xk. Of course, we are not forced to compute these quantities in
exactly the same way for the two methods, but there is no reason to compute them
differently. Therefore, we will compare implementations of GMRES∗ and MINRES
that are based on exactly the same quantities in floating point finite arithmetic.

From now on we will study in what way MINRES and GMRES∗ differ in finite
precision arithmetic, given exactly the same set Vk, Rk, T k, Qk

, and zk (all computed
in finite precision, too) for the two different methods. Hence, the differences in finite
precision between GMRES∗ and MINRES are only caused by a different order of
computation of the formula xk = VkR

−1
k zk, namely,

for GMRES∗: xk = Vk
(
R−1
k zk

)
,(9)

for MINRES: xk =
(
VkR

−1
k

)
zk.(10)

In finite precision, the relation (5) will not be satisfied exactly. Instead, we have
that [8, Theorem 18.4]

T k = Q
k
Rk +Gk, where ‖Gk‖F ≤ c k2 u ‖T k‖F +O(u2),(11)

with c a modest constant. The matrix Q
k

is orthogonal; it is the product of the exact
Givens rotations involved in the elimination of subdiagonal elements in the actually
computed reductions of T k.

2.2. Error analysis for GMRES∗. In order to understand the difference be-
tween GMRES∗ and MINRES, we will study in this section the computational errors
in Vk

(
R−1
k zk

)
, with respect to the exactly evaluated VkR

−1
k zk (given the computed

Vk, Rk, and zk). We will indicate actual computation in floating point finite precision
arithmetic by fl, and the result will be denoted by a .̂ Then, according to [4, p. 89],
in floating point arithmetic the computed solution ŷk = fl(R−1

k zk) satisfies

(Rk + ∆R)ŷk = zk, with |∆R| ≤ 3u |Rk|+O(u2).(12)

This implies that ŷk = (I +R−1
k ∆R)−1R−1

k zk, so that, apart from second order terms
in u, the error ∆1 in the computation of yk is

∆1 ≡ ŷk − yk = −R−1
k ∆RR

−1
k zk.

Here yk = R−1
k zk: yk is the exact value based on the computed Rk and zk. Then we

also make errors in the computation of xk, that is, we compute x̂k = fl(Vkŷk). With
the error bounds for the matrix vector product [8, p. 76], we obtain

x̂k = Vkŷk + ∆2, with |∆2| ≤ k u |Vk| |yk|+O(u2).(13)
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Hence, the error ∆xk = x̂k − xk (where xk = VkR
−1
k zk), which can be attributed to

the evaluation of the generating formula (9) for GMRES∗, has two components:

∆xk = Vk∆1 + ∆2.(14)

This error leads to a contribution ∆rk to the residual, that is, ∆rk is that part of rk
that can be attributed to errors in the evaluation of (9) (ignoring O(u2) terms):

∆rk ≡ r̂k − rk = −A∆xk
= −AVk∆1 −A∆2r

= AVkR
−1
k ∆RR

−1
k zk −A∆2

= Vk+1T kR
−1
k ∆RR

−1
k zk −A∆2

= Vk+1Qk
∆RR

−1
k zk −A∆2.

(15)

Note that in finite precision we have that AVk = Vk+1T k + Fk, and that, because
of (3), the term Fk leads to an additional contribution of O(u2) in ∆rk. This is also
the case in forthcoming situations where we replace AVk by Vk+1T k in the derivation

of upper bounds for error contributions. In a similar way, the error term GkR
−1
k in

the formula for T kR
−1
k (see (11)) leads to a O(u2) term.

Using the bound in (12) and the bound for ∆2, we get (skipping higher order
terms in u)

‖∆rk‖2 ≤ ‖Vk+1Qk
‖2 3u ‖ |Rk| ‖2 ‖R−1

k zk‖2 + k u ‖A‖2 ‖ |Vk| ‖2‖yk‖2

≤ 3
√

3u ‖Vk+1‖2 ‖Rk‖2 ‖R−1
k zk‖2 + k

√
k u ‖A‖2 ‖R−1

k zk‖2

≤ 3
√

3u ‖Vk+1‖2 κ2(Rk) ‖b‖2 + k
√
k u ‖A‖2 ‖R−1

k ‖2 ‖b‖2.

Here we have used that ‖ |Rk| ‖2 ≤
√

3 ‖Rk‖2 (which follows from [15, Theorem 4.2];
see Lemma A.1 for details) and ‖ |Vk| ‖2 ≤ ‖Vk‖F ≤ √

k. The factor κ2 denotes the
condition number with respect to the Euclidean norm.

Note that we could bound ‖Vk+1‖2 by

‖Vk+1‖2 ≤
√
k + 1,

which is, because of the local orthogonality of the vj , a crude overestimate. According
to [12, p. 267 (bottom)], it may be more realistic to replace this factor

√
k + 1 by a

factor
√
m, where m denotes the maximum number of times that a Ritz value of Tk

has converged to any eigenvalue of A. When solving a linear system, this value of m
is usually small, e.g., 2 or 3.

We would like to replace Rk in the error bounds by something that can directly
be related to A. Therefore, we note that

R T

k Rk = T T

k T k,

ignoring errors in the order of u.
It has been shown in [5, 7] that the matrix T k that has been obtained in finite

precision arithmetic may be interpreted as the exact Lanczos matrix obtained from
a matrix Ã in which eigenvalues of A are replaced by multiplets. Each multiplet
contains eigenvalues that differ by O(u

1
4 ) from an original eigenvalue of A.1 With

1This order of difference is pessimistic; factors proportional to u
1
2 , or even u, are more likely but

have not been proved [6, section 4.4.2].
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Ṽk we denote the orthogonal matrix that generates T k, in exact arithmetic, from Ã.
Hence,

T T

k T k = Ṽ
T

kÃ
T

ÃṼk,

so that

σmin(R T

k Rk) ≥ σmin(Ã
T

Ã) and σmax(R
T

k Rk) ≤ σmax(Ã
T

Ã),

which implies (ignoring errors proportional to mild orders of u)

κ2(Rk) ≤ κ2(Ã) = κ2(A).(16)

This finally results in an upper bound for the error in the residual for GMRES∗,
which can be attributed to the evaluation of the generating formula (9):

‖∆rk‖2

‖b‖2
≤ (3

√
3 ‖Vk+1‖2 + k

√
k)uκ2(A).(17)

Note that, even if there were only rounding errors in the representation of A or
b, then we may expect a perturbation ∆x to A−1b that is (in norm) up to the order
of u ‖A−1‖2 ‖b‖2. This corresponds to an error −A∆x in the residual, for which the
norm is up to the order of uκ2(A)‖b‖2. In this sense the stability of GMRES∗ is
optimal.

Our analysis for GMRES∗ has been restricted to certain parts of the algorithm.
For an analysis of all errors in the original GMRES, including those in the Arnoldi
process and the Givens rotations, for unsymmetric A, see [3].

2.3. Error analysis for MINRES. For MINRES we have to study the errors
in the evaluation in finite precision of

(
VkR

−1
k

)
zk.

We will first analyze the floating point errors introduced by the computation of
the columns of Wk = VkR

−1
k . The jth row wj,: of Wk satisfies

wj,:Rk = vj,:,

which means that in floating point finite precision arithmetic we obtain the solution
ŵj,: of a perturbed system:

ŵj,:(Rk + ∆Rj
) = vj,:,(18)

with

|∆Rj | ≤ 3u |Rk|+O(u2).(19)

Note that the perturbation term ∆Rj depends on j. This gives ŵj,:Rk = vj,:−ŵj,:∆Rj ,
and when we combine the relations for j = 1, . . . , k, we obtain

Ŵk = (Vk + ∆W )R−1
k ,(20)

with

|∆W | ≤ 3u
∣∣∣Ŵk

∣∣∣ |Rk|+O(u2).(21)

We may replace Ŵk by Wk = VkR
−1
k in (21), because this leads only to O(u2) errors.
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We also expect errors in the evaluation of x̂k = fl((VkR
−1
k )zk) because of finite

precision errors in the multiplication of Ŵk with zk:

x̂k = Ŵkzk + ∆3, with |∆3| ≤ k u |Wk | |zk|+O(u2).(22)

The errors in Ŵk and the error term ∆3 describe the errors that are due to the
evaluation of the generating formula for MINRES. Added together, they lead to
∆xk ≡ x̂k − xk (with xk = VkR

−1
k zk) related to MINRES

∆xk = ∆WR−1
k zk + ∆3,(23)

and this leads to the following contribution to the MINRES residual:

∆rk ≡ r̂k − rk = −A∆xk = −A∆WR−1
k zk −A∆3.(24)

If we use the bound (21) for ∆W , and use for other quantities bounds similar to
those for GMRES, then we obtain (again, ignoring O(u2) terms)

‖∆rk‖2 ≤ 3u ‖A‖2 ‖ |VkR−1
k | ‖2 ‖ |Rk| ‖2 ‖R−1

k zk‖2 + k u ‖A‖2 ‖ |VkR−1
k | ‖2 ‖zk‖2

≤ 3
√

3u ‖A‖2 ‖Vk‖F ‖R−1
k ‖2 ‖Rk‖2 ‖R−1

k ‖2 ‖b‖2

+ k u ‖A‖2 ‖Vk‖F ‖R−1
k ‖2 ‖b‖2

≤ 3
√

3u ‖Vk‖F κ2(A)2 ‖b‖2 + k uκ2(A) ‖Vk‖F ‖b‖2.

Here we have also used the fact that

‖ |VkR−1
k | ‖2 ≤ ‖VkR−1

k ‖F ≤ ‖Vk‖F ‖R−1
k ‖2,(25)

and, with ‖Vk‖F ≤ √
k, the expression can be further bounded.

This results in the following upper bound for the error contribution in the residual
for MINRES, due to the computational errors in the generating formula (10):

‖∆rk‖2

‖b‖2
≤ 3

√
3k uκ2(A)2 + k

√
k uκ2(A).(26)

We see that the generating formula for MINRES leads to an upper bound for the
norm of the relative error in the residual that is proportional to the squared condition
number of A, whereas for GMRES∗ this led to an upper bound for the relative error
in norm proportional to the condition number only; see (17). This means that if we
plot the norms of the residuals for MINRES and GMRES∗, then the upper bounds
suggest that we may expect to see differences.

More specifically, they suggest that the difference between the norms of the com-
puted residuals for the two methods may be expected to be up to the order of the
square of the condition number. As soon as the norm of the computed residual of
GMRES∗ (involving all errors made in the process) gets below uκ2(A)2 ‖b‖2, then
this difference may be visible. Indeed, our experiments display a clear difference
between the residual norms for MINRES and GMRES∗, in the order of our upper
bounds.

2.4. Discussion. In Figure 4, we have plotted the residuals obtained for GMRES∗

and MINRES. Our analysis suggests that there may be a difference between both up
to the order of the square of the condition number times machine precision relative
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to ‖b‖2. Of course, the computed residuals reflect all errors made in both processes,
and if all these errors together lead to perturbations in the same order for MINRES
and GMRES∗, then we will not see much difference in the norms of the residuals.
However, as we see, all the errors in GMRES∗ lead to something proportional to the
condition number, and now the effect of the square of the condition number is clearly
visible in the error in the residual for MINRES.

Our analysis implies that one has to be careful with MINRES when solving linear
systems with an ill-conditioned matrix A, especially when eigenvector components in
the solution, corresponding to small eigenvalues, are important.

The residual norm reduction ‖rk‖2/‖b‖2 for the exact (but unknown) MINRES
residual can be expressed as the product ρk ≡ |s1 · . . . ·sk| of the sines sk of the Givens
rotations; see [13, Proposition 1]. (See also (57) and its subsequent discussion). This
is the last ((k + 1)th) coordinate of the vector that is obtained by applying the k
Givens rotations (used for the annihilation of the subdiagonal elements of T k) to
the vector e1 (of length k + 1). In GMRES the computed value ρ̂k, computed with
the ŝk, is often used for monitoring the reduction of the residual norm. In practical
computations, a residual norm is not often computed explicitly at each iteration step
as ‖b − Ax̂k‖2, with x̂k the kth floating point approximate solution, because this
would require an extra matrix-vector product.

In Figure 4, we have also plotted the computed residual reduction factors ρ̂k for
MINRES and GMRES∗, as dotted curves. We see that the ρ̂k are only close to the
actual residual reductions (the drawn curves) until where these stagnate: for MINRES
this happens at a level proportional to κ2(A)2u, and for GMRES∗ this happens at a
level proportional to κ2(A)u.

We do not know whether the ρ̂k are always close to the actual residual reduction
factors before the latter ones stagnate because of errors due to the evaluation of the
generating formulas; this might be not the case if there is a severe loss of orthogonality
among the columns of Vk in an earlier phase of the iteration history.

We have not considered the question of how close to orthogonal Vk+1 should be,
but we have seen that the generating formula (10) for MINRES may lead to errors that
are in norm proportional to κ2(A)2u. Because the ρ̂k cannot reflect computational
errors in the solution of the reduced system (in fact, the derivation of the ρk assumes
exact solution of the reduced system), we should expect at least a deviation by that
order of magnitude in ρ̂k with respect to ‖Ax̂k − b‖2/‖b‖2. This suggests that the
computed reduction factor may be very unreliable for ill-conditioned matrices A.

The situation for GMRES∗ is much better: the errors introduced by the evaluation
of the generating formula (9) have the same order of magnitude as the errors that we
should expect from a small relative perturbation (of order O(u)) of the given system.

2.5. Diagonal matrices. Numerical analysts often carry out experiments for
(unpreconditioned) iterative solvers for symmetric systems with diagonal matrices,
because, at least in exact arithmetic, the convergence behavior depends on the dis-
tribution of the eigenvalues and the structure of the matrix plays no role in Krylov
solvers. However, the behavior of these methods for diagonal systems may be quite
different in finite precision, as we will now show, and, in particular for MINRES,
experiments with diagonal matrices may give a too optimistic view on the behavior
of the method.

Rotating the matrix from diagonal to nondiagonal (i.e., A = QTDQ, with D
diagonal and Q orthogonal, instead of A = D) has hardly any influence on the errors
in the GMRES∗ residuals (no results shown here). This is not the case for MINRES:
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Fig. 4. MINRES (top) and GMRES∗ (bottom): solid line (—) log10 of ‖b − Ax̂k‖2/‖b‖2;
dotted line (· · ·) log10 of the estimated residual norm reduction ρk. The pictures show the results
for a positive definite system (the left pictures) and for an indefinite system (the right pictures).
For both examples κ2(A) = 3 · 108. To be more specific, at the left A = GDG′ with D diagonal,
D ≡ diag(10−8, 2 ·10−8, 2 : h : 3), h = 1/789, and G the Givens rotation in the (1, 30)-plane over an
angle of 45◦; at the right A = GDG′ with D diagonal D ≡ diag(−10−8, 10−8, 2 : h : 3), h = 1/389,
and G the same Givens rotation as for the left example; in both examples (and others to come) b is
the vector with all coordinates equal to 1, x0 = 0, and the relative machine precision u = 1.1 ·10−16.

experimental results (cf. Figure 5) indicate that the errors in the MINRES residuals for
diagonal matrices are of order uκ2(A), similar to GMRES∗. This can be understood
as follows.

If we neglect O(u2) terms, then, according to (18), the error, due to the inversion
of Rk, in the jth coordinate of the MINRES-xk, due to the evaluation of the generating
formula, is given by

(∆xk)j = (ŵj,: − wj,:)zk + (∆3)j = −vj,: R−1
k ∆RjR

−1
k zk + (∆3)j ,

where (∆3)j is the jth coordinate of ∆3 (see (22)).
When A is diagonal with (j, j)-entry λj , the error in the jth coordinate of the

MINRES residual is equal to (use (1) and (5))

(∆rk)j = λjvj,: R
−1
k ∆Rj

R−1
k zk − λj(∆3)j

= eT
j AVkR

−1
k ∆Rj

R−1
k zk − λj(∆3)j

= eT
j Vk+1Qk

∆Rj
R−1
k zk − λj(∆3)j .

(27)
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Fig. 5. MINRES: solid line (—) log10 of ‖b − Ax̂k‖2/‖b‖2; dotted line (· · ·) log10 of the

estimated residual norm reduction ρ̂k. The pictures show the results for a positive definite diagonal
system (the left picture) and for an indefinite diagonal system (the right picture). Except for the
Givens rotation, the matrices in these examples are equal to the matrices of the examples in Figure 4:
here G = I.

Therefore, in view of (19), and including the error term for the multiplication with

Ŵk (cf. (22)), we have for MINRES applied to a diagonal matrix

‖∆rk‖2

‖b‖2
≤ (3

√
3‖Vk+1‖2 + k

√
k)uκ2(A),

which is the same upper bound as for the errors in the GMRES∗ residuals in (17).
The perturbation matrix ∆Rj

depends on the row index j. Since, in general, ∆Rj

will be different for each coordinate j, (27) cannot be expected to be correct for non-
diagonal matrices. In fact, if A = QTdiag(λj)Q, with Q some orthogonal matrix,
then errors of order u ‖R−1

k ‖2 κ2(Rk) in the jth coordinate of xk can be transferred
by Q to an mth coordinate and may not be damped by a small value |λm|. More
precisely, if Γ is the maximum size of the off-diagonal elements of A that “couple”
small diagonal elements of A to large ones, then the error in the MINRES residual
will be of order Γu ‖R−1

k ‖2 κ2(R
−1
k ) ≤ Γu ‖A−1‖2 κ2(A). If Γ ≈ ‖A‖2, we recover

essentially the bound (26).

2.6. The errors in the approximations. In exact arithmetic we have that
‖xk‖2 = ‖VkR−1

k zk‖2 = ‖R−1
k zk‖2. We will in this section assume that, in finite pre-

cision, this also gives approximately the right order of magnitude for representations
of the solution

‖x̂k‖2 ≈ ‖xk‖2 = ‖yk‖2.

Then the errors (14) and (23), related to the evaluation of the generating formulas
(9) and (10), respectively, can be bounded by essentially the same upper bound:

‖∆xk‖2

‖x̂k‖2
. (3

√
3 + k

√
k)u ‖Vk‖2 κ2(Rk) ≤ (3

√
3k + k

√
k)uκ2(A).(28)

This may come as a surprise since the bound for the error contribution to the residual
for MINRES is proportional to κ2(A)2.
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Based upon our observations in numerical experiments, we think that this can
be explained as follows. The error in the GMRES∗ approximation has its relatively
largest components mainly in the direction of the ‘small’ eigenvectors of A. These
components are relatively reduced by the multiplication with A, and then have less
effect to the norm of the residual.

On the other hand, the errors in the MINRES approximation are more or less of
the same magnitude over the spectrum of eigenvalues of A. Multiplication with A
will make error components associated with larger eigenvalues more effective in the
residual.

We will support our viewpoint by a numerical example. The results in Figure 6
are obtained with a positive definite matrix with two tiny eigenvalues. For b we took
a random perturbation of Ay in the order of 0.01: b = Ay + p, ‖p‖2 ≤ 10−2. This
example mimics the situation where the right-hand-side vector is affected by errors
from measurements. The solution x of the equation Ax = b has huge components in
the direction of the two eigenvectors with smallest eigenvalue. In the other directions
x is equal to y plus a perturbation of less than one percent. The coordinates of the
vector y in our example form a parabola, which makes the effects more easily visible.

The convergence histories of GMRES∗ and of MINRES (not shown here) for this
example with x0 = 0 are comparable to the ones in the left pictures of Figure 4, but,
because of a higher condition number, the final stagnation of the residual norm in the
present example takes place on a higher level (≈ 3 · 10−8 for GMRES∗ and ≈ 100 for
MINRES).

Figure 6 shows the solution xk as computed at the 80th step of GMRES (top
pictures) and of MINRES (bottom pictures); the right pictures show the component of
xk orthogonal to the two eigenvectors with smallest eigenvalue, while the left pictures
show the complete xk. Note that ‖xk‖2 ≈ 107. The curve of the projected GMRES∗

solution (top right picture) is a slightly perturbed parabola indeed (the irregularities
are due to the perturbation p). The computational errors from the GMRES∗ process
are not visible in this picture: these errors are mainly in the direction of the two
‘small’ eigenvectors.

In contrast, the irregularities in the MINRES curve (bottom right picture) are
almost exclusively the effect of rounding errors in the MINRES process.

3. Error analysis for SYMMLQ. In SYMMLQ we minimize the norm of
x − xk, for xk = x0 + AVkyk, which means that yk is the solution of the normal
equations

V T

k ATAVkyk = V T

k AT (x− x0) = V T

k r0 = ‖r0‖2 e1.

This system can be further simplified by exploiting the Lanczos relations (1):

V T

k ATAVk = T T

k V T

k+1Vk+1T k = T T

k T k.

A stable way of solving this set of normal equations is based on an LQ decomposition
of T T

k , and this is equivalent to the transpose of the QR decomposition of T k (see
(5)), which is constructed for GMRES∗ and MINRES:

T T

k = R T

k Q
T

k
.

This leads to

T T

k T kyk = R T

k Rkyk = ‖r0‖2 e1,
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Fig. 6. The pictures show the solution x of Ax = b, computed with 80 steps of GMRES∗ (top
pictures) and of MINRES (bottom pictures). The ith coordinate of xk (along the vertical axis) is
plotted against i

n
(along the horizontal axis). A = Q∗DQ with D = diag(10−10, 2 · 10−10, 2 : h : 3),

h = 1/97 and Q unitary, Qij =

√
2

n+1
sin

i(n+1−j)
(n+1)π

, n = 100. b = Ay + p with yi = i
n

(1 − i
n

),

and p random, ‖p‖2 ≤ 0.01. The right pictures show the component of xk orthogonal to the two
eigenvectors with smallest eigenvalue, while the left pictures show the complete xk.

from which the basic generating formula for SYMMLQ is obtained:

xk = x0 + AVkR
−1
k R−T

k ‖r0‖2 e1

= x0 + Vk+1T kR
−1
k R−T

k ‖r0‖2 e1

= x0 + (Vk+1Qk
) (L−1

k ‖r0‖2 e1),(29)

with Lk ≡ R T

k . We will further assume that x0 = 0 and hence r0 = b. This gives the
following generating formula:

xk = (Vk+1Qk
) (L−1

k ‖b‖2 e1).(30)

The actual implementation of SYMMLQ [11] is based on an update procedure for
Vk+1Qk

, and on a three-term recurrence relation for gk ≡ ‖b‖2 L
−1
k e1.

The differences in finite precision between MINRES and GMRES∗ could be ana-
lyzed by studying the differences in the evaluation of the generating formula for these
methods (see (6)):

xk = VkR
−1
k QT

k
‖b‖2e1.(31)
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Note that, because of Lk = R T

k , the generating formulas for the three methods
contain in principle the same computed ingredients Vk+1, Qk

, Rk, and b. In fact, we
see no good reason for using differently computed values for each of the algorithms.

The methods MINRES and GMRES∗ have been characterized by a different or-
der of evaluation of essentially the same generating formula (see (9) and (10)). For
SYMMLQ we have a completely different generating formula which even in exact
arithmetic leads to completely different results. Observed differences in the results
for SYMMLQ, compared to MINRES and GMRES∗, can by no means be attributed
to computational errors. However, we have tried to make plausible that eventually
the norm of the residual for MINRES may be contaminated by a term proportional to
‖b‖2κ2(A)2u, which may lead to a stagnation of the residual norm at a significantly
higher level than for GMRES∗; see, for instance, Figure 4. Since SYMMLQ may be
considered as an alternative for MINRES (one reason is that it avoids storage of the
full Vk+1), it may be of interest to see whether computational errors in the generating
formula may have a similar polluting effect on the residual as for MINRES. Note that
even if we can answer this question, then this does not reveal all differences due to
rounding errors in MINRES and SYMMLQ. One reason could be that rounding errors
in Vk manifest themselves differently (because of the right multiplication with Q

k
),

although this does not seem very likely to us because of the (near) orthogonality of
Q
k
.
We postulate that the main factor, for ill-conditioned systems, in the upper bound

for the norm of the additional rounding errors in the residual for SYMMLQ, due to
the evaluation of the generating formula, comes from solving Lkgk = ‖b‖2e1 for gk.
In order to simplify our rather complicated analysis for SYMMLQ, we have chosen to
study only the effect of the errors introduced by this part of the formula.

The resulting error ∆xk is written as

∆xk = Vk+1 Qk
(ĝk − gk) with Lkgk = ‖b‖2 e1,(32)

where gk represents the exact solution and ĝk is the value obtained in finite preci-
sion arithmetic. We write gk/‖b‖2 = (γ1, . . . , γk)

T , and likewise the coordinates of
ĝk/‖b‖2 are denoted by γ̂j . These coordinates can be written as

γk = eT

k L
−1
k e1, γ̂k = eT

k (Lk + ∆L)−1e1, with |∆L| ≤ 3u |Lk|+O(u2).(33)

In order to simplify our formulas, we will omit the O(u2) terms in the further analysis.
For the analysis of the residual, we will be interested in the term AVk+1 Qk

. Using
the relation for the finite precision Lanczos process, we have (cf. (2))

AVk+1Qk
= Vk+2 T k+1Qk

+ Fk+1Qk
.

Since Tk+3 is symmetric, we have for its submatrices that

T k+1 = T T

k+2 I k+1
,

where I
k+1

is the k + 3 by k + 1 left block of the k + 3-dimensional identity matrix.

Moreover, for the LQ decomposition in finite precision, we have (cf. (11))

T T

k+2 = Lk+2Q
T

k+2
+GT

k+2.

The matrix Q
k+2

is upper Hessenberg. Hence, I
k+1

Q
k

consists of the first k columns

of Q
k+2

and orthogonality of Q
k+2

implies that

QT

k+2
I
k+1

Q
k

= I
k
.
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Hence, taking into account that Lk+2 = (`i,j) is lower tridiagonal (`i,j 6= 0 only if
i ≤ j ≤ i+ 2),

AVk+1Qk
= Vk+2 T k+1Qk

+ Fk+1Qk

= Vk+2Lk+2 I k + Vk+2G
T

k+2 I k+1
Q
k

+ Fk+1Qk

= VkLk + [vk+1,vk+2]Mk

[
eT

k−1

eT

k

]
+ F′k+1,(34)

where Mk is the right 2 by 2 lower block of Lk+2 I k,

Mk ≡
[
`k+1,k−1 `k+1,k

0 `k+2,k

]
,

and

F′k+1 ≡ Vk+2G
T

k+2 I k+1
Q
k

+ Fk+1Qk
.

Note that, on account of (3) and (11),

‖F′k+1‖2 ≤ c′ k2
√
k u ‖A‖2(35)

for some modest constant c′.
We will use that (Lk + ∆L)−1 = L−1

k − L−1
k ∆LL

−1
k (neglecting O(u2) terms;

cf. (33)). Then, from (34), we find for the residual r̂k corresponding to the computed
approximation x̂k = xk + ∆xk (see (32)),

r̂k ≡ b−Ax̂k = b−AVk+1Qk
(Lk + ∆L)−1‖b‖2 e1

= b−VkLkL
−1
k ‖b‖2e1 + VkLkL

−1
k ∆LL

−1
K ‖b‖2e1

−
(

[vk+1,vk+2]Mk

[
eT

k−1

eT

k

]
+ F′k+1

)
(Lk + ∆L)−1‖b‖2 e1

= Vk∆L‖b‖2L
−1
k e1 − ‖b‖2 [vk+1,vk+2] t̂k − F′k+1 (Lk + ∆L)−1‖b‖2 e1,(36)

where

t̂k ≡Mk

[
eT

k−1

eT

k

]
(Lk + ∆L)−1e1.(37)

For the process where the system Lkgk = ‖b‖2e1 is solved exactly (∆L = 0), we have

rk ≡ b−Axk = −‖b‖2 [vk+1,vk+2] tk − F′k+1L
−1
k ‖b‖2 e1,(38)

where

tk ≡Mk

[
eT

k−1

eT

k

]
L−1
k e1.

Neglecting order u2 terms (e.g., stemming from F′k+1∆L), we conclude that the
error in the SYMMLQ residual rk, due to the solution of Lkgk = ‖b‖2 e1 in finite
precision, can be written as

∆rk ≡ r̂k − rk = ‖b‖2Vk∆LL
−1
k e1 − ‖b‖2 [vk+1,vk+2] (t̂k − tk).(39)
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Fig. 7. SYMMLQ: solid line (—) log10 of ‖b − Ax̂k‖2/‖b‖2; dotted line (· · ·) log10 of the

estimated residual norm reduction ‖t̂k‖2. The pictures show the results for the positive definite
system (the left picture) and for the indefinite system (the right picture) of Figure 4. Both systems
have condition number 3 · 108.

To obtain a bound for norm of this error, note that (see (16))

‖Vk∆LL
−1
k e1‖2 ≤ 3u ‖Vk‖2 ‖ |Lk| ‖2 ‖Lk‖2 ≤ 3

√
3u ‖Vk‖2 κ2(Lk)

= 3
√

3u ‖Vk‖2 κ2(Rk) ≤ 3
√

3u ‖Vk‖2 κ2(A).
(40)

Since vk+1 and vk+2 are orthonormal up to machine precision, this leads to

‖∆rk‖2

‖b‖2
≤ 3

√
3 ‖Vk‖2 uκ2(A) + (1 + c′u)‖t̂k − tk‖2(41)

for some modest constant c′. A straightforward estimate is

‖t̂k − tk‖2 =

∥∥∥∥Mk

[
eT

k−1

eT

k

]
L−1
k ∆LL

−1
k e1

∥∥∥∥
2

≤ 3
√

3uκ2(Lk)
2 ≤ 3

√
3uκ2(A)2,(42)

which is much larger than the first term in (41). Experiments indicate that ‖t̂k− tk‖2

converges towards 0 (even below the value uκ2(A)). Below, we will explain why this
is to be expected (cf. (60)). Figure 7 illustrates that the upper bound in (41), with
‖t̂k − tk‖2 ≈ 0, is fairly sharp.

Accuracy. In exact arithmetic (where also Fk+1 = 0 and Gk+2 = 0), the norm
‖rk‖2 of the SYMMLQ residual is equal to ‖tk‖2 (as can be seen from (38)). There-
fore, the computed residual norm reduction ‖t̂k‖2 is usually used for monitoring the
convergence in a stopping criterion. In actual computations with SYMMLQ, no resid-
ual vectors are computed. To see how close ‖t̂k‖2 is to the reduction ‖r̂k‖2/‖b‖2 of
the norm of the actual residual, first note that rounding errors in the multiplication
in (37) by Mk and in (36) by [vk+1,vk+2] can be bounded by some modest mul-
tiple of uκ2(Lk).

2 These bounds will be neglected in the estimates below: since
κ2(Lk) ≤ κ2(A) (see (16)), they are much smaller than the bound on ‖F′k+1L

−1
k e1‖2

arising from (35). The rounding errors in vk+1 and vk+2 have a similar effect: these
vectors are orthonormal up to machine precision.

2Note the contrast in the effect of errors in the multiplication by Mk and in the solution of
Lkgk = e1 (cf. (42)).
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From (36), (35), and (40), neglecting relatively small terms, it follows that∣∣∣∣ ‖t̂k‖2 − ‖r̂k‖2

‖b‖2

∣∣∣∣ ≤ ‖Vk∆LL
−1
k e1‖2 + ‖F′k+1L

−1
k e1‖2 ≤ c′ k2 1

2 uκ2(A).(43)

Apparently, SYMMLQ is rather accurate since, for any method, errors in the
order uκ2(A) should be expected anyway.

Convergence. It is not clear yet whether the convergence of SYMMLQ is insen-
sitive to rounding errors in the assembly of xk (cf. (31)). This would follow from
(41) if both tk and t̂k would approach 0. It is unlikely that ‖tk‖2 will be (much)
larger than ‖t̂k‖2, that is, it is unlikely that the inexact process converges faster than
the process in exact arithmetic. Therefore, when it is observed that ‖t̂k‖2 is small
(of order uκ2(A)), it may be concluded that the speed of convergence has not been
affected seriously by rounding errors in the assembly of xk. In experiments, we see
that t̂k approaches zero if k increases.

For practical applications, assuming that ‖tk‖2 . ‖t̂k‖2, it is useful to know that
the computable value ‖t̂k‖2 informs us on the accuracy of the computed approximate
and on a possible loss of speed of convergence. However, it is of interest to know
in advance whether the computed residual reduction will decrease to 0. Moreover,
we would like to know whether ‖tk‖2 . ‖t̂k‖2. Of course, it is impossible to prove
that SYMMLQ will converge for any symmetric problem: one can easily construct
examples for which ‖rk‖2 will be of order 1 for any k < n. But, as we will analyze
in the next subsection, the interesting quantities can be bounded in terms of the
MINRES residual. That result will be used in order to show that the term ‖t̂k − tk‖2

will be relatively unimportant as soon as MINRES has converged to some degree.

3.1. A relation between SYMMLQ and MINRES residual norms. In
this subsection we will assume exact arithmetic (in particular, the underlying Lanczos
process is assumed to be exact, too). The residuals rMR

k and rME

k denote the residuals
of MINRES and SYMMLQ, respectively.

The norm of the residual b−Axb, with xb the best approximate of x in Kk(A;b),
i.e., ‖x−xb‖2 ≤ ‖x−y‖2 for all y ∈ Kk(A;b), can be bounded in terms of the norm
of the MINRES residual rMR

k :

‖b−Axb‖2

‖rMR

k ‖2
≤ κ2(A).(44)

This follows from the observation that rMR

k = b−AxMR

k , where xMR

k is from the same
subspace from which the best approximate xb has been selected, and furthermore,
that ‖b−Axb‖2 ≤ ‖A‖2 ‖x−xb‖2 and ‖x−xMR

k ‖2 ≤ ‖A−1‖2 ‖rMR

k ‖2. Unfortunately,
SYMMLQ selects its approximation xk from a different subspace, namely AKk(A;b).
This makes a comparison less straightforward.

The following lemma will be used for bounding the SYMMLQ error in terms of the
MINRES error. Its proof uses the fact that rMR

k connects Kk+1(A;b) and AKk(A;b),
that is, rMR

k ∈ Kk+1(A;b), rMR

k ⊥ AKk(A;b), and hence Kk+1(A;b) is spanned by
rMR

k and AKk(A;b).
Lemma 3.1. For each z ∈ Kk+1(A;b), we have

‖x− xME

k ‖2
2 ≤ ‖x− z‖2

2 + |αk|2 ‖rMR

k ‖2
2, where αk ≡ (x, rMR

k )

‖rMR

k ‖2
2

.(45)
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Proof. By construction xME

k minimizes ‖x−z‖2 over all z in the space AKk(A;b).
Hence x−xME

k ⊥ AKk(A;b). Since rMR

k ⊥ AKk(A;b), it follows that (xME

k , rMR

k ) = 0,
and therefore,

αk = (x− xME

k , rMR

k )/‖rMR

k ‖2
2 and x− xME

k − αkr
MR

k ⊥ rMR

k .(46)

Since x− xME

k ⊥ AKk(A;b) and rMR

k ⊥ AKk(A;b), (46) implies that

x− xME

k − αkr
MR

k ⊥ Kk+1(A;b).

By construction we have that xME

k − αkr
MR

k ∈ Kk+1(A;b) and, as a consequence,

‖x− xME

k − αkr
MR

k ‖2 ≤ ‖x− z‖2 for all z ∈ Kk+1(A;b).(47)

From Pythagoras’s theorem, with (46), we conclude that

‖x− xME

k ‖2
2 = ‖x− xME

k − αkr
MR

k ‖2
2 + |αk|2‖rMR

k ‖2
2,

and (45) follows by combining this result with (47).
Unfortunately, a combination of (45) with z = xMR

k and the obvious estimate
|αk| ‖rMR

k ‖2 ≤ ‖x − xME

k ‖2 from (46) does not lead to a useful result. An interesting
result follows from an upper bound for |αk| that can be obtained from a relation
between two consecutive MINRES residuals and a Lanczos basis vector. This result
is formulated in the next theorem.

Theorem 3.2.

‖rME

k ‖2 ≤ νk+1 κ2(A) ‖rMR

k ‖2 with νk ≡ k + 1
2
ln(k).(48)

Proof. We use the relation

rMR

k = s2rMR

k−1 + c2rCG

k ,(49)

where

s ≡ ‖rMR

k ‖2

‖rMR

k−1‖2
,(50)

and rCG

k is the kth conjugate gradient residual. The scalars s and c represent the
Givens transformation used in the kth step of MINRES. This relation is a special case
of the slightly more general relation between GMRES and FOM residuals, formulated
in [1, 16]. For symmetric A, GMRES is equivalent with MINRES, and FOM is
equivalent with CG.

Since rCG

k = ‖rCG

k ‖2vk+1 ⊥ rMR

k−1 ∈ Kk(A; r0), it follows that

rMR

k = s2rMR

k−1 + γvk+1,(51)

where γ = c2‖rCG

k ‖2.
Since γvk+1 ⊥ rMR

k−1 ∈ Kk(A; r0), it follows that ‖γvk+1‖2 ≤ ‖rMR

k ‖2. Moreover,
since rMR

k−1 ⊥ AKk−1(A; r0) and γvk+1 ⊥ Kk(A; r0), we have that rMR

k−1 ⊥ xME

k−1 and
γvk+1 ⊥ xMR

k . Therefore, with eME
j ≡ x− xME

j , relation (51) implies

|αk| ‖rMR

k ‖2 =

∣∣∣∣
(
x,

rMR

k

‖rMR

k ‖2

)∣∣∣∣ ≤ ‖rMR

k ‖2
2

‖rMR

k−1‖2
2

∣∣∣∣
(
x,

rMR

k−1

‖rMR

k ‖2

)∣∣∣∣+
∣∣∣∣
(
x,

γvk+1

‖rMR

k ‖2

)∣∣∣∣
=

‖rMR

k ‖2
2

‖rMR

k−1‖2
2

∣∣∣∣
(
x− xME

k−1,
rMR

k−1

‖rMR

k ‖2

)∣∣∣∣+
∣∣∣∣
(
x− xMR

k ,
γvk+1

‖rMR

k ‖2

)∣∣∣∣ ,
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and hence,

|αk| ≤ ‖eME

k ‖2

‖rMR

k−1‖2
+
‖x− xMR

k ‖2

‖rMR

k ‖2
.(52)

A combination of (52) and (45) with z = xMR

k+1 leads to

‖eME

k ‖2
2

‖rMR

k ‖2
2

≤ ‖x− xMR

k+1‖2
2

‖rMR

k ‖2
2

+

(‖eME

k−1‖2

‖rMR

k−1‖2
+
‖x− xMR

k ‖2

‖rMR

k ‖2

)2

.(53)

With

βk ≡ ‖eME

k ‖2

‖A−1‖2 ‖rMR

k ‖2

,

and using the minimal residual property ‖rMR

k+1‖2 ≤ ‖rMR

k ‖2, we obtain the following
recursive upper bound from (53):

β2
k ≤ 1 + (βk−1 + 1)2.

Now, a simple induction argument, using

β0 =
1

‖A−1‖2

‖eME
0 ‖2

‖rMR
0 ‖2

=
1

‖A−1‖2

‖x‖2

‖b‖2
≤ 1,

shows that βk ≤ νk+1, and the definition of βk implies

‖rME

k ‖2

‖rMR

k ‖2
≤ κ2(A)βk,(54)

which completes the proof.
For our analysis in section 3.2 of the additional errors in SYMMLQ, we also need

a slightly more general result, formulated in the next theorem.
Theorem 3.3. Let c = Ay for some y. Consider the best approximation yME

k of
y in AKk(A;b) and the yMR

k ∈ Kk(A;b) for which AyMR

k is the best approximation
of c in AKk(A;b).

Then, with νk as in (48), we have

‖c−AyME

k ‖2

‖rMR

k ‖2
≤ νk+1 κ2(A)µk, where µk ≡ sup

i≤k

‖c−AyMR
i ‖2

‖rMR
i ‖2

.(55)

Proof. The proof comes along the same lines as the proof of Theorem 3.2.
Replace the quantities x and xMR

k by y and yMR

k . Since the y quantities fulfill the
same orthogonality relations, (45) is valid also in the y quantities. This is also the case
for the upper bound for |αk| ‖rMR

k ‖2 = |(y, rMR

k /‖rMR

k ‖2)|. Hence, with eME
j ≡ y−yME

j ,
we have

‖eME

k ‖2
2

‖rMR

k ‖2
2

≤ ‖y − yMR

k+1‖2
2

‖rMR

k ‖2
2

+

(‖eME

k−1‖2

‖rMR

k−1‖2
+
‖y − yMR

k ‖2

‖rMR

k ‖2

)2

.(56)

If we define β̂k ≡ βk/µk, we find that

β̂2
k ≤ 1 + (β̂k−1 + 1)2 and β̂0 =

1

µ0‖A−1‖2

‖eME
0 ‖2

‖rMR
0 ‖2

≤ 1.
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Therefore, as in the proof of Theorem 3.2, β̂k ≤ νk+1, which implies (55).
For the relations between SYMMLQ and MINRES we have assumed exact arith-

metic, that is, we have assumed an exact Lanczos process as well as an exact solve of
the systems with Lk. However, we can exclude the influence of the Lanczos process
by applying Theorem 3.2 right away to a system with a Lanczos matrix Tm and initial
residual ‖r0‖2e1. In this setting, we have, for k < m, that [13, Proposition 1]

‖rMR

k ‖2 = ‖r0‖2 ρk, where ρk ≡ |s1 · . . . · sk|,(57)

with sj the sine in the jth Givens rotation for the QR decomposition of T k; ρk is the
estimated reduction of the norms of the MINRES residuals. Note that (57) is also an
immediate consequence of (50).

From relation (54) in combination with the fact that ‖rME

k ‖2 = ‖r0‖2 ‖tk‖2 (cf. (38),
where, in this setting, F′k+1 = 0), we conclude that

‖tk‖2 ≤ ρk κ2(Tm) νk+1 with νk = k + 1
2
ln(k),(58)

for all m > k.
Note that inequality (58) is correct for any symmetric tridiagonal extension T̃m

of Tk+1: (58) holds with T̃m instead of Tm. It has been shown in [5] that there is an

extension T̃m of which any eigenvalue is in a O(u
1
4 )-neighborhood of some eigenvalue

of A, and therefore, κ2(T̃m) ≈ κ2(A) in fairly good precision. This leads to our upper
bound

‖tk‖2 . ρk κ2(A) νk+1 with νk = k + 1
2
ln(k).(59)

In section 3.2, we will show that

‖t̂k − tk‖2 . 5u ρk κ2(A)2
(

1
6k

3 +O(k2 ln k)
)
.(60)

The upper bound in (60) contains a square of the condition number. However, in the
interesting situation where ρk decreases towards 0, the effect of the condition number
squared will be annihilated eventually.

Remark 3.4. Except for the constants k+O(k) and 1
6k

3+O(k2 ln k), the estimates
(59) and (60), respectively, appear to be sharp (see Figure 8).

Although the maximal values of the ratio of ‖t̂k − tk‖2/ρk in Figure 8 exhibit
slowly growing behavior, the growth is not of order k3. In the proof of (60) (cf.
section 3.2), upper bounds as in (59) are used in a consecutive number of steps. In
view of the irregular convergence of SYMMLQ, the upper bound (59) will be sharp
for at most a few steps. By exploiting this observation, one can show that a growth
of order k2, or even less, will be more likely.

3.2. SYMMLQ recurrences. In this section we derive the upper bound (60).
Suppose that the jth recurrence for the γi’s, with γi as defined in (33), is perturbed

by a relatively small δ and all other recurrence relations are exact:

δ = `jj γ̃j + `jj−1γj−1 + `jj−2γj−2 with |δ| ≤ µu |`jj | |γj |.(61)

The resulting perturbed quantities are labeled as .̃
Then

t̃k − tk = δMk

[
eT

k−1

eT

k

]
L−1
k ej .(62)
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Fig. 8. Results for the indefinite matrix with condition number 3 · 108 (as in the right pictures)

of Figure 4 and Figure 7. The left picture shows log10 of the ratio ‖t̂k‖2/ρk of the estimated

residual norm reduction ‖t̂k‖2 of SYMMLQ and ρk for MINRES (cf. (59)). The right picture models

‖t̂k− tk‖2/ρk (cf. (60)) with an artificial random pertubation ∆̃L, |∆̃L| � |∆L|, and ∆L as in (33):

it shows the log10 of |eTk (Lk + ∆̃L)−1e1/ρk − eTk (Lk + ∆L)−1e1/ρk|, where |∆̃L| ≤ 3 · 10−13 |Lk|.

For j = 1, t̃k − tk is a multiple of the SYMMLQ residual for the Tm-system
(m > k) and, as in the proof of inequality (59), Theorem 3.2 could be applied for
estimating ‖t̃k − tk‖2. For the situation where j 6= 1, Theorem 3.3 can be used.

To be more precise, we apply Theorem 3.3 with vi = ei, A = Tm, and c = ej .
Then we have (in the notation as indicated in Theorem 3.3),

yME

k = 0 (k < j), ‖ej − Tmy
ME

k ‖2 =

∥∥∥∥Mk

[
eT

k−1

eT

k

]
L−1
k ej

∥∥∥∥
2

(k ≥ j),(63)

and

yMR

k = 0 (k + 1 < j), ‖ej − Tm yMR

k ‖2 = cj−1
ρk
ρj−1

≤ ρk
ρj−1

(k + 1 ≥ j),(64)

with cj−1 the cosine in the (j− 1)th Givens rotation. Note that ‖ej −Tm yMR
i ‖2/ρi ≤

1/ρj−1 for all i ≤ k. Therefore, by Theorem 3.3,∥∥∥∥Mk

[
eT

k−1

eT

k

]
L−1
k ej

∥∥∥∥
2

≤ κ2(Tm) νk+1
ρk
ρj−1

.(65)

For this specific situation, where yME
j−1 = 0, the estimate for βk in the proof of

Theorem 3.3 can be improved. If we take β̂k ≡ ρj−1βk, then we now have that

β̂2
k ≤ 1 + (β̂k−1 + 1)2 and β̂j−1 ≤ 1. This implies that ρj−1βk ≤ νk−j+2. Therefore,

the νk+1 in (65) can be replaced by νk−j+2.

A combination of (62) with (65) gives (cf. (58) and following discussion)

‖t̃k − tk‖2 ≤ |δ|
ρj−1

ρk κ2(Tm) νk−j+2 . |δ|
ρj−1

ρk κ2(A) νk−j+2.(66)

Using the definition of Mj and the recurrence relations for the γj , we can express tj−1

as

tj−1 = Mj−1

[
γj−2

γj−1

]
=

[ −`jj γj
`j+1 j−1 γj−1

]
.
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Therefore, from (59), we have that

|`jj | |γj |
ρj−1

≤ ‖tj−1‖2

ρj−1
≤ κ2(A) νj .(67)

Hence (cf. (61))

|δ|
ρj−1

≤ µuκ2(A) νj ,

and, with (66), this gives

‖t̃k − tk‖2 ≤ µu ρk κ2(A)2 νj νk−j+2.(68)

Because the recurrences are linear, the effect of a number of perturbations is
the cumulation of the effects of single perturbations. If each recurrence relation is
perturbed as in (61), then the estimate (60) appears as a cumulation of bounds as in
(68). The vector t̂k in (60) represents the result of these successive perturbations due
to finite precision arithmetic.

Finally, we will explain that the effect of rounding errors in solving L−1e1 can be
described as the result of successively perturbed recurrence relations (61), with µ = 5.
First we note that the γ̃k’s resulting from the perturbation

`jj γ̃j + `jj−1γj−1(1 + µ ξ) + `jj−2γj−2 = 0 with |ξ| ≤ u

are the same as those resulting from the perturbation

`j−1j−1γ̃j−1(1 + µ ξ) + `j−1j−2γj−2 + `j−1j−3γj−3 = 0 ,

which means that a perturbation to the second term in the jth recurrence relation
can also be interpreted as a similar perturbation to the first term in the (j − 1)th
recurrence relation.

Now we consider perturbations that are introduced in each recurrence relation
due to finite precision arithmetic errors. Let γ̂j represent the actually computed γj ,
then

γ̂j = −`jj−1γ̂j−1(1 + ξ′) + `jj−2γ̂j−2(1 + ξ′′)
`jj(1 + 2 ξ)

, with |ξ|, |ξ′|, |ξ′′| ≤ u,

and this can be rewritten, with different ξ and ξ′, as

`jj γ̂j(1 + 3 ξ) + `jj−1γ̂j−1(1 + 2 ξ′) + `jj−2γ̂j−2 = 0, with |ξ|, |ξ′| ≤ u.

Since the perturbation to the second term in this jth recurrence relation can be
interpreted as a similar perturbation to the first term in the (j − 1)th recurrence
relation (which was already perturbed with a factor (1 + 3ξ)), we have that the
computed γ̂j can be interpreted as the result of perturbing each leading term with a
factor (1 + 5ξ).

4. Discussion and conclusions. In Krylov subspace methods there are two
main effects of floating point finite precision arithmetic errors. One effect is that the
generated basis for the Krylov subspace deviates from the exact one. This may lead
to a loss of orthogonality of the Lanczos basis vectors, but the main effect on the
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iterative solution process is a delay in convergence rather than misconvergence. In
fact, what happens is that we try to find an approximated solution in a subspace that
is not as optimal, with respect to its dimension, as it could have been.

The other effect is that the determination of the approximation itself is perturbed
with rounding errors, and this is, in our view, a serious point of concern; it has been
the main theme of this study. In our study we have restricted ourselves to symmetric
indefinite linear systems Ax = b. Before we review our main results, it should be
noted that we should expect upper bounds for relative errors in approximations for x
that contain at least the condition number of A, simply because we can in general not
compute Axk exactly. We have studied the effects of perturbations to the computed
solution through their effect on the residual, because the residual (or its norm) is
often the only information that we get from the process. This residual information is
often obtained in a cheap way from some update procedure, and it is not uncommon
that the updated residual may take values far smaller than machine precision (relative
to the initial residual). Our analysis shows that there are limits on the reduction of
the true residual because of errors in the approximated solution. For GMRES, this
observation has also been made in [3].

In view of the fact that we may expect at least a linear factor κ2(A), when
working with Euclidean norms, GMRES∗ (section 2.2) and SYMMLQ (section 3)
lead to acceptable approximate solutions. When these methods converge, then the
relative error in the approximate solution is, apart from modest factors, bounded
by uκ2(A). SYMMLQ is attractive since it minimizes the norm of the error, but
it does so with respect to A times the Krylov subspace, which may lead to a delay
in convergence with respect to GMRES∗ (or MINRES), by a number of iterations
that is necessary to gain a reduction by κ2(A) in the residual; see Theorem 3.2 (also
Figure 8). For ill-conditioned systems, this may be considerable.

As has been pointed out in [11], the conjugate gradient iterates can be constructed
with little effort from SYMMLQ information if they exist. For indefinite systems the
conjugate gradient iterates are well defined for at least every other iteration step,
and they can be used to terminate the iteration if this is advantageous. However,
the conjugate gradient process features no minimization property (in contrast to the
positive definite case) when the matrix is indefinite, and so there is no guarantee that
any of these iterates will be sufficiently close to the desired solution before SYMMLQ
converges.

For indefinite symmetric systems we see that MINRES may lead to large pertur-
bation errors: for MINRES the upper bound contains a factor κ2(A)2 (section 2.3).
This means that if the condition number is large, then the methods of choice are GM-
RES or SYMMLQ. Note that for the symmetric case, GMRES can be based on the
three-term recurrence relation, which means that the only drawback is the necessity
to store all the Lanczos vectors. If storage is at a premium, then SYMMLQ is the
method of choice.

If the given system is well conditioned, and if we are not interested in very accurate
solutions, then MINRES may be an attractive choice.

Of course, one may combine any of the discussed methods with a variation on iter-
ative refinement: after stopping the iteration at some approximation xk, we compute
the residual r(xk) = b−Axk, if possible in higher precision, and we continue to solve
Az = r(xk). The solution zj of this system is used to correct xk: xappr = xk+zj . The
procedure could be repeated, and eventually this leads to approximations for x so that
the relative error in the residual is in the order of machine precision (for more details
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on this, see [14]). However, if we would use MINRES, then, after restart, we have to
carry out at least a number of iterations for the reduction by a factor equal to the
condition number, in order to arrive at something of the same quality as GMRES∗,
which may make the method much less effective than GMRES∗. For situations where
κ2(A) ≥ 1/

√
u, MINRES may even be incapable of getting at a sufficient reduction

for the iterative refinement procedure to converge.
It is common practice among numerical analysts to test the convergence behavior

of Krylov subspace solvers for symmetric systems with well-chosen diagonal matrices.
This often gives quite a good impression of what to expect for nondiagonal matrices
with the same spectrum. However, as we have shown in our section 2.5, for MINRES
this may lead to a too optimistic picture, since floating point error perturbations with
MINRES for a diagonal matrix lead to errors in the residual (and the approximated
solution) that are a factor κ2(A) smaller than for nondiagonal matrices.

Appendix.
Lemma A.1. If, for a matrix C, nC = min(nc, nr) with nc the maximum number

of nonzeros per column and nr the maximum number of nonzeros per row, then

‖ |C| ‖2 ≤ √
nC ‖C‖2.(69)

Proof. We prove the lemma with respect to columns; the row variant follows from
the fact that ‖BT‖2 = ‖B‖2 for any matrix B.

Since ‖ |C| ‖2
2 ≤ nC maxj

(∑
i |cij |2

)
(see [15, Theorem 4.2]), we have

‖ |C| ‖2
2 ≤ nC max

j
‖Cej‖2

2 ≤ nC ‖C‖2
2.
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