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carried by D0,2 and 4-branes wrapping cycles of the four-torus. The SO(4; 4;Z) subgroup
respects this split-up, the full U-duality group however mixes both sectors.

The compacti�ed string theory is related to a 4 + 1 dimensional gauge theory. The
gauge theory is the world volume theory of the D4-branes: a stack of N D4-branes gives
rise to a U(N) gauge theory. Also the other charges are represented in the gauge theory, as
electric and magnetic 
uxes, compact momenta and the instanton number. Hence a given,
generic set of string theory charges can be mapped to a gauge theory con�guration with
the corresponding set of quantum numbers.

As is well known, the correct action to describe the gauge theory is the Born-Infeld
theory [2]. Using this action, we calculate the Hamiltonian as a function of the various
�elds and moduli. Remarkably, we �nd a completely SO(5; 5;Z)-invariant expression. We
also derive a lower bound on the mass given the quantum numbers, the BPS-mass. This
mass is identical to the one found in [1] from a six-dimensional space-time supersymmetry
calculation.

2. Dual Pictures

We are interested in IIA string theory compacti�ed on a four-dimensional torus T4. On
this torus we allow for a general con�guration of D0-branes, wrapped D4- and D2-branes,
winding strings and compact momenta. We want to identify the various conserved charges
in this theory and derive the BPS-spectrum, as a function of the moduli. In the end we
will demonstrate the invariance of this spectrum under the full U-duality group in six
dimensions, SO(5; 5;Z). The system can be looked at from various points of view. The
interpretation of both the charges and the moduli depends on the perspective. In the
eleven-dimensional point of view the SO(5) symmetry of the U-duality group is manifest.
The zero-brane number is in this picture interpreted as momentum around an additional
circle. The quantum numbers are associated to �ve momenta, 10 membrane-wrapping
numbers and the �ve-brane number. The moduli are uni�ed in a �ve dimensional metricG
and a three-form �eld C3. Together, G and the Hodge dual of C parametrise in the usual
fashion the moduli space,

M5;5 =
SO(5; 5)

SO(5)� SO(5)
: (1)

A dual description is obtained via reduction on S1 to get to the string picture. The
M-theory �ve-branes are mapped to D4-branes, which are described by a non-abelian 4+1-
dimensional Born-Infeld theory. The quantum numbers in this case are the rank of the
gauge group, the electric and magnetic 
uxes on the four torus, the compact momenta of
the gauge theory and the instanton number. The Born-Infeld action contains couplings
to the background metric g, b-�eld and RR-forms c1; c3, and is multiplied by the string
coupling �.

The relations between the quantum numbers in the various descriptions of the theory
are described in table 1. The sixteen charges transform under the U-duality group SO(5; 5)
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quantum # strings (4 + 1)d Born-Infeld M-theory
k D0 instanton number P5

ni momentum momentum Pi
wi winding electric 
ux M5i

mij D2 (dual of) magnetic 
ux Mij

N D4 rank �ve-brane

Table 1: charges in the various pictures

in the sixteen-dimensional spinor representation.
In the following we will derive the BPS-mass from the Born-Infeld action (the D4-branes

point of view). We will restrict ourselves to the abelian case, i.e. N = 1. The resulting
expression will then be expressed in terms of the M-theory variables to make its U-duality
invariance manifest.

3. Hamiltonian and Action

The abelian Born-Infeld action on the D4-brane is given by

SBI =
Z
d4xdt

�1
�

q
det(�g �F) + 1

2
c1 ^ F ^ F + c3 ^ F ; (2)

where F = F � b. Here we use units where the ten-dimensional string length `s = 1. The
coupling constant � in front of the �rst term is the 10 dimensional string coupling; the fact
that it appears as 1=� is typical of an RR-soliton. The coupling to the RR potentials c is
obtained by expanding c ^ expF .

We want to obtain the Hamiltonian associated to this action, and express it in terms
of �elds whose zero-modes are the various quantum numbers. These are

electric �elds : Ei =
ÆL
ÆF0i

;

magnetic �elds : Fij = @[iAj];

momenta : Pi = FijE
j; (3)

instanton density : I =
1

2
F ^ F;

rank : 1:

Straightforward calculation gives the result

H = Ei _Ai �LBI (4)

=

"
1

�2

�
det g +

det g

2
(Fij)

2 +
1

4
(F ^ F)2

�

3



+

 
E 0

P 0

!t  
g � bg�1b bg�1

�g�1b g�1

! 
E0

P 0

!#1=2
:

The shifted primed electric �eld and momentum E0 and P 0 are given by

E0 = E � �Fc1 + �c3; P 0 = P +
1

2
F ^ Fc1 + F �c3: (5)

We want to rewrite this Hamiltonian such that its U-duality properties becomemanifest.
To this end we �rst have to group together the di�erent �elds in �ve-dimensional repre-
sentations, motivated by their M-theory interpretation. The four-momenta Pi sit together
in a �ve-dimensional momentum vector with the instanton number density P5 � 1

2
F ^ F ;

the latter, indeed, is associated to the D0-branes, which are M-theory momentum modes
around the extra circle. Similarly, the electric �elds are associated to winding strings and
therefore are joined to the membrane winding �elds �F , the four-dimensional hodge dual
of the magnetic �eld. Together they form an antisymmetric tensor,

Mij =
�Fij; Mi5 = Ei: (6)

Finally, the rank N , the number of �ve-branes, is a scalar under the SO(5)-rotation group.
In the present calculation, N = 1. In non-abelian gauge theory, the action involves a trace
over the group indices, giving N as Tr 1. In the following we will for clarity use N instead
of 1.

In order to change to the M-theory picture, we also upgrade the moduli to �ve-
dimensional ones. The b- and c3-�elds are components of the eleven-dimensional three-form
C, whereas the coupling � and the RR 1-form c1 come from the 11-dimensional metric,

G =

 
gij + �2c1

ic1
j ��2c1i

��2c1j �2

!
; (7)

in string units.
To make the SO(5; 5) U-duality manifest, it is appropriate to convert to six-dimensional

Planck units,

`pl = �
1

2 (
q
det g=`4s)

� 1

4 `s (8)

(see Appendix B), since this is the length scale that is U-invariant. After a rescaling of the
metric with a factor (detG)�1=3, the Hamiltonian has the form, in units `pl = 1,

H2 =
p
detGGijP 0

iP
0
j +

1

2
p
detG

GikGjlM
0ijM 0kl +

1p
detG

N 02; (9)

The three-form �eld moduli enter in this formula as shifts in the �elds, indicated by
the primes; this dependence on the three-form C, or equivalently its �ve-dimensional dual
two-form �C, can be conveniently written, if we identify the vector P with a four-form, as

P 0 +M 0 +N 0 = e�
�C ^ (P +M +N)

= (P � �C ^M +
1

2
�C ^ �CN) + (M � �CN) +N: (10)
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If we assume that we can extend the manifest SL(4) to an SL(5) action on the �elds Pi
and M ij, the Hamiltonian would be manifestly invariant under the SL(5;Z) coming from
the �ve-torus in M-theory. As we shall see in the next section, this symmetry can even be
extended to the full U-duality group, SO(5; 5;Z).

4. U-Duality and BPS-Spectrum

The Hamiltonian that we have derived from the four-dimensional Born-Infeld action (9)
depends on sixteen �elds (not all independent) whose zero modes are integer quantum
numbers (note that one of these �elds is the rank of the gauge group; it is hard to imagine
whether it has any modes other than the zero mode). These sixteen quantum numbers, and
hence also the �elds, sit in the sixteen-dimensional spinor representation of the U-duality
group, which is a discrete subgroup of SO(5; 5). The Hamiltonian (9) is invariant under
these U-duality transformations. To see how they act it is convenient to represent the �elds
in terms of a bispinor of SO(5), satisfying a reality condition; this is equivalent to a spinor
of SO(5; 5). We set `pl = 1, and introduce the bispinor

Z =
N 0

(detG)1=4
+ (detG)1=4P 0

i�
i +

1

2(detG)1=4
M 0ij�ij ; (11)

where the �'s are �ve-dimensional hermitian gamma-matrices satisfying

f�i;�jg = 2Gij : (12)

The Hamiltonian then takes the form of the invariant

H =
1

2

p
trZZy � kZk: (13)

We now set out to derive a BPS-bound for this system, i.e. a lower bound on the mass
given the values of the various quantum numbers. To obtain this bound we introduce the
vector [1]

KL =
1

8
tr�ZZy: (14)

This vector KL can be expressed in terms of the various �elds as follows. It is a linear
combination of two vectors K and W , which in the absence of the �C two-form are given
by

Ki = NPi � 1

2
(M ^M)i; W i =M ijPj ; KLi = Ki +GijW

j: (15)

First of all, one can easily check (using the Schouten identity, see Appendix A) that upon
inserting the original gauge theory expressions, both vectors are identically zero. If we
switch on the �C-�eld, we have to shift Pi and M ij:

Pi ! Pi � (�C ^M)i +
1

2
(�C ^ �C)iN

M ! M � �CN: (16)

5



Inserting this one immediately �nds that K remains una�ected. Using the Schouten iden-
tity in �ve dimensions (see Appendix A), we �nd

W i ! W i � �C ijKj: (17)

Hence also for general �C the total KL vanishes. (The vanishing of these vectors is precisely
equivalent to the fact that the various �elds are dependent.)

Using this vector KL, we can now derive a BPS-mass formula in terms of the 
uxes,
which are the zero-modes of the bispinor Z, denoted as Z0. The details are presented in
Appendix C. The result is

M2
BPS = kZ0k2 + 2jK0

Lj: (18)

K0
L is de�ned as the part of KL originating from the zero-modes of Z,

K0
L =

1

8
tr�Z0Z0y: (19)

In components the mass formula reads as follows:

M2
BPS =

p
detGG�1n0

2
+

1

2

p
detG

�1
G2m02 +

p
detG

�1
N2

+2

vuut K0

W 0

! 
G�1 � �CG�C �CG

�G�C G

! 
K0

W 0

!
: (20)

The n0;m0 are the zero-modes of the �ve-dimensional �elds, shifted with the terms involving
�C, as in equation (10). We recognise in the �rst line the SO(5; 5) invariant constructed
from the spinor, in the second line the one from the vector.

Finally, note that if we replace the rank N by a dual �ve-form �eld strength, and
similarly m0 by a three-form, the �rst line in the mass formula attains a more natural
form, with just one overall volume factor

p
detG.

5. Discussion

From a matrix theory perspective [3], the theory of N D4-branes describes DLCQ M-theory
compacti�ed on a four-torus [4]. Therefore, one would expect it to have a duality group
SL(5;Z), the U-duality group in seven dimensions. Indeed, in [5, 6, 7], the masses of the
1=2 BPS-states where derived, and shown to transform in SL(5;Z) representations. These
states correspond in our notation with those having K0

L = 0. It was realised that this group
could be enhanced to SO(5; 5;Z) in [7, 8, 9] by adding the generator of Nahm transfor-
mations, that exchanges the rank of the gauge group with the 
uxes. Furthermore, in [8]
degeneracies of a subset of the BPS-states of Yang-Mills theory in three space dimensions
were shown to be symmetric under the relevant U-duality group.

In this paper we demonstrated that the full Hamiltonian of the D4-brane, and its BPS
mass formula, are symmetric under the U-duality group SO(5; 5;Z), provided one uses the

6



full Born-Infeld action. The BPS-spectrum coincides with the one found in [1] from the M-
theory �ve-brane, which is natural since the D4-brane is the M5-brane wrapped around the
eleventh dimension. Just as in that case, we conclude that the D4-brane action is capable
of reproducing the correct BPS spectrum of M-theory compacti�ed to six dimensions; a
proviso is that the �ve-brane wrapping number, equal to the rank of the gauge group, be
non-vanishing for this description to make sense.

We have seen that the rank N is treated on an equal footing with the 
uxes. This
suggests that there should be a description of the theory where N is treated as a �eld, with
zero-mode equal to the rank, but also with 
uctuations, N 0.

Finally, the procedure carried out in this paper can be easily generalised to dimensions
lower than 4 + 1, giving the appropriate Ed+1 U-duality symmetric mass formulae. In
higher dimensions extra quantum numbers corresponding to e.g. NS5-branes, which are
not naively present in the gauge theory, have to be added.
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Appendix A. The Schouten Identity

The Schouten identity states that any 5-rank antisymmetric tensor in 4 dimensions must
vanish. It can be written in the form

"ijklÆ
n
m � "ijkmÆ

n
l � "ijmlÆ

n
k � "imklÆ

n
j � "mjklÆ

n
i = "[ijklÆ

n
m] = 0: (21)

Contracting this identity with antisymmetric matrices Aij and Bkl, we �nd the matrix
products

�AB + �BA = �A ^B1l; (22)

where
�Aij =

1

2
"ijklAkl; and A ^B =

1

4
"ijklAijBkl =

1

2
�AijBij: (23)

In 5 dimensions, there is a similar relation "[ijklmÆ
p
n] = 0. Contracting now with three

antisymmetric matrices A, B and C, we �nd the relation

Aij(B ^ C)j +Bij(C ^A)j + Cij(A ^B)j = 0; (24)

where

(A ^ B)i = 1

4
"ijklmAjkBlm: (25)
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Appendix B. Planck Units

The relation between the 11-dimensional Planck length `p and the string length `s, is given
by

`p = �1=3`s; (26)

where � is the string coupling. The Planck length in 11 � d dimensions, after compacti�-
cation on a d-torus, is given by the formula

`pl = `p(Vd)
�1=(9�d); (27)

where Vd is the volume of the internal d-torus in 11-dimensional Planck units. For the case
at hand, d = 5, we �nd `pl = `p�

1=6v�1=4 = �1=2v�1=4`s. The factor v in this expression is
the original, four-dimensional volume,

p
det g, measured in string units `s. The squared

volumes of the �ve-torus, in the various units, are

det
G

`2s
= v2�2; det

G

`2p
=

v2

�
4

3

; det
G

`2pl
=
v

9

2

�3
; (28)

(again with `4sv =
p
det g). In our �nal expression for the Hamiltonian we rescale the

metric with a factor �=v3=2, which equals the determinant in six-dimensional Planck units
to the power �1=3. Therefore, the determinant that appears in equation (9) is

detG =

 
�

v3=2

!5
v

9

2

�3
=
�2

v3
: (29)

Appendix C. The BPS-bound

The BPS-bound is the minimum of the Hamiltonian, which is derived using a Bogomolny
type argument. We introduced the bispinor Z, in terms of which the Hamiltonian is de�ned
as

H =
1

2

p
trZZy � kZk:

Furthermore we need the vector KL = 1
8tr�ZZ

y, which is identically zero, as argued in the
text. Therefore, we can, for any unit �ve-vector e, write H2 as

H2 =
1

2
kZ + e�Zk2 � 1

2
kZ(e)k2: (30)

The mass of a state is given by the integrated hamiltonian density H,

M =
1

2

p
2
Z
kZ(e)k: (31)
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Now we split Z(e) into a piece Z0(e) containing only the zero-modes of the �elds, which
integrate to the 
ux quantum numbers, and the non-zero-modes Z 0(e) (that integrate to
zero). Using the inequality

kZ(e)k � kZ0(e)k+ Z0(e) � Z 0(e)

kZ0(e)k ; (32)

we obtain the mass-bound

M2 � 1

2

�Z
kZ0(e)k

�2

=
Z
kZ0k2 + 2e �K0

L: (33)

The BPS-bound can then be obtained be maximising this minimumbound, which evidently
leads to

M2
BPS = kZ0k2 + 2jK0

Lj: (34)

References

[1] R. Dijkgraaf, E. Verlinde and H. Verlinde, BPS Quantization of the Five-Brane,
Nucl.Phys. B486 (1997) 89, hep-th/9604055.

[2] R. Leigh, Dirac-Born-Infeld Action from Dirichlet Sigma Models, Mod.Phys.Lett. A4
(1989) 2767.

[3] T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M-Theory as a Matrix Model:
A Conjecture, Phys. Rev. D55 (1997) 5112, hep-th/9610043.

[4] W. Taylor IV, D-Brane Field Theory on Compact Spaces, Phys. Lett. B394 (1997)
283, hep-th/9611042. O.J. Ganor, S. Ramgoolam and W. Taylor IV, Branes, Fluxes
and Duality in M(atrix) Theory, Nucl. Phys. B492 (1997) 191, hep-th/9611202.

[5] S. Elitzur, A. Giveon, D. Kutasov, E. Rabinovici, Algebraic Aspects of Matrix Theory
on TD, Nucl. Phys. B509 (1998) 122, hep-th/9707217.

[6] B. Pioline, E. Kiritsis, U-duality and D-brane Combinatorics, Phys Lett. B418 (1998)
61, hep-th/9710078.

[7] N.A. Obers, B. Pioline, E. Rabinovici, M-Theory and U-duality on T d with Gauge
Backgrounds, hep-th/9712084.

[8] F. Hacquebord, H. Verlinde, Duality Symmetry of N = 4 Yang-Mills Theory on T 3,
Nucl.Phys. B508 (1997), 609, hep-th/9707179.

[9] M. Blau, M. O'Loughlin, Aspects of U-Duality in Matrix Theory, hep-th/9712047.

9


