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1. Introduction

The quantum �eld theoretic approach [1] to Donaldson's invariants of 4-manifolds [2][3]
opened up new horizons in mathematics [4] through the quantum properties of the underlying
physical theory uncovered by Seiberg and Witten [5]. The purpose of this paper is to examine
a natural generalization of Donaldson-Witten theory to a complex K�ahler 3-fold.

In [6] we considered, among others, a natural generalization of the Donaldson-Witten
theory on a complex K�ahler surface to a complex d > 2 dimensional K�ahler manifold M .
The path integral of the resulting model was localized to the moduli space of Einstein-
Hermitian connections, or equivalently the moduli space of stable bundles. However this
model had a serious problem due to the uncontrollable abundance of anti-ghosisare only a
�nite dimensional space of anti-ghost zero-modes. For higher dimensional K�ahler manifolds
however, we �nd an in�nite dimensional solution space. Another problem arises due to zero-
modes of the ghosts. These are related to the appearance of reducible connections (or strictly
semi-stable bundles). These can also be found for a K�ahler surface, i.e. d = 2, but in that
case one can always get rid of these zero-modes by changing the metric. These zero-modes
are responsible for the jumps in the observables as a function of the metric. In the case of
higher dimensional K�ahler manifold the appearance of ghost zero-modes is however much
more generic and rigid; one can in general not get rid of them by a change in the metric.

In this paper we resolve these problems by starting o� where we have failed in [6]. A
simple observation is that one has to introduce additional degrees of freedom to control the
anti-ghost zero-modes. This inductive procedure naturally leads us to a natural extension
of the moduli space of Einstein-Hermitian connections or, equivalently, stable bundles. This
extension is very close to the one considered by [7] in the context of homological mirror
symmetry. It turns out that we have a well-de�ned model only for the d � 3 case. By
a deformation of the model we are also able to deal with reducible connections. In fact,
the important ingredient that makes this possible is the equivariant treatment, which we
adopt from the start. We already anticipated this in [6][8]. Closely related models have
been considered in various papers [9][10][11][12][13][14][15], largely motivated by a program
of Donaldson and Thomas [16][17][18] as well as certain world-volume theories of D-branes
[19].

We will follow the general approach of de�ning a cohomological �eld theory with a K�ahler
structure, as discussed in [20]. We begin by constructing a well-de�nedNc = (2; 0) model on a
K�ahler 3-fold. This model gives a concrete formula for Donaldson-Witten type polynomials,
which is valid regardless of what the properties of the extended moduli space are. We
also argue, using a S1-symmetry and the DH integration formula, that Donaldson-Witten
type invariants may be equivalent to Seiberg-Witten type invariants on K�ahler 3-folds. For
manifolds of special holonomy, the model reduces to various known models. The dimensional
reduction of the model on a 2-torus, gives rise to the Nc = (2; 2) Vafa-Witten model on a
K�ahler 2-fold. Finally we briey specialize to the Calabi-Yau case. On a Calabi-Yau 3-fold
the Nc = (2; 0) supersymmetry is automatically enhanced to Nc = (2; 2) supersymmetry.
This Nc = (2; 2) model can be obtained by dimensional reduction of the Nws = (2; 2) gauged
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linear sigma model in (1 + 1) dimensions introduced in [8]. The partition function of the
theory can be identi�ed with the holomorphic Casson invariant de�ned in [17][18].

2. Preliminaries

In this section we give some preliminary description of supersymmetric models and moduli
spaces of stable bundles on K�ahler manifolds.

2.1. General Nc = (2; 0) Models

First we briey summarize the general structure and some properties of cohomological �eld
theories with a K�ahler structure. A more detailed discussion can be found in [20]. As
discussed in this reference, a cohomological �eld theory on a K�ahler manifold can always be
identi�ed with a Nc = (2; 0) supersymmetric gauged sigma model in zero dimensions. Such
a sigma model is classi�ed by data ((X ;$);G; (E; h;S;J)), where

� X is a complex K�ahler manifold with K�ahler form $. X is the target space of the
sigma model.

� G is a group acting on X with isometries. This will be the gauge group of the sigma
model.

� E is a G-equivariant holomorphic Hermitian vector bundle over X with a Hermitian
structure h and two mutually orthogonal holomorphic sections S and J.1

The Nc = (2; 0) supersymmetry is generated by supercharges s+ and s+ satisfying the
following anti-commutation relations:

s
2 = 0; fs; sg = �i�a++La; s

2 = 0; (2:1)

where � = �aT a is a Lie(G)-valued scalar and La denotes the Lie derivative with respect
to the vector �eld Va on X generating the G-action. The supercharges s+ and s+ can
be identi�ed with the holomorphic and anti-holomorphic di�erentials of the G-equivariant
cohomology of X after parity change. The theory has two additive quantum numbers (p; q)
called ghost numbers, such that s+ has ghost numbers (1; 0) and s+ has ghost numbers
(0; 1). They de�ne a grading for the �elds and observables in the theory.

Let us now introduce the various \�elds" of the model. First, we have local holomor-
phic coordinate �elds X ion X , and their complex conjugate �elds X {. They are part of

1More precisely, S is a section of the dual holomorphic bundle, so that the notion of orthogonality is
canonically de�ned.
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holomorphic multiplets (X i;  i
+) (i.e. s+X

i = 0), and anti-holomorphic multiplets (X {;  {
+)

respectively. Their transformation laws are

s+X
i = i i

+;

s+X
i = 0;

s+X
{ = 0;

s+X
{ = i {

+;

s+ 
i
+ = 0;

s+ 
i
+ = �a++LaX

i;

s+ 
{
+ = �a++LaX

{;

s+ 
{
+ = 0:

(2:2)

Associated with the group G we have the Nc = (2; 0) gauge multiplet (���; ��; ��;D) and
the invariant �eld �++ taking values in Lie(G). Their transformation laws are

s+��� = i��;

s+��� = i��;

s+�� = 0;

s+�� = +iD +
1

2
[�++; ���];

s+�� = �iD +
1

2
[�++; ���];

s+�� = 0;

s+�++ = 0;

s+�++ = 0:
(2:3)

Associated with the holomorphic sections S�(X i) and J�(X i), satisfying

s+S� = 0; s+J
� = 0; (2:4)

we have Fermi multiplets (���;H
�) and their conjugate multiplets (���;H

�), with the follow-
ing transformation laws

s+�
�
� = �H�;

s+�
�
� = J�(X i);

s+�
�
� = J�(X {);

s+�
�
� = �Ha;

s+H
� = 0;

s+H
� = �i�a++La�

�
� + i i

+@iJ
�(Xj);

s+H
� = �i�a++La�

�
� + i {

+@{J
�(X |);

s+H
� = 0:

(2:5)

Note that the section J�(X i) deforms the usual transformation s+��� = 0. The holomor-
phicity of J�(X i) guarantees the consistency of the above transformation laws with the
commutation relations (2.1), since s2+�

�
� = s+J�(X i) = 0. The Fermi �elds ��� and ��� will

be called anti-ghosts (they will have negative ghost numbers).
The action functional of the Nc = (2; 0) supersymmetric model can be given by the

following form

S(�) =� s+s+
�
h���; �� �i � h��; ��i +

D
h��(X

i;X {)���; �
�
�

E�
+ is+h�

�
�;S�(X

i)i + is+h�
�
�;S�(X

{)i;
(2:6)

where h�; �i denotes a bi-invariant inner product on the Lie algebra Lie(G), � denotes the
G-equivariant momentum map2 � : X ! Lie(G)�, and � is a constant taking values in the

2The Hamiltonian of the G-action on X . Note that the K�ahler manifold X is automatically symplectic.
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central elements of Lie(G). The condition that the action functional S(�) has Nc = (2; 0)
supersymmetry is

s+h�
�
�;S�(X

i)i = hJ�(X i);S�(X
i)i = 0; (2:7)

which motivates the orthogonality of the two sections.
Expanding the action functional S one �nds that the auxiliary �elds D, H� and H� can

be integrated out by setting

D =
1

2
(�� �); H� = ih��S�: (2:8)

Then the �xed point theorem of Witten implies that the path integral reduces to an integral
over the space of solutions of the following equations,

J
�(X i) = 0;

S�(X
i) = 0;

� � � = 0;

(2:9)

and
�a++LaX

i = 0; [�++; ���] = 0; (2:10)

modulo G-symmetry. If G acts freely on the solution space of (2.9), the equations (2.10) can
only be solved by setting �++ = 0, and the path integral reduces to an integral over the
symplectic quotientM� of (S�1

� (0) \ J�1� (0)) � X by G,

M� =
�
��1(�) \S�1

� (0) \ J�1� (0)
�
=G: (2:11)

An observable of the theory bOr;s is induced by an elementOr;s of G-equivariant Dolbeault
cohomology of X after parity change. The superscript (r; s) denote the ghost numbers and

the degrees respectively. A correlation function
DQk

m=1
bOrm;sm

E
can be non-vanishing only

if
kX

m=1

(rm; sm) = (4;4); (2:12)

where 4 is the net ghost number anomaly due to zero-modes of the fermions (��;  i
+; �

�
�).

We call 4 the formal complex dimension of M�.
If G acts freely on (S�1

� (0) \ J�1� (0)) � C , we do not have zero-modes for the ghosts ��.
If the holomorphic sections S and J are generic there are no zero-modes of the anti-ghosts
���. In this situation M� is a smooth complex 4-dimensional non-linear K�ahler manifold.
For non-generic S and J the zero-modes of ��� span the �bre of a Hermitian holomorphic

bundle V !M�. We call V the anti-ghost bundle. The correlation function
DQk

m=1
bOrm;sm

E
becomes *

kY
m=1

bOrm;sm

+
=

Z
M�

e(V) ^ eOr1;s1 ^ : : : ^ eOrk;sk ; (2:13)

4



where e(V) denotes the Euler class of V and eOrm;sm denotes a closed di�erential form onM�,
obtained by Orm;sm after the restriction and reduction. It can be non-vanishing if the condi-
tion (2.12) holds. This ghost number anomaly is reected geometrically by the fact thatM�

has complex dimension4+ 1
2
rank(V), while e(V) is a form of degree (1

2
rank(V); 1

2
rank(V)).

So the integrand of the RHS of (2.13) is a top form exactly if (2.12) holds.

2.2. A Target Space from Bundles On K�ahler Manifolds

We now describe a Nc = (2; 0) model related to stable bundles on a K�ahler manifold. For
general references on these structures see [3][21]. We consider a compact complex K�ahler d-
foldM with K�ahler form !. The complex structure onM determines a decomposition of the
space 
r(M) of r-form on M as 
r(M) = �p+q=r


p;q(M). On M any two-form � 2 
2(M)
can be decomposed into � = �+ + �� such that

�+ = �2;0 + �0! + �0;2;

�� = �1;1? ;
(2:14)

where �0 2 
0(M) is a scalar function and �1;1? is a (1; 1)-form orthogonal to !. Correspond-
ing to this decomposition we de�ne the following projections

P� : 
2(M)! 
2�(M); P 0;2 : 
2(M)! 
0;2(M): (2:15)

For a complex K�ahler 2-fold the above decomposition coincides with the decomposition in
self-dual and anti-self dual two-forms. We denote by 
p(M;E) the space of real p-forms on
M taking values in E. Let E be a rank r vector bundle over M endowed with a Hermitian
metric. The choice of E �xes the topological type for the connections on E. We denote by
A the space of all connections and by G the group of all gauge transformations. The gauge
group G is equivalent to the group of all unitary automorphisms of E (and it has structure
group U(r)). The Lie algebra Lie(G) of G can be identi�ed with 
0(M;End(E)) and we use
integration over M to identify Lie(G)� with 
2d(M;End(E)). Thus the bi-invariant inner
product on Lie(G) is the integral over M combined with the trace of U(r)

ha; ai = �

Z
M

Tr(a ^ �a): (2:16)

We take the in�nite dimensional space A as our initial target space X . (Later in this paper
we shall extend this space).

To de�ne an equivariant Nc = (2; 0) model we need to introduce complex and K�ahler
structures on our target space A. Let A denote a connection one-form, which is decomposed
into A = A1;0 +A0;1. We denote by dA = @A + @A the corresponding covariant derivative,

dA = @A + @A : 
0(M;E) �! 
1;0(M;E) � 
0;1(M;E): (2:17)

5



The space A is an in�nite dimensional aÆne space. A tangent vector is represented by
ÆA 2 
1(M;End(E)). Note that there is no natural complex structure on A. Any complex
structure should be induced from the complex structure on M . One introduces a complex
structure on A by declaring ÆA0;1 2 
0;1(M;End(E)) to be the holomorphic tangent vectors.
Then A becomes an in�nite dimensional at K�ahler manifold with K�ahler form $ given by

$(ÆA; ÆA0) =
1

4 d!�2

Z
M

Tr(ÆA ^ ÆA0) ^ !d�1; (2:18)

on which G acts with isometries preserving the K�ahler structure. The K�ahler potential for
the K�ahler form (2.18) of A is given by

K(A1;0; A0;1) =
1

4 d!�2

Z
M

�Tr(F ^ F ) ^ !d�2; (2:19)

where � is a K�ahler potential for !, i.e., ! = i@@�.
Now we introduce our Nc = (2; 0) supercharges s+ and s� with the familiar commutation

relations
s
2
+ = 0; fs+; s+g = �i�

a
++La; s

2
+ = 0: (2:20)

The supercharges are identi�ed with the di�erentials of G-equivariant cohomology of our tar-
get space A. Thus �a++La is the in�nitesimal gauge transformation generated by the adjoint
scalar �++ 2 Lie(G) = 
0(M;End(E)). The Nc = (2; 0) gauge multiplet (���; ��; ��;D)
takes values in 
0(M;End(E)). Their transformation laws for are given by the general
formula (2.3).

With the complex structure on A introduced above we have holomorphic multiplets

(A0;1;  0;1
+ ) and conjugate anti-holomorphic multiplets (A1;0;  

1;0

+ ), respectively, where  0;1
+ 2

�
0;1(M;End(E)) represents a holomorphic cotangent vector in A. These are the multiplets
associated to the coordinates X i and X {. The transformation laws are as given as in (2.2)
(or in more details in Appendix A). Note that

fs+; s+gA = �idA�++; fs+; s+g 
0;1
+ = i[�++;  

0;1
+ ]; (2:21)

which are the in�nitesimal gauge transformations generated by �++, in accordance with
(2.20).

From the transformation laws and the K�ahler form (2.19) we obtain the following equiv-
ariant K�ahler form

b$G = is+s+K

=
i

2 d!�2

Z
M

Tr(�++F ) ^ !
d�1 +

1

2 d!�2

Z
M

Tr( 0;1
+ ^  

1;0

+ ) ^ !d�1;
(2:22)

where we used the Bianchi identity dAF = 0, which implies @AF 0;2 = @AF
0;2 + @AF

1;1 = 0,
and integration by parts. The second term of the equivariant K�ahler form can be identi�ed
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with the K�ahler form $ (after parity change) and the �rst term is the G-momentum map
�a++�a, � : A ! Lie(G)� = 
2n(M;End(E)),

�(A) =
1

2 d!�2
F ^ !d�1 =

1

2d d!�2
(�F )!d; (2:23)

where � denotes the adjoint of wedge multiplication with !.
With the construction described until now, we have a Nc = (2; 0) model based on our

in�nite dimensional target space A. The path integral of the resulting model will localize to
the symplectic quotient ��1(�)=G. For d � 2 the quotient space is still in�nite dimensional.
Thus we should supply some additional localization. According to our general discussion
in the last section we may still consider a certain in�nite dimension Hermitian holomorphic
vector bundle E ! A over A with a certain holomorphic section S (we will put J = 0 for
the moment), which determines anti-ghost multiplets accordingly. Then the path integral
will be further localized to (S�1(0) \ ��1(�))=G, which might be a �nite dimensional K�ahler
manifold. We will now consider such an extension of the model.

2.3. The Holomorphic Section

The remaining task is to determine an in�nite dimensional vector bundle over our target
space A with an appropriate G-equivariant holomorphic section S(A0;1), i.e. s+S = 0.
From our general discussion we can see that a choice of section S should be compatible with
the K�ahler quotient such that the e�ective target spaceM = (S�1(0) \ ��1(�))=G inherits
a K�ahler structure when G acts freely. We introduce a bundle E over our target space A for
which a holomorphic section S(A0;1) is given by

S : A0;1! F 0;2 2 
0;2(M;End(E)): (2:24)

We note that the above is the most natural choice on generic K�ahler manifolds, since any
holomorphic function of A0;1 which is gauge covariant must be a function of F 0;2. A further
obvious requirement is that the resulting action functional should be invariant under the
Lorentz symmetry { more precisely the holonomy of a K�ahler manifold M .3 Then our
e�ective target space will be the moduli spaceMEH of Einstein-Hermitian bundles de�ned
by

MEH = (S�1(0) \ ��1(�))=G: (2:25)

Since our section takes values in 
0;2(M;End(E)) we have corresponding Fermi multiplets
(�2;0� ;H2;0), taking values in 
2;0(M;End(E)). They transform according to the general
transformation laws (2.5), with J = 0.

Now we have all the ingredientsnecessary to de�ne a Nc = (2; 0) model. For example,
the action can be found from the general form (2.6).

3There are two special cases. On a Calabi-Yau 4-fold or an arbitrary hyper-K�ahler manifold one can
take a certain projection of F 0;2 for the holomorphic section of E ! A. We will return to this in another
paper[22].
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3. Motivating The Extended Moduli Space Of Stable Bundles

In this section we motivate the notion of extended moduli space of stable bundles [23], in
the context of resolving the problems of anti-ghost zero-modes.

First we set up our notation. Consider a d complex dimensional compact K�ahler manifold
(M;!) with K�ahler form !, and a rank r Hermitian vector bundle E ! M . The curvature
two-form decomposes as F = F+ + F� according to (2.14). A connection on E is called
Einstein-Hermitian (EH) with factor � if

F 0;2 = 0;

i�F = �IE:
(3:1)

The model as it now stands has a problem with the anti-ghost zero-modes. Let A be an
EH connection. We consider a nearby connection A+ ÆA, ÆA 2 
1(M;End(E)), which also
is EH. After linearization we have d+A Æ := P+dAÆA = 0, with P+ the projection operator
de�ned in (2.15). There is still a gauge freedom dA�. Supplying the Coulomb gauge condition
d�AÆA = 0, local deformations ÆA around a point A inMEH are represented by the kernel of
the operator d+A � d

�
A acting on 
1(M;End(E)). This structure can be summarized by the

associated elliptic complex of Atiyah-Hitchin-Singer [24];

0 �! 
0(M;End(E))
dA�!
1(M;End(E))

d+A�!
2+(M;End(E)): (3:2)

We compare this complex with the fermionic zero-modes of the fermions (��;  
0;1
+ ; �0;2� ) in

the model introduced in Sect. 2.2, which are governed by the equations

@A�� = 0;
@
�

A 
0;1
+ = 0;

@A 
0;1
+ = 0;

@
�

A�
0;2
� = 0: (3:3)

After decomposing �� = ��+i�
0
� into its real and imaginary part, we can form real fermions

(��; +;��) which we de�ne as

 + =  
1;0

+ +  0;1
+ ; �� = �2;0� + �0�! + �0;2� ; (3:4)

so that �� 2 
0(M;End(E)),  + 2 
1(M;End(E)) and �� 2 
2+(M;End(E)). The
zero-mode equations (3.3) are then translated into

dA�� = 0;
d�A + = 0;

d+A + = 0;
d+�A �� = 0: (3:5)

Thus the zero-modes of the fermions (��; +;��) are elements of the AHS complex (3.2).
The above correspondence is one of the crucial ingredients of Witten's approach to Donaldson
theory in four real dimensions [1]. The path integral measure contains such fermionic zero-
modes and the net ghost number anomaly is precisely the index of the above complex, which
is the formal dimension of the moduli space of instantons on a four manifold.
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Let us undo the combination (3.4), and return to the initial equations (3.3) for the
complex fermions (��;  

0;1
+ ; �0;2� ). The equations (3.3) imply that the fermionic zero-modes

are in one to one correspondence with the following Dolbeault complex [25]

0 �! 
0;0(M;End(E))
@A�!
0;1(M;End(E))

@A�!
0;2(M;End(E)): (3:6)

Note that @
2

A = 0 at the �xed point locus. Our problem for d � 3 is that a fermionic zero-
mode of �0;2� only needs to satisfy the condition @

�

A�
0;2
� = 0. As a result we always have an

in�nite dimensional anti-ghost bundle. Therefore the path integral would hardly make any
sense. But this is exactly what the EH condition gives us via local deformations. For d = 2
the desired condition @A�

0;2
� = 0 is void due to the dimensional reason. For d � 3 the only

way of imposing the desired condition @A�
0;2
� = 0 is to introduce another fermionic �eld �3;0+

with ghost numbers (1; 0) such that the action functional contains the following term

S �

Z
M

Tr(�3;0+ ^ �@A�
0;2
� ) + � � � : (3:7)

Then we obtain in addition to (3.3) the two equations

@A�
0;2
� = 0; @�A�

3;0
+ = 0: (3:8)

Thus we have to generalize the Nc = (2; 0) model by introducing a new holomorphic multiplet
(C3;0; �3;0+ ) 2 
3;0(M;End(E)).4 For d = 3 the above additional conditions are suÆcient. For
d � 4 we should supply yet another additional condition @A�

3;0
+ = 0, otherwise we have too

many zero-modes for �3;0+ . Thus we should introduce another fermionic �eld �
0;4

� with ghost
numbers (�1; 0) such that now the action contains

S �

Z
M

Tr(�3;0+ ^ �@A�
0;2
� + @A�

3;0
+ ^ ��

0;4

� ) + � � � ; (3:9)

and so on.
Thus a natural resolution of our problem is to extend the complex (3.6) all the way to

the end

0 �! C
0;0 @A�!C 0;1 @A�!C 0;2 @A�!C 0;3 @A�! : : :

@A�!C 0;d �! 0; (3:10)

where C 0;` := 
0;`(M;End(E)). To give any meaning to the above Dolbeault complex, we
have to introduce the following set of fermionic �elds

�0;0� ;  0;1
+ ; �0;2� ; �

0;odd

+ ; �
0;even

� ; (3:11)

where 2 < odd; even � d. It can be seen, from the basic structure of our Nc = (2; 0)

model, that �
0;odd

+ are superpartners of anti-holomorphic bosonic �elds C0;odd, forming anti-
holomorphic multiplets;

C0;odd s+

�!�
0;odd

+ : (3:12)

4When �3;0+ is in a Fermi multiplet it is impossible to get the term (3.7) without breaking the Nc = (2; 0)
supersymmetry.
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Furthermore, the �elds �
0;even

� should be in Fermi multiplets

�
0;even

�

s+

�!H0;even; (3:13)

where H0;even are auxiliary �elds. Then we may try to design an action functional which
gives the following equations, in addition to (3.3), for fermionic zero-modes

@A�
0;odd

+ = 0;

@
�

A�
0;odd

+ = 0;

@A�
0;even

� = 0;

@
�

A�
0;even

� = 0:
(3:14)

Thus the (0; q)-form fermionic zero-modes become the elements of the q-th cohomology group
H

0;q := H0;q

@A
(M;End(E)) of the complex (3.10). Then the net ghost number violation due

to the fermionic zero-modes is precisely the index
Pd

q=0(�1)
q+1 dimC H

0;q of the complex
(3.10). Now we are in the same situation as the Donaldson-Witten theory in the d = 2 case.

Finally let's consider how the above extension �ts into the framework of EH connections.
Kim [26] introduced the followingcomplex (see also [21]), generalizing the complex given in
(3.2),

0 �! B
0 dA�!B1 d+A�!B2+ d

0;2
A�!B0;3 @A�! : : :

@A�!B0;d �! 0; (3:15)

where d0;2 = @A Æ P 0;2, Bp = 
p(M;End(E)) and Bp;q = 
p;q(M;End(E)). It is shown that
the above is a complex if the connection A is EH and elliptic. We denote the associated q-th
cohomology group by H q. It is not diÆcult to show that

dX
q=0

(�1)q+1 dimRH
q = 2

dX
q=0

(�1)q+1 dimC H
0;q: (3:16)

It should also be obvious that the two extended complexes (3.15) and (3.10) are related in
the same way as the unextended complexes (3.2) and (3.6).

We remark that Kim's complex is not the genuine deformation complex of EH connec-
tions, but rather a natural extension of it. As in the d = 2 case we require that the index
is the formal complex dimension of a certain extended moduli space of stable bundles. We
de�ne the extended moduli space M of EH connections or stable bundles by extending the
EH condition as the space of solutions of the following equations

D ÆD = 0;

exp(!) ^
�
D ÆD +D ÆD

�
jtop form + id�!dIE = 0;

(3:17)

where D is the extended holomorphic connection

D = @A +
X
k�1

C0;2k+1: (3:18)

10



The versal deformation complex of the above equations is then precisely equivalent to Kim's
complex (3.15). This can be checked using the K�ahler identities

@
�

A = �i[�; @A]; @�A = i[�; @A]: (3:19)

In the above scheme the in�nitesimal deformations of the extended moduli space always
lie in H 0;odd, while the obstructions, by Kuranishi's method, lie in H 0;even. Thus the local
model of the extended moduli space is f�1(0) [7], where

f :H 0;odd ! H
0;even; f(A;C) = D ÆD: (3:20)

The formal complex dimension of the extended moduli spaceM can be computed using the
Riemann-Roch formula

dX
q=0

(�1)q+1 dimC H
0;q = �

Z
M

Td(M) ^ ch(E) ^ ch(E�); (3:21)

where Td(M) denotes the Todd class of M and ch(E) denotes the Chern character of E.
It seems that we have all the ingredients to construct a well-de�ned Nc = (2; 0) model.

Unfortunately it turns out to be impossible to implant the above ideas, except for the case of
at most three complex dimensions. It is not possible to maintain Nc = (2; 0) supersymmetry
and impose the desired equations (3.14) for all fermions unless d � 3. This follows from
the fact that the zero-mode equations for the fermions in the holomorphic multiplet should
be completely holomorphic equations (they arise from the supersymmetry transformation of
the �rst two equations in (2.9)). This is inconsistent with the two equations for �odd;0+ in
(3.14), therefore we can impose at most one of them. This is suÆcient only for d � 3. The
reason why we did not have this problem in lower dimensions was that for  1;0

+ we also had
the non-holomorphic supersymmetric partner of the D-term equation at our disposal. This
equation is related to the gauge symmetry. So in order to extend the above ideas to higher
dimensions, we are led to associate the even degree terms in the complex (3.15) with new
gauge symmetries rather than obstructions. We do however not see how these can be related
to gauge symmetries, except for B0. Therefore in the rest of this paper we will only consider
d � 3.

4. Nc = (2; 0) Model On K�ahler 3-Folds

We consider the Nc = (2; 0) model studied in Sect. 2 specializing to the case that M is a
K�ahler 3-fold. According to the discussion in the previous section we introduce one more
bosonic �eld C0;3 2 
0;3(M;End(E)) and its Hermitian conjugate C3;0. Our goal is to con-
struct a G-equivariant Nc = (2; 0) model whose target space is the space A of all connections
together with the space of all C0;3 �elds. Furthermore the fermionic zero-modes should be
elements of the Dolbeault cohomology of the complex (3.10). It turns out there is only one
way of achieving this goal.
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4.1. Basic Properties Of The Model

The Nc = (2; 0) model here will be an example of the construction in Sect. 2:1 with J 6= 0
in (2.5). We �rst recall that the path integral of a general Nc = (2; 0) model is localized to
the solution space of (2.9), modulo G symmetry. The momentummap � is determined from
the K�ahler potential on the space of all X i and from the action of G on it. The sections J�

and S� should satisfy the following equations to have Nc = (2; 0) supersymmetry,

s+J
� = 0;

s+S� = 0;

s+S� = 0;

hJ�;S�i = 0:

(4:1)

In the present case our in�nite dimensional target space is

X = A� 
3;0(M;End(E))� 
0;3(M;End(E)); (4:2)

and the in�nite dimensional group G acts on the above space as the group of all local
gauge transformation on M . The Lie algebra Lie(G) of G is 
0(M;End(E)) and the bi-
invariant inner product on Lie(G) is (2.16). We already gave a complex structure on A
in Sect. 2:2 by demanding that A0;1 is a holomorphic �eld, i.e., s+A0;1 = 0. We have a
unique holomorphic section F 0;2 from the subspace A and the corresponding Fermi multiplet
(�0;2� ;H0;2) 2 
0;2(M;End(E)) with the transformation laws (2.5). Let us see what the
complex structure on the additional �eld space should be. We need to put a constraint on
the additional �elds C3;0. From the discussion in the last section this condition is @�AC

3;0 = 0.
This constraint has to come from either one of the �rst two equations in (2.9) (or their
conjugates), and therefore must be (anti-)holomorphic. Note that @�A = � � @A�, which is
holomorphic, since s+A0;1 = 0. Therefore, for the equation to be holomorphic, we need
also s+C3;0 = 0. Thus the additional holomorphic multiplet is (C3;0; �3;0+ ). The additional
equation could be added to S, as it has the same form-degree (0; 2) (after conjugation), so
that we get that the combination F 0;2� @

�

AC
0;3 has to vanish.5 This is however not possible

in our setting, because F 0;2 is holomorphic, while the second part is anti-holomorphic, as we
just argued. Therefore, the total combination is neither holomorphic nor anti-holomorphic,
as is required for S (respectively S). Therefore, our only choice is to use the �rst equation
in (2.9), that is we should set J = @�AC

3;0. We see that s+J = 0. We conclude

J = @�AC
3;0;

S = F 0;2:
(4:3)

With this choice also the last condition in (4.1) is satis�ed, as

hJ�;S�i =

Z
M

Tr(@�AC
3;0 ^ �F 0;2) =

Z
M

Tr(C3;0 ^ �@AF
0;2) = 0; (4:4)

5This implies the equation @
�

AC
0;3 = 0 due to the Bianchi identity. This in fact is the combination that

is often used in the literature [7][13].
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where we used the Bianchi identity dAF = 0, which implies @AF 0;2 = 0.
The above considerations determine an equivariant Nc = (2; 0) model, following the

description in Sect. 2:1.

4.2. Fields And Action Functional

Here we recall again the �elds and their supersymmetry transformation laws, to summarize
what we have learned. Associated with the G symmetry we have the Nc = (2; 0) gauge
multiplet (���; ��; ��;D), all transforming as adjoint valued scalars on M . The transfor-
mation laws are given by (2.3). We have two sets of holomorphic multiplets and their anti-
holomorphic partners. One set of holomorphic multiplets is (A0;1;  0;1

+ ) with anti-holomorphic

partners (A1;0;  
1;0

+ ). The other holomorphic multiplet is (C3;0; �3;0+ ) with anti-holomorphic

partner (C0;3; �
0;3

+ ). Finally we have Fermi multiplets (�2;0� ;H2;0) and anti-Fermi multiplets

(�0;2� ;H0;2). The explicit transformation rules are written down in Appendix A. The �elds
and their transfoormation rules can be summarized by the following diagrams,

C3;0 s+

�! �3;0+ �++

��
s+

�! D �
0;3

+x??s+

x??s+

x??s+

���
s+

�! �� C0;3

;

A0;1 s+

�!  0;1
+

�0;2�
s+

�! H0;1

: (4:5)

The resulting Nc = (2; 0) model in general can not be embedded into a Nc = (2; 2) theory
since s+�

0;2
� 6= 0. Such an embedding is only possible ifM is a Calabi-Yau 3-fold, where our

Nc = (2; 0) supersymmetry will automatically enhance to Nc = (2; 2) even without adding
additional �elds.

The �nal ingredient for the action functional is the G-momentummap on the total space
(4.2). The total space has a natural G-invariant K�ahler potential

KT =
1

24�2

Z
M

�
�Tr(F ^ F ) ^ !2 � iTr

�
C3;0 ^ C0;3

��
: (4:6)

Using the transformation laws in Appendix A we obtain from this the following equivariant
K�ahler form, b$G

T :=is+s+KT

=
1

12�2

Z
M

Tr
�
i�++

�
F ^ !2 +

1

2
[C3;0; C0;3]

��
+

1

12�2

Z
M

Tr
�
 0;1
+ ^  

1;0

+ ^ !
2 �

i

2
�3;0+ ^ �

0;3

+

�
:

(4:7)
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The last line is the K�ahler form b$T , after parity change, and the term in the second line is
proportional to the G-momentum map �T on the total space (4.2),

�T =
1

12�2

�
F ^ !2 +

1

2
[C3;0; C0;3]

�
: (4:8)

Thus the Nc = (2; 0) action functional is given by, following (2.6),

S =
s+s+

12�2

Z
M

Tr
�
���

�
F ^ !2 +

1

2
[C3;0; C0;3] +

i

3
�!3IE

��
+
s+s+

4�2

Z
M

Tr
�
�2;0� ^ ��

0;2
�

�
+
s+s+

6�2

Z
M

Tr
�
��� ��

�
+
is+
4�2

Z
M

Tr
�
�2;0� ^ �F

0;2
�
+
is+
4�2

Z
M

Tr
�
�0;2� ^ �F

2;0
�
:

(4:9)

This action functional indeed gives the desired equations for the fermionic zero-modes.
After expanding the action functional S we have the following terms relevant for fermionic
zero-modes,

S = �
1

6�2

Z
M

Tr
�
i�� � @

�

A 
0;1
+ + i�� � @

�
A 

1;0

+ +
3

2
�2;0� ^ �@A 

0;1
+ +

3

2
�0;2� ^ �@A 

1;0

+

+
3i

2
�2;0� ^ �@

�

A�
0;3

+ +
3i

2
�0;2� ^ �@

�
A�

3;0
+

�
+ � � � :

(4:10)

From this we obtain the following fermionic equations of motion,

@
�

A 
0;1
+ = 0;

i@A�� +
3

2
@
�

A�
0;2
� = 0;

@A 
0;1
+ + i@

�

A�
0;3

+ = 0;

@A�
0;2
� = 0:

(4:11)

We will see below that these give rise to exactly the required equations (3.3) and (3.8).

4.3. The Path Integral

The path integral of our model is localized to the locus of the following equations, modulo
G symmetry, see (2.9) and (2.10),

@
�

AC
0;3 = 0;

F 0;2 = 0;

iF ^ ! ^ ! +
i

2
[C3;0; C0;3]�

�

3
!3IE = 0;

(4:12)
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and
dA�++ = 0;

[�++; C
0;3] = 0;

[�++; ���] = 0:

(4:13)

We call the moduli space de�ned by the eq. (4.12) the extended moduli space M of EH
connections (with factor �) or stable bundles.

Since the path integral is localized to integrable connections @
2

A = 0, the fermionic equa-
tions of motion in (4.11) become

@A�� = 0;
@
�

A 
0;1
+ = 0;

@A 
0;1
+ = 0;

@
�

A�
0;2
� = 0;

@A�
0;2
� = 0;

@
�

A�
0;3

+ = 0: (4:14)

Thus the zero-modes of fermions

��;  
0;1
+ ; �0;2� ; �

0;3

+ (4:15)

are elements of the cohomology group H 0;p of the following Dolbeault complex (3.10),

0 �! C
0;0 @A�!C 0;1 @A�!C 0;2 @A�!C 0;3 �! 0; (4:16)

where C 0;` := 
0;`(M;End(E)). It is also easy to check that the above is isomorphic to the
versal deformation complex of the extended moduli space M of stable bundles. Thus minus
the index of the above Dolbeault cohomology group corresponds to the net ghost number
violations in the path integral measure due to the zero-modes of fermions in (4.15). We have

4 = �#(��)0 +#( 0;1
+ )0 �#(�0;2� )0 +#(�

0;3

+ )0

=
3X

q=0

(�1)q+1 dimH 0;q:
(4:17)

The net ghost number violation of the path integral due to all the fermions { the fermions
in (4.15) and their conjugates { is (4;4). The above index can be computed by applying
the standard Riemann-Roch formula. We �nd

4 =

Z
M

c1(M) ^

�
r c2(E)�

r � 1

2
c1(E)

2

�
� r2(1� h0;1 + h0;2 � h0;3); (4:18)

where hp;q denote the Hodge numbers of M . We also note that a Hermitian vector bundle
E admits an EH connection only ifZ

M

! ^

�
r c2(E)�

r � 1

2
c1(E)

2

�
� 0 (4:19)

and the equality holds if and only if E is projectively at.
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Now we take a closer look at the path integral. We note that the zero-modes of  0;1
+ and

�
0;3

+ , thus H 0;1 and H 0;3, correspond to local deformations of the extended moduli spaceM.

The other fermionic zero-modes �� 2 H
0;0 and �0;2� 2 H

0;2 will cause some trouble. Note
that we have a decomposition into trace and trace-free parts

H
0;q = H0;q(M)�fH 0;q: (4:20)

We call e4 = 4 � (�1 + h0;1 � h0;2 + h0;3) the complex formal dimension of M. If we
assume a situation that G acts freely on the locus of solutions of (4.12), i.e., the connection
is irreducible, the extend moduli space M is an analytic space with the K�ahler structure
induced from the G-equivariant K�ahler form (4.7). The moduli space will not have the right

complex dimension e4 unless fH 0;2 = 0 as well. In the ideal situation fH 0;0 = fH 0;2 = 0, the
extended moduli space M is smooth and the zero-modes of  0;1

+ ; �3;0+ span the holomorphic
tangent space.6 Thus the formal complex dimension is the actual dimension.

However the assumption made above, in particular fH 0;2 = 0, is too naive. We note
that the obstruction to deformation of the extended moduli space M lies in fH 0;2. In two
complex dimensions Donaldson proved that one can always achievefH 0;2 = 0 after a suitable
perturbation of the metric. In three complex dimensions one can hardly expect such a result
to continue to hold. The assumption fH 0;0 = 0 is valid for a bundle E with degree and rank
coprime.

Let us see how the path integral deals with the above problems. We assume, for simplicity,
that our gauge group is SU(r), so that End(E) is always trace-free (so we also should replace

H by fH ). Then the formal complex dimension 4 in (4.17) is given by

4 = r

Z
M

c1(M) ^ c2(E)� (r2 � 1)(1� h0;1 + h0;2 � h0;3); (4:21)

instead of (4.18). A typical observable of the theory is the total G-equivariant K�ahler form,
after parity change, b$G

T is given by (4.7). First we consider an idealistic case that H 0;0 =
H

0;2 = 0. Then the correlation function hexp b$G
T i can be identi�ed with the symplectic

volume of M,

hexp b$G
T i =

Z
M

exp e$T = vol(M): (4:22)

If there are zero-modes for the anti-ghosts �0;2� , i.e. H 0;2 6= 0, the above correlation function
is modi�ed,

hexp b$G
T i =

Z
M

e(V) ^ exp e$T ; (4:23)

where e(V) denotes the Euler class of the anti-ghost bundle V. One may consider correlation

functions of other observables bOr;s with ghost numbers (r; s) given by s+ and s+ closed G
6We will establish this later. We remark that the case with H 0;3 6= 0 causes no problem as this is

associated with deformations of M � MEH along the direction of C0;3. It would be a problem if we work
only with MEH .
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equivariant di�erential forms Or;s. We have*Ỳ
i=1

bOri;si

+
=

Z
M

e(V) ^ eOr1;s1 ^ : : : ^ eOr`;s` (4:24)

where eOr;s denotes the equivariant di�erential form Or;s after the restriction and reduction
to M. The above correlation function can be non-vanishing if

X̀
i=1

(ri; si) = (4;4); (4:25)

due to the ghost number anomaly. What is remarkable is that the path integral is well-
de�ned even if the moduli space M does not satisfy conditions of unobstructedness like
H

0;2 = 0.
To understand this important point in more detail, let us look up some details about

how the Euler class of the anti-ghost bundle emerges. The action function S (4.9) contains
the following Yukawa coupling involving the anti-ghost,

S =
i

4�2

Z
Tr
�
�2;0� ^ �[�++; �

0;2
� ]
�
+ � � � : (4:26)

It also contains the following terms, solely from the �rst line of the expression (4.9), depend-
ing on ���,

S = �
1

6�2

Z
Tr
h
���

�
� d�AdA�++ �

1

4
[C3;0; [�++; C

0;3]]

� ��[ 0;1
+ ;  

1;0
]�

1

4
[�3;0+ ; �

0;3

+ ]
�i

+ � � � :

(4:27)

Assuming, for simplicity, that there �� has no zero-modes (H 0;0 = 0) one can evaluate the
correlation functions by solving the ��� equations of motion and replacing all the other
�elds, including �++, by their zero-modes. Then the only non-vanishing term in the action
functional S in the s+ and s+ invariant neighborhood C of the �xed point locus comes from
the expression (4.26), which can be written as

SjC = �F��i| e i
+
e |
+e���e���; (4:28)

where e i
+ and e��� denote the zero-modes of ( 0;1

+ ; �3;0+ ) and �2;0� , respectively, and similarly
for the conjugate �elds. In the above the indices i and � run over i = 1; : : : ;h0;1 + h

0;3 and
� = 1; : : : ;h0;2, where h0;� = dimC H

0;�. The expression F�
�i|
e i
+
e |
+ denotes the curvature

two form of the anti-ghost bundle V over M { the space of the zero-modes ai of A0;1 and
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C3;0 modulo G. Consequently the expectation value, for example hexp b$G
T i, becomes7

hexp b$G
T i =

Z
M

4+h0;2Y
`=1

da`da`d `
+d 

`
h
0;2Y

=1

d��d�

�

�
deth��(a

`; a`)
�
�1

� exp
�
F��i|(a

`; a`) i
+ 

|
+�

�
��

�
� + e!i|(a`; a`) i

+ 
|
�
;

(4:29)

which leads exactly to (4.23).

5. Deformations Of The Model

In this section we study certain deformations of our Nc = (2; 0) model. The main purpose
will be to be able to handle situations where non-stable bundles can occur, that is H 0;0 6= 0
in the language of the last section, so there may be zero-modes for ��. In the moduli space
of the theory considered until now, this situation introduces singularities. In our equivariant
approach, which we implemented from the start, these type of singularities are however easily
handled. The second deformation we consider might help to relate our extended model again
to the unextended model based on EH bundles.

5.1. Deformation To A \Holomorphic" Nc = (2; 0) Model

In this subsection we consider a deformation of the original Nc = (2; 0) model. The resulting
deformed model will have much better behavior than the original model when the e�ective
target spaceM� has singularities. This kind of deformation is originally due to Witten [27]
and applied in a similar situation to the present case in [6]. We will �nd the deformed and
the original model as two special limits of a one-parameter family of models. In comparison
with the discussion in [27], we added the extra localization Fermi multiplets ��; they will
however be purely spectators, and the specialization to the K�ahler case will simplify the
procedure.

The original action was given by (2.6). We saw that the path integral of the Nc = (2; 0)
model is localized to the symplectic quotient M� = (X \ ��1(�))=G of X by G. Now we
consider the following one-parameter family of Nc = (2; 0) theories, given by the action
functional

S(�)� =S(�) +
�

2
s+s+h���; ���i

=� s+s+
�
h���; � � � �

�

2
���i � h��; ��i + hh���

�
�; �

�
�i
�

+ is+h�
�
�;S�i+ s+h�

�
�;S�i:

(5:1)

7The determinant of the metric comes from integrating out the auxiliary �elds.
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If we set � = 0 we retain the original action. Since the �-dependent term by which we deform
is s+ and s+ closed, the theory does not depend on �, as long as � 6= 0. The models with
� = 0, and � 6= 0 can be di�erent since new �xed points can ow in from in�nity in the �eld
space [27]. For � 6= 0 the path integral localixes to the critical points of I = h� � �; � � �i,
while the original theory, at � = 0, is localized to the zeros (trivial critical points) of I.

Next, we add local s+ and s+ closed observables �b$G, ih�++; �i and � "
2
h�++; �++i to

this action functional, basically for regularization. We get

Sh(�; ")� =S(�)� � is+s+K+ ih�++; �i +
"

2
h�++; �++i

=� ih�++; �� �i � b$( +;  +) +
"

2
h�++; �++i

� s+s+
�
h���; �� � �

�

2
���i � h��; ��i + hh���

�
�; �

�
�i
�

+ is+h�
�
�;S�i+ s+h�

�
�;S�i:

(5:2)

The partition sum of this model computes the expectation value he�O(�;")i in the deformed
theory (5.1), where O(�; ") denotes the extra contributions in the action above.

For � 6= 0, we can integrate out the Nc = (2; 0) gauge multiplet (���; ��; ��;D). We are
then left with

Sh(�; ")� =� i h�++; �� �i � b$( +;  +) +
"

2
h�++; �++i

� s+s+hh���
�
�; �

�
�i + is+h�

�
�;S�i + s+h�

�
�;S�i:

+
1

2�
s+s+ h� � �; �� �i+O(1=�

2):

(5:3)

If we take the limit �! 0, while � 6= 0, we see that the dominant contributions to the path
integral come from the critical points of I = h� � �; � � �i. Note that this includes the
trivial critical points � = �, whose contributions give the path integral of the original model,
de�ned by (2.6), with the insertions of the observables added above. However, in general we
also get contributions from higher critical points. So we do not get back the original model.
The contributions of the higher critical points, for which I 6= 0, are proportional to e�I=2",
for " ! 0 (this can be seen by integrating out �++). Therefore, we can easily extract the
contribution from the original model. On the other hand, as the theory is independent of
� 6= 0, this limit is the same as the theory for any value � 6= 0.

Now consider the limit �!1, to remove all the �-dependent terms from (5.3). We call
this model a holomorphic Nc = (2; 0) model.8 The path integral of this theory is localized
to critical points of I = h�� �; �� �i, which shows that indeed this limit is the same as the
deformed model given by (5.3) for �nite �.

8This name is inspired by the holomorphic Yang-Mills theory [6], which arises from Donaldson-Witten
theory in this way.
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5.2. A Use Of S1 Symmetry

The extended equations (4.12) we have may be very useful. On the extended moduli space
M of EH connections we have the natural S1-action

S1 : C0;3! ei�C0;3; (5:4)

which preserves the complex and the K�ahler structure. Thus any cohomological computation
can be further localized to the �xed point locus of this S1-action. For the SU(2) case we are
concentrating on it is easy to determine the �xed points. We have two branches.

� Branch (i)

�++ = 0 and the SU(2) symmetry is unbroken. Then we have a trivial �xed point
where simply C0;3 = 0 where we have EH connections.

� Branch (ii)

�++ is a constant diagonal trace-free matrix. The nontrivial �xed points occur if
the gauge symmetry can undo the S1-action. For this the SU(2) symmetry should
be broken to U(1). Thus the gauge bundle splits, EA = L � L�1 where A 2 A1;1.
Furthermore C0;3 and C3;0 become

C0;3 =

�
0 
0 0

�
; C3;0 =

�
0 0
 0

�
; (5:5)

where  is a section of K�1 
 L2, with K denoting the canonical line bundle of our
K�ahler 3-fold. Then we have the following �xed point equations

F 0;2
L = 0;

iFL ^ ! ^ ! �
1

2
 ^  = 0:

@�L = 0; (5:6)

where FL denotes the curvature of the line bundle L. Obviously we have a nontrivial
solution if deg(L) > 0. If  = 0 we can have abelian EH connections, and also if
deg(L) = 0.

The equations (5.6) are analogous to the abelian Seiberg-Vafa-Witten equations [4][28];
they may be equally powerful. Thus we expect that the above equations may contain all the
nontrivial information about the Donaldson-Witten type theory on K�ahler 3-folds. It should
be possible to establish our conjecture quite rigorously. Here we will only sketch the idea.

As a �rst step we map the Nc = (2; 0) model de�ned by the action functional S (4.9)
to its deformed version, following the discussions in Sect. 5.1. The action functional is then
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de�ned by

Sh(") =
1

4�2
s+s+

Z
M

Tr
�
�2;0� ^ ��

0;2
�

�
+

i

4�2
s+

Z
M

Tr
�
�2;0� ^ �F

0;2
�
+

i

4�2
s+

Z
M

Tr
�
�0;2� ^ �F

2;0
�

� is+s+KT +
"

4�2

Z
M

!3

3!
Tr(�2++);

(5:7)

where KT is given by (4.6). As we established earlier the partition function of this theory for
" = 0 is the correlation function (4.23) with the same conditions. If the reducible connections
are unavoidable we turn on " to regularize and utilize the non-abelian localization.

Examining the supersymmetry transformation laws of the holomorphicC3;0 and the Fermi
�2;0 multiplets, we can see that the S1-action (5.4) should be extended as follows

S1 : (C0;3; �
0;3

+ ; �0;2� ;H0;2)! �(C0;3; �
0;3

+ ; �0;2� ;H0;2);

S1 : (C3;0; �3;0+ ; �2;0� ;H2;0)! �(C3;0; �3;0+ ; �2;0� ;H2;0);
(5:8)

where �� = 1. Thus the above �elds are now charged under S1. A problem might be that the
above S1-action is not a symmetry of the action functional.9 However the S1-action preserves
the supersymmetry transformation laws as well as the localization equations. Thus we can
use it anyway. Now we modify the transformation laws of the charged �elds under the S1

by extending the G-equivariant cohomology to G � S1;

s
2
+ = 0; fs+; s+g = �i�

a
++La � imLS1; s

2
+ = 0: (5:9)

We use the same form of the deformed action functional (5.7) but with the new transfor-
mation laws for supercharges according to (5.9). We obtain a newNc = (2; 0) supersymmetric
action functional10

Sh(m; ") =
1

4�2
s+s+

Z
M

Tr
�
�2;0� ^ ��

0;2
�

�
+

i

4�2
s+

Z
M

Tr
�
�2;0� ^ �F

0;2
�
+

i

4�2
s+

Z
M

Tr
�
�0;2� ^ �F

2;0
�

� b$G
T � imHS1;

(5:10)

where HS1 is the bosonic Hamiltonian of the S1-action,

HS1 =
1

24�2

Z
M

Tr
�
C3;0 ^ C0;3

�
: (5:11)

9This is due to a term like Tr(�2;0
�
^ �@A 

0;1

+ ).
10We put " to zero. We can turn on " whenever necessary.

21



The �rst and second lines in the action functional localize the path integral to the locus
@
�

AC
0;3 = F 0;2 = 0. The �rst term in the third line further localize the path integral to the

locus �T = 0. For simplicity we assume that there are no zero-modes of �2;0� . Then the
partition function of the model reduces to11

Z =

Z
M

eimHS1+e$T ; (5:12)

where e$T is the K�ahler form of M, obtained by the restriction and reduction from our
equivariant K�ahler form b$G

T (4.7). Thus the partition function is given by the familiar DH
integral formula over a �nite dimensional K�ahler manifold M [29][30]. It is therefore an
integral over the set of critical points of HS1 , which is the same as the �xed point locus of
the S1-action on M. Thus we have the same two branches.

The following is a formal argument since we do not understand the compacti�cation of
M. However it will be suÆcient to serve our purpose. We will just apply the exactness of
the stationary phase integral. By setting m!1 we may have

� Branch (i)

Note that the value of the Hamiltonian HS1 is zero at Branch (i). So its contribution
to the integral is simply the volume of MEH weighted by the one loop determinant
of due to the normal bundle N(MEH) in M. Note that such one loop determinant
contains weight m�s where s denotes codimension ofMEH) in M. Thus

Z(i) �
1

ms
vol(MEH)� � � � : (5:13)

The unwritten part is due to contribution from the normal bundle N(MEH), while we
extracted its dependence on m.

� Branch (ii)

Note that the value of the Hamiltonian at Branch (ii) is

HS1 =
1

12�
deg(L) :=

1

24�2

Z
c1(L) ^ ! ^ !;

where L is a line bundle de�ned in (5.6). Thus

Z(ii) �
X
L

1

ms0

Z
F(L)

exp

�
�
im

12�
deg(L) + e! jF(L)�� � � � (5:14)

11We remark that the action functional contains the mass term for the anti-ghosts �2;0
�

and �0;2+ . If there
are no zero modes for anti-ghost such the term plays no roles. If there are zero-modes of anti-ghosts we
have to include contribution from the anti-ghost bundles and the mass term. Then the partition function Z
becomes

Z =

Z
M

det(F � imI) exp (imHS1 + e$T ) ;

where F � imI is the S1-equivariant curvature two form of the anti-ghost bundle V over M.
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where F(L) denotes the �xed point locus, s0 denotes its codimension and e!jF(L) denote
the K�ahler form on F(L). The unwritten part is due to contributions from the normal
bundle over the �xed point locus, while we extracted its dependence on m.

We assume that s < s0, otherwise the above formal formula does not make sense. Then
one can take m = 0. Since the original formula was smooth in the limit of the reduction to
the symplectic volume of M the poles in Z(i) and Z(ii) should cancel order by order. Thus
we have

vol(MEH) �
X
L

1

(s0 � s)!

�
im

12�
deg(L)

�s0�s

�

Z
F(L)

exp

�
�
im

12�
deg(L) + e$jF(L)�� � � � (5:15)

and

vol(M) �
X
L

1

s0!

�
im

12�
deg(L)

�s0

�

Z
F(L)

exp

�
�
im

12�
deg(L) + e$jF(L)�� � � � : (5:16)

We conclude that the above formal evaluation gives evidence for our conjecture that
Seiberg-Vafa-Witten type invariants de�ned by the equation (5.6) should be equivalent to
the Donaldson-Witten type invariants on a K�ahler 3-fold. It is possible to perform a similar
analysis for the case with anti-ghost zero-modes, which makes life more complicated but does
not alter the essential points advocated above.

6. Specialized Models

We will now shortly comment on properties of the model in some special situations when
the K�ahler 3-fold has additional symmetries, that is more reduced holonomy.

6.1. Reduction To A K�ahler Surface

In this subsection we perform a dimensional reduction of our models on a K�ahler 3-foldM to
a complex K�ahler surface M2. We �rst assume that M is a product manifoldM3 =M2 � C

and then remove dependence of our �elds on C . We have the following correspondence

A0;1! A0;1; �;

 0;1
+ !  0;1

+ ; �+;

�2;0� !  1;0
� ; �2;0� ;

H0;2 ! H0;1; H0;2;

C0;3! B0;2;

(6:1)
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as well as the corresponding decomposition for their Hermitian conjugates. The other �elds
(���; ��; ��;D) remain as they were. Thus we obtain a Nc = (2; 2) model. Similarly
the equation (4.12) for the extended EH connection reduces to the Vafa-Witten equations.
Furthermore our equation (5.6) for branch (ii) �xed point become the Abelian Seiberg-
Witten equations. Thus our conjecture on Donaldson-Witten type invariants on a K�ahler
3-fold becomes a fact [4]. The model we obtain is exactly the Vafa-Witten theory of a twisted
N = 4 super-Yang-Mills theory on the K�ahler surface [28][31][32].

Now instead of the above trivial reduction we consider a product manifoldM =M2��,
where � is a 2-torus. Then we can follow the same steps with the same sort of assumption
as [33] to conclude that the models discussed in the previous subsection are equivalent to
the topological sigma model of Vafa and Witten [28]. Thus the stringy Donaldson-Witten
invariants on a K�ahler surface may be obtained from formulas like (5.15) and (5.16) on
the product 3-fold. This supports an earlier suspicion of one of the authors that a stringy
generalization of Donaldson-Witten theory as discussed in [31] does not give information
beyond Seiberg-Witten, since the Seiberg-Vafa-Witten type invariants on a manifoldM2��
most likely are just the Seiberg-Witten invariants on M2.

6.2. The Model On Calabi-Yau 3-Folds

We now shortly comment on the case that the K�ahler 3-fold M is Calabi-Yau with holo-
morphic 3-form !0;3. For the Calabi-Yau case the Nc = (2; 0) supersymmetry enhances to
Nc = (2; 2) supersymmetry. We will come back to this model in more detail in a forthcoming
paper [22].

We argued in [8] that our model is the world-volume theory of parallel type IIB (Eu-
clidean)D5-branes wrapped on the CY3. We show that the G-equivariant degrees of freedom
correspond to the bulk degrees of freedom transverse to the (Euclidean) D5-branes. We use
such a correspondence as supporting evidence that our path integral should be well-de�ned
in any situation.

We consider the Nc = (2; 0) theory with supercharges s+ and s+ de�ned in the previous
section specializing to a Calabi-Yau 3-fold M with a holomorphic 3-form !0;3. Using the
non-degeneracy of !0;3 we may rede�ne the �elds (�0;2� ;H0;2; �0;3+ ; C0;3) as

 0;1
� ; H0;1; �+; �; (6:2)

where12

�0;2� = �(!3;0 ^  0;1
� );

H0;2 = �(!3;0 ^H0;1);

�0;3+ = �+!
0;3;

C0;3 = �!0;3:
(6:3)

12The anti-holomorphic Hodge star operator � is de�ned by �� = ��. Acting on a (p; q)-form on a complex
d-fold gives a (d� p; d� q),

� : 
p;q(M )! 
d�p;d�q(M ):
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It is not diÆcult to show that the action functional S has additional global supersym-
metries generated by s� and s�. We have the following diagrams to be compared with
(4.5);

�
s+

�! �+
s�

 � �++??ys�

??ys�

??ys�

��
s+

�! D
s�

 � �+x??s+

x??s+

x??s+

���
s+

�! ��
s�

 � �

;

 0;1
�

s�

 � A0;1 s+

�!  0;1
+

s+
& .s�

H0;1

: (6:4)

The four supercharges satisfy the following anti-commutation relations

fs�; s�g = 0;

fs�; s�g = 0;

fs+; s+g = �i�
a
++La;

fs+; s�g = �i�
aLa;

fs�; s+g = �i�
aLa;

fs�; s�g = �i�
a
��La;

fs+; s�g = 0;

fs+; s�g = 0:
(6:5)

The above anti-commutation relations de�ne a balanced G-equivariant Dolbeault cohomology
on the space A of all connections [31]. Thus our model becomes a Nc = (2; 2) model.

The action functional S in (4.9) can be rewritten in a form showing manifest Nc = (2; 2)
symmetry,

S = s+s+s�s�
�
K �

1

6�2

Z
M

Tr(� � �)
�
+ s+s�W(A0;1) + s+s�W(A1;0); (6:6)

where K is the K�ahler potential on the space A of all connections,

K =
1

24�2

Z
M

�Tr (F ^ F ) ^ !; (6:7)

and W(A0;1) is the holomorphic Chern-Simons form,

W(A0;1) =
1

8�2

Z
M

!3;0 ^ Tr
�
A ^ @A+

2

3
A ^A ^A

�
: (6:8)

We remark that the above action functional can be obtained by the dimensional reduction
of the (1+1)-dimensional Nws = (2; 2) spacetime supersymmetric linear gauged sigma model
in two real dimensions, whose target space is the space A of all connections on a Calabi-
Yau 3-fold M [8]. In [8] we interpreted the model as the matrix string theory [34][35][36]
compacti�ed on a Calabi-Yau by regarding A as the con�guration space of all D-branes
wrapped on the Calabi-Yau.
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7. Discussion And Conclusion

In this paper we studied an extended moduli problem of stable bundles on K�ahler 3-folds,
using topological �eld theory. The partition function of the topological �eld theory gives a
concrete formula to calculate natural generalizations of Donaldson-Witten type invariants
for higher dimensional K�ahler manifolds. The bare problem of stable bundles in 3 complex
dimensions generically is obstructed, which is reected in the in�nite number of anti-ghost
zero-modes in the corresponding model. We argued that in order to reduce this to a �nite
number, we had to extend the model by adding a (3; 0)-form �eld. This extended moduli
problem indeed gives rise to a �nite number of zero-modes, and therefore also a �nite dimen-
sional moduli space. However, the model may still have anti-ghost zero-modes, which would
make the moduli space non-smooth. However, the partition function and the correlation
functions can still be well de�ned, by using the Euler class of the corresponding anti-ghost
bundle.

Another potential problem was the appearance of zero-modes for the ghosts, correspond-
ing to the possible appearance of strictly semi-stable bundles. We saw that we could deform
the model such that we are able to deal with thissituation. This deformation is similar to
the one proposed in Donaldson theory in [27].

Stable bundles also appear as the BPS sector of string theory, interpreted as BPS con�g-
urations of D-branes wrapped around the K�ahler manifold. It would be interesting to see if
the extended moduli problem also has a string interpretation, though at �rs sight this does
not seem the case, as we have no natural candidate for the additional (3; 0)-form.

The general mathematical cohomological problem has a generalization to higher dimen-
sional K�ahler manifolds. However, we could not implement these ideas into a topological
�eld theory setting. The only solution could lie in the interpretation of the higher even
forms as gauge parameters rather than �eld strengths (obstructions). However, we do not
know anyway in which this could happen in the nonabelian case. It is interesting to com-
pare to string theory, where there are strong hints towards "nonabelian\ higher form gauge
transformations.
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Appendix A. Supersymmetry Transformation Laws

In this Appendix we give the explicit Nc = (2; 0) supersymmetry transformation rules of
the �elds of our model discussed in Sect. 4. The transformation laws of the gauge multiplet

(���; ��; ��;D) and of �++ are given by

s+��� = i��;

s+��� = i��;

s+�� = 0;

s+�� = +iD +
1

2
[�++; ���];

s+�� = �iD +
1

2
[�++; ���];

s+�� = 0;

s+�++ = 0;

s+�++ = 0:
(8:1)

We had two sets of holomorphic multiplets and their anti-holomorphic partners. The trans-
formations follow those given in (2.2). One set of holomorphic multiplets is (A0;1;  0;1

+ ) with

anti-holomorphic partners (A1;0;  
1;0

+ ),

s+A
0;1 = i 0;1

+ ;

s+A
0;1 = 0;

s+A
1;0 = 0;

s+A
1;0 = i 

1;0

+ ;

s+ 
0;1
+ = 0;

s+ 
0;1
+ = �@A�++;

s+ 
1;0

+ = �@A�++;

s+ 
1;0

+ = 0:

(8:2)

The other holomorphic multiplet is (C3;0; �3;0+ ) with anti-holomorphic partner (C0;3; �
0;3

+ ),

s+C
3;0 = i�3;0+ ;

s+C
3;0 = 0;

s+C
0;3 = 0;

s+C
0;3 = i�

0;3

+ ;

s+�
3;0
+ = 0;

s+�
3;0
+ = �i[�++; C

3;0];

s+�
0;3

+ = �i[�++; C
0;3];

s+�
0;3

+ = 0:

(8:3)

Finally we have Fermi multiplets (�2;0� ;H2;0) and anti-Fermi multiplets (�0;2� ;H0;2), with
transformation rules as in (2.5), using the holomorphic section J given in (4.4), we get

s+�
2;0
� = �H2;0;

s+�
2;0
� = �@�AC

3;0;

s+�
0;2
� = �@

�

AC
0;3;

s+�
0;2
� = �H0;2;

s+H
2;0 = 0;

s+H
2;0 = �i[�++; �

2;0] + i[� 0;1
+ �; C

3;0] + i@�A�
3;0
+ ;

s+H
0;2 = �i[�++; �

0;2] + i[� 
1;0

+ �; C
0;3] + i@

�

A�
0;3

+ ;

s+H
0;2 = 0:

(8:4)

Appendix B. Some Properties Of M

This is a mathematical digression to establish a property of the extended moduli space. First
we recall a theorem [21][26] on the moduli spaceMEH of EH connections { if fH 0;0 = 0 the
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moduli space MEH is a complex analytic space. It is nonsingular at a neighborhood of a
connection if fH 0;2 = 0 and its tangent space is naturally isomorphic to the space of H 0;1.
Here fH 0;� denotes the cohomology group de�ned by tracefree endomorphisms. We refer to
[21]Ch. VII.3 for details on the notations.

Now we state an analogous theorem about the extended moduli space M of EH connec-
tions on a complex K�ahler 3-fold - if fH 0;0 = 0 the moduli space M is a complex analytic
space. It is nonsingular at a neighborhood of an extended connection if fH 0;2 = 0 and its
tangent space is naturally isomorphic to the space H 0;1�H 3;0. The extended moduli space
M is a smooth K�ahler manifold with the formal dimension equal to the actual dimension iffH 0;0 = fH 0;2 = 0.

The proof of the above theorem is similar to that of the Einstein-Hermitian case [21].
Given an extended EH connection D, a nearby deformation @A + �, C3;0+ � is governed by
the equations

@A�+ � ^ � = 0;

@
�

A� = 0;

�(@A� + � ^ �) = 0:

(9:1)

We only need to consider the last equation since the theorem quoted above already dealt
with the �rst two equations. The last equation has the following orthogonal decomposition

@A� + � ^ � = 0$

8>><>>:
@A

�
� + @

�

A ÆG(� ^ �)
�
= 0;

@
�

A � @A ÆG(� ^ �) = 0;

H(� ^ �) = 0;

(9:2)

where G is Green's operator and H is the harmonic projection. We de�ne Kuranishi map
k0

k0 : C 3;0! C
3;0; k0(�) = � + @

�

A ÆG(� ^ �): (9:3)

Then, from the �rst equation on the right of (9.2) we have @A(k
0(�)) = 0, while @

�

A(k
0(�)) = 0

by the dimensional reason. Thus we obtain �@A(k0(�)) = 0! @
�

A(k
0(�)) = 0. Consequently

we have
k0(�) � H 3;0: (9:4)

Now we examine if the Kuranishi map is invertible for a given � 2 H 3;0, i.e., � = k0�1(�)
and �(@A� + � ^ �) = 0. Taking the orthogonal decomposition of � ^ � one �nds that

�(@A� + � ^ �) = �@
�

A Æ @A ÆG(� ^ �) + �(H(� ^ �)): (9:5)

Note that �(H(�^ �)) is in fH 2;0, which is isomorphic to fH 0;2. By our assumption we have
H(� ^ �)) = 0. Denoting  = @A�+ � ^ � and Æ = @A� + � ^ � we have

Æ = @
�

A ÆG(@A� ^ � � � ^ @A�)

= @
�

A ÆG( ^ � + � ^ Æ)

= @
�

A ÆG(� ^ Æ);

(9:6)
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where we used the fact that  = 0 for fH 0;2 = 0. Applying the following estimate

k@
�

A ÆGvk2;k+1 � ckvk2;k; (9:7)

we have
kÆk2;k � kÆk2;k+1 = k@

�

A ÆG(� ^ Æ)k2;k+1
� ckÆk2;k � k�k2;k:

(9:8)

Taking � suÆciently close to 0 so that k�k2;k < 1=c, we conclude Æ = 0. Thus the Kuranishi

map k0 is invertible if fH 0;2 = 0. Consequently the local model of the extended moduli space
M is given by f�1(0) where

f :H 0;1 �H 3;0!fH 2;0;

(�; �)! �(H(� ^ �)):
(9:9)
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