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Abstract

Several high-level programming languages for programming agents and robots have
been proposed in recent years. Each of these languages has its own features and merits.
It is still difficult, however, to compare different programming frameworks and evaluate
the relative benefits and disadvantages of these frameworks. In this paper, we present a
general method for comparing agent programming frameworks based on a notion of bisim-
ulation, and use it to formally compare the languages ConGolog and 3APL. ConGolog is
a concurrent language for high-level robot programming based on the situation calculus.
ConGolog provides a logical perspective on robot programming, but also incorporates a
number of imperative programming constructs like sequential composition. 3APL is an
agent programming language and its semantics offers a more operational perspective on
agents. The language is a combination of logic and imperative programming and provides
operators for beliefs, goals and plans of an agent. We show that ConGolog and 3APL are
closely related languages by constructing an embedding of ConGolog in 3APL. This em-
bedding shows how ConGolog programs can be translated into equivalent 3APL programs.
A number of interesting issues need to be resolved to construct the embedding. These
include a comparison of states in 3APL with situations in ConGolog, the form of basic
action theories, complete vs. incomplete knowledge, and execution models concerning the
flow of control of agent programs.

1 Introduction

A number of proposals for agent programming languages exist in the literature. Some of
these languages are based on a notion of agent that associates a mental state consisting of
beliefs and goals with the agent [16, 14, 7]. Although on first sight these languages may seem
quite different, in [4, 5] it is shown that they are closely related. An interesting alternative
for agent programming, based on a logical perspective, is offered by the concurrent language
ConGolog [2]. In this paper, we present a formal comparison of ConGolog with the agent
language 3APL (pronounced ”triple-a-p-17).

ConGolog is a language for high-level robot programming. ConGolog, like its predecessor
Golog [8], is an extension of the situation calculus that supports complex actions as well
as a logic programming language for agents and robots. 3APL is an agent programming
language and its semantics offers a more operational perspective on agents. The language is
a combination of logic and imperative programming and provides operators for beliefs, goals
and plans of an agent. We show that ConGolog and 3APL are closely related languages
by constructing an embedding of ConGolog in 3APL. This embedding shows how ConGolog
programs can be translated into equivalent 3APL programs. A number of interesting issues
need to be resolved to construct the embedding. These include a comparison of states in



3APL with situations in ConGolog, the form of basic action theories, complete vs. incomplete
knowledge, and execution models specifying the flow of control in agent programs.

2 Basic Action Theories in the Situation Calculus

ConGolog is a programming language specified in and based upon the situation calculus
[11]. ConGolog extends basic action theories in the situation calculus to a real programming
language. It allows the construction of more complex program structures built from basic
actions. Basic action theories are used to specify the preconditions and effects of basic actions
that are used in ConGolog programs. A basic action theory only fixes the basic structure
for specifying actions, but leaves the choice of basic actions to the programmer. We first
introduce the situation calculus and then define what basic action theories are.

2.1 The Situation Calculus

The situation calculus is a three-sorted, first order logical language, extended with some
second order features. The situation calculus is specifically designed for representing dynami-
cally changing worlds. Changes are the result of named, deterministic actions, and a possible
world history therefore can be identified with a sequence of actions. Finite action histories
are represented by first order terms called situations in the situation calculus. The language
of the situation calculus Lg;qq has three sorts: A sort situation, a sort action, and a sort
object for everything that is neither a situation nor an action.

Definition 2.1 (alphabet of Litcalc)
The alphabet of Lg;;.q consists of the following sets of symbols:

e Countably infinitely many variables for each sort; we use s to denote variables of sort
situation, a for variables of sort action, and z, y for variables of sort object.

e Two function symbols of sort situation: (1) the constant Sy denoting the initial situation,
and (2) the function do of sort : action x situation — situation where do(a, s) denotes
the successor situation resulting from performing action a in situation s.

e A binary predicate C of sort : situation X situation which is defined as a partial order
on situations.

e A binary predicate Poss of sort : action x situation. The intended interpretation of
Poss(a, s) is that a can be executed in s.

e A finite number of predicate symbols for each sort (action U object)™ and function
symbols for each sort (action U object)™ — (action U object). These predicate and
function symbols are situation independent.

e A finite number of predicate symbols of sort (action U object)™ x situation. These
predicate symbols are called relational fluents.

Note that only two function symbols - Sy and do - are allowed to take values in sort situation.
Also note that only the binary predicate C has more than one argument of sort situation.
The language Lgjzcqic is built from a given alphabet and the usual logical vocabulary, i.e.



equality, negation, conjunction, and the universal quantifier. The other logical connectives
like V, —, <> and the existential quantifier 3 are defined as the usual abbreviations. < is also
written as =.

Notice that we did not include functional fluents in the language of the situation calculus.
Functional fluents are left out because of the particular call-by-value mechanism that is used
as a parameter mechanism in ConGolog for procedure calls, which would not be state based
in the presence of functional fluents. For our purposes, we are only interested in eliminating
functional fluents; other types of function symbols are allowed.

In the sequel, we will often be interested in the formulas that hold in the ‘current’ situation
s, and that only refer to the situation s. To identify the formulas that talk about a particular
situation, we introduce the notions of a uniform term and a uniform formula. A term or
formula that is uniform in a situation s only refers s.

Definition 2.2 (uniform term, formula)
Let S be any term of sort situation. Then the set Tg of terms uniform in S is inductively
defined by:

e SeTg,
e if a term ¢ does not mention a term of sort situation, then ¢ € Ty,

e if f is an m-ary function symbol other than do and t,...,%, € Ts whose sorts are
appropriate for f, then f(t1,...,t,) € Tg.

The set Lg of formulas uniform in S is inductively defined by:
e if {1, 1 € Tg are of the same sort, then t; = t, € Lg,

e if P is an n-ary predicate symbol, other than Poss and C, and t1,...,t, € Tg are of
the appropriate sorts, then P(t,...,t,) € Lg

o if p1,02 € Lg, then —p1, 01 A2 € Lg

e if o € Lg and z is a variable not of sort situation, then Vz(yp) € Lg.

A formula that is uniform in S does not mention the predicates Poss or C, nor does it quantify
over situation variables. The only term of sort situation which can occur in a formula that
is uniform in S is S itself. In a model M (and valuation v) for Lgca, the true formulas
which are uniform in S can be said to characterise situation S. In other words, these formulas
completely specify the state denoted by S.

Notation 2.3 We introduce a special constant now of sort situation and denote by L, the
set of formulas uniform in now. The intended interpretation of this constant is that it denotes
the current situation. If o is any (set of) formula(s) that is uniform in now, we denote by
o[S] the (set of) formula(s) that is obtained by substituting S for now in o. Note that o[S]
is uniform in S.



2.2 Foundational Axioms

The basic intuitions associated with the notion of a situation are captured by a set of so
called foundational azioms (cf. [12]). These axioms are listed below in definition 2.4. The
first axiom below states that situations are uniquely identified by situation terms, and implies
that situations can be identified with action histories. The second axiom is a second order
axiom which captures the intuition that all the situations that exist are the ones reachable
by doing a finite number of actions. The third axiom states that Sy is the initial situation.
And finally, the fourth axiom states that a situation s is a predecessor of a situation do(a, s)
iff s is a predecessor of s’ or s and s’ denote the same situation. Although these foundational
axioms impose a basic structure upon the set of possible situations, the axioms do not play
an important role in the definition of the programming language ConGolog (cf. also [12]).

Definition 2.4 (foundational azioms) !

do(ar, 1) = do(az, s2) — (a1 = ag A\ s1 = s2) (1)
V' P([P(So) AVa,s(P(s) — P(do(a,s))] — Vs(P(s)) (2)
—s S() (3)
sC do(a,s)=sC s (4)

where s C s’ abbreviates s C s’ Vs = 5.

2.3 Basic Actions

A basic action theory in the situation calculus defines a framework for specifying the pre and
postconditions of actions. Three types of axioms are introduced to specify actions. First of
all, a set of unique names axioms for actions is introduced. These axioms are used to make
sure that action names refer to different actions, and that an action symbol supplied with
one set of parameters is distinguished from that action symbol supplied with a different set
of parameters.

Definition 2.5 (unique names axioms for actions)
The set of unique names azioms for actions includes the following axioms:

A(T) # B(Y)

where A(Z) and B(¥) are expressions of sort action, and the set of variables Z and § are
disjoint, for each pair of action symbols A and B;
and for any action symbol A:

A(F) = Af) — 7 = 7.

The second type of axioms are called action precondition axioms. These axioms specify
when an action is enabled, i.e. they specify what preconditions must hold in order for an
action to be executable in a situation. The uniformity condition on II4(Z, s) is used to make
sure that the preconditions of an action A(%) depend only on the current situation s.

!The free variables in formulas which occur in definitions throughout this paper are implicitly universally
quantified.



Definition 2.6 (action precondition axiom)
An action precondition axiom is of the form:

Poss(A(Z),s) = 114(Z, s)

where A(Z) is an expression of sort action, and I14(Z, s) is a formula that is uniform in s and
whose free variables are among Z, s.

The last type of axioms are called successor state axioms. Successor state axioms relate
the value of a fluent in the situation that results from doing an action to their value in
the previous situation, and define the effects of executing an action. Successor state axioms
also provide a solution to the frame problem [15]. The uniformity condition on ® (%, a, s)
guarantees that the database associated with the successor situation (the database of uniform
formulas that hold in that situation) can be computed from that of the previous situation.

Definition 2.7 (successor state axiom)
A successor state axiom for a relational fluent F' is of the form:

F(Z,do(a,s)) = Pr(Z, a,s)
where ®r(Z, a, s) is a formula uniform in s and whose free variables are among 7, a, s.

A basic action theory is a collection of the axioms introduced so far. Our definition of a
basic action theory slightly differs from the one in [9]. The main difference is that we do not
include the initial situation axioms or the initial database in the action theory.

Definition 2.8 (basic action theory)
A basic action theory is a theory A =X U Az U Agp U Aypg where:

e X are the foundational axioms,
o A, is a set of successor state axioms for relational fluents, one for each fluent,
o A,y is a set of action precondition axioms, one for each action symbol,

e A, is a set of unique names axioms, for all pairs of action function symbols.

Definition 2.9 (initial database)
An initial database is a finite set of (first order) formulas from Lgscqi that are uniform in Sp.

2.4 Situations, States and Functional Fluents

The reason for introducing the uniformity conditions into basic action theories is to ensure
that the evaluation of preconditions and successor state conditions depends only on the current
situation. In the presence of functional fluents, however, the uniformity conditions are not
enough to guarantee that the preconditions and successor state conditions depend only on
the current situation. It is not difficult to give an example in which a functional fluent
is substituted for a parameter and results in a violation of a uniformity condition. For
example, if we substitute loc(Ball, do(throw(Ball), Sp)) for  and Sy for s in Poss(goto(z),s) =
reachable(x, s), we obtain the precondition reachable(loc(Ball, do(throw(Ball), Sp)), So) which



is mot uniform in Sy. In the presence of functional fluents, therefore, we have to be more careful
and only substitute terms that do not lead to violations of the uniformity conditions.

The fact that all conditions can be evaluated by inspection of the current situation only
implies that during a computation only a database of facts that talk about the current sit-
uation has to be maintained. This is a typical feature of a state based approach. The main
characteristic of a state based approach is that a successor state can be computed from the
current state and the action that is performed in that state. Because of the particular form
of successor state axioms, basic action theories also support a state based approach, with the
proviso that substitution of functional fluents does not lead to violations of the uniformity
conditions.

The uniformity conditions thus play an important role in basic action theories. In gen-
eral, there is an important difference between situations in the situation calculus and states
in state based approaches. Whereas a state coincides with a single point in (space-)time,
a situation (action history) can be much more complex. A situation s can even refer to
would-be situations in a possible history that is different from the actual one referred to
by s. For example, consider the situation do(goto(loc(Ball, do(trow(Ball),Sy)),Sp). This
situation refers to the situation resulting from going to a particular place in the initial
situation Sg. The place referred to needs to be inferred from doing another action in sit-
uation Sy, namely the action of throwing a ball. For the evaluation of a formula like
corner(loc(Robot, do(goto(loc(Ball, do(trow(Ball), Sp)), So)) we thus have to inspect the would-
be situation resulting from throwing the Ball in situation Sy, and check if the location of the
Ball in that situation is a corner, assuming that a goto action always succeeds. Due to the
possibility of a branching structure of situations we can construct such ‘non-linear’ situations
which depend on other situations in different branches in the possible histories structure.

The example of the previous paragraph used functional fluents to illustrate that situa-
tions are different from states. Still another feature in the situation calculus, that of quan-
tification over situations, can give rise to formulas that refer to different situations. An
example of such a formula is the following precondition axiom: Poss(open(d),s) = 3s'(s =
do(unlock(d, key), do(get(key), s’))). This formula states that it is only possible to open a
door if a key has been obtained and the door is unlocked with this key in the last two situa-
tions. Because this precondition refers to the two previous situations, it cannot be evaluated
by inspecting the current situation only.

Summarising, in general the situation calculus offers an expressive framework for talking
about action histories. The basic action theories that we introduced restrict this expressivity
by introducing uniformity conditions, and thus provide for a state based approach. Still,
we have to be careful in the presence of functional fluents. Because 3APL is a state based
formalism, for the purpose of bisimulating ConGolog, it is important that basic action theories
are state based. This is our main reason for excluding functional fluents.

3 The High-Level Programming Language ConGolog

ConGolog is a logic programming language based on the situation calculus. It extends the
basic action theories of the previous section with operators for constructing complex actions.
In ConGolog it is possible, for example, to specify the sequential composition of two actions,
like, pickup(Block); putaway(Block). The set of ConGolog programs is defined below. It is a
subset of all the programs as in [2], but includes the main programming constructs. Most of



the programming constructs below are well-known. Tests evaluate a formula in the current
situation. The nondeterministic choice of argument construct nondeterministically selects a
value for the variable z. In a prioritised parallel program §1))d2 the execution of the left
subprogram 9y is preferred over that of the right subprogram do; the latter is executed only
if 47 cannot be executed.

Definition 3.1 (ConGolog programs)
The set of open programs P and procedures Proc is inductively defined by:

e primitive actions: a € P,

e tests: ¢?7 € P, for ¢ € Lyou,

e sequential composition: (d1; d2) € P, if 61,92 € P,
e nondeterministic choice: (01 | d02) € P, if 61,02 € P,

e nondeterministic choice of arguments:
nx.0 € P, if § € P and z is a variable of sort object, 2

e parallel composition: 61]|62 € P, if 61,02 € P,
e prioritised parallel composition: 01))ds € P, if §1,09 € P,
e procedure call: P(%),

o procedure definition:
proc P(Z) ép end € Proc, if §p € P such that all free variables in dp occur in Z.

By definition, the set of ConGolog programs is the set of closed programs in P.

The constructs which are defined in [2] but are not included in the definition above are
iteration, synchronised if-then-else, synchronised while, and parallel iteration. As far as it-
eration is concerned, no expressivity is lost, since it is well-known that this construct can
be simulated by recursive procedures which are included in definition 3.1. The synchronised
if-then-else and the synchronised while are slight variations on the non-synchronised ones, and
require the atomic execution of both the test as well as the first action of one of the branches
of the if-then-else or of the body of the while-construct. That is, in both constructs both the
test and the first action to be executed next are executed in one single step. 3APL does not
have similar constructs that are synchronised in this way. It would not be difficult to extend
3APL with these constructs, but doing so would not lead to any new or interesting results
with respect to the simulation of ConGolog in 3APL. A similar remark applies to parallel or
concurrent iteration.

2Variables of sort action can be simulated if there are only a finite number of actions available. An example
of the use of action variables is given in [2].



3.1 Axiomatic Definition of the Semantics for ConGolog

The meaning of the ConGolog programming constructs is specified by using a transition
semantics that is presented in a non-standard way. Instead of using a formalism like SOS
semantics [13], a new predicate Trans is added to the language of the situation calculus and is
used to formalise the step semantics of a program. The predicate Trans(d, s,d’, s’) expresses
that it is possible for program ¢§ to perform a computation step in situation s that results in
a new situation s’ where ¢’ is the remaining program that still needs to be executed. The
semantics of ConGolog programs is specified by means of a set of axioms for the predicate
Trans. For each programming construct, there is an axiom that states which computation
steps the construct allows. The expression nil denotes the ‘empty’ program, and is used below
as an auxiliary construct in the definition of the operational semantics. nil is not a ConGolog
program. Also notice that no transition is associated with the nondeterministic selection of
a value in a 7wz.d program, but only with the joined action of selecting a value and executing
a step of subprogram . In the axiomatic definition of Trans, the predicate Final(d,s) is
used to express that program § may legally terminate in situation s. A formal definition of
Final is presented after the definition of Trans. The definition of the semantics of (recursive)
procedures is postponed until the next section.

Definition 3.2 (azioms for Trans) >
Trans is inductively defined by:

e The Empty Program:

Trans(nil, s, ¥, s") = False

e Basic Actions:
Trans(a, s,d',s") = Poss(a,s) A& = nil A s’ = do(a, s)
o Tests:
Trans(p?,s,0', ") = @[s] N =nil As' = s
e Sequential Composition:
Trans(d1; d2,8,0',8") =
I~v.8" = (v; 62) A Trans(61, 8,7, 8" )V
Final (61, s) A Trans(dz, 5,8, s")
e Nondeterministic Choice:

Trans(61 | 82, 8,0, 8") = Trans(61, s,0',8") V Trans(d2, 8,8, s)

3Formally, an encoding of ConGolog programs into terms of the first order language £itcare is required, as is
done in [2]. However, because the details in this paper - apart from the encoding itself - are almost completely
the same, for notational convenience we use the programs as in definition 3.1 and refer the reader to [2] for
the details concerning the encoding of programs into terms.



e Nondeterministic Choice of Argument:

Trans(nx.0,8,0',s") = Ix.Trans(d, 5,8, s')

e Parallel Composition:

Trans(1|02, s,0',8") =
37.6" = (v]|62) A Trans(d1, 8,7, s')V
3~v.8" = (61]]7) A Trans(d2, 5,7, s")

e Prioritised Parallel Composition:

Trans(01))d2, s,0",s") =
37.6" = (7)02) A Trans(d1, 8,7, ')V
Iv.8" = (61)7) A Trans(d2, 8,7, 8") A=3n, s". Trans (61, s,n, s")

Definition 3.3 (azioms for Final)
The Final predicate is defined by the following set of axioms:

e The Empty Program:

Final(nil, s) = True
e Basic Actions:
Final(a,s) = False
o Tests:
Final(¢?, s) = False
e Sequential Composition:
Final(61; 2, s) = Final(d1, s) A Final(d2, s)
e Nondeterministic Choice:
Final(61 | 02, s) = Final(d1,s) V Final(d2, s)
e Nondeterministic Choice of Argument:
Final(rwz.6,s) = 3. Final(0, s)
e Parallel Composition:
Final(61||62, 8) = Final (61, s) A Final(d2, s)

e Prioritised Parallel Composition:

Final(61))d2, s) = Final(d1, s) A Final(d2, s)



3.2 ConGolog Procedures

The semantics of ConGolog procedures is not defined in terms of replacement of the procedure
call with the procedure body, since such steps are not viewed as transitions in the ConGolog
semantics (cf. [2]). Instead, a second order definition of the transition predicate is given which
abstracts from these steps. A procedure call in the ConGolog semantics involves both body
replacement of a (number of) procedure call(s) and the execution of an action or test in a
single step. Only actions or tests can give rise to transitions in the ConGolog semantics, and
replacement of a procedure call with its associated body or the nondeterministic selection of
a value in a wx.6 program are not viewed as transitions.

In ConGolog, nesting of procedure definitions is allowed, and it is important to keep track
of the scope of a procedure definition. Nesting of procedure definitions, however, can be
considered as syntactic sugar (a pre-compiler easily removes all naming conflicts such that
global scope can be assumed), and we do not consider this facility here. The implementation
of ConGolog also does not include this feature (cf. [2]). In the absence of procedure nestings,
the second order definition of Trans that also deals with procedures can be defined by

Trans(8,5,8',8') =V T.(p(T,6,s,0,8)— T(d,s,8,5"))

where ¢(T, 0, s,d’, ") is the conjunction of the set of axioms for Trans of the previous section,
with T substituted for Trans, and the following clause for procedure calls:

T(P(f),s,0, ) = T(((Sp)%?, 5,0',8).

In the clause for procedure calls, §p is the body of the procedure definition of P(Z) and (§ p)%E

is that same body where the formal parameters Z have been substituted with . This second
order definition defines Trans as the smallest set of transitions closed under the set of clauses
for the ConGolog programming constructs defined in the previous section and the clause for
procedure calls introduced in this section.

Similarly, Final is defined by:

Final(6,s) =V F.(Y(F,0,s) — F(4,s))

where 9 (F, ¢, s) is the conjunction of the set of axioms for Final of the previous section, with
F substituted for Final, and the following clause for procedure calls:

—,

F(P(t),s) = F(((Sp)%, s).

The parameter mechanism of ConGolog is a call-by-value mechanism, which, due to the
assumption that functional fluents are absent, could be somewhat simplified. In the pres-
ence of functional fluents, the substitution of the actual parameters is slightly more com-
plex and should be (¢ p)%s] instead of simply (§ p)f: . That is, functional fluents in an ac-
tual parameter term t should be evaluated with respect to the current situation s, and
to implement this the situation s is substituted for the constant now. After substitut-
ing s for now in parameter ¢, the parameter t[s| is substituted in the body of the pro-
cedure at the appropriated places. We are now in a position to explain in detail our re-
mark above that this type of parameter mechanism may result in an approach that is
not state based, if functional fluents are allowed. Consider, for example, the procedure
definition proc serve(n) go_floor(n); turnoff (n); open; close end and the procedure call

10



serve(nearest_floor(now)). Notice that the actual parameter in the procedure call is a func-
tional fluent. Now suppose that the current situation is the initial situation Sp. In that case,
we get the following transition as a result of the execution of the call:

Trans(serve(nearest_floor(now)), Sp,
turnoff (nearest_floor(Sp)); open, do(go_floor(nearest_floor(Sy)), So))

The remaining program is turnoff (nearest_floor(Sp)); open which must be executed in situa-
tion do(go-_floor(nearest_floor(Sy)), Sp). For the evaluation of the argument nearest_floor(Sp),
however, the program has to consult the previous situation Sy instead of the current one. The
call-by-value mechanism thus is not compatible with a strictly state based approach in the
presence of functional fluents.

The second order semantics abstracts from all steps in which a procedure call is replaced
with its body and only actions and tests are viewed as transitions. As a consequence, a proce-
dure call P(%) that never gives rise to the execution of an action or test, can never give rise to
any transition. Formally, V&', s’.— Trans(P(t), s,d,s'). This is quite different from a seman-
tics that associates a transition with body replacement as is done in the semantics for 3APL.
Consider, for example, the procedure definition proc d(n) (n =1)7 | d(n — 1); go_down end
and the program d(0) | true?. According to the ConGolog semantics, the only transition this
program can (always) make is the transition in which the test is executed, because the proce-
dure call d(0) never gives rise to the execution of an action or test. This program thus always
successfully executes and terminates after executing the test in the ConGolog semantics. In
the 3APL semantics, this is not the case. Since body replacement also is a legal computation
step, the left branch may be selected and a body replacement may occur. The selection of
the left branch, however, results in a non-terminating computation where in each step a body
replacement is performed. In the 3APL semantics, the program thus has a non-terminating
computation in contrast with the ConGolog semantics.

Although the behaviour in accordance with the ConGolog semantics may be preferred
over that of a semantics which includes steps for body replacement that gives rise to a non-
terminating computation, there is a computational problem. To implement the second order
semantics for procedure calls, an algorithm which decides if such a call results in the eventual
execution of an action or test is required. The problem is that such an algorithm does not exist,
since that algorithm would also solve the halting problem. In our example, non-termination
may seem easy to detect, but in general it is not possible to decide this type of termination
for arbitrary actual parameters (which may involve complex terms). The extension of an
operational style semantics in first order logic with second order axioms in this case thus
results in a non-computational semantics.

Due to the fact that ConGolog and 3APL assign different semantics to procedure calls, it
is not possible to construct an embedding of ConGolog into 3APL. An embedding, however,
can be constructed for a large and interesting subclass of ConGolog procedure definitions. In
particular, the set of guarded procedures is a class of procedures that never does more than a
fixed number of procedure calls before executing an action or test. This class thus avoids the
problem of detecting termination as in the general case. This subset also can be embedded
into 3APL.

A formal definition of a guarded program is provided by means of the notion of a rank.
This notion is similar to that in [2], except for one important difference. In contrast to the
definition in [2], our notion of rank is not dependent on the current situation, but is completely

11



syntactic and therefore somewhat simpler.

Definition 3.4 (rank)
The rank n (n a natural number) of a program ¢ (possibly containing free variables) is defined
by the following axioms:

Rank(n,nil) = True
Rank(n,a) = True
Rank(n,¢?) = True
Rank(n,01; 02) = Rank(n,d1) A Rank(n,d2)
Rank(n,01 | 62) = Rank(n,d1) A Rank(n,d2)
Rank(n,7x.0) = Rank(n,?d)
Rank(n,d1]/02) = Rank(n,d1) A Rank(n,d2)
Rank(n,d1))02) = Rank(n,01) A Rank(n,d2)
Rank(n, P(f)) = Rank(n —1 ,0pF )

A ConGolog program ¢ is guarded iff ¢ is of rank n for some n, ie. Guarded(d)
In.Rank(n,d). This notion of guardedness is strictly stronger than the one defined in [2
because it does not depend on the current situation. As a consequence, Theorem 6 in [2] holds,
and we can define the semantics of procedures by a set of first order axioms. In the sequel,
we will prove an embedding result for guarded programs which is based on the first order
semantics of the previous section and that of definition 3.5 below. It should be understood
that the semantics of definition 3.5 only applies to guarded programs (procedure definitions).

daf
]

Definition 3.5 (first order axioms for procedure calls)

Trans(P(t),s,0',s") = Tmns(épa 5,0', ")
Final(P(f), s) = Fmal(épt, s)

4 The Agent Programming Language 3APL

3APL is an agent programming language that combines imperative programming and logic
programming. From imperative programming the language inherits the full range of regular
programming constructs, including recursive procedures, and a notion of state based com-
putation. States of agents, however, are belief or knowledge bases, which are different from
the usual variable assignments of imperative programming, and the assignment statement
of imperative programming is replaced with updates on the belief base of an agent. From
logic programming, the language inherits the proof as computation model as a basic means
of computation for querying the belief base of the agent. We want to emphasise that 3APL
is a programming language, and not a logical language like the situation calculus.

The agent language 3APL is based on a rich notion of agents. That is, agents have a
mental state consisting of beliefs and goals. Associated with an agent are a number of basic

4As a consequence, if a procedure call is guarded for all procedures in a program &, we also know that a
program has a ‘guarded evolution’; that is, any program resulting from the execution of any number of steps
of ¢ is guarded again. This is our analogue of Theorem 7 in [2].
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capabilities. The basic capabilities of an agent are the basic actions an agent can perform,
and can be viewed as defining the ezpertise of the agent. Finally, an agent can have a number
of practical reasoning rules for planning and modifying its current goals.

The beliefs of an agent are drawn from some knowledge representation language £. In
principle, the choice of knowledge representation language is free, and any formalism which
allows the derivation of facts from the agent’s beliefs can be used to program agents. For
the purpose of simulating ConGolog, it is convenient to identify the knowledge representation
language £ with the language L., of situation calculus formulas uniform in now. Subsets
of these formulas are used to represent the current situation.

The goals of a 3APL agent are plans, or imperative programs like in ConGolog. These goals
are built from basic actions, tests, and the same programming constructs as in ConGolog,
apart from some minor differences in notation. So called achievement goals correspond to
procedure calls of ConGolog.

Definition 4.1 (goal)
The set of goals Goal is defined by:

e Basic actions: A(%) € Goal,
o Tests: ¢? € Goal, if ¢ € Lyow,

Achievement Goals: P(%) € Goal,

Sequential Composition: mwy; 7w € Goal, if w1, T € Goal,
e Nondeterministic Choice: m + mo € Goal, if 71, m € Goal,

e Parallel Composition: 7y ||me € Goal, if 71, w2 € Goal,

Originally, 3APL does not include a construct for prioritised parallel composition )) ([6, 7]),
but in the sequel we show how to formally define a semantics for )) in a transition style
semantics, which is the type of semantics used to specify the operational semantics of 3APL,
and extend 3APL with this operator.

One of the more important differences between ConGolog and 3APL is the presence of
the 7 operator in ConGolog and the absence of such a construct in 3APL. Correspondingly,
the two languages have quite different parameter mechanisms. Whereas in ConGolog the
7 operator is used to nondeterministically select a value for a variable that is bound by the
operator, in 3APL tests are used to compute values for free variables as in logic programming.
Moreover, whereas the m operator provides for an explicit scoping mechanism, the use of free
variables in 3APL is based on implicit scoping and involves the renaming of free variables
when procedures calls are replaced with their corresponding body. To facilitate the construc-
tion of an embedding of ConGolog into 3APL and to accommodate for these different styles
of parameter passing, we introduce an additional construct random(z) which, like the wz op-
erator, nondeterministically selects a value for the variable z. random(z) does not introduce
any additional expressivity into 3APL and can be viewed as syntactic sugar.

A practical reasoning rule in 3APL has the form 7 « ¢ | 7/, where 7,n" are goals and
¢ is a formula from L,,,, the knowledge representation language we use here. In a rule
7w «— ¢ | 7', 7w is called the head of the rule, 7’ the body of the rule, and ¢ the guard of the
rule. When the head  is specialised to an achievement goal P(Z) and the guard is identified
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with true, we obtain rules which correspond with the recursive procedures of ConGolog. The
head and body may also contain goal variables. For example, X; ¢7 « ¢ | A is a legal rule
which replaces anything (matching the goal variable X) that is sequentially composed with a
particular test ¢? and this test itself with the simple action A in case the agent believes that
1 holds in the current state. For a more extensive treatment of practical reasoning rules we
refer the reader to [6, 7]. For our purposes, we only need simple rules of the form P(Z) «— 7
(a guard that is equivalent with true is not mentioned).

A 3APL agent is defined as a tuple (m,0, R), where 7 is a goal, o is a set of beliefs, and
R is a set of (simple) rules of the form P (%) « .

4.1 Semantics of 3APL

The operational semantics of 3APL is defined by means of a Plotkin-style transition system
([13]). Such a transition system consists of a set of transition rules which define the computa-
tion steps associated with individual constructs of the language. Transition rules are a kind
of derivation rules, which can be used to derive transitions from a set of given transitions. A
transition system specifies a transition relation — and can be viewed as an inductive defini-
tion of this relation —. The relation — defines the possible computation steps a program
can perform and is the analogue of the Trans predicate of the ConGolog semantics for 3APL.

A Labelled Transition Relation For the simulation of ConGolog, it is important to keep
track of the sequence of basic actions which are executed during a computation of a program.
This information is explicitly represented by the situation arguments of the Trans predicate
in ConGolog. To represent the same information in the 3APL semantics, we define a labelled
transition relation. Labels are associated with a transition and indicate whether an action or
something else has been performed.

Labels are also used to distinguish between two types of transitions in 3APL. From the
point of view of the ConGolog semantics only the execution of basic actions or tests give rise
to a transition. As we will see below, 3APL associates a transition with the expansion of a
procedure call into its body and with the execution of a random action for nondeterministically
selecting values. We also use labels to distinguish between 3APL transitions that count as
transitions in the ConGolog semantics too and the ones that do not count as such. The latter
type of transitions we call silent steps. The intuition is that these steps are not ‘visible’ in the
ConGolog semantics and from the ConGolog perspective are considered to be implementation
details.

The labelling is derived from these intuitions. A transitions that corresponds with the
execution of a basic action is labelled with that same basic action. A transitions that corre-
sponds with the execution of a test is labelled with the special symbol €, the empty sequence.
The empty sequence is used to denote that no action has been performed, and the situation
has not been changed. Both the execution of a random action and the expansion of a proce-
dure call into its body are labelled with ¢ to indicate that an internal or silent step has been
performed. The labelling of complex programs are derived from the more basic ones. For
example, the label associated with the execution of a sequential composition 71; 7o is derived
from the label that is associated with the execution of .

3APL Configurations The transition relation — is a relation on pairs (7, o), with 7 a
goal and o a belief base. These pairs (7, o) are also called configurations. In the transition
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rules below, we use E to denote (successful) termination, and identify E; =, E||7, and 7| E
with 7.

During a computation a 3APL program may compute bindings for (free) variables in the
program by means of tests. These bindings are recorded in substitutions which are associated
with the transition relation — for later reference. Substitutions thus provide for a parameter
mechanism of 3APL and are used to instantiate free variables in the remaining program (after
such a substitution has been computed). @ denotes the empty substitution.

The programming language 3APL does not fix a specific set of basic actions, and as a
consequence is an abstract programming language. This approach to agent programming as-
sumes that a transition function 7 must also be provided to specify the semantics of the basic
actions used by agents (similar to specifying successor state axioms for ConGolog programs).
The semantics of a basic action in this abstract setting is only fixed in the sense that a basic
actions is interpreted as a change to the mental state of the agent, in particular the beliefs of
the agent. The execution of a basic action thus amounts to changing this state according to
the transition function 7.

Definition 4.2 (transition rule for basic actions)

-,

T(A(t),0) =0’

(A, o)y 20y (B, o)

A test @7 allows an agent to introspect its beliefs. A test is evaluated relative to the current
beliefs of an agent. Their main use, however, is not just to check whether or not the agent
believes a particular proposition, but to compute values or bindings for the free variables
which occur in the test. In this respect a test is similar to an assignment in imperative
programming. The main difference is that a test is evaluated by means of logical proof (as
in logic programming), and a test can only be used to initialise a variable to some value, not
to update the value assigned to a variable. The values that are computed are recorded in a
substitution v, and the bindings computed are used in computation steps in the remaining
computation of the program.

Definition 4.3 (transition rule for tests)
Let v be a ground substitution such that dom(y) = free(o).

o= ¢y
<¢?70>V L)’y <E)U>

A random(z) action, like a test, computes a binding for the variable z. In contrast
with arbitrary tests, however, random(x) always succeeds and nondeterministically returns
an arbitrary binding for z. The random(x) action does not increase the expressivity of 3APL,
since it can be defined as a special kind of test. For an arbitrary unary predicate symbol P,

random(z) can be defined as: random(x) 4 (P(z) V =P(z))?. The reason for introducing
random(z) as an explicit action is that we want to label this particular action as a silent step.
random(z) is used to simulate the pick operator 7, which does not give rise to a transition.
The nondeterministic selection of a value thus is considered as an implementation detail in
the ConGolog semantics, and therefore needs to be modelled as a silent step in the 3APL
semantics.
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Definition 4.4 (transition rule for random)
Let ¢ be a ground term.

z 1s a variable

(random(zx), o)y L{x:t} (E,o) (random(t), o)y L (E,o)

A sequence of two programs is executed by executing the first program and by updating
the results of the computation, that is, updates on the beliefs or bindings for variables,
correspondingly, where computed values for variables are passed on to the rest of the program
by instantiation.

Definition 4.5 (transition rule for sequential composition)

l
<7T17 0> VUfree(m2) 7y <7Tiv Ul)

l
(m1; m2,0) v — (T]; T2y, 07)

The execution of a nondeterministic choice goal consists in selecting one of the subgoals
that is enabled, i.e. can be executed, execute this goal, and drop the other goal.

Definition 4.6 (transition rule for nondeterministic choice)

l l
<7715 U) 1% —”y <7T/15 U/> <7T27 G> v —>’Y <7Té7 OJ>

(M1 + M2, 0) v —n (w),0") (1 4w, 0) v — (mh, 07)
Parallel execution is modelled by interleaving. The parallel subgoals may communicate
with each other through the belief base (a shared data base) and shared variables. If one of

the subgoals retrieves data from the belief base, the substitution so obtained is also applied
to the other parallel subgoal.

Definition 4.7 (transition rule for parallel composition)

l l
<7T1, J) VUfree(ma) 7y <7T17 J/> <7T27 U> VUfree(m1) 7y <ﬂ—é7 Ul)

! l
(milma, o) v — (mill(m2y),0%) (e, o) v — ((m17) |7y, 07)

Practical reasoning rules operate on the goals of the agent. A simple practical reasoning
rule of the form P(%) « ¢ | m, is applicable if the head of the rule unifies with a (subgoal
of a) current goal of the agent and the guard is entailed by the current beliefs. The notion
of a variant plays an important role in the semantics of rules. An expression e is a variant of
another expression ¢’ in case e can be obtained from e’ by renaming of variables and explains
the presence of the set of variables V in transition rules. The set V is used to make sure
that a variant is chosen such that no interference with free variables in the remaining goal
can occur (for details see [6, 7], for a formal definition of variants, cf. [10]).

Definition 4.8 (transition rule for rule application)
Let 77 be a most general substitution such that P(#) = P(¢')n, and ~ be a ground substitution
such that dom(y) = free(¢n).

o= oy

(P(D),0) v~y (moipy, o)

where P(zf_;) — ¢ | mp is a variant of a PR-rule in the PR-base R of the agent such that no
free variables in the rule occur in V.
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4.2 Silent Steps

As we explained above, in the semantics of ConGolog a transition is associated with a program
only if it can perform an action or test. In 3APL, however, a transition is associated also
with the expansion of a call into its body and with the execution of a random action. For
this reason, we introduced a distinction between two types of computation steps in 3APL.
Computation steps due to the execution of a basic action or a test are distinguished from
other types of computation steps. The latter are called silent steps.

For the construction of an embedding of 3APL into ConGolog, we want to abstract from
these silent steps. For this reason, we introduce a new transition relation — for 3APL
programs that is derived from the transition relation —. The transition relation = induces

a new step relation. == steps are composed of an arbitrary number of silent steps — followed
by a single step that involves the execution of a basic action or a test.

In the definition below, * denotes the transitive closure of a relation. The relation —7%
is defined as the set of all finite (including empty) sequences of — steps and - is defined as
the subsequent application of the substitutions associated with each of these steps. That is,
N1~y --- —~, denotes a legal sequence of steps then v = y172...7, is associated
with the single step obtained by taking the transitive closure.

if —

Definition 4.9 (abstracting from internal steps)

The transition relation :l>, where [ is either A(%) or e, is defined by:

A d i * AT

:>’7 _f ! . )

€ df i ¥ €
=0 = Ty T 0

In the sequel, we also just write = or — instead of =>, or — in case substitutions
are not important in the context.

5 Operationalising ConGolog

In this section, we discuss a number of distinguishing features of the ConGolog and 3APL
semantics. To be able to construct an embedding of ConGolog into 3APL, a number of issues
have to dealt with. First, we discuss the semantics of tests. From this discussion, we derive
a requirement on the initial database or belief base of an agent. Secondly, we discuss the
semantics of nondeterministic selection of a value by the m operator. We conclude that a
domain closure - or similar - assumption is needed to operationalise this operator. These
discussions show a difference between ConGolog and 3APL due to the different formalisms
used to define their respective semantics. The ConGolog semantics offers a logical definition
of an agent system, whereas the 3APL semantics offers a more operational or computational
definition of agent systems. The logical semantics of ConGolog raises a number of issues as
to how to operationalise or implement it. Next, we proceed to show how to derive an update
semantics for SAPL actions from the successor state axioms provided by a basic action theory
A. And finally, we define a translation function 7 that maps ConGolog programs to equivalent
3APL goals. In the next section, we then prove that the translation function 7 defines an
embedding of ConGolog into 3APL.
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5.1 Operationalising Tests and Complete Theories

A particularly interesting difference between ConGolog and 3APL concerns the semantics
of tests. Whereas the semantics of a test in 3APL is defined in terms of entailment by the
current beliefs, in ConGolog a test is defined in terms of truth in the current situation. The
difference can be illustrated with the program 6 = (¢7; A) | (m¢?; A). In 3APL, § is not
always enabled because it is possible that neither ¢ nor its negation —¢ is entailed by the
current beliefs of the agent. In contrast, d is enabled in any situation s in ConGolog and,
if A is also enabled in situation s, results in a final situation do(A4, s). J is enabled simply
because either ¢ or =¢ must hold in the current situation (we may assume that ¢ is closed
since ConGolog programs are closed).

Program § of the previous paragraph is a simple example that illustrates the difference
between ConGolog and 3APL tests. The program &, however, is a special kind of program
since it does not raise the question whether or not the left or right branch of the program
should be executed. Either way, action A must be executed. In case we replace A in both
branches with different subprograms, however, we do need to determine which branch to
execute. Consider the program ¢ = ¢7; A | —¢?; B. The ConGolog semantics implies that
0’ is enabled in any situation, and one of the tests in one of the branches should be executed.
Due to incomplete information about the current situation, however, it may be impossible to
decide which branch needs to be executed.

To give still another example, in case the initial database does not contain any infor-
mation about the proposition P, the ConGolog semantics does not specify the behaviour of
program P?7. The logical semantics allows models in which P? can be executed and the pro-
gram terminates successfully, and models in which P? is not enabled and the program never
terminates successfully. In contrast, the 3APL semantics in such a case precisely specifies the
behaviour of the program since we always have o = P or o [~ P for arbitrary belief bases o
and propositions P.

The ConGolog semantics of tests thus raises the issue how to operationalise or implement
it, since, as is illustrated by the examples, the ConGolog semantics does not always completely
specify the behaviour of a program with tests. A possible solution for this problem is to
require that (initial) databases be complete. A complete database o decides every sentence
of a language, and as a consequence if o = ¢ V ¢ we also have that o |= ¢ or o |= ¢ for any
o,1. As a consequence, the two decision problems, evaluating whether ¢ or —¢ holds in the
current situation, or o |= ¢ or 0 = —¢, coincide. In our case, it is essential to be able to
evaluate arbitrary sentences uniform in a particular situation and therefore we require that
the current database associated with a particular situation is complete.

Definition 5.1 (complete theories)
Let 0 C L. o is called complete iff for every sentence ¢ in L either o |= ¢ or o | —p.

Lemma 5.2 Let ¢ C L,,, be a complete theory, ¢ € L4, and S be a closed situation
term. Then, for any action theory A,

A+olS] EelS] i o =

Proof: Immediate, since ¢[S] is uniform in S and o is a complete theory. [ |
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5.2 Operationalising the 7 Operator and Domain Closure

Another interesting difference concerns the parameter mechanism in ConGolog and 3APL.
Whereas ConGolog has an explicit operator ma which binds variables in a program (only
closed programs are ConGolog programs!), the parameter mechanism in 3APL is based on an
implicit binding mechanism and the use of tests for computing values for free variables in a
goal.

The axiomatic definition of the 7w operator by means of the logical existential quantifier,
however, again raises the issue of how to operationalise or implement the operator. In the
3APL semantics, computing bindings for (free) variables is specified as finding a suitable term
to instantiate the variable. The logical semantics for the m operator, however, does not specify
any particular mechanism for implementing it. Presumably, any implementation will have to
manipulate terms and a similar mechanism as that of 3APL (based on a logic programming
like parameter mechanism) is most appropriate.

To illustrate the difference between ConGolog and 3APL, we give a simple example.
Suppose the language L0, (the knowledge representation language) only has a single constant
a and no other function symbols. Furthermore, assume that the initial database is =P(a).
Now consider the program wz.P(z)? and the question whether this program has a successfully
terminating computation. As we will see, the 3APL translation of this ConGolog program
is m = random(z); P(z)? and it is easy to show that in this example the program 7 has
no successfully terminating computation. In contrast, according to the ConGolog semantics
the program has a successfully terminating computation in case 3z.P(z), which we cannot
exclude given that we only know that —=P(a) is the case. The point is that there are models
which satisfy =P(a) and Jz.P(x) for some value in the domain, but this value has no name.
The logical semantics of ConGolog thus constrains the behaviour of programs less than the
3APL semantics at the cost of not being able to prove certain useful properties concerning,
for example, the termination behaviour of a program.

An elegant proposal to operationalise the nondeterministic selection of a value by the
7 operator is to assume domain closure. Domain closure implies that all domain elements
have names, which provides for a computational mechanism to implement the 7 operator by
computing bindings. From now on, therefore, we assume that action theories imply domain
closure. That is, an action theory A now also includes a domain closure aziom like Vz(z =
t1V...z =t,). We believe that the assumption of domain closure does not exclude infinite
domains (we could use second order axioms to define the set of natural numbers, for example).

5.3 Some Useful Consequences

The fact that databases are required to be complete and that domain closure is assumed has
a number of useful consequences. The most important ones are listed in this section and are
used in the remainder of the paper.

Lemma 5.3 Let A be a basic action theory and ¢ C L., be a complete theory. Then
Final(9, S) is decided by A + o[S] for arbitrary ConGolog programs ¢ and closed situations
S. That is,

A+ o[S] E Final(6,S) or A+ o[S] | —Final(6,S)
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Proof: Easy induction on the structure of §. Use domain closure for the case that 4 is a
nondeterministic choice of argument program. |

Theorem 5.4 Let A be a basic action theory and ¢ C L, be a complete theory. Then
30’ s'. Trans(6, S, ¢, s') is decided by A+ o[S] for arbitrary ConGolog programs ¢ and closed
situations S. That is,

A+ o[S] E 3, s Trans(,5,0',s") or A+ c[S] = -3¢, " . Trans(4, 5,8, s")

Proof: By induction on the rank and structure of ConGolog programs. Induction on the
rank of a program is used to deal with the case of Procedure Calls. This case is proven by a
simple application of the induction hypothesis. The remaining cases are dealt with below.

e Basic Actions A(%): Follows from the fact that A+ o[S] = Poss(A(f), S) or A+0o[S] =

—

—Poss(A(t),S). The latter is implied by the specific form of precondition axioms, the
fact that o is a complete theory, and lemma 5.2.

o Tests ¢?: Follows from the fact (lemma 5.2) that any sentence uniform in S is decided
by A+ o[S].

e Sequential Composition d1; do: By lemma 5.3, Final(d1,S) is decided. Then apply the
induction hypothesis.

e Nondeterministic Choice d; | d2: Use induction hypothesis.

e Nondeterministic Choice of Argument 7x.0: Use domain closure and induction hypoth-
esis.

e Parallel Composition 0 ||d2: Use induction hypothesis.
e Prioritised Parallel Composition d1))d2: Use induction hypothesis.
|

For an arbitrary term S of sort situation, as a notational shorthand, we stipulate that
do(e, S) is identical to S (where e denotes the empty sequence; recall that e is the label
associated with the transition for a test in 3APL).

Theorem 5.5 Let A be a basic action theory, ¢ C L., be a complete theory and « be
either € or a basic action. Then any closed sentence of the form Trans(d,S,d’, do(a, S)) is
decided by A + o[S]; that is, either:

A+ 0o[S] E Trans(6, 5,0, do(a, S)) or A+ o[S] | = Trans(8,S,4', do(a, S))

Proof: By induction on the rank and structure of ConGolog programs. The proof is com-
pletely analogous to the proof of theorem 5.4, except for the case of prioritised parallel com-
position. In the latter case, use theorem 5.4. |
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5.4 Basic Actions, Progression and Belief Bases

A third difference between ConGolog and 3APL is that the operational semantics of 3APL
explicitly refers to states called belief bases whereas the axiomatic definition of the predicate
Trans only mentions situations which denote such a state. In the operational semantics for
3APL, belief bases are updated by basic actions. The semantics of basic actions in ConGolog,
however, is provided by successor state axioms in a given basic action theory.

For our purposes, we need a way to link successor state axioms to an update semantics for
actions. This link is provided by the work of Lin and Reiter on the progression of databases
[9]. They define a progression operator for (relatively) complete basic action theories. This
progression operator can be used in this context to specify the transition function 7 for 3APL
basic actions.

Definition 5.6 (progression operator)
The progression operator Prog is defined by:

Prog(o,e) = o,
Prog(o, A(t)) = {P(f) | o = P(%) and P(%) is a situation independent sentence} U

{=P(%) | o= -P(f) and P() is a situation independent sentence} U
{F(t,now) | ok=®p(t,A(), now)} U
{~F(t, now) | o -®p(t,A(t), now)}

By theorem 3 in [9], the progression operator as defined in definition 5.6 yields a progres-
sion of a complete belief or data base ¢ since complete data bases are special cases of relatively
complete databases and because we assume domain closure. A progression of a database by
performing an action thus provides the update semantics of that action. By theorem 1 in [9],
we then know that any sentence p[do(«, S)] uniform in do(a, S) is implied by A + o[S] iff
A+ oldo(a, S)] also implies ¢[do(a, S)].

We can use the progression operator to specify a transition function for basic actions
in 3APL. We define an update action in 3APL for every basic action A in the theory A.
The semantics of basic actions in 3APL is given by a semantic function 7 which defines in
which states an action is enabled and what the resulting state of executing the action in that
particular state is. 7 is defined as a partial function, which incorporates both the information
of precondition and successor state axioms.

Definition 5.7 (semantic function T )
Let 0 C L0 be a complete theory, and S be a closed term of sort situation. Define for every
action A(f) its update semantics by:

’T(A(z),a) = Prog(o, A(f)) if A+ 0[S] = Poss(A(%), S),
T(A(t),0) is undefined otherwise.

Because instances of action precondition axioms must be uniform in a situation S, it

follows by lemma 5.2 that 7 is well-defined. The main point of this definition is that it shows
how to reduce situations (action histories) to states for complete databases.
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5.5 Translating ConGolog programs into 3APL agents

Now we have set the stage, we can define a translation function 7 from ConGolog programs
to 3APL agents. The mapping 7 defined below is defined by induction on the structure of
programs. One of the more interesting cases is the translation of programs of the form wz.d
which are mapped onto a sequential 3APL program random(z); 7(5). The 7 operator is
simulated by the special action random in 3APL, and the explicit binding by the 7 operator
is replaced by the implicit binding mechanism in 3APL. For this mapping to work we need
to make the following assumption:

Assumption 5.8 In a ConGolog program ¢ all occurrences of 7w operators bind different
variables. That is, mx occurs at most once for a variable x in a ConGolog program. Although
this property of programs may be violated if a procedure call is instantiated with its body,
in that case we will still assume that the property holds and assume that newly introduced
7 operators always bind variables which do not already occur in the original program. This
is justified by observing that variants of a program ¢ obtained by renaming bound variables
are operationally indistinguishable with respect to belief bases and action histories.

Finally, note that a ConGolog procedure is translated to a 3APL rule without a guard.
Also notice that the translation function 7 is defined on the set of open programs P, and not
just on the set of closed ConGolog programs.

Definition 5.9 (translation function T)
The translation function 7 is inductively defined by:

)

e T

e T

(ni

(

(¢1

(015 62) = 7(61); 7(d2),
o 7(01 | 62) = 7(01) + 7(02),
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wx.0) = random(x); 7(9),

e T
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01[162) = 7(61)[I7(d2),
01))02) = 7(61))7(2),

P(1) = P(f),
e 7(proc P(Z) ép end) = P(

[ ]
3

e T

8
~—

7'(5]3).

6 Embedding ConGolog in 3APL

The embedding of ConGolog in 3APL now proceeds in three stages. First, we show how to
embed ConGolog programs without procedure calls or (prioritised) parallel composition in
3APL. In Section 6, we then extend this result to programs with procedure calls (this proof
involves induction on the rank of a program). Finally, in section 7 we discuss the special
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problems associated with simulating parallel ConGolog programs in 3APL and show how to
solve these problems. The main result, however, is established in this section where we prove
an embedding result for all the basic constructs of ConGolog. We begin by showing that
the concept defined by the Final predicate (for arbitrary ConGolog programs) coincides with
termination of the corresponding 3APL 7-translation of the program modulo a number of
silent steps.

Lemma 6.1 Let ¢ C L,,, be a complete theory, ¢ € L0, and S be a closed situation
term. Then, for any action theory A and ConGolog program § we have that:

A+ olS] E Final(8, 8) iff (r(5),0) —= (E,0o)

Proof: Easy proof by induction on the rank and structure of a program. Use domain closure
for the case that ¢ is a nondeterministic choice of argument program. |

The main embedding result is the following theorem, which shows that the transition
relation defined by the Trans predicate bisimulates with the step relation =.

Theorem 6.2 (bisimulation theorem)
Let ¢ and 0’ be (closed) ConGolog programs, o C L, be a complete theory, and S be a
closed term of sort situation. Then:

A+ o[S] E Trans(6, 5,8, do(a, S))
iff
(7(6),0) = (7(8"), Prog(o, a))
Proof: We prove the theorem by induction on the structure of programs.

—,

Basic Actions: 0 = A(?):

A+ olS] = Trans(A(D), S, 8, do(A(D), ) it (A(D),0) 2L ((5"), Prog(c, A(D)))

Proof:

(=) By definition of the Trans predicate, we have A + o[S] |= Poss(A(%),S) A 6" = nil. By
definition of 7 and 7, we then have 7 (A(%),0) = Prog(co, A(f)) and 7(nil) = E. From

this we obtain (A(7), o) 22 (r(&"), Prog(c, A(D))).

(<) By the transition rule for basic actions, we must have T (A(f), ) = Prog(o, A(f)). This

—

implies that A + o[S] = Poss(A(t),S). From the definition of Trans we then conclude
that A + o[S] = Trans(A(%), S, nil, do(A(f), S)).

Tests: 6 = ¢7:

A+ o[S] | Trans(¢?, 8,68, do(e, S)) iff  (¢?,0) = (7(8'),0)

23



Proof:

(=) By definition of Trans, we have A+ o[S] = ¢[S] A ¢’ = nil. Since ¢[S] is closed and
uniform in S, and 7(nil) = E, by lemma 5.2 we obtain o = ¢@, which is the required
premise of the transition rule for tests.

(<) By the transition rule for tests, we must have o = ¢ since ¢ is closed, and so we also
have that A+ o[S] = ¢[S] by lemma 5.2. From the definition of Trans, we conclude
that A+ o[S] = Trans(¢?, S, nil, do(e, S)).

Sequential Composition: § = §y; a:
A+ 0[S] = Trans(61; 02, 5,0, do(, §)) iff  (7(61; 62),0) == (7(0"), Prog(o, a))

Proof: By the induction hypothesis, we may assume that we know that:
A+ 0[S] = Trans(d1, 8,6}, do(a, S)) iff (1(61),0) == (7(8}), Prog(o, a))
and
A+ 0[S] |E Trans (82, S, 8, do(a, S)) iff (7(02),0) == (1(8b), Prog(c,))
(=) We prove the implication by reasoning by cases: (which is allowed by theorem 5.5)

1. First, assume that A+ o[S] E 3v.0" = (v; 62) A Trans(61, 5,7, do(«, S)). This
implies there is a ConGolog program ¢] such that A+ o[S] | &' = (&]; d2) A
Trans(d1, S, 8, do(c, S)). By the induction hypothesis, we then obtain: (r(81),0) ==
(1(81), Prog(o,)). From this and the transition rule for sequential composition,
we conclude that (7(81; 62),0) == (7(8}; 2), Prog(co,a)). Since &' = (&}; d2), we
obtain: (7(81; &2),0) == (1(8"), Prog(o, a)).

2. Second, assume that A + o[S] E —37.0" = (y; d2) A Trans(d1, S, 7, do(a, S)).
By the axiomatic definition of Trans for ; , we then know that A + o[S] |
Final(61,s) A Trans(d2, S,0’, do(«, S)). Since A + o[S] = Final(61,S), by lemma
6.1, we conclude that (7(61),0) 4 (E, o). By the induction hypothesis, we ob-
tain that (1(d2),0) == (7(0"), Prog(o,«)). By the definition of = we then may
add the silent steps of d; in front of the computation involving o and we obtain:
(1(01; 62),0) == (1(0"), Prog(c,)).

(<) From (1(81; 62),0) == (1(8"), Prog(c, )) it follows that: (i) (1(61),0) == (7(d}), Prog(c, a))
for some &}, or (ii) (1(d2),0) == (7(d"), Prog(c,a)) and (1(81),0) ) (E,o). In the
first case, simply apply the induction hypothesis and note that ¢’ must be of the form
915 92 to conclude that A + o[S] = Trans(d1; d2,5,¢, do(a, S)). In the second case,
use lemma 6.1 to obtain A + o[S] = Final(d1, S) and apply the induction hypothesis.

Nondeterministic Choice: ¢ = §; + da:

A+ c[S] E Trans(6y | 62,8,0', do(a, S)) iff  (7(61) + 7(52),0) e (r(8"),0")
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Proof:
A+ o[S] & Trans(61 | d2,S,0", do(a, S))
By the axiomatic definition of Trans this is equivalent to:
A+ o[S] E Trans(01,S,¢, do(a, S)) V Trans(dz2, S, 9, do(a, S))
Now, by theorem 5.5 and the fact that o is complete, the latter is equivalent to:
A+ o[S] E Trans(61,S,¢, do(a, S)) or A+ o[S] = Trans(d2, 5,9, do(a, S))
This in turn, by the induction hypothesis, is equivalent to:
(7(01),0) == (7(8"), Prog(o, a)) or (1(d2),0) = (7(&"), Prog(c, a))
Finally, this is equivalent to:

(1(01) + 7(82),0) == (1(8"), Prog(o, a))

Nondeterministic Choice of Argument: § = 7rz.0":

A+ 0[S] | Trans((rx.6"),8,6", do(a, S)) iff (r(7z.8),0) == (1(8"),d’)

Proof:
(=)
A+ o[S] E Trans((rx.8"),S,48", do(a, S))
By the axiomatic definition of Trans this is equivalent to:
A+ o[S] E Jz.Trans(d', S,6", do(a, S)))
Because of domain closure, there is a ground witness ¢ for 3z and we obtain:
A+ o[S] E Trans(6'{z = t},S,0", do(c, S))
By the induction hypothesis, we then have that
(r(6'{z = t}),0) == (1(8"), Prog(a, o))

From this, the fact that all choice operators 7wz in § bind different variables by assump-
tion 5.8, and because random(x) gives rise to an internal step, we can then derive:

(random(z); 7(8'),0) == (1(8"), ")
By definition of the translation function 7, we obtain:

(r(rz.8"),0) == (1(8"), 0"
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(<) From
(random(z); 7(8"),0) = (r(5"), Prog(c, o))
it follows that:
(r(6{z = 1}),0) = (7(8"), Prog(, @)

for some t, since random(x) gives rise to an internal step. By the induction hypothesis,
we then obtain:

A+ o[S] E Trans(6'{z = t},S,0", do(c, S))
By the semantic definition of 3z we then can derive:
A+ o[S] |E Jz.Trans(', S,d", do(a, S))
And finally, by the axiomatic definition of Trans this is equivalent to:

A+ o[S] E Trans((rx.8"),S,48", do(a, S))

As a corollary, we obtain that ConGolog programs (without procedures or parallelism)
and the translations of these programs in 3APL compute the same belief or data bases and
compute these belief bases by executing the same sequence of actions:

Corollary 6.3 Let A be a basic action theory with initial database o[Sp], and a be a sequence
of basic actions.

A+ o[S] E Trans*(6, So, nil, do(«, Sp))
iff
(r(8),0) ==~ (E, Prog(c, o))

where Trans®™ denotes the transitive closure of Trans.

7 Procedures

In this section, we extend the bisimulation result to include programs with procedures. The
proof proceeds by induction on the rank and structure of a program. The proofs for pro-
grams without procedure calls are essentially the same as in the previous section. The only
interesting new case is that of simulating a procedure call.

—

Procedure Call: § = P(1):

A+ 0[S] = Trans(P(f), 8,6, do(a, S)) iff  (7(P(%)),0) == (r(¢'),0”)
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Proof: We proceed by induction on the rank of a program. The base case, programs with
rank 0, coincides with programs without procedure calls, and is proven in the previous section.
Assuming that we know the simulation result holds for all programs of rank n, we now show
that it also holds for programs with rank n + 1:

(=) Suppose P() is of rank n+1 and A+0[S] = Trans(P(f),S,8', do(c, S)). Then we also
have A+ o[S] = Tmns((sp’g, S,d', do(a, S)) where 6p§ is the body of procedure P with
formal parameters replaced with actual parameters. Moreover, if P is of rank n+1, then
dp is of rank n. By assumption 5.8 we may assume the body §p introduces only v such
that v does not already occur in the program making the procedure call. Then, by the
induction hypothesis, we obtain: <T(5P§),O'> == (1(8"), Prog(c,)). By the transition
rule for rule application, we then derive: (r(P(%)),0) == (7(0'), Prog(c, a)), because
application of a rule is an internal step.

(<) Suppose (1(P(%)),0) == (7(0"), Prog(c,a)). Then there must be some rule such that:
(t(P(f)),0) — <7'((5p§),0’>. Because P(f) is of rank n + 1, (Spg must be of rank n.
By the induction hypothesis, we then have: A+0[S] = Trans(dpy, S, 0", do(a, S)). From
this, by using assumption 5.8, we immediately obtain: A+c[S] = Trans(P (%), S,d, do(a, S)).

8 Parallel Composition

In this section, we extend the bisimulation result to arbitrary ConGolog programs including
parallel as well as prioritised parallel programs. To simulate prioritised parallel programs
3APL is extended with the )) operator and we show how to define the semantics of this
operator in a transition style semantics below. Originally, the parallel composition of goals
was included in 3APL. The semantics of the parallel operator || in 3APL, however, differs
from that of the ConGolog semantics. Because of this difference, the main issue in extending
the simulation result to parallel programs is to prove that the two semantics are equivalent
with respect to some appropriate observation criterion. That is, we must show that parallel
programs in 3APL and ConGolog compute the same things.

The difference in the semantic definitions of the parallel operator concerns the ordering of
computation steps of a 3APL (parallel) program. A 3APL program can perform silent steps
which do not have a counterpart in the ConGolog semantics. The problem concerns the order
in which these silent steps are performed. This can be illustrated as follows: given a parallel
program d1/d2, in the ConGolog semantics only d; or d3 can be transformed in a single step
but not both, while according to the 3APL semantics as defined by = both subprograms
may perform silent steps before an action or a test (a ‘real’ ConGolog step) is performed. For
example, the ConGolog program

procP()
A
end

proc(()
B

end

POIRO
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can execute either the left or right branch of the parallel composition resulting in respectively
Q() and P() as the remaining programs for execution. The program is translated to P()|| Q()
in 3APL (plus translations of the procedure definitions to rules). According to the —
semantics which abstracts from silent steps, this program, however, can result in either P(),
Q(), A or B after performing one = step. The latter two new possibilities result from the
fact that with respect to the = semantics a silent step may have been performed in which
the procedure is expanded into its body before an actual step (not a silent step) is performed.
The = transition semantics thus allows silent steps of both subprograms to be performed
before an actual step is performed in either one of them, whereas we would like to make sure
that only computation steps associated with one of the subprograms are performed.

To solve this problem we show that the order of performing silent steps does not matter.
For this purpose, we introduce a new transition relation ~» which imposes a restriction on the
order in which silent steps are performed in a parallel program and show that ~» and — are
equivalent in the sense that they compute the same belief bases (our observation criterion).

The transition relation ~» is derived from =. In the definition of the ~» transition
relation also a specification of the semantics of the prioritised parallel operator is given. The
transition rule for prioritised parallel composition 71))72 uses a negative premise to specify
that the execution of w9 is only allowed if 71 cannot perform an action or test after a finite
number of silent steps. A justification for this type of transition rule can be found in [3].

Definition 8.1 (transition relation ~»)
Let Parfree denote the set of 3APL programs without occurrences of parallel operators.

(m,0) :l>7 (', 0"), m € Parfree

(m,0) ~on (', )

l
<7T1, U> ~ry <7Tiv J/>

l
<7T1; 2, U> M’Y <7T17 27, OJ>

l l
<7T1’ U> Py <7Tiv U,> <7T2,0'> ey <7Té’ OJ>
] I
(m1 +72,0) ~ny (m,0") (T + T2, 0) ~y (M5, 07)
l l
<7T170> ey <7T/17 OJ> <7T27U> ey (Wé, OJ>
l l
(m1l|me, o) ~oq (|| T2y, 07)  (millm2, o)~y (m1yl|Ty, o)

l
<7T1, U> ~ry <7Tiv J/>

(m1)m2, 7Y~y ()Y T2y, 0)

i, 0’0, m((m1,0) Po (n},0") and (w3, 0) Sy (), 0")

(i), 0) s (w1 mh, o)
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The following theorem provides the basis for our simulation result. It proves that the
transition relation ~» is equivalent to = with respect to computed belief bases, which is
used as the observation criterion here for programs without prioritised parallel composition
(which is not defined for =).

Theorem 8.2 Let 7 be the translation of a ConGolog program § without prioritised parallel
composition, i.e. m = 7(J). Then:

(m,0) ="* o iff (m,0) ~* 0o’

Proof:

(=) By induction on the length of the computation and the structure of 7. The base case, a
computation of length 1, is trivial, since in that case m must be A(z) or ¢?. So, suppose
for all computations of length n the theorem holds. We must prove it for computations
of length n + 1.

e Basic Actions, Tests: Easy.
e Random Action: Is not a translation of a ConGolog program.

Sequential Composition: Easy; partition computation into = steps.

Nondeterministic Choice: Easy.

Parallel Composition: 7 = 7y ||ms.

Take the first m steps of the computation such that the mth step is a A(f) or ¢?
step and all previous steps are internal steps. The mth step is either performed
by m1 or by ma. Suppose it is performed by 7; (the other case is analogous). By
rearranging the first m steps such that all steps performed by 71 are performed first
- in the same order - and then performing the (internal) steps performed by ma, we
still have a legal computation which does not change the computed result (since
the steps from 7y only expand procedure calls or randomly guess values). Now,
the sequence of 71 steps correspond to one = step by definition. The remaining
computation is at least one computation step shorter, and thus we are done.

e Procedure Call: Use induction hypothesis.
(<) Trivial.
[ |

Now we are able to extend the simulation result to (prioritised) parallel programs. To
prove this extended simulation result, we use the new transition relation ~». The proof for
all cases except for parallel and prioritised parallel composition are analogous to the proofs
of previous sections and are omitted for this reason. Theorem 8.3 shows that the transition
relation defined by Trans for arbitrary ConGolog programs bisimulates with the step relation

N,

Theorem 8.3 (bisimulation which includes parallel and prioritised parallel composition)

Parallel Composition: ¢§ = 01||d2:

A+ 0o[S] E Trans(61||02, 8,8, do(, S)) iff  (7(61)||7(62), ) 2 (1(0"), Prog(o,a))

29



Proof: Note that the base case, i.e. (m,0) ~ (7/,0') because (7,0) = (7', '), has been
proven in previous sections. We now deal with the remaining cases.

(=) Assume A+ o[S] = Trans(01||02, S,d’, do(a, S)). We need to distinguish two cases, the
case where 01 is executed and the case where Jo is executed. Because of symmetry,
we only give the details for one of these cases. So, assume: A+ o[S] = 7.0 =
(v1162) A Trans(d1, S,7, do(e, S)). As a consequence, there is a 0] such that: A +
o[S] = o' = (61]|102) A Trans(d1, S, 97, do(a, S)). Then, by the induction hypothesis, we
obtain: (1(61),0) ~> (1(8}), Prog(c, a)). By definition, we then have: (7(d1)||7(d2), )
(1(8"), Prog(c,a)).

(<) Assume (7(81)||7(02),0) > (7(8"), Prog(o,a)). In that case, by definition 8.1 we know
that either (7(81), ) ~ (7(8}), Prog(o, a)) for some &| such that §" = §||02, or (7(82), 0) ==
(1(85), Prog(o, ar)) for some 65 such that ¢’ = 6;(|65. Then apply the induction hypoth-
esis.

Prioritised Parallel Composition: § = d;))ds:

A+ 0[S] & Trans(61)62, 5,8, do(a, S)) iff  (1(61)62),0) ~ (7(8"), Prog(c,a))

Proof:
(=) We prove the implication by reasoning by cases: (which is allowed by theorem 5.5)

1. First, assume that A + o[S] | 37v.0" = (y))d2) A Trans(61, S, 7, do(a, S)). Sup-
pose 97 is a ConGolog program which satisfies this equation. By the induction
hypothesis, we then obtain that (7(61),0) ~ (7(8}), Prog(o,a)). By the tran-
sition rule for prioritised parallel composition of definition 8.1, this implies that
(T(81))82),0) ~ (7(&"), Prog(, ).

2. Secondly, assume that A + o[S] E —3v.0" = (y))d2) A Trans(d1, S, 7, do(a, S)).
By the axiomatic definition of Trans, we then have that A + o[S] E 3v.0" =
(01)y) A Trans(d2, S, do(a, S)) A =3 n,s"”. Trans(61,S,n,s"”). By the induction
hypothesis, we then have that (7(d2), 0) ~ (7(85), Prog(c, a)) for some &) such that
d" = 61))8,. Moreover, there is no transition ~» corresponding to d;. By the tran-

sition rule for prioritised parallel composition, we then have that (7(8;))d2), o) ~>»
(1(8"), Prog(o, ).

(<) From (1(81)62),0) ~ (7(8"), Prog(c,a)) it follows that: (i) (7(01), o) ~> (7(d}), Prog(o, a))
for some &} or (i) (7(d2),0) ~> (7(d}), Prog(c,a)) for some &) and there is no transi-
tion associated with d;. In both cases, use the induction hypothesis to conclude that
A+ o[S] E Trans(61))d2, S,0', do(«, S)).

|
Finally, we obtain that arbitrary ConGolog programs and the translations of these pro-
grams in 3APL compute the same belief or data bases and compute these belief bases by

executing the same sequence of actions. The extended version of corollary 6.3 now includes
all ConGolog programs.
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Corollary 8.4 Let A be a basic action theory with initial database o[Sp], and « be a sequence
of basic actions.

A+ c[So] = Trans* (6, So, nil, do(c, Sp))
iff

<T(5),0)3> (E, Prog(o, a))

9 Discussion

ConGolog is a logic programming language which extends basic action theories in the situ-
ation calculus with operators for building complex programs. The logical perspective of the
situation calculus offers a very expressive framework for specifying agents. Basic action theo-
ries provide a framework for specifying actions and offer a solution to the frame problem. The
logical semantics of ConGolog, however, does not straightforwardly provide an implementa-
tion language, in contrast with the operational semantics of 3APL. The embedding result of
this paper shows that one option to implement (a restricted version of) ConGolog is to embed
the language into 3APL. Another important feature of the logical semantics is that in the
presence of functional fluents, situations cannot be identified with states.

3APL is an agent programming language based on the agent-oriented approach. Its op-
erational semantics is state based and specified by means of a transition semantics. A clear
distinction is made between the programming language and a programming logic for proving
properties of 3APL agents. The agent language 3APL abstracts both from the knowledge
representation that agents use and a concrete specification of actions. The embedding result
shows that basic action theories in the situation calculus can be used to specify actions and
to derive an update semantics for 3APL actions.

Both languages emphasise different aspects of agent computing. ConGolog is presented
as a high-level programming alternative to planning. The focus is on extracting a legal action
sequence from a nondeterministic program. A ConGolog program thus is seen as a vehicle for
computing a situation (action history). As in planning, finding a legal action sequence requires
search and this explains the use of a backtracking model of execution. The backtracking model
is inherited from logic programming, which is used to implement ConGolog [2].

With respect to 3APL, the focus is on computing belief bases. Upon termination a 3APL
program returns a belief base. The execution model that is proposed is that of the ‘imperative
flow of control’ [7]. The basic feature of this model is that a commitment to a choice is made
as soon as an action has been executed. Because of the embedding result, it is clear, however,
that neither the semantics of ConGolog nor that of 3APL dictate the use of one or the other
model of execution (cf. also [1]).

Finally, the construction of an embedding of ConGolog into 3APL also identified several
common and distinguishing features of the formalisms used to specify a semantics. Basically,
the embedding result indicates that an axiomatic definition in an extended predicate logic like
the situation calculus and a Plotkin-style transition semantics result in more or less equivalent
semantics. The use of a logical semantics specified in the situation calculus, however, requires
careful consideration of a number of issues, like the incompleteness of databases and domain
closure. Moreover, the logical semantics seems suitable for proving partial correctness, but
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raises some doubts as to its usefulness for proving termination properties (even more so with
respect to the second order semantics).
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