
S-MATRICES FOR PLANCKIAN SCATTERING

Sebastian de Haro
Spinoza Insitute, Utrecht University
Leuvenlaan 4, 3584 CE Utrecht
and
Institute for Theoretical Physics
Utrecht Univerisity, Princetonplein 5
3584 CC Utrecht, The Netherlands
haro@phys.uu.nl

String theory seems to give a unitary description of physics in the
neighbourhood of certain black holes. A nice example of this is the
AdS/CFT conjecture, where processes in the near-horizon region of sev-
eral black branes are described by a conformal field theory which is
unitary. However, it is hard to understand from the CFT where exactly
Hawking’s argument goes wrong.

An alternative but related program for understanding these issues
was started by ’t Hooft, who considered the near-horizon region of the
Schwarzschild black hole, namely flat space. The interactions between
outgoing Hawking radiation and ingoing particles, which near the black
hole are boosted to the speed of light, can then be simulated by the
gravitational interactions between massless particles. An S-matrix for
their scattering can then readily be computed. For a review on the
S-matrix Ansatz we further refer to [1].

In this note we discuss the quantum mechanical properties of this
model, and its possible relation to the AdS/CFT conjecture.

1. THE FLAT-SPACE S-MATRIX
To understand how massless particles scatter gravitationally, one must

first obtain them as a solution of the gravity theory. Aichelburg and Sexl
[2] (see also [3]) found the following metric for a massless particle in flat
space:

ds2 = dudv − pvf(x̃) δ(v) dv2 + dx̃2. (1.1)
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Now one would like to compute how test particles interact with the
shockwave (1.1). Notice that trajectories of test particles that cross the
shockwave are shifted by an amount pvf . Indeed, the computation of
geodesics in the metric (1.1) gives:

u = θ(v)pv f(x̃). (1.2)

From (1.2), the S-matrix for the scattering process can be computed [1].
It has a very simple form, since the interaction is described by a phase
factor on the wave function. The amplitude is then

A = 〈pout
1 · · · pout

M |pin
1 · · · pin

N 〉
∫

=
∏
ij

dx̃idyj |xi − yj |iGNpin
i pout

j .(1.3)

This is the well-known Veneziano amplitude, with an imaginary tension
which is related to Newton’s constant.

2. QUANTUM MECHANICS OF
SHOCK-WAVES

The amplitude (1.3) suggests some sort of relation to string theories.
It is therefore tempting to study how particles interacting through (1.1)
behave as first quantised quantum mechanical systems. It turns out that
the consistency of the operator algebra with the interactions imposes [4]:

[Xµ(σ̃), P ν(σ̃′)] = i(gµν + Bµν)δ(σ̃ − σ̃′) (1.4)
[Xµ(σ̃),Xν(σ̃′)] = iGN εij∂iX∂jX εµναβf(σ̃, σ̃′), (1.5)

where Bµν is a certain combination of X, P , and their derivatives, and
σ̃ are the coordinates on the shockwave. This implies a generalisation
of Heisenberg’s principle,

∆x∆y ≥ O(�2
Pl) (1.6)

∆x∆p ≥ h̄

2
+ O(�2

Pl pin/b), (1.7)

where b is the distance between the particles in transverse space. Notice
that these are relations between operators corresponding to different
particles.

It is at a first glance not clear why X and P , when regarded as op-
erators acting on Hilbert space, have a commutation relation different
from the usual one. The explanation is as follows. Due to interactions,
momentum transfer between the particles forces the canonical operator
to be redefined according to the momentum exchange. One indeed finds
[4] that there is an operator,

Πµ = (gµν − Bµν)Pν , (1.8)
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which has a canonical commutation relation with the position of the
particle. One can verify that, classically, equation (1.8) gives the mo-
mentum exchange with the shockwave, which can be checked by simple
kinematics.

Let us now comment on the covariant form of (1.4) and (1.5). The
original computation assumed the eikonal approximation, where the
transverse momentum transfer between the particles was neglected. How-
ever, as it turns out, equations (1.4), (1.5) and (1.8) automatically in-
clude corrections to the next order1, which are fixed by covariance and
consistency of the quantum algebra. That is the reason that (1.8) gives
us not only the right expressions for the longitudinal momenta, but also
for the transverse momenta. Integrating the momentum over the whole
plane of the shockwave, one finds

Pµ
in = Pµ

out, (1.9)

which is nothing else than conservation of momentum during the colli-
sion. However, when regarded as a relation between operators in the in-
and out-Hilbert space, it means that the two Hilbert spaces are identical.

A feature of this simple model for the black hole is that one gets a
unitary S-matrix. As stated by (1.9), it is enough to know how the
out-operators act on states to know the Hilbert space structure of the
ingoing particles. In this sense the theory is holographic, since one only
needs to make measurements on the horizon of the black hole (namely,
one needs to know how its shape changes due to the presence of infalling
and outcoming particles) to have all information about the inside.

3. THE S-MATRIX AND THE ADS/CFT
CONJECTURE

The content of this section is at present still work in progress [5].
It would be interesting to see what implications the S-matrix Ansatz

has when applied to the AdS/CFT conjecture.
To develop this program, one first needs a description of massless

particles in AdS, including their interactions. In [6], a solution analogous
to (1.1) was found for AdS. It was further argued that shock-waves in
AdS correspond to light-cone states in the CFT, states whose stress-
energy tensor is a delta-function centered on the light cone. Work is
done in order to prove this by direct computation on the AdS side.

The solution found by Horowitz and Itzhaki can be used to compute
the S-matrix for massless particle scattering in AdS. When dealing with

1The dimensionless expansion parameter is here �2
Pl

pin/b.
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AdS, one has to be careful since in general an S-matrix has no mean-
ing due to the presence of the boundary. Information can be lost or
gained from the AdS boundary, and therefore the theory is not unitary.
However, it turns out that for fields with special (reflective) boundary
conditions, the S-matrix makes sense and can be computed. One gets
a result which in the limit for large AdS radius reduces to (1.3), the
flat-space S-matrix. Since the modes involved in this S-matrix are nor-
malisable, from the CFT side the phase factor of the field corresponds
to an interpolation between two different vacua of the theory on both
sides of the light-cone. This will be reported elsewhere [5].

If one had an equation like (1.5) in AdS, it would be very interesting
to understand what implications this has for the CFT on the boundary.
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